The Cyclic Coloring Problem
amnd Estimation of Sparse
Hessiam Matrices

Thomas F.,Coleman*
Jin-yi Cati ’

TR 84-646
October 1984

Department of Computer Science
Cornell University
Ithaca, New York 14853

f The work of this author was supported in part by the Applied Mathemat-
ical Scienced Research Program (KC-04-02) of the Officed of Energy
Research of the U.S. Department of Energy under Contract DE-AC02-
83ER13069. '

THE CYCLIC COLORING PROBLEM
AND

ESTIMATION OF SPARSE HESSIAN MATRICES

Thomas F. Coleman*
Jin-yi Cat

Computer Science Department
Cornell University
Ithaca, New York 14853

October 1984

Abstract

Numerical optimization algorithms often require the (symmetric) matrix of
second derivatives, 72f (z), of some problem function f: R" — RL. If the Hes-
sian matrix is large and sparse then estimation by finite differences can be quite
attractive since several schemes allow for estimation in << n gradient evalua-
tions.

The purpose of this paper is to analyze, from a combinatorial point of view,
a class of methods known as substitution methods. We present a concise charac-
terization of such methods in graph-theoretic terms. Using this characterization,
we develop a complexity analysis of the general problem and derive a roundoff
error bound on the Hessian approximation. Moreover, the graph model immedi-
ately reveals procedures to effect the substitution process optimally (ie. using
fewest possible substitutions given the differencing directions) in space propor-
tional to the number of nonzeroes in the Hessian matrix.

* The work of this author was supported in part by the Applied Mathematical Sciences
Research Program (KC-04-02) of the Office of Energy Research of the U.S. Department of Energy
under Contract DE-AC02-83ER13069

1. Introduction

We are concerned with the estimation of a large sparse symmetric matrix of
second derivatives s72f (z) for some problem function f:R" — R!. In particu-
lar, we note that the product 7%f(z)-d can be estimated, for example, by for-
ward differences

Vi (2)d =[vf(z+d)-v/(2)] + o(lld]]) (1.1)

When the structure of w2f(z) is known then usually a few well-chosen
differencing directions dy, ..., d, affords the recovery of estimates of all
nonzeroes of 72f (z). Let us denote our estimate by H. We will assume that
the sparsity pattern of H is known; the diagonal elements are specified as

nonzero; H is symmetric.

There has been considerable work recently concerned with this problem,

especially with trying to make p as small as possible. Curtis, Powell, and Reid
[1974] suggested a method, CPR, for the unsymmetric problem. Their idea was
to build groups of independent columns in a left-to-right greedy fashion. (2 vec-
tors z,y are independent if z; 20 => y; = 0.) It is easy to see that such a
p-partition allows for the estimation of a matrix with p differencing directions.
Specifically, let Cy, ..., C, be a partition of the columns of H where each
group consists of independent columns. Let h; be the steplength associated with
column ¢, 1=1,...,n, and define

d = Y, he;
[€S

where S} is the set of indices to columns in group Cj, and e¢; is the i** column of
the identity matrix. Then, if [V f(z+ d;)-f(z)]; £ 0 it follows that there is
exactly one column j in group Cj with H;; a designated nonzero and we can
assign

[/ (z+ dp)-v/ ()]
Ht‘j «—
h;

Coleman and More [1983] analyzed and modified this method by taking a
combinatorial point of view. In particular, a column tntersection graph can be
formed by associating with each column ¢ of H a node v; and defining an edge
between node v; and node v; iff there is an index k such that both H}; and Hy;
are nonzeroes. A p-coloring of this graph is an assignment, @, of ‘colors’ to nodes
such that if there is an edge between node v; and node v; then ¢(v;) # é(v;). It
is not hard to see that a p-coloring of this graph induces a valid partition of

independent columns and vice versa.

Coleman, Garbow, and More¢ [1984a] have developed FORTAN 77 codes
based on this work. Such (unsymmetric) methods can be applied to the sym-
metric problem (McCormick [1983] discusses the complexity of this approach)
however it is probably worthwhile using symmetry when it is present.

Powell and Toint [1979] were the first to exploit symmetry. They pointed
out that symmetry can be used both in a direct and an indirect fashion. A direct
method is one in which each unknown of H is determined independently of the
others. More specifically, let Cy, ..., C, be a partition of the columns of H.
Since each off-diagonal nonzero is represented twice in H it is no longer necessary
that each group consist of independent columns. It is necessary, however, that
for each nonzero (¢,5) either column ¢ reside in a group C, such that no other
column in this group has a nonzero in row j or column j reside in a group C,

such that no other column in this group has a nonzero in row s. If the latter.

condition were true then H;; would be determined

L 91 at d)vr @

11 hJ'

and H; « H;;. Clearly a similar (symmetric) rule would hold for the former
condition.

Coleman and More {1984] analyzed such methods from a combinatorial point
of view and produced a simple graph-theoretic characterization of all partitions
that can be used to induce a direct symmetry-exploiting determination of H. Let
us represent the structure of H by the wusual adjacency graph
G(H) = (V(H),E(H)). That is, if H is a symmetric matrix of order n then
V(H) consists of n vertices vy,...,v, (associate column s of H with vertex v;) and
E(H) consists of pairs of vertices (edges) where (v;,v;) € E(H) if and only if H;;
(Hj;) is considered a nonzero. A p-partition of the columns of H, C,...,C, can
be viewed as an assignment of colors , ¢, to the nodes of G, ¢: V — {1,...,p}.
This assignment is a p-coloring if (v,w) € E => ¢(v) # ¢(w). A
path p-coloring is a p-coloring with the additional stipulation that every path in
G of length 4 (distinct) vertices uses at least 3 colors. The characterization of
direct symmetric methods given by Coleman and More'is simply

Theorem 1.1: The mapping ¢ is a path p-coloring if and only if ¢ induces a parti-
tion of the columns of H consistent with direct determination.

Note: In order to avoid confusion in this paper we have changed the notation
used by Coleman and More [1984] - here we use ‘path p-coloring’ instead of ‘sym-
metric p-coloring’.

-3-

This characterization led to a deeper understanding of the direct estimation
problem on symmetric structures which in turn yielded a complexity analysis and
algorithmic possibilities.

Indirect estimation of symmetric matrices may be preferable because fewer
groups (ie. differencing directions) will be needed, in general. Powell and Toint
concentrated on substitution methods where directions are chosen so that
nonzeroes can be determined via a substitution process. (They restricted their
attention, as we do, to substitution methods based on a partition of columns.) So
in this case there is interdependence of the matrix unknowns (nonzeroes) to the
degree that an underlying lower triangular system is defined. Powell and Toint
proposed an algorithm to determine the differencing directions and then solve for
the unknowns (lower triangular substitution method (LTS)). Subsequently, Cole-
man and Moré€ [1984] analyzed this process from a combinatorial point of view.
This analysis led to a modified and emperically superior procedure (the resulting

FORTAN 77 code is described in Coleman, Garbow, and Mor¢ [1984b]). How-

ever, a simple insightful characterization, in the vein of Theorem 1.1, was not
provided.

The purpose of this paper is to provide such a characterization. This result
is as simple as Theorem 1.1 and is clearly the analagous result. This view pro-
vides enormous insight into the combinatorial nature of the problem as well as
suggesting algorithmic possibilities. Furthermore, the graph theoretic interpreta-
tion reveals that if a partition of columns allows for the recovery of H via a sub-
stitution process then it is always possible to do so efficiently. In particular,
every unknown can be solved for in (roughly) less than n /2 substitutions and the
space required to compute H is proportional to the number of nonzeroes. This is
somewhat surprising since the Powell-Toint procedure relies heavily on a regular
matrix structure produced by LTS which is not present for an arbitrary feasible
partition. Finally, the graph model allows one to derive a growth of error bound
for a general substitution method, which is essentially analagous to the result
achieved by Powell and Toint for a specific method, LTS.

Section 2 will provide the characterization of substitution methods followed
by a roundoff error discussion. In Section 3 we establish the complexity of the
problem and discuss its combinatorial relationship to the symmetric direct prob-
lem (path coloring). Section 4 deals with algorithms for effecting the substitution
process in space proportional to |E | (i.e. the number of nonzeroes of H).
Finally, observations on parallelism are provided in Section 5.

-4-
2. Substitution Methods and Cyclic Coloring

A partition of columns of a symmetric matrix induces a substitution method
if there is an ordering of the matrix unknowns such that all unknowns can be
solved for, in that order, using symmetry and previously solved elements. This
notion is fully general (subject to the partition restriction) but seems to be a
difficult one to work with. There is however a very elegant and simple graph
theoretic interpretation. The major purpose of this section is to present this char-
acterization. We conclude this section by applying this characterization to
achieve bounds on the maximum number of substitutions and hence we bound
the potential growth of roundoff error.

First it is necessary to formalize the concept of a substitution method in
matrix terms. Let U be the set of indices of matrix unknowns (identify (1,5)

with (7,7)) and suppose that U is ordered: U = {(1;,j;)}. Let the columns of H

be partitioned {Cy, . . ., C,} and define
So=10;, S =S, U lixg)}, 1<k L|U|

The ordering induces a substitution method iff

either j, belongs to a group C, say, and if / is any other column in C with a
nonzero in row #; then (s;,l) € Sp_; or 1, belongs to a group C', say, and if s
another column in ¢’ with a nonzero in row j; then (e d') € Sy

The essence of this statement is that, at the kt* step, it is possible to solve for
element (f;,7;) or, equivalently (j;,f;), by substitution. We call a partition, for
which there exists such an ordering, substitutable. For example, if H is a tridiag-
onal matrix then it is easy to verify that the partition ({1,3,...} ,{2,4,...}) is sub-
stitutable.

Obviously there are substitutable partitions for any symmetric matrix. For
example, every partition consistent with a path coloring is substitutable. Alter-
natively, a partition that induces a ‘lower triangular substitution method’ is sub-
stitutable. (Coleman and More [1984] and Powell and Toint [1979] discussed
lower triangular substitution methods.) However, here we are interested in
minimizing the number of groups in a general substitutable partition. The above
2 examples are restrictive in that they consider only particular classes of substi-
tutable partitions. The general problem is

Partition Problem: Obtain a substitutable partition of the columns of a given
symmetric matrix H with the fewest groups.

-5-

How difficult is the partition problem ? This is a hard question to answer consid-
ering the rather clumsy matrix formalization of a substitution method. For-
tunately a substitutable partition has a simple expression in the language of
graphs.

Definition. A mapping ¢:V — {1,2,...,p} is a cyclic p-coloring of G if ¢ is a
p-coloring and if ¢ uses at least 3 colors in every cycle of G.

As the following theorem indicates, we now have a simple characterization of a
substitutable partition.

Theorem 2.1. Let H be a symmetric matrix with a nonzero diagonal. The map-
ping ¢ induces a substitution method & ¢ is a cyclic coloring of G(H) .

Before providing the proof, let us consider an informal argument based on
the following example. Let the adjacency graph of H, G(H) be as shown.

(S)

- o A
@ ®
5——@®

SHRS

Both assignments of the colors r,s,t are valid colorings but assignment 1 is not
a valid cyclic coloring: the cycle v,,v,,v3,v, uses only 2 colors. Assignment 2
is a valid cyclic coloring. The edges (off-diagonal nonzeroes) can be determined
by considering each pair of colors in turn. For example, consider the subgraph,

F, ,, induced by the nodes colored r or s:

-6-

Edges (1,8), (3,7), and (3,9) can all be determined immediately. Consider for
example edge (3,7). Column 3 has a a nonzero in row 7 and resides in group C,.
There is no other column in group C, with a nonzero in row 7 (else node 7 would
have another incident r-node). Therefore, H; 3 (hence Hj;) can be determined
directly. Once (3,7) and (3,9) are determined, edge (2,3) can be computed:
column 2 has a nonzero in row 3 and resides in group C,. Columns 7 and 9 are
the other columns in group C, with nonzeroes in row 3. However, H3; and Hgg
are now known quantities; hence, (Hj5) can be computed with 2 substitutions.

Clearly the process can be carried to completion until every edge in F, , is
determined. (It is trivial to see that the diagonal elements can be directly deter-
mined: this follows from the fact that ¢ is a coloring .) But every pair of colors
induces a forest, otherwise ¢ would not be a cyclic coloring, and therefore every
nonzero can be determind by considering each pair of colors in turn.

The ‘if’ part of Theorem 2.1 is proved along the lines of the example given
above. The ‘only if’ part is perhaps a bit surprising but not difficult to prove.

Proof of Theorem 2.1. First we prove that every cyclic coloring of G(H)
induces a substitution method. Since ¢ is a coloring, every diagonal element of H
can be computed. Consider next (1,7) € U, 1#£3. Suppose that column ¢ is in
group C, and column j is in group C,. Clearly, since ¢ is a coloring, r # s.
Consider the subgraph induced by the nodes colored r and the nodes colored s,
say F,,. Since ¢ is a cyclic coloring, F, , contains no cycle and therefore is a
forest. The edges in F, , correspond to off-diagonal unknowns of H. They can
be solved, or ordered, independent of the rest of the unknowns of H. In particu-
lar, each leaf-incident edge can be solved directly since there is no conflict. We
can now ‘delete’ all such edges and consider each new leaf-incident edge. Each
such edge is now incident to known edges and can therefore be solved. Clearly
the process can be repeated until an edge-less graph remains. The entire pro-
cedure can now be repeated for each pair of colors until every unknown is deter-
mined.

We now show that if ¢ induces a substitution method then ¢ is a cyclic
coloring. First it is clear that ¢ must be a valid coloring, otherwise the diagonal
elements would not be determined. Suppose then that ¢ is a coloring but is not a
cyclic coloring. Hence there must be a cycle, with at least 4 edges, colored with
just 2 colors, say r, s. Let (1,7) be the first edge in this cycle to be solved
(ordered) and let us assume, without loss of generality, that v; is colored r and
v; is colored s. Let node v; be incident also to node v, (on the cycle) and let v;
be incident also to node v, (on the cycle). But (¢,7) cannot be determined from
group C, because columns j and A both reside in this group with nonzeroes in

row ¢ (and (¢,h) is not yet known (ordered)). Similarily, (,#) is not determined

-7-

from group C, because columns ¢ and k both reside in this group with nonzeroes
in row j (and (j,k) is not yet known (ordered)). Therefore no edge in this cycle
can be solved first and ¢ cannot induce a substitution method. e

Hence the partition problem is equivalent to the
Cyclic Coloring Problem: Obtain a minimum cyclic coloring of G ().

Note that once we have found a cyclic coloring of G'(H) then the coloring induces
a substitutable partition and the corresponding ordering of U is available, as the
proof of Theorem 2.1 indicates. A tridiagonal matrix provides a trivial example.
The graph is just

¢in= O—O—0O— -+ -O—0—20
Vv

1 V‘l V3 Vn.. 2 Vn -1 V"

and a valid cyclic coloring is provided by assigning r to the even nodes and s to
the odd nodes. The diagonal elements can be solved directly and the off-diagonal
elements are obtained via substitution: edges (1,2) and (n-1,n) are obtained first
(directly), followed by (2,3) and (n-2,n-1), with 1 substitution each, and so on.
The middle node will be the last determined element with approximately » n
dependencies or substitutions. |

Suppose we modify the above example by adding an edge from node v, to
node v,. A cyclic coloring would then require 3 colors; for example, we could use
our previous assignment except we apply a new color, ¢, to node 1. Now (1,2)
and (1,n) can be determined directly (or, ordered first) and the remaining ele-
ments can be determined, as before, via substitution.

The above 2 examples raise an interesting question with numerical
significance: Is there a limit to the number of dependencies or substitutions? The
potential growth of roundoff error as well as the amount of computational work
will depend on this number and therefore a bound, tighter than the total number
of nonzeroes in H, would be consequential. Powell and Toint[1979] established
that for a particular class of substitution methods, triangular substitution
methods, the bound is n-2. The cyclic coloring characterization leads us immedi-
ately to a more general result. Every unknown can be determined by considering
the forest induced by a particular pair of colors. But each forest can have at
most n-1 edges and therefore we have the following result.

-8-

Theorem 2.2. Let ¢ be a substitutable partition. Then, each unknown in H is
dependent on at most n—2 other unknowns. e

Clearly this result is the best possible worst case upper bound, if we allow
any possible feasible ordering of the unknowns or edges. To see this just consider
the tridiagonal case: if the edges are solved from one end of G(H) to the other,
then the last edge requires n-2 substitutions. However, certain orderings are
preferable over others. For example, in the tridiagonal case one can achieve a
bound of |% (n-2)] if each edge is solved by substituting from the nearest end of
G(H). It is not hard to see that, over different orderings, this is the best possible
worst case upper bound; again, just consider the tridiagonal case.

Is it possible to order the unknowns, in general, so that the maximum
number of substitutions is less than or equal to |% (n-2)]? In order to answer
this question, consider when it is feasible, during the solution process, to solve for
edge | 2 (z,y) in T, , where T, , is a tree in the forest induced by the colors r
and s. Define

T (2) = (V] ,(2).E{ ,(2)) T} ,(9) = (V] ,(9).E{ ,(v))

to be the 2 subtrees, rooted at z and y respectively, that remain when edge
(but not its endpoints) is removed from T, ,. That is

X Y Y

T Tr,ﬁ)

It is clear that (z,y) is ready to be solved if and only if either every edge in
T,l,,(x) is solved or every edge in T,l,,(y) is solved. Furthermore, (z,y) requires
at least

mincost (z,y) & min{|E; ,(z)|, |E; ,(y)|}

substitutions. Note that an ordering that computes edge (z,y) using
mincost(z,y) substitutions, for each edge (z,y), is optimal and requires less than
L (n—2)] substitutions for each edge.

Such an ordering is possible and is provided by the following algorithm. Let
T A (Vg,E7) be the tree under consideration, with |V | = ny < n.

Algorithm solve_tree
T, A(V,E,) where V= Vs E, =Ep
for each vertex v €V, do wvalue(v) « 0 od
for i=1to |E,| do
choose a leaf z; of T;, of smallest value
let y; be the vtx such that (z;,y;) € T;
value (y;) « value(y;) + value(z;) + 1
solve (z;,y;)
Eiyy1+ B - {(,%)}
Vier = Vi -z}
Tiv1 = (VigEis)
od

end solve_tree

Theorem 2.3: Algorithm solve_tree solves for each edge (z,y) € Er using the
fewest possible substitutions, mincost(z,y). Hence, solve_tree requires at most

max{mincost(z,y): (z,y) € F} < ll% ~(nT—2)] < % (n-2)]
substitutions to determine any edge of Ey.

Proof: Assume then that solve_tree doesn’t solve for each edge using the fewest
possible substitutions. First we establish that algorithm solve_tree terminates:

Since T; is a tree and z; is a leaf in T; it follows that T;,; is a tree. Therefore

T;, will have a leaf (indeed at least 2) and z;,; will be found. It follows that

the algorithm will determine every edge.

Next, let us assume that at step ¢ vertex z; is the chosen leaf in T; and edge
| A (z;,y;) is determined non-optimally. That is, |E'(z;)| > |E'(y;)| and
hence |E'(z;)| = value(z;) > ll.lfz (nT—2)}. Consider a leaf, v;, in T; N T'(y;)
(there must be at least 1). But

B (z)| > {» (nr-2)] => 1E'w)) < | (np-2)]

and therefore,

value (v;) < k% (nT—2)j < value (z;)

- 10 -

Therefore (z;,y;) would not be solved at step ¢, a contradiction. e

In summary, Theorem 2.3 says that for an arbitrary substitutable partition
algorithm solve_tree will compute each edge with the fewest possible substitu-
tions (with respect to that partition) and that number is always bounded by

L (n-2)].

We conclude Section 2 by considering the accuracy of the estimated Hessian
matrix in more detail. We will show that an error bound, similar to that
achieved by Powell and Toint [1979] for a particular class of algorithms (lower
triangular substitution methods) holds for any substitution method provided the
unknowns are solved for in the manner suggested by solve_tree.

Every substitutable partition with p groups, or cyclic p-coloring, allows for
the recovery of the matrix unknowns via a back substitution process provided the
differencing vectors are consistent with the coloring ¢. In particular, let S,
denote the set of nodes (columns) colored k (ie. in C,) and define

dp = Y he
[€5

where h; is the step-length associated with column ¢. Let z be a given point in
R"™ and define v, = vy f(z+d;y)-vf(z), for k =1,..p. If H denotes the
approximation to 72f (z), it follows that, since ¢ is a coloring,

H].J.~h]- = [vf(z+ hj e,~)],' _ [Vf(x)],-, j=1..n

The diagonal approximations are defined by these equations, and will not partici-
pate in any subsequent calculations. Indeed such equations usually guide the
choice of h;: h; is chosen to balance truncation and roundoff errors in order to

approximate the diagonal elements as accurately as possible (eg. Gill, Murray,
Saunders, and Wright [1983].)

Previous analysis has shown that it is only necessary to consider 2 colors
(directions) at a time when solving for the off-diagonal elements. Let us concern
ourselves then with a tree, T,,, induced by colors r and 3. Let
v, =vf(z+d,)-vf(z), v, =v/f(z+4d,)-v/(z)and let

PN ~

u, = u, + €, u, = u, + ¢

denote the computed quantities (ie. contaminated with rounding error).

The solution process is provided by algorithm solve_tree with the statement
‘ solve (z;,y;) ' expanded, to read

-11-

Hihy = (u,); - 3 Hyly (2.1)
k € N()

where we identify vertex z; with index ¢, and vertex y; with index j.
N(1f) is the set of neighbours of node z; in T,f,,(x,-), and ¢ = ¢(y;) (which is one
of r,s). In other words, when H;; is solved for, every other element in row s of
columns in group C, has already been solved for; the right-hand-side of (2.1) is
adjusted accordingly.

Following Powell and Toint, we define the error matrix F to be H — y2f
and let

(6.); = (u.); - Y (VS () ke (2.2)
ke N(@)U{s}

In words, (6,.); measures the difference between the computed quantity (uc); and
the ideal (v%f(z)-d,);. Hence (6.); is a composite of roundoff and truncation
errors. If we assume that the second derivatives of f are Lipschitz continuous
then a standard bound is obtained:

MOATE ()5) 1} < O (I B+ T (e D

where C is a positive constant.

The following result establishes a bound on the elements in the error matrx

F.

Theorem 2.4: If H is obtained by algorithm solve_tree (with ‘solve (z;,y;)’
effected by 2.1) then

A |

1Fii | < (IEf (=) 1+ 1)-M maLX{| |
J

1,7,k

}

b |

< (Le (-2 + M- (5

}

where again we identify cclumn ¢ with node z;, column ; with node y;,

l —_—A (xi’yi)y and {¢(xi)a ¢(yt)} = {T,S}.
Proof: Combining (2.1), (2.2) and the definition of F yields

(6.)i = Fyj-hy + Y] Fyly
k € N(i)

-12-

which implies the bound

[Fihih; | < |8,)ihi |+ X bk Fy |
k € N(i)

= (8.) |+ Y |Fehehi|
k € N(i)

But this same decomposition can be applied, recursively, to each Fy;hh;, for

k € N(1), to yield

|Fijhik; | < 3 16)k by | (2.3)
k €V, ()

Since V,f,,(x,-) = |E,’y,(x,-)| + 1, the result follows immediately from (2.3) and
Theorem 2.3. e

One can conclude from this result that the growth of roundoff error is rea-
sonably limited if the steplength does not vary greatly in size. On the other
hand, if there is significant variance (recall that stepsizes are chosen to accurately
approximate diagonal elements) then this result may allow for unacceptable
growth of error: a direct method may be preferable under these circumstances.

3. The Cyclic Chromatic Number

How difficult is the cyclic coloring problem? We address this question in
this section. The reader who is unfamiliar with the fundamentals of complexity
theory and NP-completeness is urged to consult the excellent resource book
“Computers and Intractability: A Guide to the Theory of NP-Completeness’, by
Michael R. Garey and David S. Johnson [1979].

We will first consider the cyclic coloring decision problem (CCDP) and show
that this problem is NP-complete: we do this by transforming the general graph
coloring decision problem (CDP). We then conclude that the corresponding
optimization problem, the cyclic coloring problem, is NP-hard. The consequence
of this result is just this: if we could solve the cyclic coloring problem in polyno-
mial time (P-time) then we could also solve the graph coloring problem in P-
time (as well as a host of other ‘intractable’ problems.) Since this is deemed
highly unlikely, an expedient approach to our problem is to investigate efficient
heuristic and approximation schemes (we discuss this in Section 4).

It is common, when considering complexity questions related to discrete
optimization problems, to consider the decision problem formulation. In this case

- 13-

we have the
Cyclic Coloring Decision Problem (CCDP): Given an integer p > 3 and an arbi-
trary graph G, is it possible to assign a cyclic p-coloring to the nodes of G'?

We have excluded the simple cases p = 1,2 since it is easy to see that poly-
nomial algorithms exist for such cases. The following theorem shows that CCDP
is not so simple for p > 3.

Theorem 3.1. CCDP is NP-complete.

Proof. The first step is to show that CCDP is in the class NP. In particular, we
must show that we can validate, in P-time, whether or not a particular assign-
ment of p colors is indeed a cyclic coloring. To do this one must merely consider
each pair of colors, in turn, and decide whether or not the induced graph is a
forest. Clearly this is a polynomial time operation.

We now proceed to transform the general coloring problem (CDP), which is
is known to be NP-complete, to CCDP. Consider an arbitrary graph
G = (V,FE) and integer p > 3. Let |V|=n and |E| = m. We construct a
new graph, G' = (V' ,E') as follows. For each edge ¢ = (v;,v;) € E, define a
bipartite graph G,' with vertices

{v,-,v]-,wl(l), Ce, wp(”}
and edges
(v,-,w(’)), (vJ-,wk(”), k=1,.,p.

Graphically, this transformation is

V.
O

Oy,

Now define a bipartite graph G' by setting
V=V@G)y{w®:1<k<p, 1<I<m}

and

E :lCJlE(G,').

-14-

We now show that if G can be p-colored using an assignment ¢ then G’ can
be assigned a cyclic p- coloring, ¢ . In particular, for each v €V let ¢'()= ¢().
Hence if we consider any G, , induced by ¢ = (v;,v v;) € E, then ¢ (v;) 7.‘. ¢ (v ;)
Let ¢ assign vertices w , J=1,...,p any color different from ¢ (v;) and ¢ (v;)-

We claim that ¢ is a cyclic p—coloring of G- Clearly any cycle in G’ must
contain a path (v wit), v;) for some 1 <! <m and 1<k <p where
(v,]) € E. But ¢ assigns 3 colors to each such path and hence every cycle uses
at least 3 colors. Moreover, the transformation from G to G’ can obviously be
done in P-time.

Finally we show that if G’ can be assigned a cyclic p-coloring then G can
be p-colored. Assume that ¢ is a cyclic coloring of G'. Define

$: ¢(v;) =6 (), 1<i<n

We claim that ¢ is a p- coloring of G. Suppose instead that ¢(v;) = ¢(v) where’
e, = (v;,v;) € E. Then ¢ must assign a different color to each w}, 1<k<p;
otherwise, there is a bi-colored cycle in G, But it follows that ¢ uses at least
p+ 1 colors, a contradiction. e

The proof above has actually established a stronger result than indicated by
the statement of Theorem 3.1, since the constructed graph G s bipartite.

Corollary 3.2: The cyclic coloring decision problem on bipartite graphs is NP-
complete. e

Since the cyclic coloring problem is the optimization version of CCDP, it fol-
lows that it cannot be an easier problem. Hence the cyclic coloring problem is
NP-hard (even if we restrict our attention to bipartite graphs).

There is a marked similarity between the proof given above and the NP-
completeness proof provided by Coleman and More [1984] with respect to the
path coloring problem (symmetric direct problem). Indeed it turns out that the
transformation given above will also establish that the path coloring decision
problem is NP-complete. (Recall: ¢:V — { 1,2,...,p} is a path p-coloring of a
graph G if ¢ is a p-coloring and if ¢ is not a 2-coloring for any path in G of
length 3 edges).

We conclude this section with a short discussion on the relationship between
path colorings and cyclic colorings. Let x(G), x4(G), x,(G) denote the
chromatic number, the path chromatic number, and the cyclic chromatic number
of graph G, respectively. That is, x(G) is the smallest integer p such that G
has a p-coloring. Similarily, x(G) [x,(G)] is the smallest integer p such that G
has a path p-coloring [cyclic p-coloring].

- 15 -

The first observation is that a path coloring is a cyclic coloring. To see this
consider any cycle O in G and suppose that ¢ is a path coloring. Clearly if O
has only three edges then, since ¢ is a coloring, O must be assigned 3 colors. If
O has more than 3 edges then O contains a path connecting 4 distinct vertices
and hence at least 3 colors are assigned by ¢. Therefore,

Xo(G) < x+(G) (3.1)

for any graph G.

Of course a cyclic coloring is not necessarily a path coloring: a cycle O of
arbitrary large circumference needs only 1 vertex to be assigned a third color and
effect a valid cyclic 3-coloring however this assignment is not a valid path color-
Xa(G)

be ?
X,(G)
This ratio can be arbitrarily close to 2 for band graphs however we have been:

ing in general. This raises an interesting question: how large can

unable to prove (or disprove) that this is an upper bound.

Finally, since every cyclic coloring of G is a coloring of G, and every color-
ing of G2 is a path coloring of G, we can stretch both ends of (3.1) to get

X(G) € x,(G) £ xAG) < x(G?) (3-2)

Note that a partition that induces a direct method that ignores symmetry is
equivalent to a coloring of G2 and has at least x(G?2) groups {Coleman and More
[1983]); a partition that induces a direct method that uses symmetry is equivalent
to a path coloring of G and has at least x,{G) groups; a partition that induces a
substitution method is equivalent to a cyclic coloring and has at least x,(G)
groups. One final comment on (3.2): each inequality can be made strict by choos-
ing appropriate graphs.

4. Algorithms

The NP-completeness result of the previous section indicates that an
efficient heuristic, or approximation scheme, is required. In particular, since it is
not crucial that the absolute fewest groups be found (though it is desirable), we
are willing to settle for an efficient procedure that produces near optimal results
in practise. Indeed, such procedures have been suggested by Powell and Toint
[1979] and Coleman and More' [1984]. Furthermore, Coleman and More report
extensive experimental results. In this section we will interpret such procedures
in the light of the new characterization described in this paper. In addition, we
will discuss an important computational concern: Given a substitutable partition,

- 16 -

is it possible to recover the matrix unknowns (ie. solve for the edges) in an
amount of space proportional to the number of matrix unknowns (ie. the number
of edges)?

We wish to obtain a cyclic coloring of G(A) using few colors. Since efficient
heuristic approaches to the ordinary graph coloring problem (ie. no cyclic restric-
tion) are available, a natural approach is to transform our problem to a general
graph coloring problem. In particular, consider adding edges to the given graph
G = (V,E) to obtain a completed graph G = (V,E) such that a coloring of G
is a cyclic coloring of G. Consider the following

Algorithm add_edge
let mV — {1,...,n} be an invertible map, E ~E

fori = n,...,2 do
if v;,v; are neighbours of 71(i)in G and m(v;), m{v;) < ¢ then
E — E (J {(v,u)}
fi
od
end add_edge

To see that add_edge does the job consider any cycle O in G. Let v; be the
vertex of largest value 7 on O and let v;, v, denote the neighbours of v, on O.
Clearly (v;,v;) € E and hence O will need at least 3 colors when G is colored.

It is clear that the initial ordering = will affect the resulting graph G and
consequently the number of colors used. For example, if G is the star graph

7

O

O

and if the center vertex is ordered last, then G is a complete graph. On the
other hand, if the center vertex is ordered first, then G = G. A successful
heuristic labelling rule, suggested by Powell and Toint, is the following. Assume
that the vertices 7Y(n),...,n7}(n—k) have been found. Choose as the vertex to be
ordered n—k-1, the vertex of smallest degree in G - {7Y(n),...,m/(n-k)}. This
algorithm is known as the smallest last ordering (slo) and has a number of

-17 -

interesting properties. For further information consult Coleman and More' {1984]
and Matula and Beck [1983].

The algorithms of Coleman and More[1984] and Powell and Toint [1979)
both implicitly perform add_edge /slo followed by a G -coloring step. Here they
differ: the latter authors apply colors in a greedy fashion by considering the nodes
in the given order (ie. 7Y(1),...,7(n)), Coleman and More apply a greedy algo-
rithm over several different (cleverly chosen!) orderings. It has been proven that
the coloring problem restricted to the class of graphs derived from the
add_edge [slo completion process is NP-complete. However, an important ques-
tion remains: Does an optimal coloring of such a completed graph always solve
the cyclic coloring problem? If the answer is yes then one may conclude that it is
not necessary to consider algorithms outside this framework. The answer is no.

~ To see that the cyclic coloring problem may not be solved by an optimal
coloring of a completion produced by add_edge /slo consider the following exam-
ple.

V
31
Y
= /Va
© 2
VL Vj

The square vertices represent any cyclic 3-colorable graph where every ver-
tex is of degree at least 3. For example,

- 18 -

The assigned coloring shows that G is cyclic p-colorable. Consider now
add_edge [slo. Clearly vertex v; will be ordered last by slo since every other
vertex degree is 3 or more. Furthermore vg will be labelled second last. It fol-
lows that the completed graph will include edges (v,,vg) and (vj,v5). Therefore
vy v3 vy must use 3 distinct colors and hence v, must be assigned a fourth color
when G is colored.

This example suggest that it may be worthwhile investigating heuristic algo-
rithms for the partition/substitution problem, based on the cyclic coloring char-
acterization perhaps, but not of the add_edge /slo variety. At this point we do
not know whether there is a practical gain to be made; the answer lies with
further experimentation.

One final observation before discussing the solution process: A slight
modification of the algorithm add_edge yields a procedure for the path coloring

problem (symmetric direct method). In particular, change the conditional to read.

if v;,v; are neighbours of 77!(¢) in G and n(v;) < i then’
and it follows that a color assignment of G is a path coloring of G. (To our

knowledge this heuristic has not been suggested or experimented with previously.)
If the conditional is further changed to read

‘if v;,v; are neighbours of v; in G then’

it follows that a coloring of G is a coloring of G2 (and hence is also a path color-
ing of G).

An important computational concern is this: Given that ¢: V — {1,....,p} is
a cyclic coloring, is it possible to compute the actual matrix elements in space
proportional to |E| ? It turns out that we can answer this question in the
affirmative without imposing any additional structure on ¢. In particular we do
not assume that ¢ is necessarily consistent with the algorithm add_edge /slo
(Coleman, Garbow, and More' [1984b] discuss, in detail, a FORTRAN 77 imple-
mentation of add_edge [slo, followed by a graph coloring step. The substitution
process operates in space O(|FE |) however it relies heavily on the regular matrix
structure produced by add_edge / slo.)

We will assume that H is stored as a sparse matrix. Rather than define par-
ticular data structures, we will assume that

i) indices of the nonzeroes of H as well as the nonzero values H;;, are stored in

15
space O(|E |)
ii) it takes time O(# nonzeroes in row ¢ of H) to perform each of the follow-
ing operations

* H;; + z (assign the value z to element (7,5)) of

-19 -

- list all nonzero column indices in row

- determine if (f,7) is a nonzero location

Clearly there are a number of possible data structures that would allow these
conditions to be met.

The first job is to determine Hd; = v f(z+ d;)-vf(z) A u; and to save
the significant information (nonzeroes), for j=1,...,p, where p is the number of
colors used by ¢. The vector d; must be consistent with the color j: if S; is the
set of columns (nodes) in the j** group (color) then d; = Y, h;e;, where k; is

t €S
the steplength associated with column s. Assume that we have the vector u; on
tap. If (u;); is a nonzero then this quantity is stored as follows:

for each k such that H; is a nonzero do
if ¢(v) = j then Hy « (u;); fi
od

We note that it is not really necessary to replicate the information in H as we
have done here; however, not doing so requires a more complicated indexing
scheme than we wish to describe here. When the process is complete, H is fully
assigned but the numbers do not correspond to the actual matrix quantities: we
must now effect a substitution process.

Let us consider the general step. Consider any vertex v which is incident to
an unresolved edge, (v,w). Suppose that ¢(v) = r and ¢(w) =s. We must
now ‘grow’ the r s tree rooted at v.

-920-

Algorithm grow_tree(v,r,s)
Vo {v}, Vo « Vo, Ep «— @
t —0
while { V; #£ 0} do
Vig1 <0

for each w € V; do
if { (w,2) € E-Ey and phi(z)=1r or 3 and " (w,z) € E; } then
Vier = Viea U {2}
Ve~ Vr Uiz}
Er — Er | {(w,2)}

fi
od
t — 141
od
return (T, ,(v) A (Vy,ET))

end grow_tree

The tree T, , can obviously be stored in space O(n). It is important to realize
that it is never necessary to examine more than 1 tree at a time. In particular,
the edges of T, ,(v) can be solved and then the tree can be discarded. Algorithm

solve_tree can be expanded, just slightly, to accomplish this task. In particular,
let us detail * solve (z;,y;)" :

Procedure solve (z;,¥;)
Hyj — Hy/h;, Hy « H;
for each unresolved neighbour z; of y; in G with ¢(z;) = ¢{z;)
ij — ij - h,‘ * Hjt'
fi

end procedure solve (z;,y;)

In the above procedure we identify index ¢ with vertex z;, index j with vertex y;,

and index k with vertex z;.

We conclude Section 4 with a discussion of the time complexity of the pro-
cedures to solve for H (i.e. grow_tree/solve_tree). Note that each (1,7} edge of
G = (V,FE) belongs to exactly one bi-colored tree: we can charge to each edge

-921-

the cost of adding it to its tree (grow_tree) and the cost of computing its value
(solve_tree). It is easy to see that the charge is O(degg(v;) + degg(v;)), where
degi(v) is the number of neighbours of vertex v in graph G, and the total time
bound is

O(Y (degg(v;) + degg(v;)) = O(Y (degg(v;))?)
(i,j) EE iev

5. Concluding Remarks

We have analyzed a class of methods for estimating sparse Hessian matrices,
namely, substitution methods. In particular we have shown that there is an easy
and elegant graph theoretic characterization of all substitution procedures based
on a partition of columns of the symmetric matrix H. This characterization has
allowed for a rich understanding of the combinatorial nature of the problem: we
have analyzed the complexity of the partition problem, as well as suggesting
efficient procedures to effect the substitution process.

We have restricted our attention, in this paper, to substitution procedurcs
based on a partition of columns. Indeed this is more restrictive than need be:
Powell and Toint provided a simple example demonstrating that allowing the
assignment of 1 column to several groups can reduce the number of required gra-
dient evaluations. In fact, a general ‘elimination scheme’, where columns can
belong to several groups, can be applied to the unsymmetric problem. Newsam
and Ramsdell [1983] have explored this option (Coleman [1984] summarizes this
idea on page 49). While such methods may occasionally yield a reduction in the
number of gradient evaluations, it is not clear that they provide a net benefit, in
general, since they require the solution of n square dense (but relatively small)
systems of equations to recover the true information.

Two other works should be mentioned. Thapa [1984] has also suggested a
direct /partition method for estimating sparse Hessian matrices. Goldfarb and
Toint [1984] have proposed specific (optimal) substitution procedures for specific
common ‘mesh structures’: such procedures are, of course, efficient algorithms for
obtaining and using optimal cyclic colorings for particular regular structures.

We end with a comment on parallelism. There is a high degree of parallel-
ism in the Hessian estimation problem. Specifically, each estimation
Hd; j = 1,...,p can be done independently, and thus in parallel. Since this work
is sometimes the dominant expense in a numerical problem, exploiting this con-
currency may be quite profitable. Note that the number of processors would

-922.

usually be quite modest, even for large problems, since a cyclic coloring typically
uses << n colors. Moreover, the substitution process also allows for parallel
computation: each bi-colored tree can be processed entirely independently of the
others.

References.

T.F. Coleman [1984], Large Sparse Numerical Optimization, Springer-Verlag,
Volume 165 of Lecture Notes in Computer Sciences.

T.F. Coleman and J.J. Mor¢ [1983], “‘Estimation of sparse Jacobian matrices and
graph coloring problems”, SIAM Journal on Numerical Analysis 20 187-209.

T.F. Coleman and J.J. Mor¢ [1984], “‘Estimation of sparse Hessian matrices and
graph coloring problems’’, Mathematical Programming 28 243-270.

T.F. Coleman, B. Garbow and J.J. More' [1984a)], ‘‘Software for estimating sparse
Jacobian matrices’”’, Transactions on Mathematical Software, to appear.

T.F. Coleman, B. Garbow and J.J. More€ [1984b], “Software for estimating sparse
Hessian matrices””, Technical Report ANL-84-xx, Argonne National Laboratory
(Argonne, Illinois).

A.R. Curtis, M.J.D. Powell and J.K. Reid [1974], “On the estimation of sparse
Jacobian matrices’’, Journal of the Institute of Mathematics and Its Applications
13 117-119.

M.R. Garey and D.S. Johnson [1979], Computers and intractability (W.H. Free-
man, San Francisco, CA).

P.E. Gil, W. Murray, M.A. Saunders and M. Wright [1983], “Computing
forward-difference intervals for numerical optimization’, SIAM Journal on
Scientific and Statistical Computing 4 310-321.

D. Goldfarb, and Ph.L. Toint, [1984], ‘‘Optimal estimation of Jacobian and Hes-
sian matrices that arise in finite difference calculations’, Mathematics of Compu-
tation 43 69-88.

D.W. Matula and L.L. Beck [1981], ‘“‘Smallest-last ordering and clustering and
graph coloring algorithms”, Journal of the Association for Computing Machinery
30 417-427.

S.T. McCormick [1983], ‘“Optimal approximation of sparse Hessians and its
equivalence to a graph coloring problem’, Mathematical Programming 26 153-
171.

-92-

G.N. Newsam and J.D. Ramsdell [1983]. * Estimation of sparse Jacobian ma-
trices”, SIAM Journal on Algebraic and Discrete Methods 4 404-418.

M.J.D. Powell and Ph.L. Toint [1979], “On the estimation of sparse Hessian ma-
trices”, SIAM Journal on Numerical Analysis 16 1060-1074.

M.N. Thapa [1984], “Optimization of unconstrained functions with sparse Hes-
sian matrices - Newton-type methods’’, Mathematical Programming 29 156-186.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif

