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Cyclic guanosine monophosphate–adenosine monophosphate (cGAMP)

synthase (cGAS) detects infections or tissue damage by binding to microbial or

self-DNA in the cytoplasm. Upon binding DNA, cGAS produces cGAMP that binds

to and activates the adaptor protein stimulator of interferon genes (STING),

which then activates the kinases IKK and TBK1 to induce the secretion of

interferons and other cytokines. Recently, a series of studies demonstrated

that the cGAS-STING pathway, a vital component of host innate immunity,

might play an important role in anticancer immunity, though its mechanism

remains to be elucidated. In this review, we highlight the latest understanding of

the cGAS-STING pathway in tumor development and the advances in

combination therapy of STING agonists and immunotherapy.
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1 Introduction

Innate immunity, as the first line of defense against pathogenic infections, depends on

pattern recognition receptors that identify pathogen-associated molecular patterns

(PAMPs) and damage-associated molecular patterns (DAMPs). PAMPs and DAMPs,

which include aberrant RNA or DNA, RNA-DNA hybrids, or cyclic dinucleotides from

either pathogens or the microbiome, elicit a series of immune responses (1, 2). The immune

system serves as an essential defense mechanism against cancer, as it recognizes and

eliminates neoplastic cells during immunosurveillance. Therefore, strong innate immunity

is critical for adaptive antitumor immunity (3).
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Recent evidence suggests that tumor-derived DNA is the

primary DAMP driving the host antitumor immune response (4).

However, although immune checkpoint inhibitor-based

immunotherapy has become the standard therapy for many

cancers, its efficacy depends on the antitumor immune effect

triggered. The critical cytoplasmic DNA pattern recognition

receptor, cycl ic guanosine monophosphate–adenosine

monophosphate synthase (cGAS), binds to double-stranded DNA

(dsDNA) and activates stimulator of interferon (IFN) genes

(STING), which in turn induces the release of type I IFNs and

other inflammatory cytokines that trigger an adaptive immune

response (5–7). Therefore, this pathway has great potential as a

target for improving immunotherapeutic efficacy. In this review, we

summarize the latest mechanism and roles of the cGAS-STING

pathway in tumor development and highlight associated treatments

in combination with the latest research.
2 cGAS-STING signaling pathway

2.1 Activation of cGAS

The catalytic activity of cGAS is activated when it binds to

dsDNA, which triggers a conformational change. The C-terminal

nucleotidyltransferase of cGAS, which is crucial to its function,

consists of a catalytic structural domain, dsDNA recognition

domains, and a conserved zinc ion binding site. When the two

DNA binding sites are in close proximity, a stable “ladder-like”

dimer complex is formed, which activates cGAS (8). The complex

then alters the catalytic structural domain to convert GTP and ATP

into cyclized 2’3’-cyclic GMP–AMP (cGAMP), which has a higher

affinity for STING. While cGAS activation is primarily dependent

on dsDNA length, single-stranded DNA, single-stranded RNA, and

dsRNA can also bind to cGAS, but they cannot activate the domain

(9, 10). The DNA-induced liquid–liquid phase separation

mechanism of cGAS is also crucial for its activation. Polyvalent

interactions between cGAS and DNA cause the formation of

droplets that function as microreactors through which cGAS can

be more efficiently activated by DNA. Together with zinc ions, the

complex forms liquid droplets, leading to dimerization and

activation (11–13). Since liquid–liquid phase separation relies on

polyvalent interactions, long DNA activates cGAS more efficiently

than short DNA. This also prevents the pseudo-activation of cGAS

by limited and short dsDNA, thereby providing an important

intrinsic protection mechanism for living cells (14).

In addition, intracellular stresses such as oxidative stress or

DNA damage can lead to the release of manganese ions, which are

preferred by cGAS for the efficient synthesis of cGAMP (15).

Previous studies by Tao Li’s team (16, 17) have shown that the

stress granule protein G3BP1 pre-assembles cGAS through liquid–

liquid phase separation, enabling a rapid response to DNA

stimulation. They also discovered that the G3BP1 inhibitor,

epigallocatechin gallate, can prevent cGAS activation. The

combination of cGAS and dsDNA triggers the production of

cGAMP, a second messenger and agonist of STING, which is

considered a critical first step (11).
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2.2 Sensing of DNA damage by cGAS

Cancer cells are typically characterized by an abundance of

cytoplasmic dsDNA derived from various sources, such as

extracellular DNA, mitochondrial DNA, and genomic DNA,

which is not commonly observed in normal cells.

The induction of non-apoptotic tumor cell death by exogenous

stimuli can release unprogrammed extracellular DNA, apoptosis-

derived DNA, and exosomes (18). This DNA can be degraded by 3-

prime repair exonuclease 1 (TREX1), which prevents aberrant

nucleic acid recognition. However, tumor-derived DNA that

remains undegraded can activate the cGAS-STING pathway,

induce type I IFNs, and drive immune cell recruitment (19).

Moreover , mitochondria l endonuclease G deficiency,

mitochondrial protease YME1L deficiency, or chemotherapy drug

induction can cause mitochondrial DNA stress, leading to

resistance to TREX1 clearance through the reactive oxygen

species pathway and mitochondrial DNA accumulation (20–22).

The accumulated DNA can enter the cytoplasmic matrix through

macropores in the outer mitochondrial membrane via BAX/BAK

and voltage-dependent anion channel proteins VDAC1 and

VDAC3, activating the cGAS-STING pathway (18, 23–25).

Furthermore, tumor cells with genomic instability are prone to

chromosome loss or division during mitosis due to oncogenic

mutations, oxidative stress, and hypermetabolism. This can cause

DNA leakage in the form of micronuclei, chromatin fragmentation,

and free telomeric DNA, which can also be sensed by cGAS and

affect antitumor immunity (26, 27).
2.3 cGAS-mediated signaling cascade

cGAMP is a second messenger that binds to STING, which is

anchored on the endoplasmic reticulum (ER). cGAMP binding

induces a conformational change in STING, which subsequently

translocates from the ER to the Golgi apparatus. This process is

thought to liberate the STING carboxyl terminus to subsequently

recruit and activate TANK-binding kinase 1 (TBK1) and IFN

regulatory factor 3 (IRF3) via a phosphorylation-dependent

mechanism. STING also activates NF-kB, which functions

together with IRF3 to activate the transcription of type I IFNs

and other cytokines. TBK1, a kinase that binds to the C-terminal tail

of STING via a conserved PLPLRT/SD motif, tightly controls the

activation of IRF3. Upon binding, TBK1 phosphorylates Ser366

within the C-terminal tail, resulting in the upregulation of IRF3.

IRF3 is then phosphorylated and dimerized by TBK1, before

entering the nucleus to activate the transcription of type I IFNs

and IFN-stimulated genes (ISGs) (28). IFNs have been shown to

have multiple effects on different immune cells, and recent evidence

suggests that the effectiveness of antitumor immunotherapy largely

depends on IFN signaling (29).

The STING pathway also activates NF-kB-dependent
transcription. The IkB kinase phosphorylates IkBa, an inhibitor

of NF-kB, which leads to its degradation via the ubiquitin–

proteasome pathway, thereby freeing NF-kB to enter the nucleus
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and trigger canonical NF-kB signaling. NF-kB collaborates with

IRF3 and other transcription factors to release IFNs (e.g., IFNa and

IFNb) and inflammatory cytokines (e.g., tumor necrosis factor

[TNF], interleukin [IL]-1b, and IL-6). Moreover, mitogen-

activated protein kinase 14 phosphorylates the NFkB2/p100
subunit that complexes with RelB, a proto-oncogene that is part

of the NF-kB subunits (12). Phosphorylated p100 undergoes

proteasomal degradation to form p52, which forms a heterodimer

with RelB, triggering non-canonical NF-kB signaling (12, 30, 31).

Notably, cGAS-STING also promotes non-canonical NF-kB by

inducing p52-RelB nuclear translocation. Thus, the cGAS-STING

pathway acts as a key negative regulator of the STING effector

mechanism by suppressing STING-driven signaling of type I IFNs

and canonical NF-kB signaling. As a result, the cGAS-STING

signaling pathway may have important implications in limiting

cancer immune escape and metastasis (32). Figure 1 illustrates the

cGAS-STING signaling cascade.
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2.4 cGAS-STING and autophagy

Research suggests that when STING is activated on the ER–Golgi

intermediate compartment, it binds to microtubule-associated protein

1-light chain 3 on the autophagic membrane, inducing lipidation and

STING degradation. This ultimately terminates signal transduction and

triggers autophagy, which removes DNA and viruses from the

cytoplasmic matrix via a mechanism independent of TBK1 or IFN

(33). This implies that autophagy induction by STING may be a

primordial function of the cGAS pathway. Importantly, autophagy

may prevent sustained STING phosphorylation, but not NF-kB
activation (34). This process also contributes to the destruction and

removal of microbial DNA present in the cytoplasm via enzymatic

degradation within lysosomes (35, 36). Additionally, cGAS-STING

activation mediated by the cGAS-STING-TBK1-IRF3 assembly

complex can occur directly in the autophagosome (34). Clinical trials

that have tested autophagy inhibitors in combination with other
FIGURE 1

Schematic representation of the cGAS-STING cascade. DNA derived from various sources including viruses, dying tumor cells or nuclei and
mitochondria binds to and activates the cytosolic DNA sensor cGAS. cGAS catalyzes the synthesis of 2′3′-cGAMP in the presence of ATP and GTP,
and then 2′3′-cGAMP binds to the ER adaptor STING, which also can be activated by CDNs derived from bacteria. Upon activation, STING
translocate from the ER to the Golgi compartments, where it activates TBK1 and IKK, which phosphorylate IRF3 and IkBa respectively.
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chemotherapeutic agents (37) indicate that autophagy inhibitors

combined with pathway agonists have great potential in

antitumor immunotherapy.
2.5 cGAS-STING and senescence

The state in which defective cells enter permanent cell cycle

arrest, known as cellular senescence, has been historically regarded

as a tumor-suppressive mechanism. This process is largely

attributed to the accumulation of damaged DNA and activation

of the p53 or p16 pathway (38). Senescent cells secrete

inflammatory cytokines, growth factors, and proteases; this is

known as the senescence-associated secretory phenotype (SASP)

and can inhibit tumorigenesis (39).

There is evidence that suggests the cGAS-STING pathway is

initiated by self-derived cytoplasmic DNA substrates produced by

genotoxic stress-induced cellular senescence, leading to STING-

mediated production of SASP in an NF-kB-dependent manner (40,

41). This indicates the potential of the STING pathway in regulating

senescence (42). Short-term exposure to SASP factors drives the

recruitment of immune cells to clear pre-malignant cells and

senescent cells, thereby preventing tumorigenesis (42, 43).

Therefore, modulating the activity of the cGAS-STING pathway

could benefit cancer immunotherapy and inhibit cancer

progression by promoting antitumor immunity and inducing SASP.
3 The cGAS-STING signaling pathway
and antitumor immunity

The cGAS-STING pathway plays a significant role in regulating

tumorigenesis. Its activation in tumor cells increases their

immunogenicity by inducing IFNa and IFNb, which could bind

to IFN receptors on immune cells in an autocrine or paracrine

manner. IFNa can activate the JAK-STAT pathway, promoting the

expression of ISGs such as IFIT1, ISG15, and CXCL10. Among

these, CXCL10 is crucial in recruiting CD8+ T cells and enhancing

cytotoxicity. On the other hand, IFNb can stimulate the

mobilization of immune cells such as dendritic cells (DCs) and T

cells, and induce the presentation of tumor-associated antigens or

neoantigens by MHC molecules on the surface of DCs to CD8+ T

cells, thus eliciting an antitumor immune response (27, 44).

Pattern recognition receptors are present on immune cells such as

DCs, macrophages, T cells, and natural killer (NK) cells in the tumor

microenvironment. Damaged nucleic acids released from dying tumor

cells, regarded as DAMPs, can activate the cGAS-STING pathway and

induce the release of type I IFNs, enhancing antitumor immunity (45,

46). DCs are one of the most important antigen-presenting cells that

produce type I IFNs via the activated cGAS-STING pathway in their

cytoplasm. These IFNs bind to IFN receptors on the surfaces of their

own or neighboring DCs, as well as on other immune cells, in a

paracrine or autocrine manner. This induces the expression of MHC-I
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and co-stimulatory molecules, promotes the maturation of DCs, cross-

presentation of tumor antigens, and enhances the response of

antitumor cytotoxic T lymphocytes (CTLs). Thus, type I IFNs

produced by DCs exhibit a combination of innate and adaptive

immunity (47, 48). Additionally, these IFNs promote the production

of chemokines such as CXCL9, CXCL10, and CXCL11, which enhance

the homing in of antigen-presenting cells, movement, and migration of

CD8+ T cells and NK cells (47). The STING-dependent expression of

type I IFNs induces an established antitumor immune response, with

STING-IRF3 signaling required for the initiation of tumor-specific

CD8+ T cell responses. Tumors with reduced DNA repair capacity and

high mutational burden often present as immunologically “hot”

tumors and exhibit better immunotherapeutic outcomes. Recent

studies have shown that STING activation leads to antitumor effects

independent of the type of immune cells but dependent on activation of

the NF-kB pathway. CD8+ T cell depletion in melanoma B16-bearing

mice did not affect intra-tumor injection of cGAMP’s ability to reduce

tumor load, suggesting that STING activation promotes antitumor

activities independent of CD8+ T cells. STING-dependent type I IFN

signaling has also been reported to induce antitumor NK cell activation

(45, 49). While normal somatic cells undergo senescence as their

telomeres shorten with each cell division, 90% of tumor cells are

immortalized due to continuously extending telomeres. 6-thio-dG, a

nucleoside analogue, is detected by telomerase and incorporated into

nascent telomeres, which become imbalanced and cause massive DNA

damage in tumor cells. These DNA fragments are captured by DCs,

which activate type I IFN to further promote the proliferation and

activation of antigen-specific T cells and enhance antitumor immunity

(50). Epigenetic modulation is also vital in tumor immune escape; Wu

et al. demonstrated that inhibition of the histone demethylase KDM5B

activates type I IFN through the cGAS-STING pathway to suppress the

anti-immune response (51). Activation of DNA immune recognition is

also accompanied by AKT pathway upregulation. The HER2-AKT

oncogenic pathway inhibits cGAS-STING pathway-mediated DNA

immune recognition by suppressing STING-TBK1 interaction, as well

as TBK1 K63-type ubiquitination, thereby inhibiting type I IFN

production, cellular senescence, and apoptosis in tumor cells (52).

The expression of cGAS and STING has been observed to be

significantly reduced in CD8+ T cells derived from cancer patients.

Furthermore, in mouse models, T cell therapy was less effective

when CD8+ T cells lacked cGAS or STING. Endogenous activation

of cGAS-STING was found to enhance the antitumor immune

response by promoting the differentiation of stem cell-like CD8+ T

cells, which offers novel approaches to improving the efficacy of

chimeric antigen receptor T-cell therapy (53).
4 Tumor suppression of the cGAS-
STING pathway

Tumor cells have developed intrinsic inhibitory mechanisms to

prevent activation of the cGAS-STING axis, which enables them to

evade immune surveillance.
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4.1 Epigenetic mechanisms

The expression of cGAS and STING is often epigenetically

altered in many tumors. For instance, in lung cancer, the expression

of cGAS and STING is repressed by the epigenetic regulator

DNMT1. Knockdown of the long non-coding RNA NEAT1

reduces the enrichment of DNMT1 at the promoters of cGAS

and STING, which in turn promotes the production of IFNb,
CXCL10, and CCL5 (54). Hence, it is essential to unravel

epigenetic mechanisms that impede the innate immune response

and identify potential targets to enhance the antitumor

immune response.
4.2 Aberrant post-translational
modifications and degradation

Zhang et al. reported that the deubiquitinase USP35 directly

interacts with STING (55). Knockdown of USP35 led to enhanced

phosphorylation of STING, TBK1, and IRF3, improved endogenous

interactions between STING and TBK1, and promoted the

expression of type I IFNs. High levels of USP35 were associated

with reduced CD8+ T cell infiltration and poor prognosis in

patients with ovarian cancer. In addition, the b-galactoside-
binding protein Gal-9 was found to be associated with shorter

survival in patients with nasopharyngeal carcinoma. The

carbohydrate recognition domain 1 of Gal-9 directly interacts

with the STING C-terminus and recruits TRIM29, which

mediates the K48 chain of STING ubiquitination, leading to

STING degradation (56). Therefore, it is crucial to develop cGAS-

STING agonists with individualized dosing regimens to enhance

antitumor immunity.
5 The cGAS-STING pathway and
tumor biotherapy

The potential for cGAS-STING to trigger innate immunity

within the tumor microenvironment makes it a promising target

for tumor therapy (57, 58). Figure 2 illustrates the relationship

between cGAS-STING agonists and antitumor immunity. Ongoing

preclinical and clinical studies have demonstrated that various

therapeutic modalities can synergize with cGAS-STING agonists

to remodel the tumor immune microenvironment and enhance

antitumor effects (47).
5.1 STING agonists

Over the past decade, numerous human STING agonists have

been developed, some of which, including cyclic dinucleotides

(CDNs) and their derivatives, as well as non-CDN-based STING

agonists and their analogues, have entered clinical trials (listed in

Table 1) (100). Notably, several experiments have demonstrated

that intra-tumor administration of cGAMP and other CDN stimuli
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results in significant antitumor responses in animal models such as

4T1 breast cancer, squamous cell carcinoma, CT26 colon cancer,

and B16F10 melanoma. These responses were accompanied by

increased secretion of TNFa and various chemokines, providing

strong evidence for the involvement of the cGAS-STING pathway

in antitumor immunity (101). However, the hydrophilicity of

STING agonists may result in reduced antitumor efficacy, making

effective drug delivery systems such as nanocarriers, particles,

hydrogels, and others essential (12). Recently, Li et al. reported

that nanoparticles of the novel polymer agonist PC7A, coupled with

cGAMP, specifically target STING within immune cells and show

great therapeutic potential in a tumor-bearing mouse model (102).

There is increasing evidence of the involvement of non-CDN

drugs in cGAS-STING activation. For instance, DMXAA, a

flavonoid STING agonist with anti-angiogenic properties, has

been shown to induce the expression of IFNb and enhance the

proliferation and infiltration of CD8+ T cells (58). However, despite

its promising preclinical data, DMXAA failed to demonstrate

efficacy in a phase III clinical trial for non-small cell lung cancer

(103). Subsequently, it was discovered that although DMXAA

activates the STING pathway in mice, it does not have the same

effect in humans or rats (104).

In response to this phenomenon, a study explained that the

protective immune effect provided by S100, a STING agonist, was

mainly driven by CD8+ T cells. However, the response to the tumor

showed a bell-shaped curve with the increase of S100 concentration,

indicating the importance of dose control. High concentrations of

S100 led to T cell death, which may be one of the reasons for the

lack of clinical therapeutic effect of S100 (105). Similarly, Wu et al.

showed that STING agonists could induce T cell death in an IFN-

independent way and that inhibitors targeting STING

palmitoylation effectively blocked STING-mediated T cell death

in vitro. However, these inhibitors also suppressed other IFN-

dependent STING pathway activations, such as macrophages,

thus resulting in a new requirement for STING inhibitors for

precise targeting (106) (Figure 2).

Despite the unsatisfactory clinical results of DMXAA, these

valuable works have prompted efforts to design analogues with a

higher affinity for hSTING (11). Quan et al. have shown that a-
mangostin, a derivative of DMXAA, can activate hSTING more

effectively than mSTING (107). These findings suggest that the

rational design of DMXAA analogues will stimulate the emergence

of novel antitumor therapies.
5.2 STING agonists combined with
other treatments

The aforementioned findings suggest that activation of the

STING axis alone may not be sufficient for immunotherapeutic

tumor clearance. Several studies have demonstrated that the STING

agonist cGAMP induces the expression of IL-35 in B cells through

an IFN-independent and IRF3-dependent mechanism. This results

in the inhibition of NK cell proliferation and attenuation of their

antitumor response. To enhance the efficacy of STING agonists, the
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combination of these agents with IL-35 antagonists may be a viable

approach (106) (Figure 2).

The field of tumor immunotherapy has made significant progress

through the introduction of immune checkpoint inhibitors (ICIs). A

study by Sivick et al. demonstrated that the combination of PD-1 and

CTLA4 antibodies increased the sensitivity of mouse tumors to ICI

treatment, leading to significant tumor control (105). However, the lack

of T-cell infiltration makes most tumors insensitive to ICI treatment.

STING agonists can induce the expression of ISGs (such as CXCL9 and

CXCL10) and the infiltration of CTLs, which can convert “cold

tumors” into “hot tumors” and overcome resistance to ICIs (46,

108). Additionally, the STING axis can enhance the sensitivity of

tumor cells to NK cells and CTLs (109). STING agonists also inhibit the

depletion of MHC molecules on tumor cells, which is vital for tumors

to evade immune surveillance (47). Therefore, the combination of

STING agonists and ICIs has the potential to enhance the sensitivity of

tumor cells to the latter (Figure 2). Solid tumors with DNA mismatch

repair deletion or microsatellite high instability (dMMR/MSI-H)

produce a substantial amount of tumor antigens that enable PD-1

antibodies to enhance the antitumor response (110). It has been found

that dMMR/MSI-H tumors can activate the cGAS-STING pathway by

regulating the activity of the nucleic acid Exo1, and that

immunotherapy is ineffective in similar tumors with abnormal

cGAS-STING activity. Thus, the expression levels of cGAS-STING-

encoding genes can also be used to predict dMMR tumor response to

immunotherapy (111, 112).

STING agonists are important in cancer vaccine adjuvants, as

they are used to enhance tumor-specific immunity and overcome

tolerance (47, 108). The innate immune response activates antigen-
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presenting cells, promoting the immunogenicity of tumor-

associated antigens (47). STINGVAX, the first STING-based

cancer vaccine designed using granulocyte–macrophage colony-

stimulating factor (GM-CSF)-secreting cancer cells and CDNs,

has been found to induce a superior antitumor response in vivo

compared to unformulated GM-CSF-secreting tumor cell vaccines

in models of CT26 colon cancer, upper gastrointestinal squamous

cell carcinoma (SCCFVII), and pancreatic cancer (PANC02) (113).
6 Therapeutic modalities targeting the
cGAS-STING pathway

6.1 Targeting DNA damage

Radiotherapy, chemotherapy, and other targeted therapies are

frequently utilized in clinical cancer treatments due to their ability

to activate the cGAS-STING pathway by inducing DNA damage,

ultimately promoting an antitumor immune response.

In addition to directly destroying DNA strands and causing

tumor cell death, radiation therapy can activate the cGAS-STING

pathway through various mechanisms. These mechanisms include

DNA damage-induced micronucleus formation, cytoplasmic

chromatin fragmentation induced by aging, and the ZBP1-MLKL

pathway-dependent release of mitochondrial DNA (11, 114, 115).

It is worth noting that activation of the cGAS-STING pathway

through radiation therapy is dependent on the radiation dose. Low

doses of radiation can prevent TREX1 activation, enabling cGAS-

STING induction. In contrast, high doses of radiation (20-30 Gy)
FIGURE 2

Schematic representation of the agonists of cGAS-STING and antitumor immunity. Treatment such as radiotherapy and chemotherapy can lead to
DNA damage, resulting in increased free intracellular DNA and damaged chromatin, and lead to the formation of micronuclei which can activate the
cGAS-STING pathway. Released inflammatory mediators act on T cells to promote the proliferation, activation, and stem-like changes of T cells.
However, some STING agonists can promote the death of CTLs and the secretion of NK inhibitory factors by B cells, which is not conducive to
antitumor immunity. Combining ICIs or targeting adverse effects will improve the efficacy of STING agonists.
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TABLE 1 STING agonists that have been included in clinical studies or preclinical studies.

Drugs Mechanisms Disease Test phase Clinical trial
registry

number and
Reference

Hafnium oxide
nanoparticles

STING1 agonists solid tumors Phase III NCT02805894
NCT04892173
NCT04505267
NCT04862455
NCT04484909
(59)

IMSA-101 STING1 agonists solid tumors Phase II NCT04020185

MK-1454 STING1 agonists squamous cell carcinoma of the head and neck; solid tumors; lymphomas Phase II NCT04220866
NCT03010176
(60)

exoSTING STING1 agonists solid tumors; meningeal carcinomatosis; glioblastoma Phase I/II NCT04592484
(61)

ADU-S100 STING1 agonists solid tumors; lymphomas Phase I NCT03937141
NCT02675439
NCT03172936
(62)

BI 1387446 STING1 agonists solid tumors Phase I NCT04147234
(63)

BMS-986301 STING1 agonists solid tumors Phase I NCT03956680

DN-015089 STING1 agonists solid tumors Phase I CTR20212462

E-7766 STING1 agonists Solid tumors; lymphomas; bladder tumor Phase I NCT04144140
NCT04109092
(64)

GSK-3745417 STING1 agonists solid tumors Phase I NCT05424380
NCT03843359

HG-381 STING1 agonists solid tumors Phase I NCT04998422

KL-340399 STING1 agonists solid tumors Phase I NCT05387928
NCT05549804

MK-2118 STING1 agonists solid tumors; lymphomas Phase I NCT03249792

ONO-7914 STING1 agonists solid tumors Phase I JPRN-jRCT2031
210530

SB-11285 STING1 agonists squamous cell carcinoma of the head and neck; solid tumors; melanoma Phase I NCT04096638

SNX-281 STING1 agonists solid tumors; lymphomas Phase I NCT04609579

SYNB-1891 STING1 agonists solid tumors; lymphomas; metastatic tumors; inflammatory bowel disease Phase I NCT04167137
(65)

TAK-500 STING1 agonists solid tumors Phase I NCT05070247
(66)

TAK-676 STING1 agonists squamous cell carcinoma of the head and neck; solid tumors; non-small cell lung
cancer; triple negative breast cancer

Phase I NCT04879849
NCT04420884
NCT04541108
(67–69)

XMT-2056 STING1 agonists colorectal cancer; HER2 mutant non-small cell lung cancer; HER2-positive breast
cancer; HER2-positive gastric cancer; solid tumors

Phase I NCT05514717
(70, 71)

AdVCA0848 STING1 agonists tumors Preclinical
studies (72)

ALG-031048 STING1 agonists colorectal cancer; hepatocellular carcinoma; melanoma Preclinical
studies (73)

(Continued)
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TABLE 1 Continued

Drugs Mechanisms Disease Test phase Clinical trial
registry

number and
Reference

anti-STING
antibody

STING1 Inhibitors tumors Preclinical
studies (74)

C-176 STING1 agonists tumors Preclinical
studies (75)

GF3-002 STING1 agonists tumors Preclinical
studies (76)

CF501/RBD-Fc STING1 agonists tumors Preclinical
studies (77)

CS-1010 STING1 agonists tumors Preclinical
studies (78)

CS-1018 STING1 agonists tumors Preclinical
studies (78)

CS-1020 STING1 agonists tumors Preclinical
studies (78)

diABZI-2 STING1 agonists tumors Preclinical
studies (79)

GSK-532 STING1 agonists tumors Preclinical
studies (80)

H-151 STING1 agonists tumors Preclinical
studies (81)

IACS-8779 STING1 agonists tumors Preclinical
studies (82, 83)

IMGS-501 STING1 agonists solid tumors Preclinical
studies (84)

MSA-1 STING1 agonists tumors Preclinical
studies (85)

MSA-2 STING1 agonists tumors Preclinical
studies (85)

ONM-501 STING1 agonists tumors Preclinical
studies (86)

PC7A STING1 agonists tumors Preclinical
studies (87)

SB-02024 VPS34 inhibitor tumors Preclinical
studies (88)

SHR1032 STING1 agonists tumors Preclinical
studies (89)

SN-011 STING1 agonists tumors Preclinical
studies (90)

SOMCL-18-202 STING1 agonists tumors Preclinical
studies (91, 92)

SP23 STING1 agonists tumors Preclinical
studies (93)

SR-717 STING1 agonists tumors Preclinical
studies (94)

SR-8314 STING1 agonists tumors Preclinical
studies (95)

(Continued)
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often inhibit pathway activation by increasing TREX1 (116) (see

Figure 2 for a summary of the mechanisms of cGAS-STING

activation by radiation therapy).

In clinical practice, drugs targeting DNA damage repair are also

utilized. The DNA damage response (DDR) kinases, ATM and ATR,

work together during DNA replication and repair to initiate DNA

damage sensing and activate the DDR pathway. The ATM inhibitor,

KU-60019, induces microglial cytosolic DNA accumulation and

promotes the secretion of proinflammatory cytokines in a STING-

dependent manner (117). Combining ATM inhibitors with PD-L1

antibodies has been shown to increase therapeutic efficacy in mice

bearing ARID1A-deficient tumors (118). Poly ADP-ribose polymerase

1 (PARP1), an enzyme that interacts with damaged DNA, is crucial for

mediating the DDR pathway, regulating chromatin structure, and

maintaining genomic stability. PARP inhibitors are approved for the

standard treatment of breast or ovarian cancers with BRCAmutations.

Research has demonstrated that PARP inhibitors effectively activate the

STING pathway, inducing CD8+ T cell aggregation in patients with

BRCA1/2-mutated triple-negative breast cancer (119). Furthermore, in

combination with the SHP2 agonist lovastatin and ATR inhibitors,

PARP1 can activate the cGAS-STING pathway and play an antitumor

role in colon cancer and PBRM1-deficient renal clear cell carcinoma

(120, 121).

Checkpoint kinase 1 (CHK1) functions as a DNA damage monitor

during replication, detecting any abnormalities and regulating

replication-driven activation while also acting on S-phase

progression. Prexasertib, a CHK1 inhibitor, has been found to

activate the STING pathway in small cell lung cancer cells, including

in immunocompetent models. This activation results in increased

chemokine levels, promoting the activation of CTLs (122, 123).
6.2 Targeting DNA replication

Some drugs that target DNA replication damage can activate

the cGAS-STING pathway and induce antitumor immunity.

Topotecan, Teniposide, and etoposide, which are topoisomerase
Frontiers in Immunology 09
inhibitors, can cause replication fork collision and abnormal DNA

activation, leading to the activation of STING signaling and its

downstream NF-kB and type I IFN pathways in a cGAS-dependent

or independent manner, thereby promoting the infiltration of DCs

and CD8+ T lymphocytes and inhibiting tumor growth (35, 123–

125). Antimetabolites such as hydroxyurea upregulate chemokine

expression in a cGAS-STING-dependent way by inducing DNA

damage, inhibiting ribonucleoside diphosphate reductase, and

blocking replication forks (126). In addition, cross-linking agents

such as cisplatin can form covalent adducts on cellular DNA, which

alter DNA structure and hinder replication forks, inducing DNA

damage and activating the cGAS-STING pathway (127).
6.3 Spindle assembly

The microtubule-targeting agent paclitaxel has recently been

found to interfere with chromosome segregation and induce type I

IFNs and TNFa, promoting the production of pro-apoptotic

vesicles via the cGAS-STING pathway in primary human breast

tumors (128). This mechanism enhances antitumor immunity.

7 Conclusion

Immunotherapies for cancer, represented by PD-1/PD-L1

antibodies and CAR-T cell therapy, have been widely used in clinical

practice, but many patients still do not benefit from these treatments.

PD-1/PD-L1 antibodies and CAR-T cell therapy mainly intervene in

the adaptive immune process of cancer patients; however, therapies

targeting innate immunity are still lacking. As a vital component of

host innate immunity, cGAS-STING and its downstream cytokines,

especially type I IFNs, link innate and adaptive immunity, making

STING an attractive target for cancer immunotherapy. A growing

preclinical study has demonstrated that the cGAS-STING pathway

plays pivotal roles in DC-mediated antigen cross-presentation and

subsequent priming of tumor-specific CD8+ T cells. Although

numerous human STING agonists have been developed and entered
TABLE 1 Continued

Drugs Mechanisms Disease Test phase Clinical trial
registry

number and
Reference

SR-8541A STING1 agonists
ENPP1 inhibitors

tumors Preclinical
studies (96)

STING1 agonists
ADC

STING1 agonists tumors Preclinical
studies (97)

STING1-TLR9 STING1 Inhibitors;
TLR9 agonists

tumors Preclinical
studies (98)

IACS-8803 STING1 agonists tumors Preclinical
studies (99)
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clinical trials, the efficacy of STING agonist monotherapy is poor,

highlighting the need to conduct more in-depth research on the

mechanism of the cGAS-STING pathway in the tumor environment.

Recent studies have found that the cGAS-STING pathway and its

agonists may suppress the function of antitumor immune cells,

including CD8+ T cells and NK cells (105, 106). Therefore, further

research is required to explore the role of the cGAS-STING pathway in

different tumor-infiltrating immune cells in specific tumors. In terms of

drug design, designing STING agonists with higher affinity and tumor-

specific carriers can also help improve their clinical effectiveness. With

the advancement of basic and clinical research, targeting the cGAS-

STING pathway has the potential to provide new strategies and drug

combinations for cancer immunotherapy.
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