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Introduction 

The cyclotomic trace is a map from algebraic K-theory of a group ring to a certain 
topological refinement of cyclic homology. The target is naturally mapped to 
topological Hochschild homology, and the cyclotomic trace lifts the topological 
Dennis trace. Our cyclic homology can be defined also for "group rings up to 
homotopy", and in this setting the cyclotomic trace produces invariants of 
Waldhausen's A-theory. 

Our main applications go in two directions. We show on the one hand that the 
K-theory assembly map is rationally injective for a large class of discrete groups, 
including groups which have finitely generated Eilenberg-MacLane homology in 
each degree. This is the analogue in algebraic K-theory of Novikov's conjecture 
about homotopy invariance of higher signatures. It implies for Quillen's K-groups 
the inclusion 

(0.1) Hi(r; qJ) �9 ~ e  Hi-4k-l (F;  Q) c Ki(TIF) | ~ .  
k__>l 

On the other hand, the cyclotomic trace gives information about A(,) .  We show 
that its p-adic completion contains ~2 ~S ~ (Z BO (2)) x (2 ~S ~ as a direct factor, at 
least if p is a regular prime (in terms of number theory). This in turn gives 

(0.2) ho li__~m BC Daft (D")~ ~- ~ ~ S ~ (BO (2))p x Tp 

(after p-adic completion, p regular) where cOiff(D n) denotes the space of differenti- 
able pseudo-isotopies of the n dimensional disc, and Tp is a torsion space (possibly 
contractible), cf. [W4]. 

The topological cyclic homology space TC(F, p) can be defined for any "fun- 
ctor with smash product" in the sense of [B] and for any prime p. Such functors 
include group rings, RF and homotopy group rings, (2~S~~ At the time of 
writing only limited information is available about TC(RF, p) in the group ring 
case, and anyhow this is not the subject of the present paper; here we give, for any 
group-like topological momoid F, an explicit calculation of TC(t2 ~S ~ (F+), p) in 
terms of more familiar objects in homotopy theory. 

* Partially supported by an NSF-Grant 
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Fixing the prime p, let TC(X, p)2 be the infinite loop space defined by the 
following homotopy Cartesian diagram: 

TC(X,p)~, ~ , ~2~S~(Z+(ES 1 xs, AX))~, 

(0.3) $ fl J, Trf 
^ 1 - z i p  

Y2+S~(AX + )p , Y2~~ + )p . 

In (0.3), Z+ (Y) denotes the suspension of Y+ = YH { + }, A X  is the free loop space 
of X, Trf is the S 1-transfer and Ap is the p-fold power map, i.e. Ap(2)(z) = 2(z p) for 
the loop 2(z) in X. 

For  a topological group-like monoid F (i.e. ~oF a group) we show in Sect�9 5 that 

(0.4) TC(E2~S ~(F + ), p); ~_ TC(BF, p)~, . 

Given a "functor with smash product", the cyclotomic trace is an infinite loop 
map 

Trc: K(F)  --* TC(F, p) 

K-theory. In the special case where F ( U ) =  U+ A (2X, from its algebraic 
K (F) = A (X) and 

Trc: A(X)p  ~ TC(X, p)~, . 

This is a highly non-trivial invariant. 
To analyse it in the basic case when X consists of only one point we use 

a modified version of Soul6's construction of the Borel regulators in Ki(7l), [$2], to 
get a map 

(0.5) e #" O~S ~(Z+ CP ~ ) ;  ~ A(*)~ 

for each ~E lira (RCpm) • Here R = T[1/g] ,  g a generator of the units modulo p2 
�9 ( 

and the reverse limit is over the norm maps, and Ck denotes the cyclic group of 
order k. 

The composition a o Trcpo e # is a self map of (2~S~(S+ ~po~)~,, and since it is 
an infinite loop map it is determined by its induced self map of the suspension 
spectrum of Z+(CP~ With the aid of IBM] we show (for a specific choice of e) 
that 

(0.6) a o T r c p o e # : H l + 2 n ( Z + r 1 6 2  

is multiplication by ( 9 - " - 1 ) L p ( 1  + n; ~o-") where L v ( -  ;~o-") is the p-adic 
L-function and o~ is the Teichmfiller character�9 (For p = 2, the number should be 
interpreted to be 2). One may factor e # over (2~S~(ZBO(2)) and can use the 
realification map r o~ ~ BO(2) in the target to deduce (0.2). 

We note in passing that the reduced functor Trc v from A(X)~ to TC(X, p) is 
a homotopy equivalence for X simply connected by [BCCGHM] .  

There is a version o f  A-theory based on p-completed" spheres; we denote it 
A(BF; Zv). It maps to K(ZpF)  by linearization. For this theory one can in (0.5) use 

e lim (ZpCv,)• It  is possible to choose k in such a way that the number theory 

disappears from (0.6): For n ~ - l ( p  - 1) the composite is an isomorphism�9 For 
n --- - l (modp  - 1) it multiplies by (1 + n)p. This is in good agreement with [$2], 



The cyclotomic trace and algebraic K-theory of spaces 467 

and one may speculate about an explicit connection between TC(~p, p) and the 
6tale cohomology of SpecQp, and between the 6tale chern character and the 
cyclotomic trace. 

The paper is divided up into two parts. The first part, consisting of five sections, 
contains the construction of the topological cyclic homology and of the cyclotomic 
trace, and is to a large extent equivariant generalizations of results from [B]. The 
second part of the paper examines the cyclotomic trace invariant for A( , )  and 
derives the K-theory analogue of Novikov's conjecture. 

A couple of notational comments are in order. Throughout the paper, Q(X) 
denotes the unreduced stable homotopy space of X, i.e. 

Q~X)=a*s~x+), x+ =xu{+} .  

A 

For based spaces X the reduced version is (~(X) = f2~S~(X). We have used Xp to 
denote the completion at p of X in the sense of Bousfield and Kan. The paper is 
written in the language of infinite loop spaces (rather than the equivalent notion of 
connected spectra). This has at certain places some funny looking notational 
consequences. For example, X A Q(Y) is identified with Q(X A Y). 

The cyclotomic trace is very much inspired by work of T. Goodwillie. In fact it 
is one way of making precise his ideas of epicyclic spaces as explained in a cel- 
ebrated letter from him to F. Waldhausen. We are indebted to G. Carlsson for 
drawing our attention to Soulh's paper [$2]. We thank F. Waldhausen for valuable 
philosophical as well as practical suggestions. 

The proof of the K-analogue of Novikov's conjecture is inspired by ideas of 
R. Cohen, J. Jones and M. Karoubi. We sincerely thank J. McClure who read the 
entire manuscript. His detailed comments made us change the exposition at many 
places, and in fact rewrite several sections completely. In particular he pointed out 
a serious mistake we had made in our definition of the F-space structure on 
TC(X, p). Finally, J. Rognes and L. Hesselholt have made valuable comments on 
the present version. 
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1 Edgewise subdivision and cyclic spaces 

Given a simplicial set X, and a natural number r there is an edgewise subdivision 
sdrX, whose topological realization is homeomorphic to that of X~ cf. [Se2]. We 
present a variant of this construction. 
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Let A be the simplicial category with objects In] of ordered sets, 
[n] = {0, 1 . . . . .  n}, and order preserving maps as morphisms. Consider the 
functor 

sdr: A ~ A 

with s d r [ m -  1] = [ m r -  1] and sdr ( f )  =fLI  . . .  [ I f  (i.e. s d r ( f ) ( a m  + b) = 

an +fib) ,  when f: [rn - 1] -~ [n - 1] and 0 __< a < r, 0 =< b < m). 
The r-fold edgewise subdivision of a simplicial set (or space) X.: A ~ ~ sets is 

the composition sdrX .  = X .  o sd, with s d r X ,  = X( ,+ 1)~- 1. 

Observe that the face and degeneracy operators in s 4 X .  are given by 

di: SdrXn --* s d r X , - 1  

si: sd rX ,  ---* sd, X , +  l 

with 

= d i o  d i + { n +  1) o . . .  o di+(,- ~ ) ( . +  ~) 

si ~ s i + ( r - 1 ) ( n + 2 )  ~  �9 . ~ S i + ( n +  2) ~ Si 

where dl and sl are the face and degeneracy operators for X.. 
The standard simplex A " - 1  is the r-fold join of A m-1 with itself, and we 

1 1 
have the diagonal embedding dr: A " -  I --* A " -  I, d r ( u ) = - u O . . . G - u ,  

r r 

A "  = {(Uo . . . . .  u . ) l Z u ,  = 1} 

Lemma 1.1 The map Dr: [sd,(X.)] -* [ X .  J o f  topological realizations induced f r o m  

1 x d,: X , , _  t x A m- 1 __. X , ,  I x A ,m- 1 is a homeomorphism. 

Proof.  This is easily checked when X. is the simplicial 1-simplex A [1]. It follows 
for the (diagonal) of any product A [1]. k and then for the simplicial k-simplex A[k]. 
upon using the retraction A[k]. q A [1]. k --* A[k]. to check that Dr is both injective 
and surjective. The case of a general simplicial set is now obvious. [] 

The second edgewise subdivision of the standard 2-dimensional simplex and 
Segal's original subdivision can be pictured as 

sd2(& 2 ) : Segal's subdivision: 

Recall A. Connes' extension A of the simplicial category A. It has the same 
objects, but the morphisms are extended by the 'cyclic permutation' z,: In] --* In], 
and one has the extra relations 

r,  Si = 6 i - l  r , - t ,  1 < i < n 

z.(5o = On 

Tn(7 i = O ' i _ l ' [ n + l ,  I _< i < n 

2 (1.2) "r, ao = a , z ,+  x . 
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Moreover ,  the (n + 1)'st power  of T, is the identity: 

,+1 = id , (1.3) 3, 

If X.  is a cyclic object, i.e. a functor from A ~ then the r-fold edgewise 
subdivision has a simplicial action of the cyclic group C, of order r. Indeed, the 
(m - 1)-simplices of sdrX. is equal to Xrm-~ and rr~-~ generates the C,-action. 

More  generally, observe that  (1,2) alone implies that ~,~+ ~ commutes  with 6i and 
at in that  

~T+ n zn 16i = 6~z.-1 

n +  (1.4) 3, lai aG~, § + 1  " 

Definition 1.5 Let Ar (1 _< r -< oe) be the category which contains A and morphisms 
r,:  [n]--* In] subject to the relations (1,2) and the relation z,~"+l~ = id (when 
r < oo). 

A A~ is a functor from A ~ so is for r = 1 a cyclic object in the sense of 
Connes. 

By (1.4) every A~ has a simplicial C,-action, Actually, the topological 
realization of a A~ has a cont inuous circle action which restricts to the 
simplicial Cr-action. Precisely, let Ar[n]. be the A~ of morphisms  

[m] ~ Ar([m], In])  

and let A2 be the realization of its underlying simplicial set. The functor  In] ~ A~" is 
a A,-space. 

L e m m a  1.6 There is a homeomorphism A~ _~ lR/r2~ x A ", and the action oft ,  on A", is 
given by 3,(0; Uo . . . . .  u,) = (0 - Uo; ul . . . . .  u,, Uo)- 

Proof. This follows from [J, Theorem 3,4] or from [ D H K ] ,  Indeed, the usual 
t r iangulat ion of I R •  with vertices (i, v) for i e7 l  and veVer tex(A ' ) ,  ordered 
lexicographically, gives a model  for A~[n].. The identification of the layers t x A" 
and (t + r )•  A" corresponds precisely to the extra relation ~"+~) '  = id. Thus 
[A,[n]. l  ~ IR/rZ • A". The act ion of 3, is equally clear. []  

It follows from 1.6 that  the realization of any A~ has a canonical action 
of lR/r:g, hence a circle action upon  identifying 0 + r;g with e2"~~ There are two 
possible realizations of such an X. ,  namely 

i X . I = I I A ' x X , / ~ ;  ( f , t , x ) ~ ( t , f * x )  f o r f E d  

(1.7) t X . I A ~ = H A ~ x X , / ~ ;  ( f . 2 ,  x ) ~ ( 2 , f * x )  f o r f E A ~ .  

The first one is the usual realization of the underlying simplicial set. The  second has 
the IR/rZ action from 1.6. 

L e m m a  1.8 The inclusion A" ~ A~" induces a homeomorphism of IX. ] onto ]X.[A~. 

There are functors 

(1.9) P~:A~--+A~, s d , : A ~ A ~ .  

The first one is the identity on objects and on morph i sms  f rom A, and is the 
surjection on ( z , )  (replacing the relation ~,~(" + ~ = 1 by ~, "rs(n + 1 )  = 1). The second 

functor extends the subdivision functor on A by sd,(r,_ ~) = ~,,_ ~. 



470 M. B6kstedt et al. 

By Pr each A~ X. becomes a Aft -space ,  denoted P r X .  or just X., and the 
identifications in 1.8 makes EX.I both an IR/rsZ-space and a lR/sTl-space. The two 
actions I% and #s can be compared. 

Lemma 1.10 There is a commutative diagram 

l R / r s Z x l X .  I ~ ' ,  IX, l 

pxid ~ / p ~  

~ / s g  x IX. I 

where p is the projection induced from the identity on IR. 

Proo f  It is direct from 1.6 that Pr induces a commutative diagram 

Vr 
A~, , A2 

II II 
p• 

lR/rsZ x A" , lR/s~ x A" 

The rest follows from the diagram 

IX.I 

n 

rl II 

IPrXolAr: ' IXo[As �9 [] 

The functor s d / A r ,  ~ A~ associates to each A,-space X. a A~,-space sd, X . ,  and 
we have the homeomorphism 

Dr: IsdrX~ --+ IX.I 

of 1.1; R / r s Z  acts on the domain and lR/sTZ on the range. We have 

Lemma 1,11 The following diagram is commutative 
id x D, 1/r x id 

IR/rsZ x IsdrX. I , lR/rs~ • IX.I , lR/s7l x [X.I 

J.,rs J.,. 
D, 

IsdrX.I , Ix.I 

where 1/r: lR/rs7l ~ IR/s7l is induced from division by r. 

Proo f  The argument is similar to the one in 1.10 except this time, since sd, is not 
the identity on objects, we get a simplicial map 

sdr: Ar~[n - 1] ~ sdrA~[rn - 1] 

whose realization we must identify. We claim there is a commutative diagram of 
realizations: 

A~"~ -1 ~ I s d r A ~ [ r n - 1 ] . ]  O, )Arn-  1 

]R/rsZ x A "-  1 Ur • 4 IR/sZ x A r, - 1 
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where d, is the diagonal map  (cf. 1.1). This uses the description of A~' from [ J ]  
(cf. 1.6). We leave the details for the reader. [] 

If we identify 1R/mTZ with S 1 in the s tandard fashion (O*-~e 2~i~ then 1.11 
simply says that  

D,: Isd, X.I  ~ IX.I 

is an S l -homeomorphism.  

Let us finally remark that the subdivision functor of course can be iterated and 
that 

Moreover,  the diagram 

(1.12) 

is commutative.  

s d r s d s X ,  = sd~ X .  . 

Dr 
Isd,~X.I , Isd~X.I 

o \  / o  
IX.I 

2 The cyclic bar construction 

Given a topological,  group-like monoid  G and a two-sided G-space E we can form 
the cyclic bar construction N~.Y(E; G), cf. [W1].  It is the simplicial space: 

NnCY(E; G) = E x G" 

do(e, gl . . . . .  g.) -- (egl, g2 . . . . .  g.) 

dn(e, g l  . . . . .  g . )  = (g .e ,  g l  . . . .  , g . - 1 )  

di(e, g l  . . . . .  g . ) = ( e ,  g l  . . . . .  glg i+l  . . . . .  g.), 0 < i < n  

si(e, g l  . . . . .  gn) = (e, g l  . . . . .  gi, 1, gi+ 1 . . . . .  gn) �9 

If E = G, considered as a two-sided G-space via multiplication, we write N~.Y(G) 

instead of N~.Y(G, G). Setting 

t , (go  . . . . .  g , )  = ( g , , g o  . . . . .  g , -1 )  

it becomes a cyclic space (with t, corresponding to %). 
The r-fold edgewise subdivision sdrN~.Y(G) is again a cyclic bar construction, 

namely 

(2.1) sd.N~.Y(G) ~- N~.Y(t(Gr), G r) 

where G r is the r-fold Cartesian product  of G and t (G r) = G" but with a twisted 

two-sided G~-structure: 

(el . . . . .  e r ) ' ( g l  . . . .  , gr) = ( e zg l  . . . . .  e~g.) 

(g l  . . . . .  g . ) ' ( e z  . . . . .  e~) = ( g r e l , g z e 2  . . . . .  g . - l e r )  . 
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Let n: N.~Y(G)~ N~ be the simplicial map into the usual (one-sided) bar 
construction which in simplicial degree n maps (go . . . . .  g.) to (g~ . . . . .  g.). 
Combining with the S ~-action on I N.~Y(G)] we have the map 

S ~ x ]N,~Y(G)I u , IN.~r(G)[ , IN.(G)] 

whose adjoint is a map 

(2.2) f: /NfY(G)[ ~ ABG 

into the free loop space ofBG = IN,(G)[. Observe that f is  an S 1-map when we give 
ABG the S 1-action from rotating the loops. It is well-known that f is a non- 
equivariant homotopy equivalence, [BF, G],  since no G is assumed to be a group. 
We want to prove a corresponding equivariant statement. Let 

A~,o: N:Y(G) --, sdrN~.Y(G) ~- N~.Y(t(Or), O r) 

be the diagonal map which sends a k-simplex (go . . . .  , g.) into (go . . . . .  ~.) with 
~i = (gi . . . . .  gi) �9 G r. 

The simplicial action of the cyclic group Cr on sd~N~.Y(G), generated by 
tn+ 1 ~.+~)~-1 on the n-simplices, corresponds under the identification (2.1) to the 
permutation action on G r. Thus 

(2.3) A~,. : N~.'(G) ~ (sdrN~.Y(G)) c~ ; 

this is a simplicial isomorphism, whose realization is denoted At. When G is 
a group there is the injection 

i: N. (G)  ~ N.~r(G)~I) 

(2.4) i ( g ~ , . . . ,  g.) = ((Ugi) -1, gl . . . . .  gn), 

split by the map n used in (2.2). The realization of /corresponds to the inclusion of 
BG in ABG as the point loops. 

Proposition 2.5 For a topological group G, 
i 

IN.(G)I , IN,~r(G)I 

d~ 

I N.~r(G)I , [sd~N~.Y(G)I, 

A,~ , iSdrsN~Y(G)lC~ ~ 

2 
C~D, [sd,~g~y(G)[C~ 

is homotopy commutative by a homotopy Dr~,t which is natural in G. Moreover, 
Dr~,t = A~o D ~ ,  

Proof  Suppose first that s = 1. Consider the homotopy 

d , . t : A " ~  A " * . . . , A "  (r factors) 

d , , t ( u ) = t u / r • .  . . @ t u / r O ( t u / r  + ( 1 - t ) u )  O< t < 1.  

For t = 1 this is the map dr used in 1.1. Let 

D 1 .[sd,.N~.Y(G)[ ~ IN,~r(G)[ r ,  t �9 

be the corresponding homotopy of the map D from 1.1. Since 

d, ,o :  A n ~ A ~n+ 1)r-  1 
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is the (n + 1)(r - 1)-th iterate of the 0-th (co)face we have commuta t iv i ty  in 

1 xd~.+ hi ,  a) 
A" x [sdrN~r(G)]. ~ A" x N~Y(G) 

D~,o 
}sdrNCY(G)} , } N.cr(G)I . 

A direct calculation shows that  

473 

is a homotopy equivalence. 

Proof  First observe that  

f :  INgY(G)I c ~ (ABG) c 

A,,.: PrN~.r(G) --, sdrN~.r(G) 

is a map  of AlP-spaces with Pr from (1.9). It follows from 1.10 and 1.11 that  the 
composi t ion 

At: [N~d(G)l A, , isdrN~r(G) I D, 'IN.~r(G)I 

has the following equivariance proper ty  for the Sl-act ion:  

(2.7) Ar(z r" x) = z" Ar(x) 

for z e S  1, x e  IN.~r(G)I. Let g: IN.~r(G)I ~ A [N.~r(G)I be the adjoint  of the S 1-action. 
We have the d iagram 

iN~Y(G)lCr ocr A~ )c~ , (A[N~d(G)I) cr , (AIN . (G) I  

(2.8) i" t P, t 

i N.~r(G)I a A~ , A t N : ' ( G ) I  , AIN.( )I 

with P~ the power  map,  P~(a)(z) = a(zr). We claim that the outer  d iagram in (2.8) is 
h o m o t o p y  commutat ive .  For  x e I N.~r(G)I, (prog)(x) is the loop a ( z ) =  z ' . x  and 

g ~ At(x) is the loop 6(z) = z- At(x) = Ar(z ~- x). So we have left to show that  the 
maps  

~, n os ~ IN~ 

are homotopic .  The h o m o t o p y  is n oD~. ~ with D~,t the h o m o t o p y  from 2.5. 
Clearly 

Pr: A B G  ~ (ABG)  c" 

is a homeomorph i sm.  By (2.3) the same is true for A~, s o f  c" is conjugate t o f  Since 
f i s  a h o m o t o p y  equivalence, so is fc~. [] 

dr.+ 1)o'- 1) A,.(g ~ . . . . .  g.) = ( ( H  gi)"- 1go, gl . . . . .  g.) . 

But I ]g i  = 1 when (go, - �9 �9 , g . )e Im( i ) .  Hence D lr,o ~176  = id which proves the 
claim. For  s > 1 one takes Dr~,t = As~ 1,,,. []  

Proposition 2.6 For a group-like topological monoid G and for each finite subgroup 
C o f S  1, 
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Remark  2.9 The equivariant Whitehead theorem asserts that an equivariant map is 
an equivariant homotopy equivalence if and only if the induced maps on all fixed 
sets are homotopy equivalences, at least if the transformation group in question is 
compact. Thus f :  IN.~Y(G)[ ~ A B G  is a C-homotopy equivalence for each finite 
C c S 1. However, f is not an S ~-equivalence, since 

IN~.r(a)l sl = { g e a L s o ( g ) =  t lSo(g)}  -- {1}, 

(ABG)Sl = B G .  

We need a blown-up version of N~.Y(G), e.g. the bi-simplicial set used in [-B 1], to get 
an S 1-equivalence. 

The homotopies specified in Proposition 2.5 gives a well-defined map 

I: ]N.(G)[ ---, holim [sd~N~.Y(G)[ 
CD 

with the limits running over the compositions 

D: [sd,~Uff(G)l c~ --, [sdr~Uff(G)[ cr O~ , [sd, Nff(G)[Cr " 

The reader is referred to [BK, Chap. XI] for the definition and general properties of 
homotopy inverse limits. For the purpose of this paper it suffices to replace the 
limit system above by the simpler system where r runs over the powers of a fixed 
prime number p. In this case there is a more well-known description of homotopy 
inverse limits which we now recall. Given a string of spaces 

~7 n 

�9 . . ~ S ,  , S , _  1 - - * .  �9 �9 - - *  S o  

we can replace it by a string of fibrations 

f(G.) 
. . .  ~ f ( S , )  , f ( S , _ ~ )  - - * . . . - - * f ( S o )  

by iterating the usual mapping path space construction which converts a map into 
a fibration, and one has 

holim, S. - l i m / ( S . ) .  

This follows from [BK, XI, 4.1 and 5.6]. 
The homotopy groups of holimm S, can be calculated from the exact sequence 

0 ~ limtl)ztk+ tS, --* ~kholim S, ~ lim ~ZkS, ~ 0 
4------- r ( 

cf. [BK, XI, 7.4] or [Mi]. If we assume that each S, is an infinite loop space and a, 
an infinite loop map, and this will always be the case for us, then one has an exact 
sequence 

0 ~ ,lim~l)[ZX' S,] --* [X, holim~ S,] --, ~ [X, S,] --* 0 

for every X. The lim~l)-term is in general non-zero. 
r 
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We shall use at several places below that !ira Cx)A. = 0 if A, is a string of 

compact abelian groups. Indeed, liirnm ~11 A, is the cokernel of the map H A, ~ [ I  A, 

which sends (a,) to (~7,(a.) - a,_ 1 )- This has dense image and 1-[ A, is compact; thus 
it is onto. 

Lemma 2.10 Suppose (S,, a.) is a string of infinite loop spaces, and that.f,: X -~ S, 
are maps so that a, of, ~- f , -1 .  There is a homotopy class [ f ] , f ' .  X~holi_m_mS,, 

inducing [ f , ] .  Its p-adic completion [fp] is well-defined, when each [XX,  S,] is 
finitely generated. 

Let us return to the inverse limit system at hand. It is direct from the definitions 
to check that there are commutative diagrams 

isdp.N~Y(G)]C~ ~ 4, , [sdp.+~N~Y(G)lCr+, 

(2.11) +v +D 

]sdp._,NCy(G)]Cr ~ 4 ,  ]sdp.N~Y(G)]Cr 

where Ap is the homeomorphism induced by (2.3). There is an induced homeomor- 
phism 

Ap: holim ]sdp.N~.'Y(G)] c.~ ~ holim Isdp.N~.Y(G)f cr 

and it is clear from (2.5) that Apol = I. Let q~p = A/1 be the inverse homeomor- 
phism. We have 

(2.12) I: IN.(G)I --, (holi_i_~m [sdp.N~.Y(G)lCr) ~, 

Our preference of q~p over Ap in (2.12) will become apparent in Sect. 5 below. 
In our definition of the cyclotomic trace (Sect. 5) we need to apply the above in 

a situation where G is a group-like monoid (a topological monoid with hoG 
a group). The map I is not a priori defined for monoids, since it uses strict inverses. 
However, there is a well-known trick to get around this difficulty. 

There is a functor G ~ GA which replaces a topological monoid by a group, 
and another functor G ~ G v (the free group) together with natural transforma- 
tions 

G ~ G V ~ G  ^ 

cf. [BF, p. 311] or [G, Sect. I, 1.8]. 
When G is group-like the induced maps 

IN.(G)I ",- IN.(G v )[ ~ ]N.(G A )[ 

isde.N~Y(G)lCr ~ isdp, N~Y(G v )]cr _~ [sdp.N~Y(G ^ )lcr 

are all homotopy equivalences. Since homotopy inverse limits, and in particular 
homotopy fixed points are homotopy invariant notions, we get a well-defined 
homotopy class 

(2.13) I: IN.(G)I --, (holim__m Isd,.N~.r(G)lC,") h~ 

for every group-like topological monoid. (Here hq~p indicates homotopy fixed set, 
i.e. the homotopy equalizer of the self-maps ~p and id.) 
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One  may  prove that  (2.12) is equivalent up to h o m o t o p y  to the m a p  

U~ BG -~ (holim (ABG )C,")hA;, ~ 

which embeds  BG as the constant  loops,  in the h o m o t o p y  limit over the inclusions 
of  fixed sets. Basically this is a consequence of (1.1 t) and (2.6). 

3 The equivariant topological Hochschild space 

cy 
Given  a ring R and a bi-module E we can form the simplicial space N| R)~ 
analogous  to the cyclic bar-const ruct ion  of Sect. 2. It is the simplicial space 

cy 
N |  In] ~ E |  | 

with the evident face and degeneracy operators.  If E = R it has a cyclic structure, 
In [B] this construct ion was generalized to the category of infinite loop spaces 

(spectra), replacing R with a "ring up to h o m o t o p y "  and tensor product  with smash 
product .  We need equivariant  versions. 

Recall that  a functor with smash product ,  an FSP,  is a functor f rom pointed 
spaces to itself together  with two natura l  t ransformat ions  

such that  

llx: X ~ F ( X )  

#x,v: F ( X )  A F ( Y ) ~  F ( X  /x Y) 

(i) #x,r(llx A n r )  = ~x ^ r 

(ii) Px ^ r ,z (#x , r  A id~z)) = #x,r  ^ z(id~<x) A Pr.z) 

(3.1) (iii) F ( T )  o I~x, r o 1l x /x idv~r) = Pr, x o (idF~r) A llx) oT 

We shall always assume F is convergent  in the sense that  the limit system 

~,~2'F (S' X ) ~ zcr(f2 i+ 1F (Si + 1X ) ) , 

given by produc t  with 11sl, stabilizes for every given r. 

Example 3.2 (i) Our  basic examples  will be of  the form F ( X )  = _F(X) = X /x F+ 
where F is a topological  (group-like) monoid.  (ii) Given one FSP  we m a y  construct  
the associated matr ix  functor by M , , m ( F ) ( X )  = Map( [m] ,  In]  ^ F(X) ) .  

Here [ m ] - - { 0  . . . . .  m} with 0 as base-point ,  and M a p  denotes the set of 
base-point  preserving maps. There are associative pairings 

M , , , . ( F ) ( X )  ^ Y ~ M .... ( F ) ( X  /x Y) 

M , , , . ( F ) ( X )  /x M , , . k ( F ) ( Y ) ~  M , , k ( r ) ( x  /x Y ) .  

For  n = m, write M , ( F )  or F .  instead of M, , , (F) ;  it is an FSP. When  n 4= m, 
M., , , (F)  is not  an FSP,  but there is still a limit system, and convergence is defined 
as above. (iii) Given any ring R there is an FSP R defined by R ( X )  = R X . / R ( * ) ,  the 

reduced simplicial abelian group  of the singular complex X. 

Let I be the category whose objects are the natural  numbers ,  considered as 
ordered sets n = (1 . . . . .  n) and whose morph isms  I(n, m) are the injective (not 
necessarily order  preserving) maps.  
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The standard inclusion n ~ m induces a map 

n " F  (S") ~ Y2"F (S m) 

upon taking the product with nsm-. on the right, The symmetric group Z,, acts on 
(1 . . . . .  m) and hence on S"  and F(Sm), and on Y2"F(S")  by conjugation. Every 
m o r p h i s m f ~ I ( n ,  m) can be decomposed as f =  a ~ i with a c Z , ,  and i the standard 
inclusion. One gets a functor on I with f ,  = 6# oi , ,  

f # : (2"F (S") ~ t 2 "F(S" )  . 

Indeed, a ,  oi# = i# when a ~ Z m _ , .  

The category I is not filtering, but we can still take the homotopy direct limit. 

Definition 3.3. QF = holim (n ~ t2"F(S")). 

I 

It is proved in [B, Theorem 1.5] that the above homotopy limit is a good one in 
the sense that (2"F(S") approximates QF. For  the functor F (X)  = X A F+,  

Q_F = Q(F)  = O ~ S ~ ( r +  ) . 

Roughly speaking, the construction T H H ~  ) is the N~-construction for the 
"ring up to homotopy" QF. Precisely, define the simplicial space T H H . ( F )  to be 

(3.4) [p]  ~--~ holim Map(S '~ /, . . .  ^ Sip, F ( S  i~ /x . . . / ~  F ( S i , ) ) .  

lp41 

The face operators are induced from functors I p+ 1 _~ i p associated to concat- 
enation of sets, and for the last one, with cyclic permutation followed by concatena- 
tion. The degeneracy operators are similar, and the cyclic structure is induced from 
cyclic permutation. 

Often we shall shorten notation and denote the mapping space in (3.4) by 
ydli_l F ( S  i~ A . . . A F(S  ip) where I_/I = ~ i ,  and _/= (i0 . . . . .  ip). 

The topological realization of(3.4) is the topological Hochschild space, denoted 

(3.5) T H H ( F )  = ]THH. (F) [  . 

Let R denote the regular representation of the cyclic group Cr and let 
iR = R |  | R (i summands). Its one point compactification S iR is, as a Cr- 
space, equal to the r-fold smash product of the/-sphere.  In general X ~) denotes 
r-fold smash product. 

With these notions the subdivision sd, T H H . ( F )  can be rewritten as the sim- 
plicial space 

(3,6) [p ]  ~-~ holim M a p ( S  i~ A . . .  A S ipR, F(Si~  (r) A . . .  A F(sip)(r)).  

I p+l 

The simplicial action of the group C~ is induced from conjugation in the 
mapping space, with cyclic action on the r-fold smash products. 

Given a C,-space A, we write 

Qc~(A) = holim Map(S kR, S ~R A A+) 

k 

(and not, as is unfortunately more customary, Qc(A + )). 
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Proposition 3.7 L e t  F be a group-l ike topological monoid and _iv the f unc tor  of 3.2(i). 
Then there is a Cr-homotopy  equivalence 

[sd~THH.(_F)[ ~ -c rQcr (ABF)  . 

Here the free loop space A B F  has its usual Cr-action. 

Proof.  Consider the bi-simplicial set 

Hp,q = holim Map(S i~ /~ . . .  /x SipR, S i~ /x . . .  /~ S ipR /x (Fr)q+). 
) 

ip+l x l q + l  

The diagonal complex 6H.  is precisely sdr T H H .  (F).  The realization of the diagonal 
complex is homeomorphic with the realization divided into two steps, by first 
realizing each column and then realizing the resulting simplicial space. 

We have 

[Hp,.[ = holi__mm M a p ( S  i~ A . . . A S ipR, S iOR A . . . A S ipR A [sd~NF(F)[+)  

lp +1 

~-- h o l i m  M a p ( S  i~ A . . .  A S i~R, S i~ A . . .  A S i~g A A B F  + ) . 

i p+l 

By (2.6) this is a Cr-homotopy equivalence. In particular 

[Ho,.[ - Q c r ( A B F ) ,  

a homotopy equivalence of C~-spaces. The face operators 

6 :  ]Hp,.I ~ IHp-l,.I 

are all equivariant homotopy equivalences, and give an equivariant homotopy 
equivalence 

IIH~ = [[p]~--~lHp,~ ~ ]Ho,~ �9 

Indeed by the equivariant Whitehead theorem it suffices to check that the fixed sets 
are homotopy equivalent. Now there is a map from the simplicial space 
fp]  ~ l H p , .  I c to the constant simplicial set IHo.. ICwhose levelwise homotopy fibres 
are contractible. Hence the homotopy fibre of the map from I[P] ~ I Hp,.Icl  to 
IHo,~ c is contractible, cf. [G, 1.1.3]. [] 

Morita invariance, in one formulation, gives a homotopy equivalence of the 
cyclic bar construction for rings 

N |  R)  ~- N |  M . ( R ) )  (3.8) cy cy 

where M a ( R )  is the full matrix ring of a x a matrices. The proof of this, given in 
[W2] can be generalized to T H H ( F )  as explicated in [B]. We want an equivariant 
extension. 

Proposition 3.9 There  is a Cr-equivariant  homotopy  equivalence be tween the realiz- 

ations 

[ sdrTHH.(F)]  "~ c,  Jsd~THH.(Ma(F))J  

with M a ( F )  defined in 3.2. 
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The proof of 3.9 is based upon three easy lemmas in equivariant homotopy 
theory. We first state and prove these lemmas and then return to the proof of 3.9. 

Lemma 3.10 Let X be a (k + N - 1)-connected space, and let a be the Cr-map 

(7: (~kx)~r) ---) Map(S kR, X ~r)) 

9iven by smash product. For each Cs ~-Cr, the map ac~ o f  f ixed sets is 
((r/s + 1 ) N -  1)-connected. 

Proof Consider the fibration sequence 

Mapcs(SkR/s gd, X ~) ) -~ Mapc~(S kg , X ~) ) ~ Map(S  kd, X ~d~ ) 

induced from the inclusion of the fixed set S kd = (skR) Cs into S kR, d = r/s. 
The j-th homotopy group of the fiber 

7rdMapcs(Skg/s kd, X ~)  = IS j A skR/sRa, XIr)] cs 

is zero i f j  + k(r/t) < (r/t)(k + N)  for all proper cyclic subgroup Ct of C~. This 
follows by elementary obstruction theory. In particular, it vanishes for j  < 2(r/s)N. 

The non-equivariant map 

a: (~'~kx)(d)-'~ M a p ( S  kd, X (d)) 

is (d + 1)N-connected. It follows that a cs is always (r/s + 1)N - l connected. [] 

Lemma 3.11 Let f: X - ~  Y be a C-map with f cs N(s)-connected for each subgroup 
C~ with N(s) >= k(r/s) + N(1) - kr. Then the induced map 

f . :  Mapc~(S kR, X )  -~ Mapc~(S kR, Y)  

is (N (s) - k(r/s) )-connected. 

Proof The homotopy fiber F o f f  is a Cr-space with FC~(N(s) - 1)-connected. The 
fiber of the induced map f .  of the mapping spaces is M a p c ~ ( S  kR, F) ,  which is 
(N(s) - k(r/s) - 1) connected, again by elementary obstruction theory. [] 

Lemma 3.12 Suppose X is (k - 1)-connected and f:  X ~ Y is (k + N)-connected. The 
C~-map f(~): X(~) ~ Y(') induces a (k(r/s) + N)-connected map on C~-fixed sets. 

Proof  o f  Proposition 3.9 We follow the outline from [W2] and define a certain 
bi-simplicial space, which maps both to sd, THHo(F) and to sd~ THH.(M~(F)) .  Let 
us use the shorthand notation F,  instead of M,(F) ,  and F,,b = M,,b(F). For  
i = (io . . . . .  ip) a n d j  = ( J o , - - . , J q )  define 

H( i , j)  = F(S ~~ A . . .  A F(S i.- ~) A FI ,a (S  ip) A Va(S  j~ A . . . A Fa(S jq- ~) A F~, 1(S J"). 

It induces a functor Y2W+I21H(/,j) on I p+I x l  q+l where I_/I = y'i~, Ijl = ~ j , .  We 

are interested in the homotopy i~mit, or rather in its r-fold subdivision. First, 

(/, j )  ~ M a p  (S I_q a /x S IJI R, H (i, j)tr~) 
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is a functor o n  I p+I •  and we can define a bi-simplicial space with a C,- 
action, 

Xp.q(r) = holim Map(S I!IR /x StJ IR, H(i_,j)(~)). 
) 

I p+I X I q+l 

The two sets of face and degeneracy opera tors  are similar to the case r = 1 (d~ uses 
the action F.,  ~(S j") z, F ( S  ~~ ~ F., z(S j. A S~~ d~, and dq use a twisted multiplica- 
t ion similar to (2.1) etc.). Define 

G'( jo  . . . . .  J q + l )  = f t , a ( S j ~  A Fa(S j ' )  A . . .  A f a ( S  jq) A Fa, I(S j"+t) 

G"(io . . . . .  ip+~) = F . ,~(S  ~~ /x F ( S " )  A . . .  /x F ( S ' Q  /x FI ,a(S ip+') 

H ( i , j )  = F ( S  i~ /x . . .  /x F ( S  ip- ' )  A G'(ip, j_) 

(3.9.1) H(_/,j) = Fa(S i~ /x . . .  /x F~,(S jq-1) /x G " ( j q , i ) .  

Multipl icat ion defines maps  

G'( jo  . . . . .  jq+ 1) ~ F ( j o  . . . . .  Jq+ 1) 

(3.9.2) G"(io . . . . .  ip+ 1) --+ Fa(io . . . . .  iv+ 1) 

where we have used the nota t ion  

F ( j )  = F ( S  j~ /x . . .  t, S jq*l) = F(SIJ I) 

F.(j_) = F . ( S  i~ /x . . .  ^ S ip+') = Fa(S I-/I) . 

We can subdivide and get induced maps  f rom X~ ~ to bi-simplicial spaces which 
are constant  in one direction, namely  

( [p ] ,  [q])~--~sdrTHHp(F)  (constant  in q-direction) 

( [p ] ,  [q] )v - -~sd .THHq(F)  (constant  in p-direction) 

and hence maps  of realizations 

(3.9.3) Isd, THH.(Fa) I  ,-- II X . ,  .(r) It --* I s d r T H H . ( F  )I . 

(The double bar  indicates two-fold realization: First realize in one direction, and 
then in the other  direction). 

We will argue that  the maps  in (3.9.3) are Cr -homotopy  equivalences. This is the 
case non-equivar iant ly  (or equivalently for r = 1) by I-B], [W1].  

Consider  the simplicial spaces 

[ q ]  ~ ho l im  O~,_'lR G'(j)~r~ = sdrB'. 
lq+2 

(3.9.4) [ p ]  ~ holim ~[tlR G" ( _i )(~) = s,t_, -pl~" 

1 p+2 

with simplicial C,-action,  ana logous  to (subdivisions) of the 2-sided bar-construc-  
t ion for rings (cf. [W1]).  

so that  
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The maps of (3.9.2) define maps into simplicial objects 

[q]  ~-~ holim (21JlRF(j)tr) 
) 

/q+2 

[p]  ~-~ holim ~2 IqRFa(i_)tr) 
[p+2 

which in turn are equivalent to the constant ones 

[q]  ~ holim OJaF(SJ) tr) 

1 

(3.9.5) [p ]  ~-~ holim QiRFa(Si) (r)  . 

1 

The key point in the proof is to show the above maps, induce C : h o m o t o p y  
equivalences 

IsdrB',l -~ h o ~  O:RF(SJy r) 
i 

(3.9.6) tsdrB"] - ,  holim ~RFa(Si)(") 

I 

or equivalently, homotopy equivalences of every fixed point set. As mentioned 
above, this is the case for r - -  1, and will be proved in general by rewriting the 
spaces in question, using the Lemmas 3.10, 3.11 and 3.12. 

In the rest of the proof we assume for notational convenience that 

F(S~)-~ K2F(S ~+ ~) 

is (2i - 1)-connected. 
Let us write G for either one of the four objects G', G" or F or F~ of (3.9.2). 

Suppose i = (io . . . . .  iv + ~) satisfies i~ > N for all v, and let f _ / ~  j be any morphism 
in i ,+2 .  Then we have: 

Sublemma 3.9.7 The induced C:equivariant map 

f: QILIRG( i_)(r) --~ QIj[RG(j)(r)  

is equivariantly ( N -  1)-connected in the sense that each f ixed set map f c ,  is 
( N -  D-connected. 

Proof. We may assumefis  a product of standard inclusions, and letj  = i + k. Then 

G(i_) ~ f21~lG(j) is ([_/I + N) - connected, and its r-fold smash power is (r/sli[ + N)-  
connected on-C:f ixed sets by (3.12). 

Since (oIklG(j)) (~)-, f21ktRG(j)(~)is ((r/s + 1)l/I - 1)-connected on C:f ixed sets 

by (3.10), the composition is (r/sli_l + N - 1)-connected on C:f ixed sets. Apply 
(3.11) to finish. 

Next, consider the subcategory /'P+2 c i ,+2  of sequences (io, il . . . . .  ip+l) 
with i0 = m + i~. We claim to have a C : h o m o t o p y  equivalence 

(3.9.8) holim ~(i~RG( i)(~) -~ holim Q [iIRG( i_)(r) . 
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This is contained in I-B, Lemma 1.4] when r = 1. The proof of the C,-equivariant 
statement is completely similar, based on (3.9.7). 

The assignment (io, . : . ,  ip+O~--,(m + io, i l , . . . ,  ip+l) is a bijection of cat- 
egories, m + (-): I p+2 --* iv+2, and in view of (3.9.8) we obtain a C~-equivariant 
homotopy equivalence 

(3.9.10) h oli_mm t2 I~A RG (j.if) ~ holim f2 ~R~ I~IRG (m + iff~. 

1~,+ 2 iv+2 

In the target, t? "R can be moved outside the limit. Thus we have obtained 
a degreewise, equivariant delooping of the simplicial spaces in question, namely 

(3.9.11) [p]  ~ holim f21i-IRG(m + iff ) 

with the obvious face and degeneracy operators (corresponding to the two-sided 
bar-construction). Its topological realization is also an equivariant delooping, cf. 
[May 1, Sect. 12]. 

The deloopings (3.9.1 1) apply to all four functors in (3.9.2). We can now study 
the first map in (3.9.6). There is a diagram of simplicial spaces, which in simplicial 
degree q has the form 

holim(f21!lG'(m + O f f  ) , holim (21ilRG'(m + i f f  ) 

lq+2 lq+: 

44" ~, , 

holim (f21!lF(m + I/[)if) , holin] DI!IRF(m +/)(r). 
iv+2 lq+2 

The vertical maps are induced from (3.9.2) and the horizontal ones from smash 
product. The topological realization of the left hand q~(r) is an r-fold smash product 
of a homotopy equivalence, by [B, Lemma 2.5], so is a Cr-equivariant homotopy 
equivalence. The horizontal maps induce (r/s + 1)m-connected maps on Cs-fixed 
sets by 3.10. We conclude that the realization 10. ]cs is ((r/s + 1)m - 1)-connected, 
and can finally apply Lemma 3.11 to see that (f2"RI0~ j)cs is (m - 1)-connected for 
each subgroup Cs ~- C,. 

In the above m was arbitrary, so letting m ~ cc we see that the first map in 
(3.9.6) becomes a C,-equivariant homotopy equivalence. It follows that the right- 
hand map in (3.9.3) is a C,-homotopy equivalence. This ends the proof of 
Proposition 3.9. [] 

We finally have to compare the various subdivisions under the subdivision 
maps Ds, cf. 1.1 and 1.12. We state the necessary result below, and leave the proof to 
the reader. 

Proposition 3.13 With the notation of(3.9.3) there exists a Cr-equivariant homeomor- 
phism 

D~: fl x . ,  .(st)N -~ II x .  .(r)rl 



The cyclotomic trace and algebraic K-theory of spaces 483 

such that the diagram 

]sd~rTHH.(M~(F))I ~- HX.,.(sr)]l --+ IsdsrTHH.(F)l 

Isd~THH.(Ma(F))I ~ IlX.,.(r)ll -* Jsd~THH.(F)I 

is homotopy commutative in the category of Cr-spaces. 

In particular we obtain a homotopy equivalence 

(3.14) holim I sdp. THH. (M~ (F))lCr ~ h olim I sdp. THH. (F)lCr 

D D 

cf. Sect. 2 and [BK, XI.5.6]. 

4 The topological Hochsehild spectrum 

The topological Hochschild space THH(F), discussed in Sect. 3, turns out to be the 
the zero'th part of an Q-spectrum tHH(F). This is true even equivariantly, with 
respect to the group action of any finite cyclic group induced from the cyclic 
structure. We use the theory ofequivariant F-spaces to construct the deloopings. In 
particular, we obtain deloopings of the fixed sets THH(F)Cr; and this is what we are 
really after. 

Let F~ p be the category of finite based G-sets. We use the model where the 
objects are pairs ([hi, p), with In] = { 0 , . . .  , n} and p is an action of G on In] 
which keeps 0 fixed. Following Segal (unpublished) and Shimakawa ]-Sh], a special 
G-equivariant F-space (or I'~-space) is a functor TG from F~ p to G-spaces with the 
property that TG(E0]) is G-contractible, and such that for each object A = ([n], p), 
the natural map, 

(4.1) PA: T~(A) ~ Mapo(A, TG([1])), 

is a G-homotopy equivalence. In (4.1) PA(t)(a) = Pa(t) and Pa: [1] ~ A is the based 
G-map with Pa(1) = a. 

For G = Cr, the cyclic group of order r we will show that the r-fold subdivision 
I sdr THH.(F)[ is an equivariant F-space. 

The basis of the construction is a certain map 

O: EZk x THH(F,) --* THH(Fg) 

where Fk = Mk(F) is the (k x k)-matrix FSP associated with F. 
Since the actual construction is rather technical, we first outline the main steps. 

The sum operation is produced by wedge F,  x Fb ~ F, + b corresponding to direct 
sum of matrices. It is not strictly commutative, but as usual it is commutative up to 
a permutation. The fact that this permutation is "irrelevant" is expressed by the 
existence of this 0, satisfying certain relations made precise in (4.4). We have to 
show that we can construct an equivariant F-space from these data. 

We first rewrite Segals construction of categories with sum diagrams in a form 
which is uglier than his, but convenient for writing explicit formulas. This gives us 
an equivariant version of the Eilenberg-Maclane spectrum HTZ. The components of 
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this F-space are contractible, but carry free actions of various symmetric groups. 
The point of this is that these components of E(_k) can act as operations on spaces 
like T H H ( F k ) ,  using the map 0. 

A F-space is a functor from the opposite of the category of finite, based sets. The 
functor which is going to give T H H  an equivariant F-space structure is first defined 
on objects. We take its values to be disjoint unions of products. One of the factors is 
a component  of the simple F-space we just defined, and the other is of the form 
T H H  (1-[ Fk,) .  The main problem is to define the value of the functor on morphisms 
in such a way that we obtain a functor. For instance, given an equivariant, pointed 
map 05: __k ~_/, we have to produce maps 

E(k_)(  . . . . . . . . .  ) x T H H ( F , 1  x F ,2  x . . . x Fak) ~ E (  l_)(b . . . . . .  b,) X T H H  (Fbl  x .  . . x Fb , )  . 

After taking the union over all components of E(_k), this is to be a map over the 
already given map E(_) --* E(_/). In a certain sense, this says that E acts on T H H .  

The functoriality means, among other things, that if 05 is invariant under some 
permutation of its source, this map is also invariant under the same permutation. 
The wedge sum defines maps 

T H H  (Fa,  x Fa2 x . . . x F , k )  --" T H H  (Fbl  x . . . x Fh,)  

which do not have this property. Composing with 0 we obtain a space of such 
maps, that is a map 

F(05 ,1 )  x T H H ( F , ,  x F ,~  x . . . x Fak)  ~ T H H  (Fbl  x . . . x Fb~) 

for some suitable space F. The permutations of the source of 05 acts on F, so that at 
least this map is invariant with respect to the diagonal action. The main problem 
left is book keeping. We do this by specifying maps E(_k) ~ F(05), and declare that 
the action of E on T H H  is via these maps. 

Now we have to make this outline precise. We work simplicially (with cyclic 
sets). For each group Z, E~ is the cyclic set with 

E p Z  = Z p+l  

O i ( c r o  . . . . .  % )  = (Cro  . . . . .  ~ ,  . . . , ~ r p )  

s i ( ~ o  . . . . .  ~ )  = ( ~ o ,  � 9  � 9  ~ , ,  a i  . . . . .  ~ , )  

(4.2) t ( a o  . . . . .  a , )  = (ap, ao  . . . .  , ap_  1) �9 

It is contractible and so is each of its fixed set (E.X) c". Indeed, 

(4.3) I(E..Z)c~[ D_;. ](sd,.E~ [ = [ E . S I  . 

Hence ] E . X I  with its induced Cr-action is a model for the equivariant EcrS, and its 
quotient (by the diagonal Cr-action) is model for the Cr-equivariant classifying 

space B c r ( S ) .  

The symmetric group .rk acts on F k  = M k ( F )  by conjugation, hence on 
T H H . ( F k ) ,  and there is a simplicial map 

0 . :  E . X k  x T H H . ( F k )  -~  T H H . ( F k )  
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with the following properties: 

O . ( g l e g 2 ,  t)  g2  1 -1  = O.(e, gl  t g l ) g 2  

(4.4) O.(el ,  O.(e2, t)) = 0.(ele2, t) . 

Here and below the product of two simplicial spaces means (without further 
indication in notation) the diagonal simplicial space. The multiplication in 
(Ep,~k) = ~'k p+l is component wise and the right and left action of I2k on Z~ '+1 is 
multiplication on each factor Zk. The map 0. is defined as follows: Let 
(cro . . . . .  ap) ~ EpE k and let 

f:. S i~ A . . . /x S ip ~ Fk(S  i~ /x . . . /x Fk(S  i .)  

represent an element of T H H p ( F k ) .  Then 

(4.5) 0p(tr o . . . . .  crp, f ) ( u )  = (trp-lJo(U)O-o, a o l f l ( u ) ~  a ; J l . f ; ( U ) a p ) .  

Let No denote the non-negative integers and write P0 [n] for the subsets of In] 
which contain 0, the basepoint. The set of functions 

k: Po In] ~ No 

which are additive, 

_ k ( S w T ) = _ k ( S ) + k ( T ) i f S c ~ T = { 0 } ,  

will be denoted Hom(Po[n],  No). A G-action on In] implies a G-action on 
Hom(Po[n],  No), and a based G-map 0: [m] --* In] induces a G-map 

qS~: Hom(Po Ira], No) - ,  Hom(Po [n], No) 

by the rule 

4)~(k_)(s) = k(4)~(s))  

where r  ~ b - ' ( S -  {0})w {0}. 
We shall use 0o to exhibit an equivariant F-structure on T H H ( F )  for each finite 

cyclic group C. But first let us recall the general method for constructing F-spaces. 
To each k e Hom (Po In], No) one associates a space X (k), and to each morphism qS: 
[m] --* In] a map qS,: X(_k)--. X(~b,(_k)) such that (qS0) , = 4 . 0 , .  The n'th space in 
the associated F-structure is then 

X ,  = LI  { X ( k _ ) l k _ e H o m ( P o { n ] ,  No)} �9 

In the equivariant situation one has pairs A = ([n], p) where p is a C-action on [n] 
inducing a C-action k ~ k g on Hom(Po [n], No), and one further needs maps from 
X(_k) to X(_k 9) to define a C-action on 

XA = LI { x(_k) t _k a Horn (Po In], No )} �9 

Let us first consider (non-equivariantly) a F-space which only involves permu- 
tation groups and whose underlying infinite loop space is homotopy equivalent to 
the integers. For two based sets of equal cardinality, let X ( S 1 ,  $2)  denote the set of 
based bijections. It generates a contractible cyclic set (cf. (4.2)) with 

E p ( S t ,  $ 2 )  = z~ ' (S1,  $ 2 )  p +  1 . 
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Given based ordered sets S and T we write S [ [  T fo r  the based concatenat ion of 
S and T; it starts with the elements of S and then lists the elements of T'  = T - {0}. 
We are going to identify totally ordered sets of equal cardinality. In particular 
[k] I_I [1] = [k + I] and the bijection [k] LI [ / ]  -~ [ / ]  [ I  [k] induces the permuta-  
tion of [k + l] which fixes 0 and has a(i) = l + i for 0 < i =< k and a(i) = i - k for 
k < i < _ k + l .  

Consider an additive function _k: Po[m] ~ No as above, and let us write 
k~ = k {0, i}. A subset S e Po [m] has an ordering induced from the standard order- 
ing of [m] = {0, 1 . . . . .  m}, so we have an induced identification 

L[ [k~] = [ k ( S ) ] .  
i t s  

We define the subspace 

(4.6) E.([m],  _k) 

by the condit ion that x = (Xs) belongs to E. ( [ml ;  _k) if 

(*) Xs = 1 when card(Sk) = 1, Sk = { i~S lk i  # 0} . 

We make E . ( [ ' ] ,  _k) a functor on F ~ as follows. Let qS: [m] ~ [n] be a mor-  
phism in F ~ with q~(k)=/_. Then l j = S { k i l i E ( o - l ( j ) }  for j > 0 .  For  
x ~ E . ( [ m ] ,  k) and T~Po[n]  we have elements 

x* '{r~E' ( i~ , , I - [r[k l ] ' l (T)  ) 

xr [kl], [ / j]  , j > 0 
\ i ~  (0, j} 

where the orderings of q : (T)  and 4) # {O,j} both are induced from Ira]. Let 

~: E.(Ek,], l-k2]) • E.([/1], [123) --, E.([kl] [ [  [II3, [k23 L[ [/23) 

be the obvious sum of permutations.  We form 

jaT jET i~4/{0, j} 

We can identify the indexing set of pairs 

r = j  

with # : (T)  via projection onto the second factor. This gives rise to a bijection 

~ , r :  I_[ I_[ [ k , ]  ~ ] l  [ k l ]  
j eT  ie{pn{O, j} ier 

or in other words, a permuta t ion  of [_/(T)]. We define 

(4.8) E.(dp)(X)T o o -1 = x , , m  % r  ~((x,'lo,~)j~r) 
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and note that E.(c~)(x) satisfies (*) above when x does, so that 

E~ E~ k) --* E~ ~b~(_k)) . 

We must still check that E0p ) o E(O) = E(~ o q~) when ~: [n] ~ Jr] is a further 
morphism in F ~ We leave the verification to the reader, but notice that it uses the 
commutative diagram (where U ~ Po [r]): 

LI LI LI [k,] U~176176 H LI Ek,] 
vsU u~O*{O, v} ier veU i~r v} 

~0"~, U ~ O-qtd,. U 

11 LI [k,] LI [k,]. 

We can now define a F-space by letting X(k) be the geometric realization of 
E.([m], k), i.e. 

E, = I_[ {IE.([n]; k)l :keHom(Po[n] ,  No)} �9 

This is precisely the classifying space of G. Segal's category of sum diagrams, 
[Se]; its associated spectrum is just the Eilenberg-Maclane spectrum H2g. Let C be 
a finite cyclic group. Then there is a C-equivariant version of the above construc- 
tion upon making use of the fact that E~ _k) is a cyclic set so that its subdivision 
sdlc I E~ k) is a simplicial C-set. More precisely, suppose A = ([m], p) with p: 
C --* Auto([m]) and let x = (Xs) with 

XseSdlclE. ( i ~  s [ki] , [_k(S)]) ,  S~Po[m] . 

For geC  and _k: Po[m] ~ N o ,  let _k~ Po[m]-~No be k~ k(g-lS),  so that 
k7 = k o- ,i. Then 

X ' ' s ~ s d ' c ' E ' (  Li~s [k']'k-~ 

and we have 

g, :  sdlclE.([m], k_) ~ sdlclE.([m], k_ g) 

by setting g,(x) = y with Ys = gxg-,s. We can then form the Fc-space, 

Ec(A) = I_[ {]sdlclE.([m], k)[: A = (Ira], p), kEHom(A, No)} �9 

Its corresponding spectrum is the Eilenberg-MacLane spectrum H2~ with 
trivial C-action. In order to get more complicated F (and Fc-spaces) we involve 
THH. and the map 0. from (4.5). Let _k: Po[m] ~ No be an additive function, and 
F a functor with smash product. We define 

if, k =  f i  ff, k , , F k =  f i  Fk~. 
i = 1  i = 1  
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The simplicial map  0~ extends to a simplicial map 

0.: E.Sk_ x THH.(Fk_) ~ T H H . ( F k )  

upon using the old 0. on each of the coordinates, and we still have the relations (4.4) 
satisfied. 

Given qS: [m] ~ [n] there is a cyclic map 

(4.10) THH(c)):  T H H . ( F k )  ~ THH.(F~*(k_)) . 

Indeed, if I = ~b~(k) then lj = ~i~ .  ,(') ki. 
- -  . - -  ~ ,  3 

The ordering of qS-l( j)  as a subset of [m] and the wedge sum 

#: F ,  x F b -~ F ,  + b 

defines a map  from 1-[". , ]7 . . . . . . .  F k to F~. Finally we have a projection from 
I t  1 3 = 1  ~- a t  t ~ q )  / u , J ]  t _ 

F ,  onto  I-I" . l-I ~ , Fk , and we can apply the functor T H H  to get THH((~)  
; .  . j _  i i e ( a  { 0 , j ~  , . . . ' 

Similarly, using the sum (concatenation) map from 2;~ x Zb to Z,,+b there is a cychc 
map 

(4.11) #(q~): E . Z k  ~ E.Y,t . 

We must examine functoriality. In the special case where ~b: [m] ~ In] and 
~p: [n] ~ [r] are order preserving, then it is easily seen that 

THH(~9) o THH(4~) = T H H ( ~ o  d)) 

(4.12) #(O) o tt(q5) = tt(O o qS). 

Moreover ,  for order preserving q~, 0. is functorial in the sense that we have 
a commutat ive  diagram 

(4.13) 

0.(k) 
E.Zk_• THH.(Fk_) , THH.(Fk_) 

~, p((a) x T H H  ((a) J, T H H  (gp) 
0,(0 

E.S~ • T H H . ( F ! )  , T H H . ( F ! )  . 

In order  to handle more general set maps we introduce the cyclic set 

j =  t i~4, {o,j} 

defined by the condit ion 

(**) f i  = 0 if card {i] ~b(i)=j, k, :# 0} = 1 . 

Here ~b: [m] --* [n] is arbitrary. There is a natural  map of cyclic sets 

2(q~, k): E . ( [m] ,  k) ~ F.(~b, k) 

defined by projection onto the relevant components.  
As for functoriality, if ~ and ~9 are composable  there is a product  map induced 

by composi t ion 

ttv: F . (~ ,  ~b,(k)) x F.(q~, _k) --, F.(~q~, k ) .  
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To be precise, i f / =  q~dk), p = Od./) then the component  h,, is defined to make 
the following diagram commutat ive 

[ [  [kd h, , [ p d  

ie(q,4,:{o, v} 

T U4',~*IO.~I T ,q* 

U U [ ki] Id]; H [lj] 
jeqt~{O, v} isO~{O, j} jeqJ~{O, v} 

It is direct from the definitions involved that the following diagram is commutat ive 

(L E(r 
E~ , E . (En] , l )xF. (r  

(4.14) ,~ (E(@0), 2) ~. (E(~b), 2, id) 
(id, #F) 

E.([r] ,p)xF. (~/~ ,k)  , E . ( [ r ] , p ) x F . ( ~ , l ) x F . ( r  

We have I_[i~r [ki] = I/ j]  so that 

E . (  [I  [ k i ] , [ l j ] )=E. ( [ l j ] , [ l j 3 )=E~ 
ieqS~{O, j} 

and there is a corresponding cyclic map 

~1" F.(d?, k) ~ E.Z', 

which is equivariant  with respect to the right action over 

(compare (4.11): p(~b) = E.(pl(q~)). We can now define the cyclic map 

(4.15) n(q~): F . ( r  k ) x  THH.(Fk_) ' , L,2q_x THH.(Ft_). , THH~ 

where 0./(0 = (0.(11) . . . .  , O.(l,)), and O.(lfl is the map from (4.5). It follows from 
(4.4) that g(~b) has the following equivariance property 

(4.16) ~z(~b)(ga fg2, t) = g~ ~ n(4))(x, g[ l tg~ )g2 

for gt �9 Zt, g2 �9 Zk_ and where the action of 92 on the right hand side of (4.15) is via 

#1(r G -~ S~. 
We finally let 

X(~b): E.([m],  k) x THH,(Fk_) ~ E . ( [ n ] , / )  x THH.(Ft_) 

be the cyclic map  defined by 

X (r (e, t) = ( E(dp )(e), ~(r162 k)(e), t) 

Lemma 4.17 For based maps r Ira] ~ In], ~9: [n] ~ [r], X(q/~b) = X(qJ)oX(r 

Proof We have already showed that E($  o ~b)= E(tp)oE(dp) so we have left to 
examine the functoriality of ~(~b). 
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L e t / =  ~b,(_k), p = ~ ,  (_/). Assuming first that q5 and O are order preserving. We 
can then combine (4.13), applied to 0, with the diagram 

# x  id 
E.Xpx E.Xpx THH.(Fp) , E.Xpx THH.(Fe)  

$ (id, 0(p)) I 0(P) 
O(p) 

E.Xpx THH.(Fp) , THH.(Fp) 

which is commutative by the second formula in (44), to show that 

F.(@, l) x F.(49, k_) • THH.(Fk_) 

(4.18) + (id, ~(~b)) 

F.(~J, 1) x THH.(F!) 

is commutative 

(,up, id) 
, F.(~k4), k_) • THH.(Fk) 

~(~) 
, THH.(Fp)  

We claim that (4.18) commutes for all based set maps. Since a set map is the 
composition of an order preserving map and a permutation (of the non-zero 
elements) there is really only two cases to consider, namely the cases where either 
q~ or ~ is a based permutation. Then F(~b, _) or F(~ , / )  is a one-point space, and the 
commutativity of (4.18) follows from the equivariance property (4.16). Indeed, if ~ is 
a permutation then the two maps around in (4.18) are 

(e, t) ~ u((o)(e~J, t), (e, t) ~ ~h-ln(r t)~J 

and if ~b is a permutation the two compositions are 

(e, t) ~ ~(the, t), (e, t) ~ g(e, ~b- i t~b) 

In either case the two compositions are identical by (4.16). [] 

We can define the wanted equivariant F-space structure on THH(F) .  Let 
C be a cyclic group of order r, A = ([m],p)  with p : C o A u t o ( [ r n ] ) ,  and 
q~: ([m], p) ~ ([n], p) a morphism in F~ v. We define 

TcF (A ) = LI { [sdr(E.([m], k_) x THH.(Fk))I: k_E Hom(Po[m], No)} , 

(4.19) TcF ((a) = [sdc X (c~)l . 

Here the C-action on T c F ( A )  is the conjugation action when we view (4.19) as 
the space of mappings with domain Hom(Po[n],  No) (with its C-action induced 
from p) and the range as the C-space induced from the simplicial C-action on the 
subdivision. It is clear from (4.17) that we have defined a functor 

Tc(F): F~ p--+ { C  - -  spaces} . 

We have left to prove that TcF is a special Fc-space, i.e. that it satisfies (4.1). 

Proposition 4.20 For any two functors with smash product, the product o f  projections 
define a C-equivariant homotopy equivalence 

[(a.l : l sd~THH.(F'  x F")[ ~ [sdrrHH.(F ' ) l  x Isd, r n n . ( F " ) [  . 
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Proof. A map  between equivariant  CW-complexes  is an equivariant  h o m o t o p y  
equivalence if it induces ordinary homotopy  equivalences on all fixed sets, [A, Sect. 
23. It thus suffices to show that  

I~b.l : ] s d r T H H . ( F '  • F")c~ I -~ Isd, THH~ I • tsd, T H H ~  

is a h o m o t o p y  equivalence. 
The domain  and range for ]~b. I are H-spaces,  hence simple, so we can check on 

integral homology  whether  I~.1 is a homotopy  equivalence or not. Moreover ,  for 
each simplicial space the skeleton filtration of IX.I defines a spectral sequence with 
abu tment  H , ( I X . I )  and with Elp, q = Hq(Xp). 

Given any FSP,  define a simplicial group Hf~(F). by 

[p ] ~-, UU~(sdr rHI4,,(F )% . 

We show the projections define a homotopy  equivalence of simplicial groups 

! r ! r *1 Hq(~b)~ H~(F x F " ) . - + H q ( F  ) ~  ). 

This in turn will imply that  the I q< I induces an i somorphism on the E 1_term of the 
spectral sequences, and hence is an integral homology  isomorphism. 

There are (not unit preserving) inclusions tPi: F ")-~ F ' •  F "  of FSP's ,  giving 
simplicial maps  l-I~O,bi ). for i = 1, 2. We consider the sum 

~.  = Hl~(~l). q- Hq(~2) . .  

One  composi t ion is the identity, Hq(q~). o ~b. = id. We shall construct  a simplicial 
h o m o t o p y  between the identity and the other composit ion,  

K: A [1] .  • H q ( s d r T H H . ( F '  x F" )  cr) ~ Hq(sd, T H H . ( F '  x F")  c~) 

A p-simplex of A [1]~ is a weakly increasing m a p  a: [ p ]  ~ [1], so is determined by 
the number  k for which a(k  - 1) = 0 and a(k) = 1. Let F = F '  • F "  and consider 

f :  S [i[R--~ F(Si~ trl A . . .  A F ( S i ' )  ('1 , 

representing an element of sdr THHp(F) .  
Suppose first r = 1. Write no, 1 and n~,2 for the following composi t ions  where 

v : ( ' )  o r  C )  

F( S  i~ A . . . A F(sip)--+ F('~}(S i~ A . . .  A F{'O(S i~'-~) A F (S  ik) A . . . A F ( S i Q  

-+ F (S  i~ A . . .  A F ( S i p ) .  

Here the first m a p  is project ion onto Ft'(S~O, 0 _< t N k - 1, and the second is 
induced from the inclusion of F t*~ into F -- F '  x F".  

Assigning (n~, l of, nr 2 of) to f induces two maps  

d [1]p x I t q ( T H H p ( F ) )  -~ H q ( T H H p ( F ) )  

which we can add to get Kp. In the special case where a(i) -- 0 for all i, we let 
Kp = id. If a(i) = 1 for all i then Kp = OpO H~(~bp). One can easily check that  K .  is 
a simplicial map,  thus defines the required simplicial homotopy .  

Finally, if r > 1, we use n~!~ and Tr 2 to  get equivariant  maps,  and define 
K~ ~ using the sum of these two maps  to obtain the required homotopy .  [] 
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Remark 4,21 The above map Kp can be defined directly on the space level, 

A [1]p x sdr THHp(F) cr --* sdr THH~(F) c" . 

However, this will not be a simplicial map; one will only have the simplicial 
identities satisfied up to homotopy. This is the reason that we apply the integral 
homology functor, 

Corollary 4.22 The functor TcrF defined in (4.19) is a special F6-space. 

In [Sh], Shimakawa constructs to each special /'G-space T6 a G-equivariant 
spectrum 1BTG. It is an "almost" G - ~2 spectrum in the sense that the structure 
maps 

S w/x IBvT~--*IBw.vTG 

adjoin to become G-homotopy equivalences for each pair of 1RG-modules with 
V G + 0. In particular, Vv--~ DIBv.e  Ta is a G - f~ spectrum. Moreover, the natural 
map (adjoined to the inclusion of TG([1]) in the 1-skeleton) 

TG([1]) --, QIB~TG 

is an equivariant group completion. 
Recall the terminology that a G-infinite loop space is the zero'th space in 

a G - ~Q spectrum, and that a G-infinite loop map is the zero'th level of map 
between G - ~ spectra. 

The above applies to the Fc-space TcF defined in (4.19). 

Proposition 4.23 For each finite cyclic group C and each functor with smash product 
THH (F) is a C-infinite loop space in such a way that the product H(Z) x THH(F) is 
the C-infinite loop space associated with the Fc-space of (4.19). 

Proof Since the cyclic space IEZ.(k_)I is equivariantly contractible and since THH 
is a Morita-invariant by (3.9), 

I sdr(EZ.(k) • THH.(Fk))I ~- c,. [sd, THH. (F)] . 

The resulting map 

TcF([1]) ~ 7l x T t tH (F ) , 

which maps the k'th term into {k} • THH(F), is an equivanant group completion. 
We have left to see that Z, with its standard infinite loop space structure arising 
from the C-trivial Eilenberg-Maclane spectrum, splits off. To this end we can 
project TcF to the Fc-space Ec given by 

In] ~ I_I IsdrEZ.(k)l, _keHom(Po[n], No) 

and observe that the projection is split (as Fc-spaces) by the inclusion of the base 
point in THH(F 0 (FSP's take value in pointed spaces). 

Since Isd, EZ.(k)l is C-contractible, the equivariant /'-space Ec is homotopy 
equivalent to 

([hi, p) --~ Hom(Po [n], N o ) .  

The spectrum of Ec is the Eilenberg-Maclane spectrum H(2g), with trivial action 
of C. [] 
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In (4.19) one may replace THH.(Fk)  with the (diagonal of the) bi-simplicial 
space X~ .(r) from the proof of Proposition 3.9, and one gets 

Corollary 4.24 Morita-invariance is a C-infinite loop map 

I THH.(F)I  "~ c I THH.(Mk(F)) I  . 

For the FSP of Example 3.2(i), F, the C-equivariant homotopy type of T H H ( F )  

was determined in (3.7). Since Qc(A) is the universal C-equivariant infinite loop 
space generated by A we have a C-infinite loop map 

Qc(ABF)  ---* T H H ( F )  

which is seen to be a C-homotopy equivalence of C-infinite loop spaces. Thus we 
also have for each k, 

T H H ( M k ( F ) )  ~-c Qc(ABF)  . 

The maps constructed above for the cyclic groups of order pn fit together for 
varying n, essentially by 3.14, to give the following conclusion which is what we will 
use in the paragraphs below. 

Proposition 4.25 There is a stable homotopy equivalence 

holim Isdp, THH.(Mk(  F)  )] cr ~- holim Qcr(ABF)  c" 
n n 

with the limit varying over the integers. 

There is an analogue of (4.25) where we vary over all cyclic groups C, and take 
limits over r ordered by division. 

5 The cyclotomic trace 

For a ring R, consider the following string of maps 

]N.(GL,(R)) I  i cy s cy , IN. (GL.(R))[ , ~Y IN|  ~- ]N| 

with the notations of Sect. 2 and Sect. 3. The first map is from (2.4), the second 
embeds GL.(R)k c M . ( R )  | and the third is Morita-invariance. After suitable 
stabilization one gets a map 

Tr: BGL(R) + cy [N| 

which on homotopy groups induces the trace map, due to K. Dennis, from 
algebraic K-theory of R to Hochschild homology of R, cf. [W2]. 

It follows from (2.12) that Dennis' trace map lifts to a map 

(5.1) BGL (U) + --* holi.__m_m I sdv. N ~, .  (R)C,~ I ~p. 

We generalize in this section the above to the 'rings up to homotopy' associated 
with FSP's. The range in this situation becomes the (fixed set) of the topological 
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Hochschild spectrum. The domain K (F) is essentially Waldhausen's generalization 
of algebraic K-theory. 

More precisely, let F be any FSP. Its ring up to homotopy was defined in (3.3), 
and its homotopy units, denoted (QF) • or GL1 (F), is the limit of maps f~  O"F(S") 
for which there exists g E~mF(S m) with 

f a g  # S" /x S" , F(S") /x F(S") , F(S" /x S m) 

homotopic to lls . . . .  i.e. the union of the invertible components in QF. More 
generally, let 

(5.2) GLk(F) = (QMk(F)) • 

Observe for the FSP _F of Example 3.2 associated with a monoid F that 

G L I ( F )  = holim H(S" ^ F§ "-~ lim H(S" A F + ) ) ,  

the limit of the monoid of homotopy equivalences of S ~ A F+.  
In general, GLk(F) is an associative monoid with classifying space BGLk(F). 

The wedge multiplication of 3.2 (ii) 

(5.3) cc GLk(F) x GL~(F) ~ GLk+,(F) 

induces a topological monoid L[k BGLk(F). Its group-completion defines the 
algebraic K-theory of F: 

Definition 5.4 [B] The algebraic K-theory space of F is the group-completion 

K(F) x 7Z = ~B ( ~k BGLk(F) ) . 

Alternatively, as in the case of algebraic K-theory of rings, 

K(F)x  Z - BGLo~(F) + x Z ,  

Quillen's plus construction on B GL~ (F) = holim BGLk(F). 
t 

The infinite loop space structure on K(F) can be specified via a F-structure 
similar to the one defined on THH(F) in the previous section. Indeed, Zk acts on 
GLk(F) by conjugation and there is a simplicial map 

(5.5) 0.: E.Sk x N.(GLk(F)) ~ N.(GLk(F)) 

given by 

0~ . . . . .  ap; [a l  I - . . I g p ] ) =  [ao'g~rll~ri-~92a21...[~rg2,gvap] . 

This has the equivariance property (4.4), and we can define the F-space 

(5.6) K[m] = L[ { IE~ _k) x No(GL_k(F))[: _k e Hom(Po [m], No)} 

where GL_k(F) = GLk,(F) x . . .  x GLk~(F), and ki is the value of k on {0, i}. The 
group completion of K[1]  is homotopy equivalent to K(F) in (5.4). 

We similarly define an infinite loop structure on 

(5.7) K C r ( F ) = f 2 B ( ~  k ,N~.'(GLk(F)),). 
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Indeed the construct ion of (4.4) also gives a 2;k-invariant m a p  

O,: 6(Eo(Xk) X N.~Y(GLk(F))) ~ Nff (GLk(F))  

and hence as in Sect. 4 a Fcr-structure on 

(5.8) NCY(r) = H lsd,(E,(Xk) x N~.Y(GLk(F)))I . 
k 

The maps  D and cbp = A~- 1 introduced in Sect. 1 and Sect. 2 give F -maps  from 
NCY(p") c," to NCY(p "- ~)cr-~, hence a F-structure on [hol im NCY(pn)Cr]  hq'p and this 

exhibits an infinite loop space structure on 

[hol im Kcy (F )Cr "]hOp. 

The map  from (2.13) induces an infinite loop m a p  

( ; (5.9) I: K(F)--* holim KC'(F) cp" 

cf. (1.11), (2.13). 
Consider  the simplicial m a p  

So: Nf f  (GLa(F)) --* THH.  (Ma(F)) 

which sends a p-simplex (fo . . . . .  fp) with fi ~ holi_i_~m s • into the smash 

product fo  ^ . . . A f r  By definition, O~ x S.)  = S.6). ,  so S = IS. J induces a m a p  
of equivariant  F-structures,  hence a Cr-- inf ini te  loop m a p  

KeY(F) ~ T H H ( F )  x ~ .  

We next define a map  qSp which makes  the d iagram below commute  
S 

[sdp.- ,Nff(GLk(F))l  cr-' , [sdp.-1THH,(Fk)[ cr-' 

(5.1o) ~ ~. T ~. 
S 

[sdp, Nff(GLk(F))lCr , [ s d p . T H H . ( F k ) f r .  

The outcome is then an infinite loop m a p  

(5.11) S: [hofi_~_m K~Y(F)Cr-] h*; --+ (holim THH(F)Cr)  h*. x 7l. 

To define ~v let R = IRCp . .R  = ~ C p . - ,  be the regular representat ions of Cp. and 
Cp.- ,  respectively, so that  R = R c~, when we identify Cp . . . .  Cp,/C r Consider  the 
map  

Fixp: Mapcr(S  i~ A . . . /x S i~R, F ( S i ~  A . . . A F(S~k) tp"J) 

Mapcr_,(Si~ A . . .  ^ S i~, F ( s i ~ 1 7 6  A . . .  A F(SI~) tp"-~)) 

which t a k e s f t o  the induced m a p f  c.  on Cp fixed sets. It  induces a simplicial m a p  

qgp,.: sdp. T t t H .  (F )cr --* sdt,. -, TH H. (F )cr-' 

whose realization is the m a p  q~p which makes  (5.10) commutat ive .  It  is easy to see, 
and left for the reader that  Dq~p = ~pD. 
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Definition 5.12 (i) Let F be any FSP. Define its cyclotomic trace functor at p to be 

TC(F, p) = [holi~m THH(F)C,"] h~P 

with the infinite loop space structure from above. 
(ii) The cyclotomic trace at p is the infinite loop map Trc = proj o S o I, 

Trc: K(F)  ~ TC(F, p) 

with I from (5.9), S from (5.1 1) and proj the projection away from Z (cf. 4.13). 

We could in all the above have taken homotopy inverse limits over all natural 
numbers rather than just the powers of a single prime p to get a functor TC(F). 
This functor however would not really be stronger than the products of the 
TC(F, p). In particular for the profinite completions one would have the equiva- 
lence 

Let 

TC(F) ^ ~- [I  TC(F, p)~ 

fl: TC(F, p) ~ THH(F)  

be the map induced by projecting the homotopy inverse limit to its zero'th term. 
The composition fl o Trc is (for any p) the topological Dennis trace map considered 
in [B]. 

Remark 5.13 T. Goodwillie has pointed out to us that it is sometimes advisable to 
interchange the role of cb and D in the definition of TC(F, p), i.e. that there is 
a homotopy equivalence 

TC(F,p)~- Ihd imTHH(F)C~~ 
~b 

This amounts in our case to the fact that for a double string 4~, D: Sn ::* S,_ l, n > 0 

n --~ o m S  . 
n 

D @ 

To see this one can replace (S,,  q,, D) with a double string ( f ( S , ) , f ( ~ ) , f ( D ) )  where 
the maps are fibrations. For  example, f ( S o ) =  So and f ( S t )  is the subset of 

I I S1 x So x So of points (xi, a, v) with ~(x l )  = a(0) and D(xi)  = 3(0) Then use that 
the double homotopy  fibre can be calculated in two ways in the diagram 

f ( ~ )  - 1 
Hi(Sn) , Hf(Sn) 

~ f ( D ) -  1 + f ( O ) -  1 

f(clJ) -- 1 
17f(Sn) , FIf(S,) . 

We shall now calculate (the completion of) the functor TC(F; p) when F = F, the 
FSP associated with a group-like monoid. We have 

THH.(F)C~ ~ ~ Qc.~ c~~ 
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and using the proof  of(2.6) it is easy to see that q~p is homotopic  to the composition. 

~p: Qcr(ABF) cr ~ Qcr ,(ABFCQ c"'-' if- Qc,., ,(ABF) cr ' .  

Here the first map  takesfl S v -~ S v /x ABF+ into its induced m a p f  c,' on Cp fixed 
sets, and the second map is induced from the power map 

Av: ABF ~ ABF c~, Ap(a)(z) = a(z p) . 

We have left to determine the homotopy  fibre of 

4~p- 1: holimm Qcr(aBF)Cp~ holi_mm Qc.o_,(ABF)Cr ' 

where the h o m o t o p y  limit is over the inclusions of fixed sets. 
Consider for m < n the covering space 

ECp,,~ xcp A X  ~ ECp~ xcp A X  

of order p " - " .  The associated stable transfer maps are denoted 

t,T: Q(ECp. Xc.,,AX ) -* Q(ECv~ Xc.,~ . 

Then t." - t2+ 1 ~ �9 �9 ~ t" -  1 and we form the homotopy  inverse limit 

(5.14) C(X, p) = holim Q(EC.. •176  

Lemma 5.15 For a space X with A X  of finite type, the completions 

c ( x ,  p); ~- O~(z + (Es ~ x~, AX  )); 

are homotopy equivalent (Q. = (2~S~). 

Proof Let Y = AX. The S ~-transfer defines a map 

z: O~(Z+(ES 1 Xs~ Y))---~ holim_mQ(ECp, Xc,~ Y) 

which we must  show becomes an equivalence after p-adic completion. 
It can be assumed that Y is a free S 1 CW-complex,  by replacing Y by Y x ES 1, 

and we can induct over the S 1_skeleton. The induction starts with Y = S ~ x Z with 
Z a finite set of points, which is a trivial case to check. The inductive step is to show 
that 

~: O.(Z(ES~+ As, S1+ /x Z))-~holimO_(ESa+ AcrS~+ /x Z)), .  

becomes a p-adicequivalence. We divide out the action, and ~ becomes a map  from 
(~(ZZ) to holim Q(SI+/Cp, A Z). We decompose 

( 

~(s~+ / c r  ^ z )  ~_ ~(s  V c r  ^ z )  • ~ ( z ) ,  

and use that the h o m o t o p y  inverse limit of 

~ ( z ) ,  e ~ ( z ) ,  ~ ~ ( z ) ~  ~ . . .  
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is p-adically trivial to conclude that 

holim Q ( S ~+ / C p. ^ A Z  )p ~- holim O. ( S I / C p. ^ Z )p . 
( 4---.-- 

Finally, the diagram 
~ 

O.(zz)  ~~ , O.(sx/cr+, ^ z )  

l i d  ,~ 

O.(zz)  ~" , OAs ' / c ,~  ^ z )  

is homotopy commutative, and each ~. is a homotopy equivalence. Hence 

"~: O.(ZZ) - ,  holim Q(S 1 / C p n  ^ Z )  , [] 
( 

We thank T. Goodwillie and R. Cohen for help with the argument above. 
Lemma 5.15 applies to spaces X with finite fundamental group and with 

H, (X;  7l.) finitely generated in each degree. It does not in general apply when ~i X 
is infinite. 

The simplest such case, X = S 1 is illuminating and will now be discussed in 
some detail. We have the S~-homotopy equivalence 

ASI  "~ H Sl(n) �9 
neZ 

Here S l(n) = S 1 (ff~ | and r has the standard S 1-structure. Then 

Z+(ES 1 •  l) ~- ~/ Z+(ES ~ • Sl(n)) 
nEZ 

and ES 1 xs, S l ( n ) ~  BC.  for n 4:0 (and equivalent to B S I •  S 1 for n = 0). It 
follows that 

Q(Z+( ESa x s ' A S 1 ) )  ~- [ I  O~(V~+BC,)xQ(X+( BSa xS1))  
n~:O 

where [ I  means the weak product of infinite loop spaces, corresponding to wedge 
sum of suspension spectra. In particular the homotopy groups are sums. 

We next attempt to calculate the homotopy groups (with ]Fp coefficients) of 
C(S1; p). Let n = plk with (k, p) = 1. Then 

(BC~, x S ~ (k) /C~- , ,  m >= i 
E C w x c ~ S l ( n )  ~- (BCp, , ,xSl(n) ,  m < i . 

The transfer 

tin-a: Q(ECpm• Sl(tO) ~ Q(ECp,,,-, • 

can correspondingly be calculated to be 

t~'-i = ) ' id+  ^ T1, m > i  
( T ~ - t  ^ id+, m<=i 

with TI: Q(S 1) --* Q(S 1) the transfer associated to the covering t~--~t p of S a, and 
m--1.  1 T~, . Q(BCpm) --* Q(BCp,,-,)  the transfer of the covering BCpm- ~ BC,m. 
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s p e c  Let H ,  ( IFp) denote the spectrum homology with IF, coefficients. 

H~.Pec(QX; IF,) = H . (X ;  IFp). 

It is a s tandard fact that the induced maps 

( T ~ - I ) . :  H,(BCpm; IF.)~ H.(BCpm-.; IFp) 

(T1),: H,(S'; G)  -+ a d s ' ;  G)  

are isomorphisms in odd dimensions and zero in even dimensions. Suppose i > 0. 
Then 

H.(ECp.. xGSa(n); IF,) = IFp~  IF, for 1"> 1 . 

The first summand IF, is Hr(BCp...; IF , ) |  when m < i  (and 
Hr(BC,.; IFp) | Ho(S x; IFFp) when m > i). The second summand is 
Hr_ I(BCp..; IFp) | H1 (S 1 (n); IF,) for m < i (and Hr- 1 (BCp.; IF,) | Ha (S 1; IF,) 
when m => i). It follows that ( t ~ - l ) .  in dimension r can be tabulated as 

0 @ 1  for m > i  
( t 2 -1 )~=  0 0 1  for r e < i .  r even 

1 0 0  for m<__i, r odd 

We can now calculate (for fixed k) that 

lim ~+ Hr(EC.mx%..Sa(plk);IF.)= IFp[t], r even 
~m / = 1  IFp[[ t ] ] ,  r odd 

i.e. an infinite sum of IFp's when r is even and an infinite product  of Fp's when r is 
odd. Indeed for even r, the inverse system is constant equal to IF.I t ]  whereas for 
odd r it is the system IFp[t]/(t") with limit IFp[[ t]] .  

When r < 2p - 3, the Hurewicz map 

G(QX; IF,) --+ H[P'~(QX; ~p) 

is an isomorphism, so for each (k. p) = 1. 

limrc.Q ECp=xc. ~ Sa(pik);IF, = 
i=o IF . [ [ t ] ] ,  r odd 

m 

in the same range. For  odd r less than 2 p -  3, ~.(C(S~; p); IF.) is therefore not 
countable and hence we see that  

~,(c(s a, p); IF~) ~ ~,(QS+ (ES a Xs, AS~); IF,). 

The p-completion preserves (co)fibrations of spectra by [BK. p. 62] so 
A 

( x  ^ S~ ~_ x ,  /, S~ 

and hence by [BK. p. 183] 

n ,  (X~ ; IFe) ~ Ext(7//p ~; n , (X;  IF,)) 

O Hom(7//P~;  ~ , (X;  IFp)) 

n ,  (X; IF,) .  

In conclusion. (5.15) is false for X = SL 
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B 
Let C(X, p) , Q(AX) be the projection onto the first factor in the inverse 

system, or after the identification in Lemma 5.15, the S 1-transfer. Consider also the 
map 

1 - Ap: Q(AX) --+ Q(AX) 

where Ap is the p'th power map. 

Definition 5.16 Let TC(X, p) be the homotopy inverse limit of B and 1 - Ap, such 
that there is a homotopy Cartesian diagram 

~t 

TC(X, p) , C(X, p) 
+~ IB 

Q(AX) 1 - 4 ,  Q(AX) . 

Theorem 5.17 For every group-like monoid, TC(_F, p) ~- TC(BF, p). 

Proof Let us write X = BF. There is a well-known decomposition of Qcr(AX)C,~ 

(*) Qcr(AX) cry- (-I Q(ECp"-'Xcr-,AX) 
/=0 

basically due to [tD]. We recall the proof of (*). 
Consider the cofibration 

( e c v ~  --, s o --, Z ( E C , ~  

We take smash product with AX+ and obtain a homotopy fibration of fixed point 
sets 

Qcr(EC,, x A X  ) cr --+ Qcr(AX )Cr --+ Qc,.(AX + A ZEC,.)  c." . 

Now, f_+fcp induces a homotopy equivalence 

Qcr(AX + A SECp.) cr ~- Qcr_,(AXC")Cr-' 

where Cp . . . .  Cp,/Cp. This is clear from equivariant obstruction theory. Also, the 
equivariant transfer induces a homotopy equivalence 

Q(ECv. Xc, .AX ) ~- , Qc,~ x AX)  c," 

cf. [A, Theorem 5.3-]. Hence we obtain a homotopy fibration 

(**) Q(ECp"xcr AX)  a. , Qc,.(AX)C~" b, , Qcr_~(AXC,)Cr , . 

The mapping b, is split by the inclusion 

ft.: Qcr_,(AXC") c,"-' -+ Qcr(AX)Cr 

which includes AX c~ into AX, and views an IRCp.-,-module as an IRCp.-module 
via the projection Cp. -+ Cp . . . .  Let 

~t,: Qcr(AX)C,~ --+ Q(ECp.xc, .AX) 

be the induced splitting of a, in (**), well-defined up to homotopy. 
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Let ~o. = A.-~o b. and ~O. = ft. o A v so we have split fibrations 

an qg~ 
Q(ECp. x G A X  ) ~ Qc~,,(AX ) c,~ ~ Qc.._, (AX ) c'' ' 

" c( n ~ .  

with a . a . - 1  -@.~p.. Let d.: Qc..(AX)C."~ Qc.. . , (AX) c~ be the inclusion of 
fixed sets. We have the relations (up to homotopy) 

a . - l ~  - l ~ - d . ~ a . ,  n >  1 

d . ~ 1 7 6  n > l  

dl ~ ~1 -~ 3v.  

From this we easily see that 

t ~ - l o ~ . ~ . _ 1  ~ n >  1 

t~176  -~ dl - At~ q~l �9 

The maps ~. induce a homotopy class 

ct: h @ m  Qc,.(AX) c." -o C(X,  p) 

an 

(Its p-completion is unique by (2.10)). There is a homotopy commutative diagram 

TC(E, p) , c t x ,  p) 

1 - - d p  
Q(AX)  , Q(AX)  

which we must show to be homotopy Cartesian. We show that the homotopy fibres 
of a and 1 - Zip are homotopy equivalent via the map induced by ft. It follows from 
the proof of (*) above, that the maps 

�9 , D: Qc..(AX) c~~ ~ Qc.~ , (AX)  c"-' 

become homotopy equivalent to 

D(xo . . . . .  x .)  = ( t~  + Apxo, t ~ x 2 , . . . ,  t. x.)  
(5.18) 

r  x,) = ( X o , . . . ,  x,_ 1) 

We use (5.13) and see from (5.18) that 

holim Qc.~ c~" ~- f i  Q(ECv. •176 
< n = O  

with D given by 

D(xo, xl . . . .  ) = ( t~  + Apxo, t ~ x 2 , . . . ) .  



502 M. B6kstedt et al. 

We thus have a diagram of homotopy fibrations (with I1, = Q(ECv, •176 

hF(Ap - 1) ' Yo dp-i  Y0 

(5.19) 
n = O  n = 0  

~$ + .L 

c(x,p) , ~ Y. D-: (I Y. [] 
n =  1 n = 1 

Taken together Lemma 5.15 and Theorem 5.17 give a calculation of the p-adic 
completion of TC (F, p) in terms of functors which have been extensively examined 
in algebraic topology. It seems unlikely however that the completion 

TC(F ,  p) ~ TC(F ,  p) ^ 

in general induces an injection on homotopy since there can be lim~l)-terms in the 
homotopy groups of C(X,  p). 

We end the section with some remarks to clarify the relationship between the 
range of the cyclotomic map and Connes' cyclic homology, [Co, J]. 

Let F be a discrete group. For  the corresponding topological Hochschild 
homology space T H H ( B F )  = Q(ABF)  we have 

~ , (THH(  ff))  | if) = HHz(QF)  , 

and similarly 

rc,(Q(ES 1 x s, A B F  )) | I1~ = HC,(II~F ) , 

by [J].  Thus C(BF, p) and T H H ( B F )  can be thought of as topological versions of 
cyclic homology and Hochschild homology, respectively. One might wonder about 
the topological analogue of Connes' exact sequence. 

Let 2 be the canonical line bundle over BS x and 2x its pull-back to ES 1 Xs ' A X .  
Consider the Thorn spectrum T h ( - 2 x ) ,  defined as the direct limit of the spectra 

Th( -2 , ,~ )  = Z-zN(")Th(/~,,x) . 

Here 2, is the restriction of 2 to CP", 2, �9 #, is trivial of complex dimension N(n), 
and/~,,x is the pull-back to S 2"+~ Xsl AX.  

Proposition 5.20 There is a homotopy fibration 

1 2 ~ S T h ( - 2 x )  ~ (~27+ (ES ~ Xs, A X ) ) ~  Trf , Q ( A X ) ;  

where Trf denotes the S 1_transfer. 

The argument for X = pt is given in [R]; the general case is similar and left to 
the reader. We note that the rational homotopy groups of T h ( - 2 x )  can be 
calculated as 

x i T h ( -  2x) | Ii) ~ xi+ z(Q(ES 1 x s, A X ) )  | if) 
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by the Thorn isomorphism for rational homology. In particular, the rational 
homotopy groups of the fibration in Proposition 5.20 give the exact sequence of 
Connes: 

. . . ~ n C , + l ( ~ p F )  s ,HG_~(~pF)B,HH,(@,F)-~... 

for every discrete group F. 
Note also from (5.15) and Theorem 5.17 the exact sequence 

^ /x A 

� 9  ~ n~TCp(BF) | if2 ~ HH~(ff~pF) G HC~-x (~vF)  -~ H H , ( ~ v F )  ~ .  . .  

6 Assembly maps and Soul6's embedding 

A pairing of rings R1 | R2 ~ R3 gives a pairing of spectra 

K ( R 1 ) / x  K ( R 2 ) ~  K(R3) 

induced from tensor product of matrices. The inclusion of BGLI(R1) into 
I-[.so BGL,(R1) induces a (based) map 

BGL(R1)+ ~ K(R~)  

Let R~ = R F  with R commutative. Then F c GL(RF), and one gets a map 
BF+ ~ BGL (RF)+. We can further take R 2 = R and use the product to get a map 
of spectra (of. [L]) 

#: BF+ /x K ( R )  ~ K ( R F ) .  

This is often called the assembly map. 
Similarly, if #: F 1 /x F2 ~ F3 is a pairing of FSP's  we get an induced map 

~: GL,,(F1) x GL,(F2) ~ GL,,,(F3) 

It associates to f ~ O i M a p ( [ m ] , [ m ]  /x F l (S i ) )  and g e O J M a p ( [ n ] , [ n ]  /x 
F2(sJ)) the composition 

[m] /x [n] ^ S i ^ S "i f A g  I~ , Fx(S  i)/x F2(S j) , F3(S i/x S -i) 

and induces 

(6.1) p: No((GLm(F1)) x N.(GL,,(F2))  ~ No(GL,m(F3)) �9 

This leads to the pairing of spectra 

K(F1)  ^ K(F2) ~ K ( F 3 ) .  

There are completely analogous pairings for KeY(F), T H H ( F )  and TC(F, p). 
Moreover the cyclotomic trace preserves the pairings up to homotopy. As for rings 
we can restrict one factor to 1 x 1 matrices. This gives the homotopy commutative 
diagram 

BGLI(F1)+ /x K(F2) u , K(F3) 

(6.2) $ 1 ^ Trc ,~ Trc 

BGLI(F1)+ ^ TC(F2, p) u ~ TC(F3, p) 
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where the bottom line uses the composition 

I S 
BGLI(F1) , holim(lsdp.Nff(GL(F1))lC,~ ~ , TC(FI ,p)  

( 

on the first factor (cf. (5.9), (5.11)), before applying the pairing for T C ( - ,  p). If F is 
a commutative FSP so that in addition to (3.1) the diagram 

F(X)  /x F(Y)  ~ , F ( X  /x Y) 

r $ V<T) 

F(Y)  /x F ( X )  " , F ( Y  A X )  

is commutative then # gives a pairing from F A F to F and we can take Fi = F for 
i = 1, 2, 3 in (6.2). Another specialization which will be important to us is where 

F1 = F3 and F2 = Id. 
Let F be a topological group-like monoid and consider the FSP F from (3.2). 

We write A(BF) instead of K(=F) since (by defintion) K(=F) is the version of 
Waldhausen's A-functor with ~oA = Z, cf. [B], [W2]. With this notation we can 
specialize (6.2) to 

(6.3) 

BFI+ A A(BF2) --* A(B(Fl  xF2))  

~, 1 A Trc ~, Trc 

BFI+ /x TC(_F2,p) ~ TC(_Fix_F2 ,p ) .  

In (6.2) and (6.3) the smash products  are to be taken in the category of infinite loop 
spaces (spectra), i.e. 

X A  E = l i m O " ( X  A E.) 
) 

where E, is the n'th deloop of E. 
The functor TC(F,  p) was calculated in (5.15) and (5.17). The corresponding 

calculation of the lower horizontal map in (6.3) is as follows. There is an obvious 
pairing 

BF1 + A Q (ECp. •176 ABF2) ~ Q(ECp. • BF1 • ABF2) 

-+ Q ( E G .  Xc~~  x r 2 ) )  . 

It commutes with the transfer map, so induces a pairing 

#c: BFI+ /x C(BFz, p) -+ C(B(F1 x F2), p) 

compatible with the pairing 

#n: BFa+ A Q(ABF2) ~ Q(AB(F~ x F2) ) 

Since #no(1 ^ Ap) = Ap~ there is an induced pairing 

#rc: BF1 + A TC(BF2, p) ~ TC(B(F1 x F2), p) �9 

As an addendum to the proof of (5.17) we have 



The cyclotomic trace and algebraic K-theory of spaces 505 

Lemma 6.4 The bottom map in (6.3) is homotopic to the map l~rc under the 
identification in (5.17). []  

We shall in particular make use of (6.3) (and (6.4)) in two special cases, 
n a m e l y  F 2 = 1 where the horizontal maps are the assembly maps, and in the 
case where FI  = F2 = F is a commutat ive group. In this situation we can 
compose  the diagram with the maps induced by multiplication to obtain 
I~r: BF+ /x A(BF)-~  A(BF) and correspondingly when A(BF) is replaced by 
TC(BF, p). 

A transformation f" F1 ~ F2 of FSP's  induces a map 

f , :  K(F1) x 77 ~ K(F2) • 77 . 

For  a group G and a subgroup F of finite index we also have a map in the other 
direction 

i*: K(_G) --* K(_I_V) 

which we call 'Restriction'  and sometimes denote Res or Rest .  To define it, note 
that the forgetful map 

MapG(G, G) --+ Mapr(G,  G) 

together with the identification 

Mapr(G,  G) ~- Map(G/F, G/F • F) 

(which depends on a choice of transversal G/F c G to F)  defines a map 

i#: G ~ Mk(__ff ), k = I G : F I  

There is an induced map  

which defines 

i*: GL, (G)  ~ GL,k(=F) 

i*: A(BG) ~ A ( B F ) .  

It is direct from the definitions to check the following lemma whose proof  is left 
to the reader. 

Lemma 6.5 (Frobenius reciprocity) Let F c G be a pair of  groups with [ G : F[ < ~ . 
Then the diagram below is homotopy commutative in the category of infinite loop 
spaces 

B(i) /x id 
BF+ /x A(BG) , BG+ A A(BG) 

BF+ /x A(BF) A(BG) 

A(BF) . 

Similarly, i # induces a cyclic m a p  

THH.(G_) -~ THH~ )) 
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and in turn a map of r-fold subdivisions. Composing with Morita invariance, 
Sect. 3, we get a C,-equivariant mapping 

i*: Isd, THH.(  G__ )[ --* Isd, THHo( F )i 

for each r, and D,o i* = i* oD, with D from (1.12). In particular the i*, induces 

i*: holim I sdp, THH.  (G) i cr -+ holim ] sdp, THH.  (_F)Cr 

compatible with the operation of q~p from (5.12), and hence 

i*: TC(G=, p) ~ TC(F_, p) .  

The analogue of Lemma 6.5 is valid for TC( - ,  p) but we shall have no use of 
this fact in the paper. More important for our purpose is the homotopy com- 
mutative diagram of infinite loop maps 

i* 
A(BG) > A(BF=) 

(6.6) [ Trc ,~ Trc  
i* 

TC(G, p) , TC(_F, p ) .  

We shall often write Resr instead of i*. 
Let us next define a map from (~(S 1 ^ ~ P ~ ) p  into A(*)f  which we shall call 

Soul6's embedding as it generalizes a construction from [$2]. Stable^homotopy 
classes of (S a ^ C P ~ ) ~  then give potential elements of ~ , A ( , ) |  7/p, but the 
assignement need not be injective of course. 

The usual norm maps 

Norm: :~[Cp,] • ~ Z[Cp,- , ]  • 

give rise to an inverse system. We consider an element in its limit, 

u = (u.)e lira 7/[Cp,] • . 

The inclusion of (1 x 1)-matrices induces a map B G L I ( F )  ~ A(BF), and since 

n l B G L a ( F )  = 7roGLl( ( )  = 77F • , 

any unit u, ~ ZCp~. produces an element u, ~ 7rl A(BCp,). 
It follows from (6.5) that the compositions 

u f f : B C p , + ^ S  I I ^U" ,BCp,+AA(BCp, )  ~' ,A(BCp,) i* ,A(*)  

are compatible up to homotopy when n varies. Thus we have a homotopy class 

u~: h~imBCp.+ A S 1 --* A(*) 

which restricts to the u. ~ for each n. In fact u* is uniquely determined by this 
property. This follows from Milnor's exact sequence [Mi], provided 

[BCr+ ^ S 2, A ( , ) 3  = 0 .  

But the lim m vanishes because the group in question decomposes as a product 
r 

of the finite group rc2A(*) and a compact group, cf. Sect. 2. 
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Lemma 6.7 The p-adic completions of h o ~  BCp, and CP | are homotopy equiva- 

lent (via the universal Bockstein). 

Proof. It is clear that holim BCp,, "~ Bl~p~, where/~p~ are the p-power roots of 1. 

There is a fibration 

H(Q, 1) ~ B#p~ --* H(Ztpl, 2) 

and since the completion of H(Q, 1) is trivial, this gives the equivalence 
fl: (B~p~); - ,  ( c p ~ ) ; .  [] 

After completion we then get 

U#: ( ~ P ~ ) p  A S 1 ----r A(*)p 

which since A(*) is an infinite loop space extends to the map (Soul6 embedding) 

(6.8) u*: Q(Z+(r  --* A(*);  . 

If we substitute for Cp. the dihedral groups D2p. of order 2p" in the above we 
can associate, to a compatible system of units 

v = (v.)~ lim KI(ZD2p.) | 2~,  

a map 

(6.9) v#: Q(S+ UO(2))~ -o A(*);  . 

Indeed, we just have to notice the homotopy equivalence 

( h o ~ B D 2 p . ) ;  ~- BO(2); . 

Let us next relate the two embeddings (6.8) and (6.9). The inclusion i: Cp. ~ D2p. 
has index 2 and it induces a homomorphism 

(6.10) i*: K1 (2~Dz,.) --* K1 (7ZCp.) z/2 

for each n. 

Lemma 6.11 Suppose vel im KI(7ZD2v, 0 | ~.p maps to ue l im K,(7ZCv. ) | ~p 

under i*. Then there is a homotopy commutative diagram 

Q(Z+ BO(2)) v ~" , A(*);  

~x 'x 'xO(Z+ep. )p  

Proof It follows from (6.5) with G = D2p. and F = Cp~ that there is a homotopy 
commutative diagram 

BDzv~ A S 1 ) \ Z*'" 
BCp,+ ^ S 1 

The lemma now follows by letting n tend to infinity and completing at p. [] 
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Remark. The p-localization i* | 7/(p) of the map in (6.10) is a isomorphism for 
n > 2. This is clear for p odd by general considerations, and it follows for p = 2 
from [OT, Proposition 4.21, combined with the fact that SK~(7/C2,)= 0 and 
SKl(7/D2.+,) = O. 

Next, let us make a few remarks about the space Q(S+(BO(2))). First, 

O_(X + (BO (2))) "~ 0 S '  x O_(XBO (2)) 

and since 7zl A(*) = 7//2 the factor QS 1 ~ A(*), induced from S 1 ~ A(*) needs not 
concern us very much. Secondly, the usualembedding BO(2)~  BO gives a map 
from SBO(2) to BBO, which extends over Q(ZBO(2)) upon using that BBO is an 
infinite loop space. By Bott periodicity, BBO ~- SU/SO so we have 

(6.12) h: Q_(Z +BO(2)) ~ QS ~ x SU/SO , 

which is rationally an equivalence. We denote its fibre BC02. The loop map f2h 
is split by a standard argument using the Becker-Gottlieb transfer of 
B(X, SO(2)) ~ BO(2"), so 

Q(BO(2)) ~- Q( . ) • BO • C02 

It is not so clear, however, if the similar splitting holds on the delooped level. 
Let us recall from [BM ] how to construct elements in lim 7/[Cp.] x. Choose an 

integer g which generates the units modulo p2 Let g, = g p"- '; it has order p - 1 in 
(7//p") • Consider the element u~ ~ 7/Cp. given by the formula 

(6.13) u, = ( T(1-~ T--I/To" , )p-1 g p-lp,__ l p"-li=o~ T~ 

where Te  C~ is the generator. This is a unit, and moreover 

u = (u,) ~ lira 7/Cp~, 

by Lemma 4.8 of [BM]. The element u, and its conjugates under the Galois 
substitutions T ~ T i, (i, p) = 1 are the analogues in 7/[Cp, J of the usual cyclotomic 
units in 7/[~p.]. 

It turns out that the Soul6 embedding u # associated to (6.13) is not sufficient for 
our purpose: composed with the cyclotomic trace it is trivial on rational homotopy 
groups in dimensions = 1 (mod 2p - 2). 

To remedy this we work instead with A-theory based on localized spheres, or 
based on completed spheres. We write A(X; R) for this form of A-theory with 

R = 7/[1/g], 7@) or :~p. The local case is treated in [W3]. For a discrete group 
G there is a linearization map 

L: A(BG; R) --., K(RG) 

which is a rational homotopy equivalence. Moreover, tel(L) is an isomorphism. 
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Consider the elements in the localized group rings 

T g -  l 
(6.14) v, = 1/gT (1 -o)/2 _ _  ~ RCv, 

" T - I  

where R = 7/[l/g].  If p = 2, take g = 3. 
These elements are compatible under norms, cf. [BM, Proposition 3.tl, and as 

above they imply an embedding 

(6.15) v#: O,(X+(r ~ A(*; 2g[1/g]); . 

Remark 6.16 With the use of techniques from [OT]  one may prove that 

i*: KI(RDzp") @ ~(p)"* KI(RCp") g/2 | ~(v) 

is surjective also for the ring R = 2~ [ I/g]. Of course, only the prime p -- 2 presents 
any problem. 

A 

It follows from compactness that lira i* | 2~; is onto, and hence that the map 

v # in (6.15) factors as 

(~(Z+ (([;P ~))v , A(*; 2~ [1/g]);' 

(6.17) "x~ / L" 

(~(X + (BO (2)))• 

The difference between A(*; 2g[1/g]) and A(*) has been studied in [W3]. First 
recall from [Gr] the homotopy fibration 

(6.18) 171K(IF~) ~ IK(2~) -~ IK(7] [1 /9] )  
llg 

where X(R) is Quitlen's space (from the Q-construction) with 

~flK(R)= KI(R) f o r i > 0 .  

The homotopy exact sequence of (6.18) breaks up into short exact sequences as 
follows. 

(6.19) 0 -* K,(7t) ~ K~(TI[1/g]) ~ ~ e  K~_ I(IF~) --, O. 
tl0 

This follows from [S1, Theorem 3]. Let ~ ( X )  denote Waldhausen's A-functor 
constructed from the category of finitely dominated spaces with weak equivalences 
and cofibrations. It has no ~ ( X )  = Ko(ZUlX), and the connected covers of ~ ( X )  
and A(X )  are homotopy equivalent. 

In [W3] it is proved that 

~(,) ~ z~( , ;  7z[1 /g] )  

(6.20) ~ 

~ ( ( ~ )  --, n((gE1/o]) 

is homotopy Cartesian, at least after outside completion at p. This gives an exact 
sequence similar to (6.19), and since K4~(IF~) = 0 for i > 0. 

A4~+ t(*) | Z(v ) ~ A4~+ ~(*; 7/[1/g]) | ~(v), i > 0 

(6.21) A1 (*; 77 [1/g]) | 7Z(v ) = 2g(p)�9 (Aa (*) | 7Z(v)) 

with A~ = n~A. 
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7 Induction and the cyclotomic trace 

This section and the next is concerned with the evaluation of the composition 

(7.1) 0(Z+ CP~ ~ # ,  A(*)/~ Trc , T C ( * , p ) ;  

in spectrum homology, where e# is some Soul6 embedding to be explicated later. 
By (5.15) and (5.17), 

Trf 
TC(*,p)~, ~- Q(*)~, xhofiber((~(Z+CP~)~9 ,Q(*)~)  

and since the first component of Trcoe # turns out to be trivial, we are left 
essentially with a spectrum endomorphism of Q(S+ ~p~o)~ which has a single ~p 
in each odd dimensional homology group. 

We take the opportunity here to describe the general plan of our calculation. By 
construction the elements in the image of e # are in the image of 

Res: A(BCf.)~,  ~ A(*)~, (Res = Reship) 

for all m => 1. Since Trc commutes with Res by (6.6), it suffices to evaluate 

(7.2) !ff.(Z+BCf.)7, e*. ,A(BCv~)~, TrC TC(BCp. , ,p)  ~ Res T c ( , , p )  ~ 

for each m, where e* = / ,o(1  ^ e,,), and e,,: S 1 --*A(BCv,, ) is to be specified in 
Sect. 8. 

Let jm be the natural map 

Jm: (holi.m_m T H H  ( F )C,') he + holi.__m_m T H H  (_F_ ) cr --, T H  H (_F_ ) c,~ 
D D 

where we have written T H H ( G )  cr' instead of [sdvmTHH.(G)] cr'. We use the 
notation Trc (m) = Jm ~ Trc, and have by (3.7) 

THH(F_ )C, ~ .-~ Qc~(ABF)C~ TM 

so that 

Trc("): A ( B F )  ~ Qc,, .(ABF) c'~ . 

We must evaluate 

Res: THH(_F) c~--+ T H H ( * )  c~ . 

Let A m X  be the subspace of A X  of homotopically trivial loops, i.e. loops which 
extend over the disc. It is a component of A X  when X =- BF  for a discrete F, and 
there is a projection 

prm: Q ( A X )  ~ Q ( a m x  ) . 

In (7.22) below we show that there is a factorization 
Res 

T n n ( c f , , ) c e "  , T n n ( , ) c , ,  - 

(7,3) J. pr~,] ~ ~- 
Qcv . (ADlBCp.Ocv .  Restu > Qcp.(,)cp.,  
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and in (7.18) we identify Rest~ in terms of a more computable (and well-known) 
map in homotopy theory, namely an equivariant transfer mapping. 

Consider the map 
Fix: Q c : ( A m B F )  c :  ~ Q((AmBF)  c:)  

which sends a point represented by a C:-equivar iant  map f :  S v ~ S v /x ABF+ to 
its induced map on the C : - f ixed  set. It is a section to the inclusion which embeds 
(AmBF)  c," into A m B F  and Q ( - )  into Qc,,.(-), 

(7.4) i,,: Q((AtllBF) c~) ~ Qc:(A[xlBF) c:  . 

Special properties of the unit e is used in (8.14) below to show that 
pr m o Trc r o e# essentially factors over i~. Thus in the splitting (cf. [ tD]  or (5.17) 
above) 

(*) Qc,,.(AIIlBCp~) c :  ~- , f i  Q(ECp. xc,,o(AtllBCp~) c :  ~ 
n=O 

pr m o Trc (') o e* only has non-trivial component corresponding to the factor with 
n = 0 .  

Remark 7.5 It is not true that Trc" )oe  * is concentrated in one component of 
Q c : ( A B C : )  c," under the splitting analogous to (*): it first happens after we apply 
the projection prt~ 1. 

The relation 

q0v o Trc .~) _ Q(Av) o Trc (m- i) 

used in Sect. 5 in connection with the definition of Trc may be iterated to give the 
homotopy commutative diagram 

pr[11 o Trc Ira) 
A(BCw)  

(7.6) ~ T~ 
Q(~;') 

Q(ABC,m) 

Notice here that 
mutative diagram of assembly maps 

BCpm+ A A(BCvm) 

~. 1 ^ Trc 

(7.7) B C : +  ^ T C ( B C : ,  p) 

BCv~+ A Q(ABCvm) 

Qc,,~(Am BC: ' )  c :  

J. Fix 

Q((A[l]BCp-)Cl, m) . 

(ABCv~)c,"= (AtllBC,m)q". There is a homotopy com- 

"" , A ( B C : )  

~, Trc 

~Tc , TC(BCv", p) 

/" , Q(ABCv~) 

where the bottom horizontal map is the obvious one, cf. Sect. 6, and 5.16. In order 
now to complete the calculation of (7.2) in spectrum homology (with Z/p"  coeffic- 
ients) we just need two calculations, namely the calculation of 

(7.8) S 1 t* , z(ncp,,,) Tr , Q(ABCpm) 
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and the calculation (in homology) of 

(7.9) Q((A[I]BCpm)c,., ) Res.,  QG~(.)cp" ~m , Q(BCpm) 

where am: QGm (*) cr' ~ Q (BCpm) is a special case of the splitting used in the proof of 
(5.17). 

The rest of this section studies the restriction map Resr in TC-theory in some 
special cases, sufficient for our calculations outlined above. The arguments are very 
round about, based in part on the affirmed Segal conjecture. One would like to 
have a more general understanding of the restriction map. 

Let us fix a cyclic p-group C of order r. We have 

T H H  (_G ) = Isdr TnH.(_G)] " c  Qc(ABG) 

by (3.7). For I G:F[ < ~ we shall study the equivariant C-map 

(7.10) Resr ( c ) :  Qc(ABG) ~ Qc(ABF ) . 

We are mostly interested in the induced map on fixed sets, which contain the 
necessary information about Resr on the TC-functor, but it is better to work 
equivariantly for some of the arguments. 

We begin by examining the components of ABG; each component is preserved 
by the C-action since it extends to a circle action. We assume G to be a discrete 
group. We have 

zroABG = [S1+, BG] , 

the free homotopy classes. Thus the components of ABG are indexed by the 
conjugacy classes [g] ,  g ~ G. 

Lemma 7.11 For a discrete group G 

ABG = LI AEo]BG and AtolBG ~ BCG[g] , 

where Ca[g]  denotes the centralizer of  g. 

Proof  The map 

(9: N~.Y(G) ~ N.(G; AdG) ~- E .G x ~ A d G ,  

given by the formula 

(J(go . . . . .  g,) = [ a o l . . . I g k ] g  

with g = l~ gi, identifies I N~.Y(G)I with the Borel construction of G, considered as 
a G-space by the adjoint representation. But 

AdG = L[ [g]  

is the union of the conjugacy classes, so 

EG xaAdG = LI EG xo [ g ]  = ]_[ EG x o G/Ca[g] 

and the result follows from (2.6). [ ]  
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For later use it is important to us to understand the power map Ap in terms of 
the decomposition of ABG into its connected components. 

If [g]  is a conjugacy class which is left fixed by Ap then 7g~-1 = gp for some ~, 
and it is easily checked that 7 normalizes Ca[g]. If we identify 

ABG = EG • G 

as in the proof above, then Ap corresponds to the p-power map on Ad G. It follows 
that /lp on BCG[g] = EG•  is induced from conjugation with 7 on 
CG[g]. We list this in 

Corollary 7.12 Let g~G be an element whose p'th power is conjugate to g, 
?g7-1 = gV. Then Av: BCa[g] ~ BCa[g]  is induced by conjugation with 7 -1. 

It follows from the proof of Lemma 7.11 that 

AIo I BG = ] N cy (G)tolI , 

N~'(a)~gl  = { ( g o , .  - - ,  gk)l I-I g , ~ [ g ] }  �9 

Lemma 7.13 The component A m B G  is a model for the C-equivariant classifying 
space Bc(G). 

Proof We have the G-covering 

AEG -~ A m B G  

and it suffices to show that AEG = EcG, the terminal object in the category of 
(C • G)-spaces which are free as G-space. This object in turn is characterized by the 
properties 

* if a c ~ G =  {1} 
Ec(G)a= q~ if A n G + { 1 }  

for A ~_ C•  
Given a A which intersects G only in {1}, there is a homomorphism p: C ~ G 

with graph A. Then 

Map(S 1, EG)A = Mapc(S 1, EG) 

with C acting through p on EG. A C-equivariant map from S 1 is determined by its 
restriction to {e 2~u/Icl IO <= t <= 1}, so 

Mapc(S 1, EG) = {f. I -* EGIf(1)  = f ( 0 ) . g }  

where g = p(T) and T. 1 = e 2~/Icl. Let Po(f) =f(0) ,  giving a fibration 

MapO.(SI EG)_ .Mapc(S1 ,  EG ) po ,EG 

with Map~(S 1, EG) = OgEG ~- *. It follows that Mapc(S 1, EG) ~- *. 
If A c~ Gee {1} then Map(S 1, EG) A = ~ ,  since G acts freely on EG. [] 

Suppose F c G has finite index k. Then 

A~11BF --* A[qBG 
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is a k fold covering space (use the model EG/F for BF).  The finite subgroup C c S 1 
acts on the covering space, and there is a C-equivariant stable map (its transfer, cf. 
[LMS, Chap. IV]) 

trf(C): Zff~(AmBG + ) ~ Sff~(Atl]BF + ) 

inducing the equivariant infinite loop map 

Trfcr(C) : Q c ( A m B G  + ) ~ Q c ( A m B F  + ) �9 

We want to compare this with the restriction map from (7.10), and make the 

Conjecture 7.14 On Qc(AulBG ), T r f r ( c )  ~ Resr(c)  as C-infinite loop maps. 

Proposition 7.15 The conjecture 7.14 is true for C = 1. 

Proof  There is a commutative diagram (cf. [W4]) 

Trf 
Q(BG) , Q(BF)  

r Res 
Q ( A m B G  ) A(BG)  , A ( B F )  Q ( A m B F  ) 

N'N'N '~ Tr Res ~,Tr / 
Q(ABG) , 9_(ABF) . 

Here v is induced from the inclusion of G or F in G L I ( G )  or GLI(_F),j  embeds 

BG into the constant loops and Trf is the usual transfer of the covering BF ~ BG. 
Given the diagram, the lemma follows because j: BG ~ A m B G  is a homotopy 

equivalence. [] 

For  two subgroups F and s of finite index in G, we choose double coset 
representatives g, ~ G, v = 1 . . . . .  r 

G = f i  Fg~f2. 
v = l  

There are inclusions 

i: F ~ G ,  

j: f2 ~ G, 

( j (g)  conjugates with g - i ) .  

i(g): F n gf2g- 1 ~ F 

j(g): F n gl2g - ~ ~ I2 

Lemma 7.16 (Double coset formula). The C-equivariant stable maps j * o i ,  and 
~ = x  J(g~)* ~ i(g~)* from T H H  ( F)  to T H H (  G) are equivariantly homotopic. 

Proof  The proof is the standard one, based on the commutative diagram of FSP's 
j* 

a , Mk(Q)  

T t~ 
_F_ [li(,qJ 1-I Mk(v)(F~) ' Fv = F n g v f 2 g ~ '  

with �9 being the wedge product (direct sum) of thej(g0.  This gives a corresponding 
diagram upon applying T H H (  ). Use Morita invariance to complete the 
proof. [] 
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We specialize to the symmetric groups 2;,. Define the C-equivariant stable map 

Z,: THH(Z,)  ~ Qc(*) 

to be the composition. 

X,,: THH(_2;.) i* THH(Z ._ t )  t,, _ ~ THH(I_) 

where i: X,_~ ~ 2;, and p: 2;,-1 ~ 1}. With the identification of THH(G) we get 
a C-stable map 

X,: Qc(ABX,) --* Qc(*).  

Lemma 7.17 Z. +1 - c  Z, * [1], where * indicates loop sum, and [1] E Qc(*) is repres- 
ented by the identity. 

Proof By (7.16) the composition 

THH(Z, )  '* , THH(g.+t)  '* , THH(g . )  

is the wedge sum of the identity and the composition 

Cr 
TUH(Z, )  ~ THH(Z._I )  , T H H ( Z . ) .  

Here Cr is conjugation with the n-cycle, so is homotopic to the identity. Compose 
with p, .  [] 

The C-equivariant transfer of the n-fold covering 

AEXn xz. In] ~ A[tIBZ. 

gives us an equivariant mapping 

A[,]BZ, ~ Qc(AEZ, xz~ In]) 

which we can compose with the projection of AEZ, xz. [n] into a point to get 

Zt,: AtllBZ. -~ Qc( * ) 

Standard properties of the transfer show that I_[.Z'. extends over the group 
completion 

to induce a C-equivariant mapping 

Z~: f2B ( ,=[Io A[ qBZ.  ) ~ Qc( * ) . 

This is a C-homotopy equivalence by the equivariant analogue of the Barratt- 
Priddy-Quillen theorem. Here is a quick argument for this result when C is 
a p-group and when we complete at p: the left hand side is known to be a model for 
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Qc(*), see e.g. [Sh], so both source and target for Z~ has homotopy fixed sets equal 
to fixed sets (after p-completion) by the affirmed Segal conjecture, [C]. That is, 

(u )~ Y2B ~-v f2B A[llBZn , D ~_ C 

where X h~ = Mapo(ED, X). But Z~ is a non-equivariant homotopy equivalence, 
so induces an equivalence of the homotopy fixed points. Hence 

(Z2)~ f2B AtllBX . ~ Qc(,)  ~ 

is a p-complete homotopy equivalence, and the equivariant Whitehead theorem 
([A], (2.7)) implies that Z~ is an equivariant homotopy equivalence 

Proposition 7.18 Let C be a cyclic p-group. For finite G and F = 1, the p-complete 
version of(7.14) is true. 

Proof Since both Res(C) and Trf(C)  are stable maps they are determined by their 
restrictions to AtIIBG. Let p: G ~  S,,  n = [GI be the regular representation. It 
displays G as a subgroup of S,  such that p(G) .S ,_~ = Z,. The double coset 
formula gives the diagram 

THH(G__) P , THH(S , )  

,~ Res(C) ,L i* 

THH(*) , T H H ( ~ , _ I ) .  

It follows that 

Z ,~  -~c Res(C).  

By (7.17) the C-maps Z, extend to the group completion, 

Zoo: Atal BX+ x~E ~ Qc(*) �9 

This is a C-map, and a non-equivariant homotopy equivalence. Indeed, forget- 
ting the action of C, it follows from (7.15) that the above Z, is homotopic to zt,, the 
map constructed from the transfer above. It follows as for Z'~ that 

zhD[ (2B ( H A[HBZn)hD ---~ QC( * ) h~ 

is an equivalence, and so Zoo is a p-complete equivariant homotopy equivalence. 
Finally ( Z ~ ) - l o z ~  is a stable C-homotopy equivalence of Qc(S~ The 

homotopy classes of such are the units in the Burnside ring A(C), cf. [tD]. Since 
C is cyclic A(C) • = {+1}, and as (Z~) -1 ~174 = 1 in A(1)*, it is the identity for 
C also. Finally Z~ o p: AfnB G ~ Qc(*) is equal to Trf(C). [] 

At last we examine the restriction map on the other components of ABG. This 
requires a more concrete Morita invariance than the one used in Sect. 3. As 
motivation, consider first the linear analogue in the case C = 1. 
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Recall that a group ring is self-dual via the isomorphism 

6: 71G ~ Hom(71G, Z) 

which maps group elements g ~ G to the characteristic map 6 o (6g(h) = 1 if g = h, 
6o(h) = 0 if h6G - {g}). Thus for ~7ZG,  6,(7) = 61(~ 7) where ~ is the usual 
conjugate (~ = Xnog-1 if 7 = y'ngg), and 6~ picks out the coefficient of 1 ~ G. 

It follows that 

A: 7ZG | 7/G --. Hom(7ZG, ZG); A(c~ | fl) = c~6p 

is an isomorphism. Composition of maps on the right hand side corresponds under 
A to the product 

(7IG|174174 ~ ,7IG| 

and the trace homomorphism corresponds to the map 

(7.19) Tro: 71G | 7I, G ~ 7/, Tro(C~ @ fl) = 6p(c~) . 

�9 Cy 
The cyclic object N| .(Hom(71G, 71G)) translates under A into the cyclic object 

cy 
N|174 71G;#) and (7.19) induces a map into the constant cyclic object 
71 (=  N| Indeed, on k-simplices 

cy 
(7.20) Yrk: N| | 71G, #) ~ 71 

is the composition Trk = Tro o dl o . .  �9 ~ dk. 
cy 

The product in (,), and hence the face operators in N| | 71G, #), are 
"monomial" in the sense of mapping group elements into group elements. The 
same is not the case for the degeneracy operators, because the identity in 
Hom(71G, ~TG) does not correspond to a monomial  in 71G | 71G = 71[G x G], but 
to the sum ~ (g | 9) of the diagonal elements. 

Only "monomial" operations generalize (in a straightaway manner) to the 
cy 

topological setting of FSP's. Thus in a topological version of N| (71G | 71G, #) 
we need to abandon degeneracy operators. Equivalently, we must work with FSP's 
without units (but equipped with a stabilization map and with a product, cf. [B]). 
We shall only consider a special example, namely the functor 

~ (X)  = G+ /x G+ /x X 

of based spaces. There is an obvious stabilization 

~r ^ r--,  ~r r )  

and a product 

#: fg(X) ^ (#(Y) ~ f#(X /x Y) 

induced from (*). Specifically, # is given as the composition 

It:(G+ ^ G+ ^ X ) / x ( G +  ^ G+ /x Y ) ~ G +  ^ G+ ^ G+ /x G+ / x X  ^ Y 

# o A l ^ l  

, G +  A G +  ^ X ^  Y 
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#o(g l ,g2 ,  ga, g 4 ) = { [  g l ' g4 )  if g2 = g3 
if g2=4=g3 �9 

Let T H H . ( ~ )  be the A-space (= simplicial space without degeneracy operators, 
[RS]) with k-simplices defined in (3.4). It is a cyclic A-space. There are A-space 
homotopy equivalences 

A: THH~ THH.(MI~I(1)) .  

Tr: THH~ --+ Q( , ) 

The first one is induced from 6: ~(X)--+Map(G+, G+ A X) with 
5( g, h, x) = (g, X)6h. The second is given by (7.20) with 

Tro: lim fP(G+ A G+ A S") ~ lim t2"S" 

induced from the map ~1: G+ A G+ ~ 1+ defined as 

1 if h = g  
(g, h) --+ ,$h(g) = �9 if h 4 g .  

The realizations (as A-spaces) are denoted T H H (  ) as before. F o r  FSP's (with 
units), the two notions of T H H (  ) are homotopy equivalent by [Sel ,  Appendix]. 

Morita-invariance (cf. Sect. 3) can be viewed as the composite homotopy 
equivalence 

A Tr 
THH(MIoI(1))< ~ THH((~)  ~_ > Q ( * ) .  

We finally can combine with the subdivisions. To define a C-equivariant trace 
map (C cyclic of order r) we can use the formula (7.20) to specify 

Trk: sd, THHk(f#) ~ Qc( * ) 

Hence it suffices to give the C-equivariant map 

Tro: sdr THHo((~) ~ Qc( * ) , 

or equivalently the map 

Tro: lim ~'~mR(smR A (G+ ix G+) (')) ~ lira ~mRsmR , 

with R = NC. It is induced from ~r): (G+ A G . )  (r) ~ 1+ given by 

( g , , h , ) ) ~ J ' l  if hi =gi+l  for all i 
((ffl, hi) 

' ]. * if not  . 

We obtain a C-equivariant homotopy equivalence 

(7.21) Isd, TnH. (Ml~ l (1 ) ) l ,  Isd'Al= [sd, TnH. ( f# ) l  Tr 'Qc(*) -  

This is a description of Morita-invariance which is more  convenient for our 
purpose than the one from Sect. 3, but, of course, it is less general. 
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Proposition 7.22 For G finite and g ~ 1 the restriction map 

Resl: Qc(AtglBG) ~ Oc(*) 

is equivariantly null-homotopic. 

Proof. Under the equivalence 

ABG ~--clsdr 

the complement AmBG • of AmBG corresponds to the subspace of sd, N~.Y(G) 
whose (k - 1)-simplices are the kr-tuples (go . . . . .  gk~-~) with l-lg~ 4: 1. Let 

6(~): G(~)~ 1+ 

be the map with 

It induces a map 

1 if I ~ g i =  1 . 
6(lr)(gl . . . . .  gr) = * otherwise 

6~"): holim O"'~(S "R ^ G~ )) ~ holim ~"RSmR, 
m m 

or in other words a map 

~ ) :  sd, THI-lo( G) -~ Qc( * ) . 

Consider the simplicial subspace sd, THH.(G=)(lj of sd,.THH.(G_) whose k- 
simplices are annihilated by 6(1 ~ d~ o . . . o  dk (i.e. map to the base pol-nt * e QG(*), 
represented by the constant map). Its realization THH(G)~1 is homotopy equiva- 
lent to Qc(AtljBG • via (3.7). 

We need to show that the composition 

IsdrTHH.(G)l Res )IsdrTI_IHo(MIGI(1))I(7.2!) 'Oc(*) 

is equivariantly null-homotopic on the subspace THH(G)(I]. For this we define 

corresponding subspaces THH(MIGI(1))~I] and THH(~)~xl. 
There is a C-equivariant diagram 

Map(G+, G+ /x S ' )  (') u(" ) Map(G+, G+ /x S "R) - - ~  ) Map(G+, S "R) 

(G+ ^ G+ A S " )  (~) "'~' , G+ ^ G+ /x S "~R ~ G+ A S mR 

with #(') being the iterated product, and et, ~1 the following maps 

e~(f)(9)  = (5~/x id)(g-~f(g))  

gl (g, h,x) = (61 /x id) (g-  lh, x) . 
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In the induced diagram, 

holimf2mRMap(G+, G+ /x S")  ~'~ ~'~ 

T~ 
h olim 12 mR ~ (S m)(r) ~) 

, holimf2"RMap(G+, S "R) 

holim f2"R(G+ /x S "R) 

the vertical maps are equivariant homotopy equivalences. 
Define the simplicial subspaces sd, THH.(ML~I(1))~I j and sd~ THH.(fr to have 

k-simplices which are annihilated by ~)  o dl o . , .  g-dk and ~'~ o da o . . . o  dk, respec- 
tively. (Here d~ is the i'th face operator in the relevant subdivision). 

It is clear that 

A: sd~ THH.  (f#)~] ~ sd~(THH.(MtG ~ (1))~1 ] 

is a simplicial homotopy equivalence, and that we have 

Res: sd, THH.  (G)~1 ~ sdr THH.  (MIG I (1))~ 

Hence to complete the argument it suffices to note that 

Tr: [sd~rHH~162 ---, Qc( * ) 

is constant on [sdrTHH.(fr by definitions. [] 

8 Homological calculations of the cyclotomic trace 

This section completes the evaluation of (7.1) and (7.2) along the linesexplained in 
the beginning of Sect. 7. Let R be one of the rings 2Z, Z[1 /9]  or Zp where g is 
a generator of (Z/p2) • and let A(X, R) denote A-theory based on R-local or 
R-complete spheres. More precisely, let SI = S", S"[-1/9] or (S")~ in the three 
cases, and consider the "FSP"  

(8.1) FR(S n) = S] /x F+, F = f2X (X connected and based) 

In the definition of K(F)  one only uses the values of F (and its matrix FSP Mk(F)) 
on spheres. Thus (8.1) is enough to define K(ER); we write 

A(X; R) = K(_FR) 

and remind the reader that A I ( X ; R ) ~  K I ( R [ n I X ] .  Consider an element 
~ lim (RCp,,)• Its m'th component defines an element [e,,] ~ A~ (BCp,,; R). We are 

interested in 

(8.2) (prtl] ~ Trc~")), [era+k] ~ nl (Qcr(AtllBCpm +k) c ' )  | R 

for m > 0 and k > 0, cf. Sect. 7 for notation. Let us first however calculate 

T r ,  [era] E 1tl Q(ABCp,,) | R 

We have 

(8.3) ~IQ(ABCvm) = nna(TlCv,,) G (~x Q(*))~P" 
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where HH1 (71Cp=) is the first Hochschild homology group, i.e. the first homology 
of the Hochschild complex cr No(ZCpm ). The first component in (8.3) is the spectrum 
homology, 

H[per = H~ (ABCv~)= HH~(ZCv~).  

The second factor is one Z/2 for each component of ABCv~. We shall disregard the 
second summand in (8.3). In fact we are mainly interested in the cyclotomic trace 
for odd primes, and then 

rq Q(ABCv~) | Zp = HH~(~pCp~) ,~ HH~(ZCp=) . 

In any case we can always project from homotopy to spectrum homology. 
Instead of using the cyclic complex N~'(RG) to calculate HH1 (RG) it is often 

more convenient to use the isomorphic bar construction B,(RGC; G) of G with 
coefficients in the group ring RG viewed as a G module via conjugation. In our case 
G is abelian so RG c has trivial G action. Concretely the isomorphism is given by 

N~(RG)  ~ ,B,(RG~; G) 

(8.4) g o  |  - - | O k ~ g [ O ~  I, �9 �9 I g k ] ;  g = 1-] g * ,  

Let Te  G be a generator (of order pro) and define elements in Hi(G; RG c) by 

flm, k = Tk[T] �9 

Under the inverse of (8.4) they become fl,,,k = l/k[1 | T k] if (k, p) = 1 and 
flm, k = 1/(k - 1 ) [ T |  T k - l ]  i fp  divides k. 

Lemma 8.5 Let em e RG • and write ~,, = ~ ai T i, ~m ~ = ~, bs T s. Then 

pro--  1 

Tr(~m)= )-', Ck(em)flm, k, Ck(~m)= ~ iaibs. 
k=O i + j  =-- k(p m) 

cy 
Proof. By definition, Tr(em) = [e,~ 1 | 5,n] in N| (RG), and using (8.4) we get in the 
bar construction 

Tr(em) = ~ albjTi+S[Ti], 0 ~ i,j <pm 

This is homologous to ~Ck(e,,,)fl,,,,k. [] 

Let us decompose HHa (RCp,,O as 

HHI(RCp~) = Ko 0 K1 

where K0 is the part generated by flm, k with (k, p) = 1 and K1 is the rest. Then Ko is 
~b(p") copies of 71/p m. We shall use below the following result from [BM], 
Proposition 3.7.: 

(8.6) projr~(1 - Av)Tr(~m) = 0 in HHI ( R C w ) |  7Z/p m-1 . 

We return to (8.2). The target is naturally decomposed (as in (5.17)) into 

(8.7) Qc,.(AtuBCv.§ ce ~- f i  Q(gCv. xcr(At~lBCv,,,+k)c'~ "). 
n=O 



522 M. B6kstedt et al. 

Lemma 8.8 Let  S ~ Cpm have order pi and let A[sjBCpm be the associated component 
o f  ABCpm. Then 

(i) ECp. xc,~ " BCp. xA[s]BCp.., for i < m - n 

(ii) ECp,,Xc~,Ats]BCp,,, ~ BCp,.,-, xBCp.+,  for i > m - n . 

Proof  Let f :  S 1 ._+ AtsjBCpm be the parametrizat ion of an S 1-oribt; it induces on 
fundamental  groups a homomorph i sm from 7 / t o  7//p" with cokernel 7//p"-i .  Set 
g = ECp. xG~ f There is the diagram of h o m o t o p y  fibrations 

J 
AIsIBCp,. ~ ECp. xcp AtslBCpm --+ BCp. 

Ts T~ II 
S 1 p" S 1 , ~ BCp . .  

On fundamental  groups it induces the exact diagram 

J. 
0 -~ Z/p  ~ ~ 1rl - ,  ;e/p" ~ 0 

Ts, ?.o, 11 p" 
0 -~ 7/ , 7/ -~ 7 / / p "  -~ 0 .  

Thus c o k f ,  _-__ c o k g ,  = 7l/p ~- i  and k e r g ,  = p i+"7 / so  that nl is an extension of 

7//p"+g by 7//p"-~. Using that Z/p  m J* ,n~ ~ c o k g ,  is surjective it follows 

that the extension is split. [] 

The (m - n)'th iterate of Ap defines a homeomorph i sm 

^ m  - -  t l ,  Ap �9 LI AIslBCpm+k ~ (AIllBCp~+k) c''-" 

where the disjoint union runs over the elements S z Cp~+~ of order dividing pm-n. 
Thus in (8.7) 

ECp. Xcv ̀ (A[llBCp~+k) c~'-" ~- BCv.  • (AuIBCp~+k) c.'-" . 

Recall from (5.18) that  the inclusion of fixed sets 

D: QG.(A[alBCp~+~) c "  ~ Qc.._,(A[ajBCp~+k)G" ' 

under (8.7) corresponds to 

(8.9) D(xo, xa . . . . .  xm) -- ( i~- l (Xo)  + t~ . . . . .  tin- l((Xm))) 

where i ~ -  1 is the inclusion (since Ap ~- id on At~]) and t."- ~ is the transfer associated 
to the Cp-covering 

BCp,,-~ x (A[IlBCp~+k) cr ~ BCp. X ( A u I B C p , , + J , )  c ' - "  . 

Write j (") for the inclusion 

j("): Q(AXC,  -) ~ Qc , . (AX)  c." 

and 

Fix(=): Qc..(AX)C." ~ Q(AXC.  ") 
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for its one-sided inverse which maps  a Cp~-equivariant element f :  S v __, S v/x AX+ 
into its induced map  of Cv~ fixed sets. 

F rom (8.7), (8.8) we get the decomposi t ion  

Qcr(AtllBCp~+Qc~. ~- , f i  Q(BCp. x(Atl}BCp~+k) c'~ "). 
tl=O 

There are p = - "  components  in (At~1BCp~+~) c'-", and since the functor  Q(-) 
converts disjoint unions into direct products  we get an embedding 

m - 1  I ~  
~5: I-[ Q(BCp") pm-" --* Q(BCp. x (AtljBCp~+k) c." ") 

n=0 n=0 

(into the first m factors), 

Proposition 8.10 I f  p is odd, then the p-primary component of the element 
(prmTrc(m)),[em+k] belongs to the image of j~, m), modulo I r a 6 ,  

Proof. Let prmTrc~, m) be the componen t  in Q(BCp. x (AD]BCv~+QP~-"). We have 

(*) rq Q(BCv. x (AtllBCv.,+Q cr ")(p) = (2g/p" @ ;g/p~+k) * "~-" 

The transfer m a p  t",- ~ induces a surjection of Z/p" onto  7]/p"- 1 and mult ipl icat ion 
by p on each of the p ~ - "  summands  2g/p m+k. There is no componen t  of prt~lTrc~') 
in the first summand  7Z/p" in (*). This follows from the h o m o t o p y  commuta t ive  
d iagram 

A(BCp~+~) ~ Q(BCp~ x AIlIBCp~+k ) 

iS, J. p~oj 

A( , )  --, Q(BCpm) 

where f ,  is the induced m a p  in A-theory associated to BCp~+~--, B{I}. Indeed, 
f ,  [er, + k] = 0 since the augmenta t ion  of em +k ~ R Cv" + ~ is equal to 1 e R. We have 
left to show that  the projection of prmTrc(.m)[e,,+k] into the summands  (Tl/p re+k) is 
trivial. Let us write T,(,")[~,,+k] for this projection. Since t,"-a is multiplication by 
p on these summands  and since D o T r d  ") = Trc (" -  1) we get from (8.9) that  

(8.11) r ( m - - l l ) [ e m + k ]  = p. T(."I[e.,+k] for n > I . 

We need a similar relation for n = 1. Let 

. 1 ,  BC .k) 

be the projection and let 

~,~-1: H AtslBCp~+~ ~(At l lBCp ~+Qc'~-' 
S pro- J = 1 

be the h o m e o m o r p h i s m  induced from the (m - 1)'st iterate of  A r Then 

(8.12) ,o T(,.) J m - l P ( ' -  1)(1 - Ap)Tr 
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Indeed by (7.6), F ix(")Trd ") = z]~'Tr, and hence 

(**) To~") = Fix m T(,.) = zJ~'p["~Tr . 

F r o m  (8.9), 

�9 m - 1 T~ora) + t o  T(m) T(o m -  i )  = lm ~1 3t l 

and with one more  appl icat ion of (**), 

t o T(m) = zi~'-I  e ~ , -  1)Tr _ i ~ - I  ziTp~m)Tr 

= z i ~ ' - l P [ ' - ' ) ( 1  - Ap)Tr .  

It  follows f rom (8.6) that  

pT[")[a,,+k] = 0 (mod p re+k-i) 

and hence upon  using (8.11) that  

(8.13) pi+lTi(')[e.z+k] = O, 1 <_ i < m .  

We finally make  use of the norm compatibi l i ty  of the e,,,+k, or equivalently that  
the restriction in A-theory of [em+,+l ]  is [era+k]. If we write Res = ResC~::L, then 

R e s  Ti(ml[sm+k+ l ]  = Ti(m)[em+k] 

By (8.13), pi+lTit")[em+k+i+t] = 0 in 7Z/p r'+k+i+l. Any h o m o m o r p h i s m  f rom 
7Zip ''+k+~+~ to 2Up z+k has 7Zip ~+1 contained in its kernel, and we can conclude 
that  T[m)[e,,,+k] = 0 for i > 0. [] 

Consider  the composi t ion  e* =/~  o (e~/x 1), 

~*: O.(S 1 /x (BCp,,,)+) ~ A(BC'~ +k, R) 

and let as above 

A~: Q(ABCp.)  --* Q( (AmBCp. )  c.~) 

be the h o m e o m o r p h i s m  induced f rom iterating Ap. 
We have from (8.10) with k = 0 that  

p r m T r d " ) [ e ~ ]  = prmTrcr + 3(g,,) 

with 

p rmTrc~  m) [em] e nl  Q((AmBCpm)c')(p), 

( ~II Q(BC,, ), ,"-" 
~m@7~l \ n = l  " ] " 

The element ~m induces a h o m o t o p y  class 

m--1 

~*: Q(S 1 ^ (BCpm)+)--* I-I Q(BCp. x (Am BC,.Q c,--~ c Qc,.(AmBCp,.)c, ~-. 
n = l  

where the first m a p  uses the mult ipl icat ion 

BCp.. x (AtllBCp..) c~'-~ ~ (AtilBCp..) c,'-~ 
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induced from the inclusion of BCp,, in (A[HBCp~) c~- and the product  in AmBCp,~. 
It seems likely tha t  in fact ~m = 0. 

Proposition 8.14 Let p be odd. After p-completion 
^ 

pr m o Trc ~m)o E* ~j(m) o A ~  o Tro ~* + g* 

Proof. We write C = Cp~ and do not indicate p-comple t ion  in the notation. There  
is the h o m o t o p y  commuta t ive  d iagram 

1 A F, m 

Q(BC+ A $1) 

where Pn is the composi t ion 

, BC+ ^ A ( B C )  l'A , A ( B C )  

,~ 1 A prmTrcr ,L prlllTrCl~l 

BC+ A Qc(Atl]BC) c ~ , Qc(At l jBC)  c 

BC+ /x Qc(At l lBC)  c ~ (AtIIBC) c/x  Qc(At l lBC)  c 

Qc(A[llBC • AEllBC) c 

Qc(At l lBC)  c . 

T h e  commutat iv i ty  of  the square expresses that  the cyclotomic trace commutes  
with assembly maps,  cf. Sect. 6. F r o m  (8.10) we have the factorization 

S 1 8m - - ~  A(BC)  

~, t " '  J,T 'm' 
j(mt 

Q ( ( A m B C )  c) , Q c ( A m B C )  c 

where T ~ml is the  composi t ion of prtx j o Trcr176 and the project ion on to  

m-1 
Q(BCp., x AmSCpm ) x I]  Q((At ']BCp~) pro-" 

n=O 

It follows that T (m) o #A ~ (1 A era) is homotop ic  to the composi t ion  

(*) Q(BC+ A S 1) I ^ t "~ ,BC+ A Q((AI1]BC) c) ~ ~Q((AI1]BC) c) 

J'" , Qc(At l lBC)  c 

Together  (7.6) and  (8.10) show that 

t (m) "~ .~p~ T r  o ~,, 

and if one fur ther  uses (7.7) and the commuta t ive  d iagram 

BC+ A Q((At l jBC)  c) , Q((AEllBC) c) 

T 1 ^ 3~; T J'; 

BC+ A Q(ABC)  ~" , Q ( A B C )  

the compos i t i on  (*) becomes  homotop ic  to j~,m o •p o T r  o e* [] 
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Remark 8.15 If p = 2, then p-completion does not kill the extra pm summands 7Z/2 
in (8.3), and 

l'[, 1 (Q(ABC)) --, HH~ (~pC) 

is not injective. Thus it is not obvious, although very likely, that (8.10) and hence 
(8.14) are correct as stated. However, the weaker forms where homotopy classes (of 
infinite loop maps) are replaced by their induced homomorphisms hold true. This 
is all what is really needed for our key calculationat result to be presented below in 
(8.20). 

Before we can continue our calculations it is convenient to examine the fixed 
point structure of the discrete model ~gB(IjA[~]BZ, ) for QG-(*)" By (7.11), 

(AH]BZ,) c'" = H ALsjBZ, = H BC[S]  

where S runs over the conjugacy classes of elements in 2;, with S p" = 1. Conjugacy 
classes in symmetric groups are determined by types (=cycle decompositions). 
If S has type (1) a~ . . .  ( p ' ) " -  then 

c[s]= II zo, lc. ,  
i = O  

SO 

(AEIIBZ,)G~ = ]_[ f i  EZa, xto,(BCv,) a' 
S i = 0  

and therefore 

(8.16) E2B A[1]BZ, = E2B E Z g  • (BCpi )  k . 
i = 0  

The i'th factor on the right-hand side is a model for Q(BCp,), cf. [May]  or [Sel]  and 
(8.16) is just the decomposition of Qc(.) c. One possible identification is via the 
transfer (compare the discussion preceeding (7.18)): the space 

= X k E Z k x X k x z k [ k ]  EZk• 

projects onto X, and we may compose the (non-equivariant) transfer of 

E Z k  X~ k_ , X k ~ EY_, k Xz k X k 

with the projection to obtain 

zX: EXk xzk X k -* Q(X) . 

These maps induce the equivalence 

(8.17) zx: QB (El EZ'k X2k X k )  ~ ~' Q(X) , 

(One may show that (Z~) c.- ~- l-[~'= o Bc., Zoo , where Zt~ is the equivariant transfer used 
in (7.18); this gives another proof that Y2B(LIAtl}BX.) is a model for Qc(*)). Let 
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Te,Sp~ be the cycle of order  p",  and let (A[~BSp~) c,'' be the image of the natural  
m a p  from (AmBCvm) c,'~ to (A[IlBX, o~)c.'% i.e. 

(AIIlBZp~) c.''= f l  AtT.','IBZw 
i = 0  

The centralizers of T p' are Sp, ~ Cp . . . .  so 

(AIIlBEp..) c'~ = f l  EZp, xz~,(BCp~-,) p' 
i = 0  

and 

Q((A[IlBZp~) c"m) = [I  Q(EZp, xz.,(BCp~-,) p') 
i = 0  

With this identification 

(8.18) ' " I~ Zp~. Q((At11BZp'.) c'') ~ Q(BCpm-,) 
i = 0  

is equal to the product  of  the composi t ions  

Q( EZ., • ~, (BC.m- , ) p') --. Q(Q(BC.m-,) ) - .  Q(BCv~-, ) 

of .sc.m , and the action Q Q ( - )  ~ Q(- ) .  For  i = 0 in part icular  Z p '  

(8.19) ' �9 z~. Q(AmBZp~)--, 0(BC.m) 

is just the identity. 
Let uz, ~ Hzn(IFP~ Z) and e,~H,(BCpm; Z/p m) be generators,  and let 

~m: Qc.,o( * ) c "  --' Q ( B C ~ )  

be the splitting onto the first factor, used in the definition of TC(*, p) in Sect. 5. 
Here is the main  calculational result of the entire paper.  

Theorem 8.20 In spectrum homology with ;g/p" coefficients, the composition 

O~(S 1 A CP~) , A(*, R) , (Qc~.(*)G')~ , Q(BCp..)~ 

maps e l |  into (X(1/k)"+lCk(~m))el+2.. Here k varies over the integers 
1 <_ k <_ pro_ 1 which are prime to p and Ck(~,.) is the integer from (8.5), and 
R = 2g[1/2], 7/~p) or Zp. 

Proof Let us drop  the nota t ion  for p-completion.  We consider the commuta t ive  
squares 

e a T r c  Im~ 
(~(S ~ A qTPT) , A(*; R) , Qc..(*) c." 

T1Ae~ TRes ~'Res 
Q(S 1 A BCpm+) ~* ~ A(BCp"; R) T r c ~  ~ Qcp~(ABCpm) c~ 
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with e~ : BCpm ~ ffgP ~~ the genera tor  of H2(BCp,.; 77). Since 1 /x e~ is an i somor-  
ph ism in odd  d imens iona l  spec t rum h o m o l o g y  with 7Z/p" coefficients, it suffices to 

calculate  the lower hor izon ta l  compos i t ion  followed by Res = Res{cl]o. By (7.22), 

Res o Trc (m) -- Res o pr  m o Trc (") "-- Trfo pr m o Trc (m) 

The  compos i t ion  

a, .otrf i  Qc,,.(AmBCpm)G" ~ Qc, . ( , )  cr % ,Q(BCpm) 

annihi la tes  the subset 

m--1 

l-[ Q ( B C p . ) " - '  = f i  Q(BCI,. x (AmBCp,,)c, ~ ") 
n = /  n=O 

and  (8.14) shows that  

~., o Res o Trc (m) o e* ~- am oj(m) o ~ o Tr o e* . 

W e  know from Sect. 6 tha t  Tr  commutes  with the pair ings/~,  so have 

O_(S t A BC~,.,+) ~* , A(BCp..;R) 

~ Tr(e.) ^ 1 ~Tr  

Q(ABCp.)  A BCvm+ " , Q(ABCp,.) 

Let p: Atl lBC W --* AEIlBZ W be induced from the usual  inclusion of  Cpm into 
2;p,,. Since Res "~ Yrf = ) ~  o p by (7.18), 

R e s o j  0") ~ Ztp,~opoj (m) 

on Q((AmBCpm)cr We have left to calculate the compos i t ion  

Q ( S  1 A B C p . . . + ) / l ( T r ( , ~ )  A 1~ Q(ABCp,.) e , Q(A'BZp~) 

J'; , Q((AillBZpm) cr 

z;- , I-[ Q(BC,~ ,) 

where 

~ , Q(BCp~) 

A'BXp,. = f i  A t r q B Z p . .  
i=O 

t ~m t The infinite loop  m a p  emXp.Ap is de te rmined  by its value on A B2;p., and  is 

tr ivial  on all componen t s  Atr,,~BSp., with i > 0. M o r e o v e r  by (8.19) the 

^m 
Z ~  o p o Ap : Q(A[TIBZp,.) ~ Q(BCp,.) 
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becomes the identity when we identify At:rlBS, p= = BCp=. This reduces us to 
calculate the image of e~ | e2. under 

O,(S 1/~ BC,,~ + ) 
Tr{e~) ^ 1 

, Q(ABCv,, ) /x BCp~+ 

#~pr Q (  H AtTklBCpm) 
(k, p) = 1 

prop , Q(Atr1BSp~) . 

According to (8.5), el | e2n is mapped to the class (s174 e2n. 

Let ok: Cp~--* Cpm be the homomorphism which takes T to T k. It induces 
homomorphisms of BCp,, and ABCpm making the diagram 

A[TIBCp,. , A~TklBCp~ 

~, eval ~ eval 

BCp,,, ' BC.~ 

commutative. Since 0 k is inner in 2;pro, the inclusion BCp,, o ,BXpm and the 

composition poOk are (freely) homotopic. In particular they induce identical 
homomorphisms on homology. 

Since AmBCp,, ~ AmBZp,,  is a homotopy equivalence, and since fl,,,k all go to 
e~ under the evaluation map, el | e2, is mapped to 

SCk(e.,)(0k.) -1 (e, +2.) = (Z(1/k) 1 +"ck)el + z. 

This is the claimed formula. [] 

The result above can be formulated entirely in the framework of group homol- 
ogy. This is carried out in IBM] where the numbers I; (l/k) "+ lc k are also examined 
for various choices of e e lim RC~,. This will be used in the next section. 

For small primes the reader can easily carry out the calculation. Consider for 
example the case Cpm = Cs(p = 5, m = 1). Take g = 2; it generates the multiplica- 
tire group of Z/25. In the local case R = 77/[1/2], a possible unit is 
el(T) = 1/2(T 2 + T-2).  Its inverse is 

e l ( T )  -1  =- 1 -- T -  T -1 + T 2 q- T -2 

and Ck is the coefficient of T k in 

T de1 e x ( T )  - 1  = - 2 T +  2 T  2 - 2 T  3 + 2T 4 
dT 

Hence in 7//5 we have 

(8.21) 
f 3  if n - O  (mod4) 

~ (1/k)l§ 4 if n - 2  (mod4) 

k = l  0 if n--= 1 ( m o d 2 )  
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Corol lary  8.22 In spectrum homology, the composition 

Q(X + CP ~) ;  ~'* Trc 
, n ( , ;  R)p , T C ( , , p ) p  

multiplies with the p-adic number lim (Z(l/k) 1 +nek(~m) ) in dimension 1 + 2n, where 
( 

m 
the sum runs over integers 1 <_ k <- p m _  1 which are prime to p. 

Proof This follows from the proof of(5.15), from (8.20) and from the commutative 
diagram 

Q(S1 A (~P+)p  ~oTrcoe* ^ , ^ 

T 1 A e~ J. Trf 
Q(S 1 A (BCpm)+); c~Yrc")~*) Q(S 1 A (BCpm)+) 

together with the fact that the S~-transfer 

Trf, :  H, (S  ~ A ~ P ~ ,  7//p")-+ H , (S  1A BCp~+; 7//p") 

is an isomorphism in odd degrees, cE [MMM].  [] 

9 The main  theorems 

The cyclotomic trace functor of a point was calculated in Sect. 5. After completion 
at p we have 

(9.1) TC(* ,p) ;  "~ Q(*)f, xhofibre((~(L'+CP~);  Xrf , Q ( , ) p ) .  

Let R =2~, 2~[1/g] or ~p and let eelim(RCpm) • There is an induced map ( 

e#: O.(Y.+(CP~ ~ A(*; R) and we are interested in the composition 

(9.2) Q(X+(CP~))p ~ , A ( * ; R ) ;  Trc ) T C ( * , p ) p  

for various choices of 5. 
The first component of Trc under the splitting (9.1) is the topological Dennis 

trace and we first evaluate Tr o e ~. 
We must recall the relevant choices of e in the three cases R = 7/, 7/[1/g] 

and Zp. 

(i) R = 7~: C. n = T(n l -on ) j2  ( TOn ~-lx~ p-1  gp -1  -- 1 p ' - i  
\ r . - 1 )  p" ,:0Y T.' 

(9.3) (ii) R = Z[1/g] :  5, = 1/gT(, 1-~ T~ - 1 
T , - 1  

k - T ,  
(iii) R = ~p; 5. = co(1 - 2 - - - - - - ~  " 
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Here T, eCp.  is the generator, g is an integer which generates (;g/pZ)• 
g, = g p"-l, 2e2g~ is a certain non-trivial (p - l)'st root  of  1 which we shall not  

x 

further specify at present, and co: lFp --, ~.r is the Teichmuller character. 

Lemma 9.4 Let p be an odd prime, and let ~ lim RCp, be as in (9.3). In case (i) and 

case (ii), Tro e e is homotopically trivial. In case (iii), Yr o e~ is homotopic to the S 1- 
transfer composed with an automorphism of  Q,(X+ IFP ~). 

Proof  The composit ion is induced from the direct limit (over m) of the composi-  
tions 

S1 • BcpmXr(cm)• 1) Q(ABCpm) x BCp,,, 

Prtll , Q(At11BCp, ) x BCpm 

, Q(AcllBCpm ) 

z~,-, 
,Q(*)  

where we have not  indicated p-adic completion in the notation. Thus to prove the 
lemma it suffices to show that 

[prfllTr(em)] = 0 in nlQ(AfllBCpm)~ m . 

We have (cf. [BM]) :  

7z 1 Q(ABCp~)tp) ~- HHI (RCp~ ) "" Ha (Cpm; RCp~) 

and the projection Prt~ j corresponds to the homomorph i sm 

H~(Cp,; RCp,,,) --,, HI(Cp~; R) 

induced from the homomorph i sm ~ : RCpm --', R which picks out the coefficient of 
1 ~ Cpm. With the notat ion from Lemma 8.5, 

[prtllTr(em)] = Co(em)flm, O . 

In case (i) and (ii) of (9.3), e,,~(RCpm) • is visibly symmetric in that ai = a_~ in 
the expression e,, = 2a~ T ~, i e Z/p". The same is then true for e2, ~ and hence 

p m  - -  1 

Co(~,,)= ~ i a i b - i = O .  
i=1 

1 
In case (iii), Co(e,.) - 1 - 2" Indeed, 

2 - 1  

ao - co(1 - 2)' aa - co(1 - s 

which gives 2 b o - b p  . . . .  ~ ) ( 2 - 1 )  and )~bi=bi-1 for i 4 : 0 ,  
Co(e,,) = 1/1 - 2 as claimed. Consequently 

# o prtl 3 o (Yr(e,,)x 1): S 1 /x (BCp,.)+ ~ Q(AtljBCp,, ) 

and hence 
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sends the homology class ea (~e2m~H2m+l(sl+ A BCv~; ~/pm) non-trivially to 
s p e c  H2m+ , (Q(At~IBCv~), ~/p") .  

Using Frobenius reciprocity, Lemma 6.5, we get 

and hence a mapping 

S 1 /', (BCv~)+ ~ Q(AtllBCv~ ) 

~1 ^i. TRes 

S 1 A (BCpm+,)+ ~ Q(A~I]BCp~+,) 

holim S 1 /x (BCpm)+ ~ holim Q(Atl]BCp,, ) . 

Both spaces are understood to be completed at p. The left hand side is 

22 + (I12P ~) by (6.7), and the right hand side is Q(Z + r ~) according to Proposition 
5.15 and Proposition 7.15. The S a_transfer 

Trf: Q(Z+ e P  ~) --* Q(BCv,.) ,  

induces a surjective homomorphism 

Ha + 2,(Z+ II~P ~) ~ H1 + 2n(BCv.,) 

for all m > 1, [MMM].  Thus to evaluate in spectrum homology the map induced 
from 

(*) (~(X+ •P o~); __} (~(22+ e p ~ ) ~  

we can compose with the S 1-transfer in the range and with the inclusion of 
O.(X+ BCv,.) into Q(X+ eP~)~, in the domain. 

The above homology calculation shows that (*) induces an isomorphism in 
homology and so defines a homotopy equivalence of spectra. Its composition with 
the Sa-transfer Q ( X + r  ~ ---} Q(*) is equal to Tr oe*. 

Recall for any space X that W h ( X )  = Wh~162162 is the homotopy fibre of 

Tr: A ( X )  ---} Q(X)  

and that 

A(X) = w h ( x )  x O(X)  

(cf. [W4]). Similarly for R = 7z[1/a] or :~p we can define Wh(X; R)~ as the fibre of 

Tr: A(X;  R ) ;  ~ Q(X)~, 

and obtain a splitting 

A (X; R)• ~- Wh(X; R)~, • Q(X)~, . 

Comparing with (9.1) we see that the cyclotomic trace gives a map 

Trc: Wh(.; R)~ ~ hofibre((~(2;+ {EP~)~ Trf , Q(*)~) .  
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If R = 77 or 77 [1/g] ,  L e m m a  9_4 shows that  the Soul6 embedding e * lands entirely in 
Wh(.;  R)~ whereas for R = 77p, we natural ly have 

d:  hofibre((~(Z+ 112P ~ ) ;  ~ Q ( , ) ;  ) --, Wh(*; ~p) ;  . 

In all three cases, the composi t ion (see (5.16) for the definition of ~) 

d ~ o Trc 
Q(X+ I~P ~ ) ;  , A( , ;  R ) ;  , Q(X+ 112P ~ ) ;  

was calculated in spectrum homology  in Corol lary  8.22; it multiplies by the p-adic 
number  

0,(e) = lira ~ (1/k)l+"Ck(e,,) 
4 - - - -  ( k , p ) =  1 

in dimension 1 + 2n. These numbers  were expressed in terms of more  c o m m o n  
number  theoretic functions in IBM, Theorem 4.9] and in [Be]. We quote the result. 
Let Lp( , ~o-") be the p-adic L-function with respect to the ( - n ) ' t h  power of the 
Teichmuller  character.  

Theorem 9.5 Let p be an odd prime. Then (i) R = 77: The element e = (~,) listed 9.3(i) 
has 0,(~) - (~o(g)-" - 1)Lp(1 + n, m - " )  
(ii) R = ~ [1 /g ] :  The element ~ from 9 .3@ has 0,(~)= (1 - g - " ) L p ( 1  + n, co-"). 
(iii) R = Zp: There exists a non trivial 2 ~ Z ;  with 2P-i = 1 such that the unit e in 

^ 

9.3 (iii) has O,(e)~7Z; for n ~ - l ( m o d p - 1 ) .  Moreover, if p >  3 and n ~ - 1  
( m o d p  - 1) then the p-adic valuation on O,(e) is vp(O,(e)) = 1 + vp(1 + n). 

Actually the results of [ B M ]  and [-Be] are a little s tronger than indicated in 
Theorem 9.5 in that  [BM]  shows that  we cannot  choose "bet ter"  units than the 
ones specified in (9.3). 

R e m a r k 9 . 6  ( i ) F o r  p = 2  and R = 7 Z [ 1 / 3 ]  we have the compat ib le  units 
e, = �89 + T~ + T~- 1 ), and  in this case ~ o Trc o d multiplies with 2 in H1 + 4,(-- ;  ~,2) 

and is zero in H 3 + 4 , ( - ;  7]2). 
(ii) Fo r  p odd, let Bk be the k' th Bernoulli number,  that  is, 

d -  1 - (Bk/k!)tk 
k = O  

The value of Lp(1 + n, e)-~)e(~p can be given modulo  pm as follows: let 
k = p m - l ( p _  1 ) -  n. Then 

Bk/k =- (pk-1 _ 1)Lp(1 + n, c~ -" ) (modp  m) . 

In part icular  if n - 0 (mod p - 1) then 

( g - "  -- 1)L,(1 + n, ~o-") 

is a p-adic unit by von Staudt 's  theorem. For  n odd, Lp(1 + n, o~-") = 0. For  n even 
and n ~ 0 ( m o d p  - 1), ( g - "  - 1) is a p-adic unit and Lp(1 + n, ~o-") is a unit if and 
only i fp  does not  divide Bp_ 1 - d ( P  - 1 - n). This happens  for all even n precisely if 
p is a regular prime. 



534 M. B6kstedt et al. 

Since Lp(1 + n, co-") = 0 for n odd, the composition Trc o e ~ is only non-zero in 
dimensions congruent to 1 (rood 4) when R = ;g or Z [l /g] .  Let us therefore project 
from (UP ~ = B S '  to BO(2), and consider 

Trc: Wh(*; 77[1/g]); ~ Q(X+ BO(2)); 

By (6.10) and  (6.11), the Soul6 embedding ~*: O.(X+r  ~ Wh( , ;7 l [1 /g] )~  
factors over Q(X+ BO(2))~, so we have the composition 

(9.7) (~(Z + BO(2))~ g Wh( , ;  2g [1/g])~ ~ Trc)  0 (  Z + SO(2)); 

Corollary 9.8 
primes. 

The composition in (9.7) is a homotopy equivalence at odd regular 

For odd primes p, 

p-2 

(9.9) O(X+r = H O(Xi)p 
i=0  

cf. [McG],  where the i'th factor has homology concentrated in dimensions ! + 2n 
with n - i(p - 1). The even components together give a splitting of (~(X+ BO(2))~. 
The S t-transfer from (~(Z § r oo) is known to be non-trivial precisely on the factor 
O(x,-2);. 

Corollary 9.10 For R = 77p and with the units of  9.3 (iii) the composition 

O(z+ee ); e Wh(,- , 7/p). , Q(X + IEP ~)2 

is a homotopy equivalence of  the factors of  (9.9) corresponding to 0 < i < p -  3. 
spec For p > 3  it induces multiplication by (1 + n )  in HI+En(Q(Xp-2)) when 

1 + 2n = - l ( m o d 2 ( p -  1)). 

The natural map from A(*)~ to A( , ,Z[1 /g] )~ ,  has fibre K(IF0)~= 
(Ira J x 7/)~. By elementary obstruction theory there are no non-trivial maps from 
Z C P  ~ into BK(IFo)~,. Consequently the Soul6 embedding 

X+II;P ~ ,A( , ;TZ[1/g])~ 

restricted to S, II2P ~ lifts to A(*)~. The composition 

~ ~ o Trc 
(9.t 1) S C P  ~176 , A ( * ) ;  , O_(Z+ IEP~176 

was evaluated in homology above, and we get 

Corollary 9.12 (i) The cyclotomic trace map 

Trc: Wh( , ) ;  ~ Q(ZBO(2));  

is split surjective if p is an (odd) regular prime. 
(ii) I t  is a rational equivalence if Lv(1 + 2n, o9 -2") ~ O for all n. 
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The rest of the section is devoted a proof of the K-theory analogue of Novikov's  
conjecture. Let F be a discrete group. We introduce the following 

Condition (C) There exists a prime p such that 

(i) Lp(1 + 2n, co -2") 4:0 for all n 

(ii) H~(BF) | q~ ~ [li_~m HdBF; 7Z/p")] | II~ 

is injective for each i. 

No prime number is known where (i) is not satisfied, and it may well be true in 
general. However, as with regular primes it seems one cannot prove that there are 
even an infinite set of primes where (i) is valid. The second condition is satisfied for 
all primes if the integral group homology HalF) = Hi(BF) is finitely generated. 

Theorem 9.13 Suppose F satisfies Condition (C). Then the assembly map 
BF+ /x A(*)--* A(BF) is rationally split injective; it induces a split injection on 
homotopy groups of spectra. 

Proof Let us first note that we may use Waldhausen's decomposition of A (X) as 
a product of Q(X) and Wh(X)  = WhOirf(x) to divide the problem into two. We 
need to show that the two maps 

BF+ ^ 9_(*) -+ Q(BF) 

BF+ /x W h ( . ) ~  Wh(BV) 

are rationally injective. The first is obvious. For the second we use that the 
cyclotomic trace commutes with the assembly maps, cf. (6.2), so that we have the 
homotopy commutative diagram 

BF+ A Wh( . )  

J, 1 t, Trc 

BF+ /x TC(*,p)  

We further compose with 

klA 
, Wh(BF) 

J. Trc 
Prc 

, TC(BF, p ) .  

~: TC(X,  p) -+ c(x, p), 

complete at p, and use (5.15) to get the diagram 

BF+ ^ Wh(*) ~ Wh(BF) 
(*) + + 

BF+ ^ O.(Z+CP~ -+ h @ m  Q(ECp. Xc, .ABE); . 

The bot tom horizontal map I~rc is the composition 

1 A t .  
BF+ A Q(Z+r176176 ,BF+ A Q(BCp.) 

Q(ECp. Xc,~ BF) 

l x i  
Q(ECp. Xc,~ ) 
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with t,: Q ( Z + C P  ~) ~ Q(BCp,)  the relevant S~-transfer, and i: B F ~  A B F  the 
inclusion in the constant loops, cf. the discussion following (6.3). 

The reader is reminded that the smash products in (*) take place in the category 
of infinite loop spaces (or spectra); so by definition 

Br+ ^ O(Z+ c P |  _~ O(z+ (Br • C P  ~)) 

and the assembly map P rc in (*) is induced from 

1 x i: C P  ~ x B F  --.'. ~ P ~  x A B F  

where i is the inclusion into the constant loops. There are S'-equivariant maps 

i 
A B F  + Prm ~ A t l l B F  + , B F  + 

where as before A m B F  is the component of homotopically trivial loops. The 
inclusion i is non-equivariantly a homotopy equivalence, so induces an equivalence 

Q(BCp,, x B F )  , Q(ECp,, Xc,. A m B F )  �9 

Its inverse composed with the map induced from pr m gives 

Ptal: Q(ECp.  x c r A B F  ) --* Q(BCp.  x B F )  . 

From (*) we then get the homotopy commutative diagram 

Br+ ^ Wh( , )  , W h ( B F )  

( * * )  ,~1 ^ •oTrc ,~ Pmo~oTrc 

Q(BF+ ^ Z+ll~P~~ T , h o l i m Q ( B C p ,  x B F ) f ,  . 

We show that the bottom horizontal map induces an injection on rational 
homotopy groups. For any spectrum the rationalized Hurewicz map is an isomor- 
phism, so 

n, . (Q(BF+ ^ S + t I ~ P ~ ) ) |  ~- ,1-I~.P~ ^ z + r 1 7 4  

= Jq(Br+ ^ Z+ CP ~) | Q 

is an isomorphism. Consider the homomorphism 

n,,(holim Q(BCp.  x B F  )f, ) --* lira nm(Q(BCp, x B F  )f, ) 

lim Hm(BCp.  x BF; Z / p  n) 
( 

lim Z ~ H, ._  El- 1 (BF; Z /p" )  . 
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Where the last arrow is from the K/inneth theorem. The composit ion of  this 
homomorph i sm with T,  from (**), 

S ~H m_ 21-I(BF) | I1~ ~ X ~ holim Hm-2i- ,(BF; 7l/p") | 
t 

n 

can be identified with the (direct sum of the) natural homomorph i sm induced from 
reducing f r o m  7/ coefficients to 7Z/p" coefficient. This follows because the S 1- 
transfer Q(X+ 112P ~) --. Q(BCp,) in odd dimensional spectrum homology surjects 
7 / t o  7//p", cf. [ M M M ] .  Condit ion C(ii) now tells us that T.  | Q is injective. 

We next use the Soul6 embedding from (9.7) 

~: O~(Z + BO (2)) --* Wh ( *; 7/[- 1/9-] ) ;  

whose composi t ion with the cyclotomic trace is multiplication with 
(1 - 9-2k)Lp(1 + 2k, co -2k) is spectrum homology  in degree 4k + 1 by (9.5.ii). 
F rom (6.20) we know that the 1-connected cover of Wh(*; Z[1/9]);  is rationally 
equivalent to Wh(,)p,  so 

nm((Br+ ^ Wh(, ) ) ;  ) |  ~ ~,((Br+ ^ Wh(,;7/[1/g])); )| 

for m > 1. With this and the above, we are reduced to showing that (1 A c~ o Trc o ~ )  
induces an isomorphism from the rational vector space 

lim H,(Z+(BF x BO(2)); 7//pS) | Q = Z *  lim Hn-4k-,(BF; Z/p s) | 
s k > l  s 

to itself. The induced map on the k'th summand is multiplication with 
( 1 - g - 2 k ) L p ( 1  + 2k, co -2*) which we assume in Condit ion C(i) to be non- 
trivial. [] 
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