
The Cyclotomic Numbers of Order Eighteen
With Applications to Difference Sets*

By L. D. Baumert and H. Fredricksen

1. Introduction. Let p = ef + 1 be an odd prime and let g be a fixed primitive
root of p. Then the cyclotomic number (k, h)e is the number of solutions x, y of the
congruence

(1.1) g"+k + i - g^h   (modp),

where the integers z, y are chosen from 0,1, • • • , / — 1. Eq. (1.1) shows that there
are at most e distinct cyclotomic numbers (k, h)e of order e. This paper is concerned
mainly with determining the (18)2 different (ft, A)is associated with a fixed primitive
root of a prime of the form p = 18/ + 1. We also tabulate the cyclotomic numbers
of order 9.

Complete solutions to this cyclotomic number problem have been computed for
e = 2 - 6, 8, 10, 12, 14, 16, 20. For e = 2 - 6 see L. E. Dickson |2], for e = 8
see E. Lehmer [9], for e = 10, 12, 16 see A. L. Whiteman [13], [14], [15] and for
e = 14 see J. B. Muskat [11]. The case e = 20 is due to Muskat and Whiteman
jointly and is as yet unpublished.

Cyclotomic numbers play an important role in many number theoretical in-
vestigations. The difference sets of M. Hall, Jr. [6] and E. Lehmer [8] provided the
impetus for this computation (see Section 5).

Before we turn to the actual calculation, a word about the nature of the problem
is in order. Eq. (1.1) shows that (fc, h)e depends not only on the prime p but also
on which of the <j)(p — 1) primitive roots of p was chosen. The effect of replacing
the primitive root g by the primitive root g (g = gr (mod p) where (r,p — 1) = 1)
is to permute the (k, h)e among themselves in accordance with the formula

(1.2) (k,h): = (rk,rh)e.

Thus, the set {(k, h)e] is indeterminate in the sense that it can equally well be re-
placed by {(rk, rh)e], where r is fixed and prime to p — 1.

A solution to the cyclotomic number problem is a set of formulas which allow
the determination of the (k, h)e without performing a direct calculation. For
example, if e = 3 the solution given by Dickson [2, p. 397] is

9(0, 0)3 = p - 8 + L,        18(0, 1)3 = 2p - 4 - L + M,

9(1, 2)3 = p + 1 + L,        18(0, 2)3 = 2p - 4 - L - m,

(1,0),- (0,1)3= (2,2)3,        (1,1)3= (2,0)3= (0, 2)3,        (2, 1)3= (1,2)3

where 4p = L2 + 27M2, L = 1 (mod 3). In this case the (k, h)e are uniquely de-
termined except for an ambiguity in the sign of M. The sign of M depends upon the
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primitive root g. In our cases (e = 9 and e = 18), each cyclotomic number is ex-
pressed as a constant plus a linear combination of p, L, M, c0, • • • , c6 where 4p =
L + 27 M , L = 7 (mod 9) and (/3 being a primitive 9th root of unity)

P = (§C<^(§Ci/r<)

is a factorization of p in the field of 9th roots of unity. For e = 9, Tables 1 and 2
provide a complete listing. For e = 18, the tables are too large to be included in this
paper and have been deposited in the unpublished mathematical tables file main-
tained by Mathematics of Computation. That portion of the tables for e = 18
which is needed to support our difference set calculations is included (see Tables
5 and 6).

Various notations for (k, h)e will be used in what follows, depending on what
form is convenient and clear. These are (k, h),, (k, h), (kh)e, (kh), kh. For uni-
formity and for typographical convenience, the letters A, B, ■ ■ • , H are used in
the tables to represent 10, 11, • • • , 17, respectively.

2. Cyclotomy. This section presents a collection of results which were used in
the calculation. In all cases the references given contain a proof of the result, but
no attempt was made to cite original sources.

(2.1)
(2.2)

(2.3)

(k, h) = (k , h )    if   k = k ,    h = h'    (mod e).
(k, h) = (e — k, h — k),

= (h, k)       f even,
= (A + Je, k + |e)       / odd,        [2, p. 394],

E(*,A) =/ nk

where nk = 1
= 1
= 0

(k = 0, 1, ■•• ,e- 1)

/ even, k = 0,

/ odd, k = \e,
otherwise,       [2, p. 394].

Table 1
Equalities between the (k, h),

h

0 1

0
1
2
3
4
5
6
7
8

00
01
02
03
04
05
06
07
08

01
08
12
13
14
15
16
17
12

02
12
07
17
24
25
26
24
13

03
13
17
06
16
26
36
25
14

04
14
24
16
05
15
25
26
15

05
15
25
26
15
04
14
24
16

06
16
26
36
25
14
03
13
17

07
17
24
25
26
24
13
02
12

OS
12
13
14
15
16
17
12
01
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Let a 9a 1 be a root of xv~x = 1 and define
ÎJ-2

F(a) = D«' exp {2-wijgk/p)
*—o

withj ^ 0    (mod p). Then if a = ßn, where ß is a primitive eth root of unity,

(2.4) F{ßn)F{ß~n) = (-l)n/p    if   e + n        [2, p. 395].

If e does not divide m, n or m + n, then define R(m, n, ß)e by

(2.5) Ä(m, », 0). - m2Fm^] = S 0"* 2 ß-(m+n,Ä(fc, M        [2, p. 396].

In the symbol R(m, n, ß)e the ß and/or the e will be suppressed whenever they are
not needed for clarity.

(2.6) R(m, n) = R(m , n )    if   m = m ,   n = n     (mod e).

(2.7) Ä(n, m) = R(m, n) = (-l)n,R(-m - n, n)        [2, p. 408].

(2.8) R(m,n)R(-m, -n) = p       [2, p. 396].

(2.9) R(m, n, ßj) = R(jm,jn,ß).

(2.10) R(dm,dn,ß)e = R(m,n,ßd)E,

where e = dE and ß is a primitive eth root of unity throughout [4, p. 188].
d-\

(2.11) {k,h)E=   S  (k + rE,h + sE)e,   where   e = dE [4,p. 188].
r,s=0

(2.12) F(-l)F(a2) = aBF(a)F(-a), where   gs = 2   (mod p)       [2, p. 407].

If p = 1 (mod 3) is prime and if y ^ 1 is a cube root of unity, then

(2.13) F(a)F(ya)F(v~a)  = a-3TpF(a3),        gT = 3    (mod p) [1,(0.9)].

When 3 is replaced by a new primitive root gr of p,

(2.14) R(m, n) becomes R(mr , nr ),    where   rr  =1    (mode)    [2, p. 409].

In addition to these general cyclotomic facts,  the following specific  relations
for e = 3, 6, 9 will be useful.

(2.15) 2ñ(l, 1, ß)i = L + MI + GMß,    where   4p = L2 + 27M2,

L = 1    (mod 3)        [2, p. 397].

(2.16) R(l, 1, /S), = (-l)Vßß(l,2,/3)6,       R(2, 2, 0), = ß2BR(l, 2, ß),

[2, p. 408].
(2.17) 2Ä(3, 3, ß)9 = L + 3M + 6ß3M,   where   4p = L2 + 27M2,

L = 7    (mod 9)        [4, p. 188].
(2.18) ß(l, 2, 0), = ß6rÄ(l, l,/32)9        [4, p. 189].

3. The Cyclotomic Numbers of Order Nine. In this section Dickson's solution
[4] for the (k, A)9 is presented. Actually, it is carried a little further than he did in
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208 L.   D.   BAUMERT AND   H.   FREDRICKSEN

that the formulas are all displayed. Furthermore, the calculation of the (k, A)9 is
much more manageable than that for the (k, h)i$. This section will thus serve as a
model for the next.

Using (2.2) above, the 81 possible (fc, h)g reduce to just 19 distinct ones—the
equalities (2.2) between the various (k, A)9 are displayed in Table 1. Hence, the
problem will be solved if 19 independent linear equations involving the (k, h) can
be found. Eq. (2.3) provides 5 independent equations of this type. That it can pro-
vide no more independent equations follows from Table 1, i.e., from (2.2). Since
the primitive 9th roots of unity satisfy

(3.1) x" + x3 + 1 = 0,

by using (2.5) above, one can write
5 5

(3.2) Ä(l, 1), = Ecft        R(l, 2), =  E bS%
t=o ¿=o

where each c,, 6¿ is represented by a linear equation in the (k, h)9. This provides
12 more equations, leaving 2 still to be found. These arise out of the solution of the
cyclotomic number problem for (k, h)z—or equivalently from

(3.3) Ä(3, 3,0), = Ä(l, 1,03)3

which follows from Eq. (2.10) above. If p = 1 (mod 3) then [2, p. 397] 4p =
V + 27M2 where M = (01)3 - (02)3 and L = 9(00)3 - p + 8 = 1 (mod 3).
Now these expressions for M, L can be translated using (2.11) into linear equations
involving the (k, h)<,. Thus, 19 independent linear equations involving the (k, A)9
have been determined and they can be solved yielding the (k, /i)9 in terms of the
parameters L, M, c0, ■ ■ ■ ,c¡, ,b0, ■ ■ ■ ,b¡, which by (2.15) and (3.3) are all related
to the coefficients of R(m, n)9's. By using (2.18) the i>¿ can be expressed in terms of
the d at the expense of introducing the parameter T ( = index of 3 to the base g
modulo p, abbreviated Ind 3), and splitting the solution into 3 cases depending on
the value of T (mod 3). The solution appears as Table 2.

Given a prime p = 9/ + 1 and an associated primitive root g, the (k, A)9 are
determined by Tables 1 and 2, provided the values of L, M, c0, • • • , c5 can be
determined. The relation 4p = L2 + 27M2, L = 7 (mod 9) determines L uniquely
and M except for sign. Dickson notes [4, p. 194] that (2, 6)9 is an integer for only
one choice of ±Af unless M = 0 (mod 9). He establishes further a final rule for the
determination of M,

(3.4) Ä(3, 3, 0)9Ä(1, 2, 0), = 0-6rÄ(l, 1, 0)9ñ(l, 2, 02)9

which determines M through use of (2.17). A more symmetric form of this can be
derived. Use (2.18) to give

Ä(3, 3, 0)06TÄ(1, 1, 02) = 0-6r£(l, 1, 0)0127'Ä(1, 1, 04)

now multiply through by R( —2, —2, 0) and use (2.9) on Ä(l, 1, 02), then apply
(2.8) to give

pß(3, 3, 0) = Ä(l, 1, 0)ß(l, 1, 04)ß( -2, -2, 0).
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THE   CYCLOTOMIC   NUMBERS   OF   ORDER  EIGHTEEN 209

Finally, use (2.6), (2.9) on¿2(-2, -2, 0) to yield

(3.5) p¿2(3, 3, 0), = ¿2(1, 1, 0)9¿2(1, 1, 04)9¿2(1, 1, 07)9.

The formulas (3.4) and (3.5) determine M only through a knowledge of c0, ■ • • , c6,
thus depend on a solution of that problem. Actually, if M can be determined by
some other method, formulas (3.4) and (3.5) can be used to help determine the c<
as is shown below. If M ^ 0 (mod 3) the sign of M can be determined from

(3.6) Ind3 + M==0    (mod 3).
One proof of relation (3.6) is as follows: Using Eqs. (3.3) and (2.15) on

¿2(3,3)9 we find that in terms of cyclotomic numbers

M = (01) + (04) + (07) - (02) - (05) - (08)

+ 2[(13) + (16) + (25) - (14) - (17) - (26)]
and ¿2(1, 2) yields

i>3 = -(01) - (04) - (07) + (02) + (05) + (08) + (13) + (16) + (25)
- (14) - (17) - (26).

Thus, M + h = 0 (mod 3). But h = -c3, c3 - cc, c0 if T = 0, 1, 2 (mod 3) by
(2.18). Thus, since Co = — 1, c3 = 0 (mod 3) [4, p. 191], this implies the desired
relation (3.6).

Eqs. (2.5) and (2.8) show that ¿2(1, 1) (and hence thee,) comesfrom afactori-
zation of p in the field of 9th roots of unity. Dickson [4, p. 193] has shown that

(Í c, 0*') (¿ a 0-¿) = p
has only 6 solutions in which the first factor is not invariant under 0 —> 04. These are
generated from any one of them by applying the powers of the substitution 0 —> 02
and reducing by means of (3.1). These are the only candidates for ¿2(1, 1, 0)9 and
indeed as the primitive root shifts from g to gr through all the different primitive
roots, (2.14) shows that ¿2(1, 1) shifts through the 6 possibilities. Three of these
candidates yield | M | and three yield — \M \. Thus, the sign of M, if known, can
be used with (3.5) to rule out three possible ¿2(1, l)'s.

In practice actually it is often easier to find one possible ¿2(1, 1), generate them
all by 0 —> 02, determine M by (3.5) or (3.6) and let the fact that all (k, h)s are
integers determine which possible ¿2(1, 1) goes with a particular g.

In connection with the formulas for the (k, A)9, it should be mentioned that the
third list is redundant. For if Ind 3 = 2 (mod 3) for the primitive root g, we may
change to another primitive root gr which has Ind 3 = 1 (mod 3). Computing the
(A-, /¡,)9 for gr and using Eq. (1.2) yields the desired cyclotomic numbers.

4. The Cyclotomic Numbers of Order Eighteen. By use of (2.2) above, the 324
possible (fc, a)« are reduced to just 64 distinct ones (see Table 3). Eq. (2.3) pro-
vides 10 independent linear equations. The remaining 54 equations come from
various ¿2(m, n)'s. In order to insure that the equations will be independent, some
care must be used in choosing the R(m, n)'s. This is done by calling two R(m, n)'s
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210 L.   D.   BAUMERT AND  H.   FREDRICKSEN

Table 3a
Equalities between {k, h)K , f odd

00
lü
20
30
40
-14
33
22
11
00
10
20
30
40
44
33
22
11

1

01
11
21
31
41
51
43
32
21
10
OH
111
211
311
45
34
23
12

02
12
22
32
42
r,2
53
42
31
20
n r
oc;
1G
2G
3G
35
24
13

03
13
23
33
43
53
63
52
41
30
2H
IG
OF
IF
2F
36
25
14

04
14
24
34
44
51
52
53
51
40
3,11
2G
IF
OE
IE
2E
26
15

05
15
25
35
45
40
41
42
43
44
45
3G
2F
IE

06
16
26
36
3(1
311
30
31
32
33
31
35
36
2E

OD ¡ID
ID OC
27 1C
16 17

07
17
27
2E
2F
2G
211
20
21
22
23
24
25
26
27
IG
OH
18

IS
1C
11)
IE
IF
IG
111
10
11
12
13
14
15
16
17
18
OA

9     10    11     12    13    14    15    16    17

09
OA
OB
OC
01)
OE
OF
OG
OH
00
01
02
03
04
05
06
07

OA
OS
18
1C
11)
IE
IF
IG
lit
10
11
12
13
14
15
16
17
IS

OB
18
07
17
27
2E
2 F
2G
211
20
21
22
23
24
25
26
27
1C

OC
1C
17
06
16
26
36
3G
311
30
31
32
33
34
35
36
2E
11)

01)
11)
27
16
05
15
25
35
45
40
41
42
43
44
45
3(1
2 F
IE

OE
IE
2E
26
15
01
14
24
34
44
51
52
53
51
40
311
2G
IF

OF
IF
2F
36
25
14
03
13
23
33
43
53
63
52
41
30
211
IG

Table 3b
Equalities between (k, /i)is , / even

00
01
02
03
04
05
06
07
08
09
OA
OB
oc
01)
OE
OF
oc;
on

i

01
011
12
13
14
15
16
17
18
1!)
1A
IB
1C
ID
IE
IF
IG
12

02
12
OG
IG
24
25
26
27
28
20
2A
2B
2C

2E
2F
24
13

03
13
IG
OF
IF
2F
36
37
38
30
3A
3B
3C

2D i 3D
31-:
36
25
14

04
14
24
IF
Olí
IE
2E
3E
48
40
IV
4B
4 G
41)
48
37
26
15

05
15
25
2F
IE
Ou
11)
21)
3D
4D
5A
5B
5C
5A
40
38
27
16

06
16
26
36
2E
11)
OC
1C
2C
3C
IG
5C
OC
5B
4A
30
28
17

07
17
27
37
3E
21)
1C
OH
115
21 i
3B
IB
5B
5C
IB
3, A
20
1,8

18
28
38
18
3D
2C
IB
OA
1A
2A
3 A
4 A
5A
4C
3B
2A
10

9     10    11 I 12

00
10
20
30
40

OA
1A
2A
3 A
4 A

41)   5A
3C
2B
1A
00
10
20
30
40
41)
3C
215
1A

4 G
315
2A
10
08
18
28
38
48
3D
2C
115

ob ;oc
1B   ilC
2J5
315
415
515
5C
415
3A
20
IS
07
17
27
37
3E
21)
1C

2C
3C
4C
5C
6C
5B
4 A
39
28
17
06
16
26
36
2E
11)

13    14 I 15     16

OD
11)
21)
3D
41)
5 A
515
5C
5A
10
38
27
16
05
15
25
2 F
IE

OE
IE

il)
48
37
26
15
01
14
24
IF

OF
IF

2E   !2F
3E   36

37
38

4A 39
4B 3A
4C   3B

3C
3D
3E
36
25
14
03
13
IG

conjugale if one comes from the other by changing the primitive root; see (2.14).
Now choose one R(m, n) from each conjugate class and delete duplicates arising
from (2.7). This process yields ¿2(1, 1), ¿2(1,2 ), ¿2(1, 3), ¿2(1, 4), ¿2(1, 5), ¿2(1,9),
¿2(3, 3), ¿2(3, 6), ¿2(6, 6), ¿2(2, 2) and ¿2(2, 4) in the case e = 18. These R(m, n)'s
give 6, 6, 6, 6, 6, 6, 2, 2, 2, 6, 6, equations respectively, so the 64 equations could be
solved yielding (k, A) is in terms of the 54 parameters introduced by the R(m, n)'s.
As in Section 3, the number of parameters appearing in the (k, h) can be reduced by
splitting the solution into cases and introducing the parameters B = Ind 2 and
T = Ind 3. In fact, this process (carried out below) reduces the parameters appear-
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THE   CYCLOTOMIC   NUMBERS   OF  ORDER  EIGHTEEN 211

ing in the (k, h)iS to the same L, M, c0, ■ • • , c6 as appeared in (k, h)ä ; this might
have been anticipated since the same cyclotomic field is involved.

The equation satisfied by the primitive 18th roots of unity is

(4.1) x* - x3 + 1 = 0.

The relations between the various R(m,n)'s are:

(4.2) ¿2(6, 6, 0)u = ¿2(3, 3, 02)9 = k+JK + ^Mß\       L = 7    (mod 9)

by    (2.10), (2.17).
5

(4.3) ¿2(2, 2, 0)18 = ¿2(1, 1, 02)9 =   L Ciß2i = (co - c3) - c66 + (ft - c4)02
«=0

+ C303 + c204 + C406 by (2.10), (3.2), (4.1).
5

(4.4) ¿2(8, 8, 0)i8 = ¿2(26, 26, 0)18 = ¿2(2, 2, 013)18 = £ dß26i
i-0

= (Co - c3) + c20 - Cj02 + c303 + (c6 - c2)04 + (ft - c4)06

by (2.6), (2.9), (4.3), (4.1).

(4.5) ¿2(1, 1,0)18 = {-iyß-^R(-16,8,ß)a =   (-lYß-^RiS, 8, 0)„
by [4, p. 194], (2.6), (2.7).

(4.6) ¿2(1, 4,0)18 = (-l)fß-6,iR(l, l,0)is = 0-lüBß(8, 8, 0)l8

by [4, p. 194], (4.5).
(4.7) ¿2(1, 9, 0)18 = 02*¿2(1, 1, ß)u = (-l)/0-M¿2(8, 8, 0)«

by [4, p. 194], (4.5).
(4.8) ¿2(1, 2, 0)18 = (-1)V¿2(1, 4, 05)18 = (-lYßr"-liBB(8, 8, 06)l8

= (-l)Vr~14B[co + C40 + (c6 - c2)0- - C303

+ (ft - c4)04 + c205]      by [4, p. 194], (4.6), (4.4), (4.1).

(4.9) ¿2(2, 4, 0)18 = ¿2(1, 2, 02)9 = 012r¿2(l, 1, 04)9 = 012r ¿ c<0',4i

= 012r[c„ + C40 + (c6 - c2)02 - C303 + (Cl - c4)04 + C205]

by (2.10), (2.18), (3.2), (4.1).

(4.10)    ¿2(1, 5, 0)18 = (-1)/06SÄ(2, 4, 0)l8

= i-iyßu+a'[co + Ciß+ (c6 - c2)02 - C303

+ (ft - c4)04 + C205]        by [4, p. 195], (4.9).

Dickson [4, p. 196] related ¿2(1, 3)l8 with ¿2(6, 6)i8 but gave no proof and left an
ambiguity of sign which we resolve here.
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¿2(1,3) _ F(0M03)F(012) _ 0~6V(0)F(09) _ ß'UB+T>pF(ß)F(ß9)
¿2(6, 6)       F(04)F(06)¿^(06) F(04)i'(06) 0-6rp¿¡,(04)¿¡,(06)

0 -6(a+r)
by (2.5), (2.12)

pF(ß)F(ßd)        ß- )F(ß)F(ß')
F(04)F(08)F(014)F(02) F(ß2)F(ß*)

0-Hb+t) ¿2(1, 9) „-4B-er ¿2(1, 1)
¿2(2, 8) ¿2(2, 8)

= (-D fa-SBST

Thus,
(4.11)     ¿2(1, 3, 0)18 = (-lyß-v-'RiQ, 6, 0)18

-er  [L + 3M

by (2.13), (2.4), (2.5), [4, p. 195].

= (-1//5 + 3ilf0" by (4.2).

(4.12)    ¿2(3, 3, 0)„ = ¿2(1, 1, 03)6 = (-1)3/012B¿2(1, 2, 03)6

= (-l)/06ßß(2, 2,03)6 by (2.10), (2.16)

\f06Br>/-,     -,     06^ i       lN/06ß  |  L  +  3AÍ(-l);0bSÄ(l, 1,06)3 =   (-1) Vß p + 3M0°

by (2.10), (2.15).
(4.13)   ¿2(3, 6, 0)18 = ¿2(1, 2, 03)6 = 0-6B¿2(2, 2, 03)6 = 0-6ßÄ(l, 1, 06)3

= 0" L + ZM + 3A/06

by (2.10), (2.16).

by (2.15).

Thus, all ¿2(m, n)'s are expressed in terms of L, M, Co, • • • , c6 and ¿2(8, 8). This
implies by (4.4) that they are all expressed in terms of L,M,c0, • • • ,c6as promised
above.

The introduction of B, T into the equations determining the (k, h)lfi requires
that the solution be split into cases. An examination of Eqs. (4.2), • • • , (4.13)
shows that B need be determined only modulo 9 and T modulo 6. This yields 54
possible cases. A reduction in the number of cases follows from the fact that 3 is
not a quadratic residue of a prime of the form 36/' + 19; thus, T = 1, 3, 5 (mod 6) =

Table 4
Classes of index pairs; B = Ind 2 (mod 9), T = Ind 3 (mod 3)

(f B

r m 1 (18)
r = 5 (18)
r = 7 (18)
r = 11 (18)
r = 13 (18)
r = 17 (18)

B B B T B B\ T\ B

1 3
2 ¡ 6
1 i 3
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Table 5
The cyclotomic numbers of order 18, / odd, for Ind 2

M Co

m 0 (mod 9) and Ind 3 = 1 (mod 3)

G c. ! Ci ct Ce

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

-70
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

-34
-34

2
2
2
2
2
2
2
2
2
2
2
2
2

-34
2-34
2
2
2
2
2
2
2
2
2-34
2
2

-34
2
2
2
2
2

-34
2
2
2

-34
2
2
2
2
2

2
-10
-4

-16
14
8

-16
-10
-4

2
14
8

20
-10
-4

-16
14
8

-4
-4

2
-4

5
2

-4
-13

2
-4

5
2

-4
5
2

-4
2

-4
-1

2
8
5
2

-4
-1

2
8
2

-4
5

20
-4

-13
11

-4
-13

-4
-1

2
8

-4
2
2

-4
5

-25

54
36

-18

-36
18

36-18
-162
-36

18
108
36-18

-36
18
18

-18

-36
63

-36
9

72
-45

-36
63

-18

18-63

36-45

-36
-63

36
-54
-36
-45

72
9

-27
72
9

18-63

36
-18

-36
63
81

36
-48

12
36
48

-12
36

-48
12

-108
48

-12
-36
-48

12
36
48

-12
48

-24

-24
-6

-24
30

-24
-6

-24
-6

-24

48
6

24
-6

-24
6

24-36
-24
-6

-72
-24

30
90

-24
30
48
6

24
-24

-24
-6

-54

-30
-42

12
-12

-30
102
-6

6

60-60

-6
6

30-6
36-6

-6
-36
-24
-24

36-42
-6

-24
-24
-36
-6

-36
-42

60

42
-6
36-6

-30
36-30

30
12

12
-42

30
66
12-30

-12
12

-36
30
30

96
-6

-6
6

-66
-24

-24
-30

-30
30

30
24
12

-24
36

-24
30-36

-42
-42

36
48
30

66
-42
-36

30-36
-6

-30

6
-24

36
30

-12
36-12

12
-6

-6
48

-42
-6
-6
42

6-6
-36
-42

12

-72
24

-24
00

-24
24
00
24

-24

-24
24
18
24

-24
-126
-24

24
-24

48

12
12

12
-60

12
12

12
12

48

-24
-12

-12
12

12
-12

-12
18
12
12

-18
12

-60
-18

12
-60
-24
-12

-12
48

12
12
54

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



214 L.   D.   BAUMERT AND   H.   FREDRICKSEN

1, 0, 2 (mod 3) for/ odd. Thus, there are 27 remaining possibilities, of which a
number are redundant in that they can be derived from others by changing the
primitive root and using (1.2). Thus, all the 27 possibilities for odd/ appear among
the 8 classes of Table 4. The primes 2971, 127, 271, 19, 163, 307, 739, 811 are (in
order) the smallest primes belonging to these classes [7, pp. 216-267].

Formulas for the (fc, A)« are given in Table 5 for the case B = 0 (mod 9), T =
1 (mod 3). For the other index pairs B, T we list only those (k, h) used in Section

Table 6
Selected cyclotomic numbers of order 18, / odd

Ind 3
(mod 3)

0
0

0
0
0
0
0
0

648 (k, h)a

648(3,
648(6,

648(1,
648(2,
648(4,
648(5,
648(7,
648(8,

648(1,
648(2,
648(4,
648(5,
648(7,
648(8,

648(1,
648(2,
648(4,
648(5,
648(7,
648(8,

648(1,
648(2,
648(3,
648(4,
648(5,
648(6,
648(7,
648(8,

648(0,
648(1,
648(2,
648(3,
648(4,
648(5,
648(6,
648(7,
648(8,

648(1,
648(2,
648(3,
648(4,
648(5,
648(6,
648(7,
648(8,

-34
-34

-34
-34
-34
-34
-34
-34

-34
-34
-34
-34
-34
-34

-34
-34
-34
-34
-34
-34

-34
-34
-34
-34
-34
-34
-34
-34

-70
-34
-34
-34
-34
-34
-34
-34
-34

-34
-34
-34
-34
-34
-34
-34
-34

2
2

-4
-4
-4
-4
-4
-4

-4
-4
-4
-4
-4
-4

-4
-4
-4
-4
-4
-4

-4
r

-4
-1

-1/

54
-54

18
-18
18

-18
18

-18

45
9

-03

45

-63
9

-63

45

-36
-36

-24
-24
-24
-24
-24
-24

48
-24

48
-24

48
-24

-24
48

-24
48

-24
48

-24
96

-30
-24
-30
-30
-24
-30

24
12
24
6

12
-30

6
12

-66

12
60-30
12

-30
-30

12
6

30
12

-24
-42
-6
30

-6
12
12

-42
-6
30

-6
-24
-24

30
30-6

12
24
24
30

-12
-12
-42
-12

-12
-24
-12

24
30-12

-12
-6
24

12-12
24

-6
24

-12
-6

-12

30
30-6

-42
-24

12

30-6
-6
-6

-24
12

-6
-6

-42
-42

48
48

-24
42

-12
48

-30
42

-24
-12

6
12
6

-12
12
6
6-24

-12

-24
6

24
12

-30
6

12
24

18
18

48
-24
48

-24
48

-24

-24
48

-24
48

-24
48

-24
-24
-24
-24
-24
-24

12
-66
60
12

-30
6

12
24

-66
12
6

24
12
6

-30
12
24

-24
-30

24
-24

42
-30
-24

24
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5. These comprise Table 6. A complete listing of all cyclotomic numbers of order 18
(/ odd and / even) has been deposited in the unpublished mathematical tables file
of Mathematics of Computation. The determination of L, M, c0, • • • , c6 was dis-
cussed in Section 3.

Similarly, for / even, as 3 is always a quadratic residue of primes of the form
p = 36/ + 1, we have T = 0, 2, 4 (mod 6) = 0, 2, 1 (mod 3). Hence, we arrive
at the same 8 classes as before (see Table 4). Primes belonging to these classes are
8929, 397, 73, 829, 37, 2341, 109 and 433, respectively.

The calculation itself was carried out on an IBM 7094. Once the equations were
determined, the cyclotomic numbers were computed for several primes and the
results were checked against a direct calculation based on Eq. (1.1).

5. Applications To Difference Sets. A (v, k, X)-difference set D is a set of k
distinct residues di, • • • ,dk modulo v for which the congruence

di — dj = a    (mod v)

has exactly X solution pairs d,, d¡ for each a, 1 = a = u — 1. If Z) is a difference
set consisting of the eth power residues modulo a prime p = v, then D is called a
residue difference set. If a difference set consists of the eth power residues of a prime p
together with zero, then it is called a modified residue difference set.

Letting p = ef + 1, Emma Lehmer [8] showed that no residue or modified
residue difference set exists if / is even. When/ is odd, she gave the following neces-
sary and sufficient conditions: For residue difference sets

(5.1) e(i, 0), = (/ - 1)        (¿ = 0,1, ■■-,&- 1)
and for modified residue difference sets

(5.2) e[l + (0, 0)J = e(¿,0), =/+ 1       (¿ = 1, 2, • • • , \e - 1).
Hence, we can use the cyclotomic number formulas given in Tables 5 and 6 to
establish

Theorem. The only residue difference set or modified residue difference set which
exists for e-18 is the trivial 19-1-0 difference set.

Proof. We have only to test (5.1) and (5.2) in each of the eight possibilities
provided by the classes of B, T. Sometimes both (5.1) and (5.2) can be ruled out
together.

Case 1.5 = 0 (mod 9) and T = 0 (mod 3). Here Table 6 shows that if (3, 0) =
(6, 0), as they must be to satisfy either (5.1) or (5.2), we have M = 0. Thus, as
(see Section 3)

(5.3) 4v = L2 4- 27M2,       L = 7    (mod 9)

we have 4w = L2 which contradicts the primality of v. Hence, both types of residue
difference sets are ruled out for this case.

Case 2. The four possibilities (B, T) = (0, 1), (3, 0), (3, 1) and (3, 2) can all
be eliminated in the same way. Equate the cyclotomic number (1, 0) with (4, 0),
(1, 0) with (7, 0), (2, 0) with (5, 0), and (2, 0) with (8, 0). This produces four
homogeneous linear equations in ft , ft, ft, and c6 for which the coefficient matrix
has nonzero determinant. Thus, Ci = c2 = c4 = c6 = 0, which is impossible because
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then ¿2(1, 1)9 is in the wrong field (see [4]). Thus, no residue difference sets and
no modified residue difference sets exist for these particular index pairs (B, T).

Case 3. Ind 2 = 1 (mod 9) and Ind 3 = 0 (mod 3). The equality of the (t, 0),
* = 1, • • ■ , 8, yields 4M = -3c2 and 4L = — 19c2. Thus, c2 = 0 (mod 4); let
ft = 4c then v = 151c2 from (5.3). Hence v prime only if v = 151, but 151 ^ 1
(mod 18). Hence, neither type of residue difference set exists in this case.

Case 4. Ind 2 = 1 (mod 9) and Ind 3 = 1 (mod 3). Here the equality of the
(», 0), i = 1, • • • , 8, implies c3 = 0 and c0 = — 2ikf. If we are to have a residue
difference set, then 648(0, 0) = 2v — 38 is the common value of 648(i, 0), i =
1, • • • , 8. Hence, L = 7 and M = — 1, so v = 19 and we have the trivial 19-1-0
difference set of the theorem.

If a modified residue difference set exists here, then 648[(0, 0) + 1] = 2d + 34,
which is also the common value of 648(1, 0), • • • , 648(8, 0). Using c3 = 0 and
Co = — 2 M, we derive M = 17 and L = 119" whichis not congruent to 7 (mod 9).
Hence, no such difference set exists.

Case 5. Ind 2 = 1 (mod 9) and Ind 3 = 2 (mod 3). From the equality of (1,0),
• • -, (8, 0) we deduce that 3c0 = 4c4 — 5c5, ft = 3c4 — 4c5, c2 = 2c4 — 3c6, c3 =
— ft . Now d, Co, • • • , ft must satisfy (see Section 3)

(5.4) v - (¿ a 0¿) (¿ a ß-A

where 0 is a primitive 9th root of unity. We use the above values in (5.4) and
reduce by means of 06 + 03 -+- 1 = 0 to find

5

V  =   X «Í0*
¿=0

where

C*l  =   Coft + ftC2 + C2C¡ + ftC4 + C4C6 —   (Ccft + C1C3 + C2C4 + C3C5).

Then

3«i = 16c42 - 48c4c5 + 41c62 = 16(c4 - 1.5c6)2 + 5c62

which must be zero for (5.4) to be satisfied. This implies c4 = c6 = 0 and thus,
Co = ft = c2 = ft = 0 also. Hence, no difference set of either type exists for this
case. Thus, we have proved the theorem.

As a further application of the cyclotomic numbers of order 18, we investigate
difference sets with the parameters v, k, X = 127, 63, 31. (This work was suggested
by Professor M. Hall, Jr.) In order to do this, we must recall some of the basic
results on difference sets (see [5, p. 58]). Given the difference set D = {di, • • • , a*}
then for any integer s the set {d\ + s, • • • , dk + s} = D + s taken modulo v is
also a difference set, called a shift of the set D. For any integer t, (t, v) = 1, the set
{tdi, ■ • ■ , tdk\ = tD taken modulo v is a difference set with the same parameters
d, k, X. If Di = tD2 + s for some t, s, (t, v) = 1, then the two difference sets Di,
D2 are called equivalent. If (I, v) = 1 and tD = D + s for some s, then t is called a
multiplier of the difference set D. If ni is a divisor of n = k — X such that (wi, d) =
1, ni > X, and if t is an integer such that for each prime p dividing nx there is an
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integer/ such that p' = t (mod d), then t is a multiplier of every difference set with
these particular parameters v, k, X.

In addition to these facts we need the concept of an index class. If gr is a primitive
root of an odd prime p = ef + 1, the set of those i (i = 1, 2, • • • , p — 1) for
which i = g'+eh (mod p),b = 0, 1, •••,/— lis called the index class j. (An index
class depends on p, e, g as well as j, but in our application p, e and g are fixed so
we do not need to complicate matters by mentioning them.)

In our case (v, k, X) = (127, 63, 31), so n = 32 and 2 is a multiplier of any such
difference set by the above result. Now associated with any multiplier there is at
least one shift D + s fixed by the multiplier [10], which we may assume to be D.
Using the multiplier 2, the residues 0,1, 2, • • • , 126 can be divided into disjoint sets
of numbers which are contained in the fixed shift entirely or not at all. These are:
(0), (1, 2, 22, 2s, 24, 25, 29), (3, 2-3, 22-3, • • • , 26-3), • • ■ , (*, 2i,22i , • • • , 2«i), ■ ■ ■

with a total of 19 sets. Since 3 is a primitive root of 127 and 372 = 2 (mod 127),
the eighteen seven-member sets (i, 2i, • • • , 26z) coincide with the index classes for
p = 127, e = 18. Hence, the 18 seven-member sets can be represented by their
index class numbers/ = 0,1, • • • ,17.

Since 2 was a multiplier, we see that every 127, 63, 31 difference set is composed
of exactly nine of these index classes. A computer search was performed selecting
nine of these eighteen classes in all possible ways and checking which were difference
sets. Rejecting equivalent difference sets, we found exactly six solutions, which in
terms of the index class numbers are :

0, 2, 4, 6, 8, 10, 12, 14, 16 quadratic residues [12, p. 133],
0, 1, 3, 6, 7, 9, 12, 13, 15 Hall's set 4z2 + 27 (Theorem 2.2, [6]),
0, 1, 2, 3, 5, 6, 7, 10, 16 linear recurrence set [5, pp. 52, 59],
0, 1, 2, 3, 4, 6, 7, 10, 12 new,
0, 1, 2, 3, 5, 11, 12, 15, 16 new,
0, 1, 3, 5, 8, 9, 12, 14, 15 new.

Following Hall (Theorem 2.2, [6]) we shall use cyclotomic numbers to see if any
new families of difference sets arise here. We need only investigate the last four
cases, since the first two are in families which are based on cyclotomy. The third one
is a member of the known infinite family indicated above, but since that family is
not based on cyclotomy, one might ask whether it could also be a member of a new
family which is related to the cyclotomic numbers of order 18. Unfortunately, no
new cyclotomic family of difference sets arises here. Thus, from the point of view of
this paper, the last four difference sets above represent nothing more than peculi-
arities of the prime 127.

Eq. (1.1) shows us that the cyclotomic number (k, h) is the number of solutions
of

a — 0 = 1    (mod d)

with a in index class k and 0 in index class h. Multiplying (1.1) through by d in
index class s we have

«+»+. _   .»+*+. m d    (mody)
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Thus, for fixed d in class s, the congruence

(5.6) a - 0 = d    (modi))

has exactly (k — s, h — s) solutions with a in class k and 0 in class h. Hence, the
number

9        9

N, = 22 2 (z¿ — s, z¿ - s)
i=l   3-1

is the number of solutions of (5.6) for fixed d in class s when the difference set is
composed of index classes z\, • • • , z9. So if a difference set exists, No = • • • = An
= X. Now v = 127 belongs to the case e = 18, / odd, for Ind 2 = 0 (mod 9) and
Ind = 1 (mod 3). For odd/, Eq. (2.2) yields Ni = N9+i (i = 0, • • • ,8); thus it
is sufficient to consider No, • • • , As alone. Consulting Table 5 we see that if the
linear recurring set is to generalize we want a family of solutions to No = ■ • •
= ¿Vg = X, with

648Ao = 162d - 24L - 24c0 + 138ft - 96c2 + 192c3 - 186c4 + 138c6 - 486,

648A/i = 162d - 18M - 144c0 + 18ft - 198c2 - 72c3 - 72c4 - 810,

648A2 = 162d + 18L + 72M + 108c0 - 72ft + 144c2 + 90c3 - 144c6 - 486,

648A3 = 162d + 12L - 108M + 120c0 - 96ft - 6c2 - 96c3 + 66c4 - 42c6 - 486,

648A4 = 162d - 18M + 288c0 - 72ft - 18c2 - 72c3 + 126c4 + 162c6 - 162,

6482V6 = 162?; - 18L + 72Af - 36c0 + 288ci + 72c2 - 54c3 - 144c4 - 144c5 - 486,

648AT6 = 162d + 12L + 108M - 96c0 - 144ft + 246c2 - 96c3 + 264c4 + 48c6
- 486,

648A7 = 162d - 18M - 144c0 - 18ft - 72c2 + 144c3 - 126c4 - 18c8 - 810,

648A8 = 162d - 90M - 72cc - 72ft - 72c2 - 36c3 + 72c4 - 162.

These equations have only the solution associated with v = 127.
Similarly for the remaining three difference sets above we used Table 5 to express

A^o, • ■ • , A^8 in terms of v, L, M, c0, • ■ ■ , ft . We found in each of these cases only
one solution (d = 127).
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