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1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgroups or departments of scien- 

tists and engineers.’ I t  costs about the 
same as a high-end superminicomputer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
($500,000 to $1 million), but i t  can achieve 
about one-third to  one-half the perfor- 
mance of a supercomputer costing $10 to 
$20 million. This results f rom using high- 
speed, air-cooled, emitter-coupled logic 
technology in a product that includes 
many architectural innovations. 

The Cydra 5 is a heterogeneous multi- 
processor system. The two types of proces- 
sors are functionally specialized for the 
different components of the work load 
found in a departmental setting. The 
Cydra 5 numeric processor, based on the 
company’s directed-dataflow architec- 
ture,* provides consistently high perfor- 
mance on a broader class of  numerical 
computations than d o  processors based on 
other architectures. It is aided by the high- 
bandwidth main memory system with its 
stride-insensitive performance. The inter- 
active processors offload all nonnumeric 
work from the numeric processor, leaving 
it free to  spend all its time on the numeri- 
cal application. Lastly, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 / 0  processors 
permit high-bandwidth 1/0 transactions 

To meet 
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targets for a new 

minisupercomputer, a 

team of computer 
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enlightening- 
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with minimal involvement from the inter- 
active or numeric processors. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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lnl’/ Con5 on Syslerns Sciences, Jan. 3-6. 1989, 
Kailua-Kona, Hawaii. 

work done at TRW Array Processors and 
at ESL (a subsidiary of TRW). The poly- 
cyclic architecture3 developed a t  
TRW/ESL is a precursor to the directed- 
dataf low architecture developed at  
Cydrome starting in 1984. The common 
theme linking both efforts is the desire to  
support the powerful and elegant dataflow 
model of computation with as simple a 
hardware platform as possible. 

The driving force behind the develop- 
ment of the Cydra 5 was the desire for 
increased performance over superminis on 
numerically intensive computations, but 
with the following constraint: The user 
should not have to discard the software, 
the set of  algorithms, the training, or the 
techniques acquired over the years. As a 
result, the user would be able to  move up 
in performance from the supermini to the 
minisuper in a transparent fashion. This 
transparency is important for a product 
such as the Cydra 5 ,  which is aimed at the 
growth phase of  the minisupercomputer 
market. Such a product must cater to a 
broader and less forgiving user group than 
the pioneers and early adopters who pur- 
chased first-generation minisupercom- 
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puters. Ideally, a departmental super- 
computer will display none of the idiosyn- 
crasies of typical supercomputers and 
minisupercomputers and, in fact, will 
project the “feel” of a conventional 
minicomputer, except for its much higher 
performance on numerically intensive 
tasks. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Cydra zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 system 
arc hi tec ture 

From the outset we were determined not 
to build an attached processor. The clum- 
siness of the host processor/attached 
processor approach leads to difficulty of 
use and loss of performance. The pro- 
grammer must manage two computer sys- 
tems, each with its own operating system 
and its own separate memory. The pro- 
grammer must explicitly manage the 
movement of programs and data back and 
forth between the two systems. Since the 
data transfer path is slow relative to the 
processing speed of both computers, it 
becomes a performance bottleneck. Pro- 
gram development tools for the attached 
processor, such as compilers and linkers, 
run on the host. To avoid an unhealthy 
dependence on a single brand of host com- 
puter, this software must be maintained on 
multiple brands of host computer. 

A self-sufficient, stand-alone computer 
has none of these problems. On the other 
hand, it assumes the burden of perform- 
ing all of the general-purpose, nonnumeric 
work-such as networking, developing 
programs, and running the operating 
system-in addition to the numerically 
intensive jobs for which it was originally 
intended. As we will show later, the trade- 
offs made in designing a supercomputer 
and a general-purpose processor are often 
diametrically opposed. As a result, each 
ends up being the most cost effective for 
a different class of jobs. Whereas a super- 
computer may have 20 to 30 times the per- 
formance of a general-purpose processor 
on numerically intensive tasks, it may have 
only three or four times the performance 
on general-purpose tasks. When price is 
considered as well, the supercomputer 
ends up having poorer cost-performance 
than the general-purpose processor on 
nonnumeric tasks, since its expensive 
floating-point hardware is irrelevant. 

We wanted the Cydra 5 to be not only 
a stand-alone computer but also a depart- 
mental supercomputer. By this we mean a 

number of things. It should be affordable 
to  a small group or department of 
engineers or scientists, which means an 
entry-level price under zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$500,000. It should 
be easy to use by such a group and not 
require a “high priesthood” of skilled sys- 
tems analysts catering to the idiosyncrasies 
of the machine. Lastly, it should be 
designed to handle all of the work load 
created by a department, not just the 
numerical tasks. As noted, this includes 
tasks such as compiling, text editing, 
executing the operating system kernel, and 
networking-tasks for which a supercom- 
puter architecture is not cost effective. 

These goals led to one of the key deci- 
sions regarding the Cydra 5 :  to have a 
numeric processor, highly optimized for 
numerical computing, and a tightly inte- 
grated general-purpose subsystem that 
would handle the nonnumeric work load. 
In other words the Cydra 5 was to be a het- 
erogeneous multiprocessor, with each 
processor functionally specialized for a 
different, but complementary, class of 
jobs. 

Initially, we planned to acquire a 
general-purpose processor on an original- 
equipment-manufacturer basis and inte- 
grate into it a numeric processor of our 
own design. We had determined that we 
needed about 10 million instructions per 
second of computation capability from the 
general-purpose processor to handle the 
1 / 0  load imposed by the application run- 
ning on the numeric processor, as well as 
the rest of the general-purpose work load. 
We soon discovered that a superminicom- 
puter in this performance range would 
itself have a list price o f  abou t  
$500,000-the targeted price for the entire 
Cydra 5 !  We found consistently that lower 
priced general-purpose computation 
engines whose performance and price were 
closer to what we wanted had underdevel- 
oped 1 / 0  capability by departmental 
supercomputer standards. This situation 
remains unchanged, i f  you examine the 
current crop of workstations and super- 
workstations. The only workable scheme 
that met both our cost and performance 
constraints was to design our own general- 
purpose subsystem consisting of multiple 
microprocessor-based processors. 

Following a careful evaluation, we 
chose the as yet unannounced Motorola 
68020 microprocessor. The various RISC 
(reduced instruct ion set computer)  
microprocessors were only on the drawing 
boards at the time. Around the 16-MHz 

68020 we designed a fast interactive 
processor incorporating a 16-Kbyte, zero- 
wait-state cache. A scheme developed by 
two of the authors4 maintained cache 
coherency in this multiprocessor envi- 
ronment. 

We could not afford to develop an oper- 
ating system from scratch, so we selected 
Unix, the only nonproprietary operating 
system available. Every workstation and 
minisupercomputer vendor has had to 
make the same choice for the same reason. 
As a result, Unix has become the de facto 
standard operating system for the 
engineering and scientific community. The 
more difficult choice was between the two 
competing flavors of Unix: Berkeley 4.2 
and AT&T System V.  Although Berkeley 
4.2 was clearly dominant in 1984-85, we 
believed that with the addition of virtual 
memory and networking, and with 
AT&T’s more aggressive support, System 
V would pull ahead by the time Cydra 5 
was introduced. Accordingly, we took a 
deep breath and jumped on the System V 

bandwagon. 

Although Cydrix, Cydrome’s imple- 
mentation of Unix, complies with the 
System V interface definition, i t  does con- 
tain a number of extensions, primarily 
for performance reasons. For use with a 
supercomputer, Unix is a rather low- 
performance, uniprocessor operating sys- 
tem. We rewrote the kernel significantly to 
symmetrically (not in a master-slave fash- 
ion) distribute i t  over multiple interactive 
processors so that one or more processors 
could be simultaneously executing in ker- 
nel mode. This allowed us to bring the 
aggregate computing capability of multi- 
ple processors to bear on the task of sup- 
porting the 1 / 0  for the numeric processor 
application. The file and 1 / 0  systems also 
received numerous enhancements. 

As a consequence of  this series of design 
decisions, the Cydra 5 Departmental 
Supercomputer is two computers in one: 
a numeric processor that is the functional 
equivalent of other minisupercomputers, 
and a general-purpose multiprocessor that 
plays the role of a front-end system (Fig- 
ure 1). However, these two subsystems are 
very tightly integrated. They share the 
same memory system and peripherals and 
are managed by the same operating sys- 
tem. Because of this, the Cydra 5 with 
Cydrix presents the illusion of a simple 
uniprocessor system to the user who does 
not wish to be bothered with what is inside 
the black box. 
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Figure 1. The Cydra 5 heterogeneous multiprocessor. The general-purpose subsystem consists of up to six interactive proces- 
sors, up to 64 Mbytes of support memory, one or  two 1/0 processors, and the service processor/system console connected 
over a IOO-Mbyte/s system bus. Each 1/0 processor handles up to three VME buses, to which the peripheral controllers are 
attached. Also connected to the system bus, via a lOO-Mbyte/s port, is the pseudorandomly interleaved main memory. The 
numeric processor has three dedicated ports into the main memory, each providing lOO-Mbyte/s bandwidth. One of these is 
for instructions; the other two are for  data. The main memory and support memory share a common address space and are 
both accessible from any processor. 

The directed-d 
architecture 

ataflow 

Assuming the use of the fastest reaso1.- 
able technology, any further increase in 
performance requires the effective exploi- 
tation of parallelism in one form or 
another. 

Fine-grained versus coarse-grained par- 
allelism. There are two major forms of 
parallelism: coarse-grained and fine- 
grained. Coarse-grained parallelism, 
popularly referred to as parallel process- 
ing, means multiple processes running on 
multiple processors in a cooperative fash- 

ion to perform the job of asingle program. 
In contrast, fine-grained parallelism exists 
within a process at the level of the individ- 
ual operations (such as adds and multi- 
plies) that constitute the program. Vector, 
SlMD (single-instruction, multiple-data), 
and the attached-processor, or VLlW 
(very long instruction word), architectures 
are examples of architectures that use fine- 
grained parallelism. 

Coarse-grained parallelism is com- 
plementary to fine-grained parallelism in 
that they can be used in conjunction. How- 
ever, coarse-grained parallelism is not user 
transparent, since state-of-the-art com- 
pilers cannot, except in limited situations, 
take a sequential program written in a lan- 

guage such as Fortran and automatically 
partition it into multiple parallel processes. 
The user must explicitly restructure the 
program to capitalize on this type of par- 
allelism. Since this did not satisfy our 
criteria for ease of use, we focused on the 
exploitation of fine-grained parallelism. 

A bottom-up perspective. The final 
objective is to minimize the execution time 
of any given program. We can express this 
execution time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT as 

T = N x C X S  

where Nis the total number of instructions 
that must be executed, C is the average 
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number of processor cycles per instruc- 
tion, and S is the number of seconds per 
processor cycle. To a first approximation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, and S are affected primarily by the 
compiler's optimization capability, the 
instruction set architecture, and the imple- 
mentation technology, respectively. How- 
ever, the picture is more complicated, and 
decisions that decrease one factor may end 
up increasing another. 

The techniques used to minimize Thave 
been many and varied. For general- 
purpose processors, the tradit ional 
approach was to reduce N at the expense 
of a smaller increase in C. The general 
thrust was to  better utilize the micro- 
parallelism present in horizontal ly 
microcoded machines by defining more 
complex instructions with more internal 
micro-parallelism in the hope that Nwould 
decrease more sharply than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC would 
increase. This approach is now termed 
CISC (complex instruction set computer). 
By contrast, the RISC approach focuses 
on the use of very simple, hardwired, pipe- 
lined instructions exclusively to reduce C 
and S. The resulting increase in N is 
minimized by the use of code optimization 
techniques in the compiler for an overall 
reduction in T. Although both approaches 
have been successful at different times and 
under different circumstances, they are 
not sufficient to meet the performance 
objectives of supercomputers. 

The emphasis in supercomputers is on 
execution of arithmetic (particularly 
floating-point) operations. The starting 
point for all supercomputer architectures 
is multiple, pipelined, floating-point func- 
tional units, in addition to any needed for 
integer operations and memory accesses. 
The fundamental objective is to keep them 
as busy as possible. Assuming this will be 
achieved, the hardware must be equipped 
to provide two input operands per func- 
tional unit and to accept one result per 
functional unit per cycle. Furthermore, 
since the results of one operation will be 
required as inputs to subsequent opera- 
tions, some form of interconnection is 
needed between the result and input buses. 
Finally, since results are not always used 
immediately after generation, storage in 
the form of one or more register files is 
needed. Figure 2a shows the data paths of 
a generic supercomputer. The details, o f  
course, vary from one machine to the next; 
the number and types of functional units, 
the number of register files, and the struc- 
ture of the interconnect can all be 
different. 

Interesting and rather fundamental 

Interconnect 

Register zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I 

(a) 

Context register matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,I 

I '  
I 

I 

Figure 2. (a) Generic supercomputer data paths. (b) Generic directed-dataflow- 
processor data paths. Each row of cross-point register files in the context register 
matrix can be written into by only a single functional unit, and all register files in a 
single row have identical contents. Since each of the register files in a row can be 
read in parallel, each row is logically equivalent to a single multiported register file 
capable of one write and multiple reads per cycle. Each of the cross-point register 
files can be written to by only a single functional unit and can be read by only a sin- 
gle input of a single functional unit-the one associated with that column of cross- 
point register files. This, along with the property that each register file is capable of 
one read and one write each cycle, guarantees conflict-free access to the context 
registers for every functional unit for  inputs as well as outputs. 

differences exist between the data paths of through the integer arithmetic-logic unit or 
a scalar processor and those of a super- the cache, and back to the GPRs. This 
computer. In the scalar processor the crit- makes it relatively easy to keep the physi- 
ical data paths consist o f  the circuit from cal distances small, the pipelining moder- 
the general-purpose registers (GPRs), ate, and the cycle time short. In contrast, 
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critical data paths in a supercomputer 
must include multiple floating-point pipe- 
lines, large numbers of register files, and 
a complex interconnect. The physical dis- 
tances are necessarily larger, and there are 
more electrical loads to  be driven on  each 
bus. Both factors cause a larger fraction of 
the cycle to be consumed in merely trans- 
ferring data from one point to  another. 
This makes it necessary t o  increase the 
depth of pipelining to  avoid compromis- 
ing the cycle time. Thus the trade-off is 
short pipeline latencies and better sequen- 
tial performance versus multiple, deep 
pipelines and better parallel performance. 

All the hardware in a supercomputer 
can be justified only if it is kept well uti- 
lized. But keeping all these pipelines busy 
requires that multiple operations be issued 
(as opposed to being in execution) at every 
cycle. This is impossible in conventional 
scalar architectures, since a maximum of 
one instruction is issued per cycle. 

Two styles of uniprocessor architecture 
have been developed to circumvent this 
bottleneck. One is the vector architecture, 
which attempts to reduce zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN by the use of 
very complex instruct ions-vector 
instructions-where a single vector 
instruction does the work of multiple, 
identical scalar operations. Once a few 
vector operations have been launched, 
multiple operations are issued per cycle, 
one each by every vector operation that is 
active. This is philosophically akin to the 
ClSC approach and suffers from the stan- 
dard problem of complex instructions: 
They work well when they exactly fit the 
job that must be done, but they are useless 
i f  the task differs even slightly. 

The second, more flexible, approach is 
an architecture in which multiple opera- 
tions can be issued in a single instruc- 

W e  can view this as  a n  
extension of the SIMD architecture; 
instead of the same opcode’s being applied 
to all the pairs of input data,  as in SIMD, 
distinct opcodes are used. The formal 
name for such an architecture might be 
single instruction, multiple operation, 
multiple data (SIMOMD), or MultiOp for 
short. Other terms used for such an archi- 
tecture include horizontal7 or very long 
instruction word (VLIW).‘ We can also 
view this as a generalization of the RlSC 
architecture, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC is reduced to less 
than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 by issuing multiple operations (or 
multiple instructions, f rom a scalar 
processor point of view) per cycle. 

When we started in 1984, MultiOp exe- 
cution was used in a number of attached- 
processor products-for example, the 

t i o n , ? . 3 . c  - 

graninling. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn here the perspestiw is \er! 
bottom-up. I n  miiroprogranimirig, thc 
hardware is viewed as a collection of func- 
tional units and buses, and the task of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA supercomputer 

architecture must do 
well on all types of 

numerical 

computation it might 

encounter. 

FPS-164.6 Expert programmers were able 
to  coax much better sustained perfor- 
mance out of these products than could be 
achieved with vector processors having the 
same peak performance. But program- 
ming these products for high performance 
had all the complexities associated with 
microprogramming, and some more 
besides.3,8 The problem resulted from the 
processors’ having been designed entirely 
from a bottom-up, hardware perspective, 
with no  thought to how they were to be 
programmed or the obstacles the compiler 
writer would face. While we felt i t  con- 
stituted a step in the right direction, i t  was 
clear to  us that the attached-processor 
architecture was unacceptable. Although 
the general hardware structure of the 
directed-dataflow architecture was dic- 
tated by the considerations discussed 
above, the subtler aspects resulted from a 
top-down thought process driven by our 
model of computation. 

The model of  computation. Although 
there is a tendency to categorize architec- 
tures superficially by their hardware attrib- 
utes (pipelined or VLIW, for example), we 
believe that the underlying models of com- 
putation and usage are what really matter. 
They determine the context within which 
all of the design decisions are made, and 
they lead to architectural features that, 
though subtle, have a major impact on the 
performance and breadth of a product’s 
applicability. Just as pipelining has been 
applied to a number of quite different 
architectures, so too we find that theabil- 
ity to issue multiple operations per cycle 
has been used in at least three types of 
architectures with quite distinct underly- 
ing models o f  compu ta t i on :  the  
microprogrammed attached-processor 
architectures, the VLIW architecture, and 
the directed-dataflow architecture. 

The attached processors borrowed their 
model of computation f rom micropro- 

microprogrammer is to  determine on  a 
cycle-by-cycle basis which functional unit 
inputs and outputs connect to which buses. 
The microprogram is generally viewed as 
a sequence of micro-operations, and any 
parallelism needed to exploit a horizontal 
microarchitecture is exposed on  a local- 
ized, “peephole” basis. Microprograms 
for instruction set interpretation put very 
little emphasis on  iterative constructs 
(loops) but a lot on  branching. When an 
architecture with these underlying assump- 
tions is adopted for numerical processing 
(where the emphasis is on  loops), a great 
deal of programming complexity results if 
one wishes to fully exploit the opportuni- 
ties for parallelism.’ 

Although the VLIW school of thought, 
too, has its roots in microprogramming, 
the VLIW architecture is properly viewed 
as the logical extension to the scalar RlSC 
architecture. The underlying model is one 
of scalar code to be executed, but with 
more than one operation issued per cycle. 
The obstacle to good performance is 
the high frequency of branches in typical 
programs, a problem common to micro- 
programming.  Consequent ly,  t race 
scheduling,’ originally developed for 
microprogramming, is used with VLIW 
processors. No special consideration- 
beyond the standard scalar processing 
compiler technique of loop unrolling-is 
given to loops in software, and none what- 
soever is given in hardware. Using trace- 
scheduling techniques, VLlW can provide 
good speedup on scalar code, and when 
loop unrolling is used, some further 
speedup on  iterative computations occurs 
as well. However, given the lack of 
architectural emphasis on  loops, VLIW 
does not d o  as well on vectorizable com- 
putations as a vector processor does. 

A supercomputer architecture must do  
well on all types of numerical computation 
i t  might encounter. This includes straight- 
line or sequential code as well as branch- 
ing scalar code; but ciearly of equal or 
greater importance are the iterative con- 
structs that constitute the heart of numer- 
ical computations. Loops, whether they 
are vectorizable or of the type that con- 
tains recurrences, conditional branching, 
or irregular references to memory, must 
get explicit support in the hardware. 
The vector architecture provides hardware 
support, but only for a limited subset of 
loops (those without recurrences and con- 
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ditional branches), reflecting a restrictive 
model of computation. If greater general- 
ity is required in the capabilities of the 
architecture, a more general model of 
computation is needed, one that does well 
not only on scalar and vector code like the 
VLIW and vector architectures, respec- 
tively, but also on the important class of 
loops that possess parallelism but are not 
vectorizable. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The dataflow model of computation. 

By making execution of an operation con- 
tingent only on its inputs' being available 
and a functional unit's being free to  exe- 
cute the operation, the dataflow model of 
computation exposes and exploits every bit 
of parallelism in the computation regard- 
less of its form." Thus it provides an 
excellent basis for a fine-grained parallel 
architecture of broad applicability. 

However, most dataflow research 
assumes that the program is written in a 
dataflow or functional language, whereas 
we had to face the real world of Fortran 
programs. Consequently, we had to base 
our architecture on an extended depen- 
dency graph model that included the con- 
cept of memory and the corresponding 
memory read and write operations. This, 
in turn, required that the model include the 
concept of antidependency and output 
dependency," in addition to that of data 
dependency. Also, to  reflect the rather 
unstructured nature of Fortran control 
constructs, we had to include a richer con- 
trol dependency model that went beyond 
nested IF-THEN-ELSEs. Nevertheless, 
the basic philosophy was unchanged; an 
operation is a candidate for execution as 
soon as all its incoming dependencies, of 
all types, have been satisfied. Notwith- 
standing the differences between the 
dataflow model of computation and our 
dependency graph model, we will, for the 
sake of convenience, refer to our model of 
computation as a dataflow model. 

The dataflow model has the richness 
needed to yield parallelism on both scalar 
and iterative computation. I n  scalar code, 
parallelism is restricted by the presence of 
conditional branches and their associated 
control dependencies. Dataflow gets 
around this problem with a mode of oper- 
ation known as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeager zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAexecution, which 
causes operations to be executed before i t  
is certain that their execution is needed 
(Figures 3a-3f). This is equivalent to selec- 
tively removing certain control depen- 
dence arcs to increase the parallelism. 

In iterative computations, dataflow 
dynamically unrolls a loop the same num- 

The dataflow model 

has the richness 

needed to yield 

parallelism on both 

scalar and iterative 

computation. 

ber of times that the loop was supposed to 
be executed.'" This generates the maxi- 
mum parallelism possible, limited only by 
the inherent dependencies in the computa- 
tion. (The amount of this parallelism actu- 
ally used depends on the number of 
functional units present.) The dataflow 
architecture's ability to exploit whatever 
parallelism exists in all of these constructs 
makes it the architecture best able to 
exploit all of the fine-grained parallelism 
existing in programs. Furthermore, since 
parallelism is achieved without having to 
make any algorithmic changes to the pro- 
gram, the dataflow architecture delivers 
performance increases transparently. For 
these reasons the dataflow architecture 
serves as the basis for the Cydra 5 .  

Directed dataflow. The directed- 
dataflow architecture is also significantly 
influenced by another philosophy, one of 
moving complexity and functionality out 
of hardware and into software whenever 
possible; this is the cornerstone of the 
RISC concept as well. The benefits of this 
philosophy are reduced hardware cost and 
often the ability to make better decisions 
at compile time than can be made at run- 
time. In  the directed-dataflow architec- 
ture, the compiler makes most decisions 
regarding the scheduling of operations at 
compile time rather than at runtime-but 
with the objective of emulating faithfully 
the manner in which a hypothetical 
dataflow machine with the same number 
of functional units would execute a partic- 
ular program. 

The compiler takes a program and first 
creates the corresponding dataflow graph. 
I t  then enforces the rules of dataflow exe- 
cution, with full knowledge of the execu- 
tion latency of each operation, to produce 
a schedule that indicates exactly when and 
where each operation will be performed. 
While scheduling at compile time, the 
compiler can examine the whole program, 

in effect looking forward into the execu- 
tion. It thus creates a better schedule than 
might have been possible with runtime 
scheduling. An instruction for  the 
directed-dataflow machine consists of a 
time slice out of this schedule, that is, all 
operations that the schedule specifies for 
initiation at the same time. Such an 
instruction causes multiple operations to 
be issued in a single instruction. 

So far, this is the same as any other 
VLIW processor. However, more than the 
ability to issue multiple operations per 
cycle is needed to efficiently support the 
dataflow model of computation in a 
compiler-directed fashion, especially when 
executing loops. Specifically, the directed- 
dataf low architecture provides two 
architectural features: the context register 
matrix and conditional scheduling control. 

The context register matrix. Unlike 
the generic structure shown in Figure 2a, 
a directed-dataflow machine combines 
the register storage and the interconnect 
between functional unit outputs and 
inputs into a single entity known as the 
context register matrix, as shown in Figure 
2b. In general the interconnect structure 
can be viewed as a sparse crossbar with 
certain cross-points absent but with a reg- 
ister file at each cross-point present. The 
context register matrix guarantees con- 
flict-free access to the context registers 
for every functional unit. This in turn 
guarantees that once a schedule has been 
prepared by the compiler, it will not be ren- 
dered infeasible because of contention in 
getting data into or out of the context 
registers, which is one of the fundamental 
problems with the attached-processor 
architectures.' 

When executing loops in a maximally 
parallel dataflow fashion, each iteration is 
viewed as a distinct computation execut- 
ing in parallel with the other iterations. As 

with similar situations where the same 
code is being executed by distinct parallel 
computations, each iteration must have its 
own context so that when two iterations 
apparently refer to the same variable or, 
in this case, the same register (since they 
are both executing the same code), the 
physical locations actually accessed are 
distinct. When concurrent processes are 
forked, this is achieved by providing each 
process with a duplicate name space. In the 
case of recursive invocations of the same 
procedure, this is handled by providing 
separate stack frames. Each invocation's 
reference to a particular local variable is in 
the context of its own stack frame. Like- 
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TI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- x(i) + X(J) 
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tnl - xit) ; R1 
tn2 - X(J) ; R2 
T1 - tnl + tn2 ; A1 
tn3 - K'I ; M1 
ln4 - (tn3.GT.J) : C1 
IF tn4 GOTO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA300 ; E1 

tn5 - Y(l) ; R3 
tn6 - In5 + T1 ; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA2 
Y(1) - tn6 ; w1 
GOT0400 : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA82 

tn7 - Y(J) ; R4 
tn8 - T1 ~ tn7 ; S1 
Y(J) - tn8 ; w  

__ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 3. (a) A fragment of Fortran code. (b) Expansion of the code into individual operations with a label on the right-hand 
side for each operation. The scalar variables K, I ,  and J are assumed to be in registers already. (c) Sequential code schedule 
assuming a seven-cycle latency for memory reads and a two-cycle latency for all other operations. The code fragment consists 
of three basic blocks. BB2 and BB3 can be entered from BBl as well as from elsewhere. A traversal of this code fragment takes 
19 cycles. Note the scheduling of operations in the delay slots of the delayed branch. (d) The dataflow graph for this code frag- 
ment. Solid arcs are data dependencies. Dashed arcs are control dependencies that enable or disable operations, depending on 
the Boolean result of the comparison C1. Note that branch operations have no role in the dataflow model of computation. (e) 
Schedules resulting from the execution of the dataflow graph (assuming the ability to initiate two memory operations and one 
other operation per cycle). Operation A1 from BB1 is initiated in parallel with the execution of either BB2 or BB3. The extent 
of the overlap between the execution of BBl with the execution of either BB2 or BB3 is determined by the control dependency 
from C1 to R3 or R4, which determines whether BB2 or BB3 should be executed. (f) Eager execution of R3 or R4 results from 
the removal of the control dependency from C1. Now both R3 and R4 are initiated before it has been determined whether BB2 

or BB3 is to be executed. As a result the total execution time is reduced. (g) Directed-dataflow code that achieves the same 
effect as in (e). Operation A1 has been moved from BB1 into both BB2 and BB3. However, to preserve the original semantics, 
it should be executed only if BB2 or BB3 was entered from BB1. Therefore, both copies of A1 have the predicate correspond- 
ing to BB1 even though they are in BB2 and BB3. (h) Directed-dataflow code that performs the eager execution of R3 and R4 

by moving them up into BB1. (They must also be copied into all basic blocks from which they can be entered.) The total execu- 
tion time for this fragment of code is now 12 cycles. 
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wise, the maximally parallel execution of 
loop iterations requires that each itera- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

661 

tion’s register references be within the con- 
text of the corresponding zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiteration frame, 
that is, a set of registers allocated to  a par- 
ticular iteration. 

The directed-dataflow architecture has 
the architectural facilities needed to  
dynamically allocate iteration frames at 
runtime and the requisite addressing capa- 
bilities to reference registers in both the 
current iteration frame and,  in the case of 
recurrences, in previous iteration frames. 
Surprisingly, these architectural facilities 
incur only a modest hardware cost, namely 
the ability to reference the context registers 
with an instruction-specified displacement 
from a base register containing the itera- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
tion framepointer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(IFP). Since the IFP is 
decremented each time a new iteration is 
initiated, each iteration of the loop 
accesses a distinct set of physical registers. 
Any result computed during the same or 
a previous iteration can be accessed by 
using the appropriate displacement from 
the current value of the IFP. This displace- 
ment can be computed by the compiler, 
since it knows the difference between the 
current value of the 1FP and the value at 
the time the result was generated, as well 
as the original displacement from that 
value of the IFP. Some interesting regis- 
ter allocation techniques in the compiler 
are central to  the efficient use of the con- 
text registers, but they are beyond the 
scope of this article and will be reported 
elsewhere. 

Conditional scheduling control. In a 
sequential model of computation, the pro- 
gram consists of a set of basic blocks, each 
containing a list of instructions. Only one 
basic block is active at any one time. The 
equivalent dataflow view is that a program 
consists of a set of basic blocks, each con- 
sisting of a dependency graph of opera- 
tions executed in a parallel fashion. 
Conceptually, any given operation has two 
types of incoming dependencies: the data 
(input operands) dependencies, which 
determine when the operation can be 
issued, and a control dependency from an 
operation-in another basic block-that 
computes the predicate. The predicate 
determines whether the operations in a 
basic block are to be issued at all. The 
predicate is true and the operations are 
issued if and only if control would have 
flowed to that basic block in the cor- 
responding sequential program. 

Since an operation can be executed as 
soon as its data and control dependencies 
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Figure 4. Relationship between various uniprocessor architectures. On vectorizable 
loops, directed-dataflow i s  slightly better than the vector architecture, which i s  bet- 

ter than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVLIW, which in turn i s  better than the scalar architecture. O n  sequential 
code, directed dataflow i s  at least as good as VLIW, which i s  better than both the 
vector and scalar architectures. On nonvectorizable loops, directed dataflow i s  sig- 
nificantly better than all three architectures. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
have been satisfied, i t  is possible to have 
multiple basic blocks active at the same 
time (Figures 3e and 30, particularly in the 
case of loops, whether they have condi- 
tional branching within the body of the 
loop or not. This generates the desired par- 
allelism but is possible only because 
dataflow can have multiple loci of control 
active simultaneously. The directed- 
dataflow architecture has the goal of 
achieving the same effect as dataflow, but 
with a single locus of control. This is 
achieved by including in each basic block 
operations from other basic blocks that 
should be executing in parallel (Figures 39 
and 3h). This is a form of code motion, in 
this case for enhancing the parallelism in 
the program. 

An explicit predicate is unnecessary in 
the sequential model of computation, 
since all operations in a single basic block, 
by definition, have the same predicate. 
This predicate is implied by the fact that 
the program branched to  this basic block; 
that is, i t  decided that this basic block was 
to  be executed. Thus the predicate’s being 
true and the flow of control’s arriving at 
the basic block are synonymous. 

But these two concepts must be decou- 
pled in the case of directed dataflow, since 
a basic block can contain operations that 

in the sequential program would have been 
in another basic block, and thus under a 
different predicate. Consequently, each 
operation is provided with a third input- 
the predicate-in addition to the two nor- 
mal ones. An operation is issued only i f  
control flows to its basic block and the 
predicate is true. The predicate input speci- 
fier specifies a register in a Boolean regis- 
ter file, which, for historical reasons, is 
termed the iteration control register (ICR) 
file. Boolean values, which result from 
compare operations, may be transferred 
into the ICR. In loops, each iteration 
generates predicates corresponding to the 
conditional branches (including the loop 
exit conditional) within the loop body. 
Therefore, the ICR too must support the 
capability for allocating iteration frames. 

With hardware support in the form of 
the context register matrix and conditional 
scheduling control, the compiler can 
generate code for the directed-dataflow 
machine that retains the parallelism of the 
dataflow architecture. At the same time, 
i t  capitalizes on the efficiencies of moving 
scheduling from runtime to compile time. 
I t  is this architectural support for the 
dataflow model of computation that sets 
directed dataflow apart from other VLIW 
architectures. 

Comparison with other fine-grained 
architectures. Figure 4 shows the relation- 
ship between various architectures that 
exploit fine-grained parallelism. I t  uses 
two criteria: performance on iterative 
computations and performance on scalar 
code. At opposite ends of the spectrum are 
the (dynamically scheduled) dataflow 
architecture, which can exploit all the par- 
allelism, and the scalar architecture, which 
exploits none of it. The vector architecture 
is better than the scalar on the restricted 
class of vectorizable computations, but no 
better on scalar code. The VLIW architec- 
ture does better than the scalar architecture 
on scalar code and much better on iterative 
computations, but it does not do as well as 
the vector architecture on vectorizable 
loops. This is because the loop-unrolling 
techniques that i t  uses can yield only short 
vector performance levels. On scalar codes 
the directed-dataflow architecture is at 
least as good as the VLlW architecture and 
better than the vector architecture. It is 

slightly better than the vector architecture 
on vectorizable loops, since strip mining 
(Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 )  is unnecessary, and i t  is far bet- 
ter on nonvectorizable loops. Directed 
dataflow, as a result of its architectural 
support for dataflow, is better than the 
VLIW architecture on iterative compu- 
tations. 

Numeric processor 
decisions and trade-offs 

Technology selection. The choice of 
implementation technology was perhaps 
the most important decision we had to  
make, since it fundamentally affected all 
other decisions and trade-offs. Our back- 
of-the-envelope calculations indicated 
that the same architecture could be imple- 
mented in TTL/CMOS at two-fifths 
the performance of an emitter-coupled 
logic (ECL) implementation and two- 
thirds the cost (a 100-nanosecond rather 
than a 40-nanosecond cycle). I f  cost and 
performance had been the only consider- 
ations, it would have been a simple deci- 
sion, since our corporate objective was to  
serve the high end of the departmental 
supercomputer market. However, we real- 
ized that opting for an ECL implementa- 
tion nould preclude the use of VLSI 
floating-point chips such as the Weitek 
chips and that i t  would require the design 
of more logic and more boards, as well as 
more development time-hence, more 
nonrecurring expenditures. 
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Also, some people at that time believed 
ECL was a doomed technology, that 
CMOS would catch up in performance- 
and at a fraction of the cost. Although this 
belief was, and still is, incorrect, there was 
tremendous pressure from the investment 
community to  build a TTL/CMOS prod- 
uct and even to discard some of the func- 
tionality and build a subset of what we 
were planning. However, we were con- 
vinced that the low end of the market 
would be very crowded with minisuper- 
computers and array processor products. 
(This has, in fact, come to pass, except that 
superworkstations have replaced array 
processors as the threat at the low end.) We 
wanted to be above the general melee, so 
we decided to stick with our business plan 
and implement an ECL product. We now 
feel vindicated in that decision, since more 
and more computer vendors are currently 
moving t o  th is technology. A t  a 
40-nanosecond cycle time, this yielded a 
processor with a peak performance of 25 
million floating-point operations per sec- 
ond (Mflops) with 64-bit operands, 50 
Mflops with 32-bit operands, and 175 mil- 
lion operations per second overall. 

In the interest of reducing the nonrecur- 
ring development costs and the develop- 
ment risk, we made another important 
decision: By and large, we would use off- 
the-shelf ECL components. Gate arrays 
would be used only in certain 
performance-critical parts of the design, 
and even so, not for control logic. Since 
this was the first implementation of  a 
directed-dataflow processor, the decision, 
even in retrospect, was correct. But it had 
many unpleasant consequences. The 1985 
vintage of standard ECL logic was at a 
very low level of integration. This meant 
that the numeric processor would occupy 
a lot of real estate. Since manufacturing 
considerations limited us to  boards of 
roughly 18 inches on a side, the numeric 
processor would have to be spread out 
over a large number of boards. This led to 
a snowballing effect; large amounts of 
buffer logic were required to drive signals 
between the many boards. This in turn 
increased the total amount of logic even 
further. If we had had the option of imple- 
menting the numeric processor entirely 
with gate arrays, we could have reduced its 
size by a factor of three or four. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Number of functional units. Our per- 
formance goal was to be able to initiate one 
floating-point add and one floating-point 
multiply every 40-nanosecond cycle, using 
two separate pipelined functional units. 

Additional functional units were required 
to  support these two floating-point pipe- 
lines. The first issue was the number of 
ports to  memory that were needed. Our 
thinking here was influenced by the fact 
that our model of computation was 
dataflow and not vectors. We viewed the 
entire body of the loop as a single entity 
rather than as a number of separate vector 
operations. Thus we required memory 
reads and writes only for the array inputs 
and outputs, not for the scalar tem- 
poraries, which on a vector machine would 
be converted to  vector temporaries. This 
reduced the relative number of memory 
operations needed on our machine (Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 ) .  

Our program statistics indicated that 
within innermost loops the balance 
between memory bandwidth and floating- 
point computation capability was between 
one and three memory operations per pair 
of floating-point operations. Although 
certain important computations such as 
SAXPY (the addition of one vector to 
another one that has been multiplied by a 
scalar) require one and a half memory 
operations per floating-point operation, 
we felt that this was an expensive luxury in 
hardware and that the need was not 
statistically frequent enough to warrant 
the expense. Also, half a memory opera- 
tion per floating-point operation seemed 
entirely inadequate. So, given the existence 
of two floating-point functional units, we 
decided to  have two ports to memory. 
Since it is necessary to compute an address 
for each memory operation, typically to 
increment an index into an array, this 
implied the presence of two address 
(unsigned integer) adders. Also, to facili- 
tate dope vector calculations for random 
references into multidimensional arrays, 
we provided an address multiplier. 

Within loops there are also, typically, a 
certain number of integer operations. 
Since we did not wish to have these oper- 
ations steal cycles from the floating-point 
units, we added an integer functional unit. 
This left us with a grand total of eight pipe- 
lined functional units. A subsequent crisis 
caused by the burgeoning amount of logic 
required a reduction in the size of the 
numeric processor. As a result of this exer- 
cise, we eliminated the integer unit and the 
address multiply unit as separate pipelines 
and merged them with the floating-point 
adder and address adder units, respec- 
tively. 

Very early in the project, we constructed 
a prototype scheduler that would generate 
schedules for programs written in a low- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

D O I = l , N  
Q = U(I) Y(I) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y(I) = X(l) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ 
X I) = Q + V(I) X(I) 

ENDLO 

D O I = l . N  
Q = U(l) Y(I) 
Y(I) = X(I) - Q 

ENDDO 

DO I = 1, N, 64 
DO J = I, 1+63 

Q = U(I) Y(I) 
Y(I) = X(I) - Q 
T = V(I) X( I) 
X I ) = Q + T  

E N D L  
ENDDO 

Figure 5. (a) Fortran code for a loop. 

(b) Fortran loop rewritten with just one 

floating-point operation per statement. 

Each statement would become a vector 

floating-point operation. Using registers 

in a scalar machine would result in only 

six memory operations (four reads and 

two writes) per iteration. A memory-to- 

memory vector processor would require 

12 memory operations per iteration 

(two reads and one write per statement). 

(c) Using vector registers can bring the 

memory operations back down to six 

per iteration, but because of the finite 

length of the vector register (assumed to 

be 64 in this example), strip mining 

must be used. The loop is transformed 

into a doubly nested loop. The inner 

loop handles 64 long chunks of the vec- 

tor: the outer loop sequences through 

all chunks that make up the vector. (For 

simplicity, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN is assumed to be a multi- 

ple of 64.) Strip mining limits the length 

of vector operations to no more than 

the vector register length, thus reducing 

performance. In the directed-dataflow 

architecture, since registers are continu- 

ously deallocated from iterations that 

have completed and allocated to new 

iterations, the number of memory oper- 

ations per iteration is six, yet there is no 

restriction on the length of the vector 

operation. 
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level dependency graph language. This 
scheduler worked in a table-driven man- 
ner, using for this purpose a machine 
description file. By modifying this 
machine description file, we were able to 
estimate the relative performance of the 
numeric processor while varying the num- 
ber of pipelines, the depth of the pipelines, 
and the assignment of opcodes to func- 
tional units. One of the alternatives we 
experimented with was the number of 
floating-point functional units, bearing in 
mind that computational balance required 
a memory port and an address unit for 
each floating-point unit. We found that 
the increase in performance with the num- 
ber of floating-point units was quite sub- 
linear, while the increase in cost and 
complexity was most definitely super- 
linear. We opted, therefore, to stay with 
two floating-point units and to design 
them to run as fast as possible instead of 
providing many slow units. Given a certain 
target performance level, the compiler 
needs to find less parallelism in the pro- 
gram in a processor with a few fast units 
than in one with many slow units. 

At this point we had six pipelined func- 
tional units (including the two memory 
ports), each requiring two input operands 
and generating a result. Complete connec- 
tivity between all outputs and all inputs 
would have required a 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 12 crossbar with 
a register file at each cross-point. This was 
infeasible from an implementation view- 
point. And yet, with our understanding of 
the problems of programming Floating 
Point Systems’ AP-l20B, we were unwill- 
ing to eliminate cross-points in an ad hoc 
manner. Some underlying scheme having 
conceptual integrity and relevance from 
the viewpoint of the compiler writer was 
essential. 

We partitioned the functional units 
on the basis of data versus addresses, 
placing the two floating-point units, the 
integer unit, and the two memory ports in 
the data cluster and the remaining func- 
tional units in the address cluster. This 
immediately reduced the number of cross- 
points by half. The final structure of the 
numeric processor’s data paths is shown in 
Figure 6. 

Another major constraint, especially in 
the context of an interconnection-rich 
architecture such as this, was the amount 
of board zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI/O. Obviously, the choice of 
data path width had a major impact on the 
number of signals crossing board bound- 
aries. With 32-bit data paths we found 
ourselves up against a wall even with the 
use of fairly aggressive connector technol- 
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Figure 6. Major numeric processor data paths. The numeric processor E-unit con- 

tains two major parts: the data cluster and the address cluster. The data cluster 

consists of four functional-unit pipelines interconnected by the data context register 

matrix. These four pipelines are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1) the floating-point adder/integer ALU (four- 

cycle latency), (2) the floating-point/integer multiplier (five-cycle latency) and 

divider, as well as the square-root unit, (3) memory data port 1 (17-cycle latency), 

and (4) memory data port 2 (17-cycle latency). The address cluster consists of two 

address adder pipelines (three-cycle latency) interconnected by the address context 

register matrix. In addition, the first pipeline provides a bit-reverse capability, 

while the second provides an integer multiply capability. The context register 

ogy. A move to 64-bit data paths would 
have required the use of exotic and expen- 
sive connectors. The rule of thumb we had 
developed indicated that 64-bit data paths 
instead of 32-bit data paths would increase 
64-bit performance by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50 percent and 
32-bit performance not at all. Discretion 
being the better part of valor, we elected 
to use 32-bit data paths. 

Register storage. The context register 
matrix provides the architectural facilities 
needed to dynamically allocate iteration 
frames at runtime. Since each iteration 
initiated is allocated an iteration frame, 
and since the total number of registers in 
the context register matrix is fixed, the iter- 
ation frames for past iterations must be 
deallocated at the same rate that new ones 
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Iteration control registers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ICR) 
n n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd 

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtt 

GPR input bus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
matrix (CRM) provides simultaneous, conflict-free access to all functional-unit 

inputs and outputs. Also, by virtue of the iteration frame pointer relative address- 

ing into it, the CRM supports overlapped execution of  loops. Each functional unit 

has three inputs. Two of these are the conventional operand inputs sourced by 

either the CRM or the general-purpose registers (GPR). The third input is a 

Boolean value from the iteration control register (ICR) used to conditionally con- 

trol the issuance of operations. The output of each functional unit can go either to 

its row in the CRM or to the GPR. Like the CRM, the GPR and ICR consist of as 

many carbon-copy register files as there are inputs that can source them. 

are allocated. While this is exactly what is 
desired for loop variants (values computed 
by each iteration), it poses a problem for 
loop-invariant values that are used, but 
never computed, within the loop. Unless 
they are continuously copied from one 
iteration frame to the next, they will be 
overwritten. T o  avoid the significant over- 
head of copying loop invariants, we 
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provided a register file that is global to all 
iterations and does not possess the itera- 
tion frame capabilities. With considerable 
originality, we called this the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgenerul- 
purpose register file. In a single cycle it can 
be read by any number of functional unit 
input ports simultaneously and at distinct 
locations, just like a row in the context reg- 
ister matrix, and it can be written to by the 

output port of any functional unit, but 
only one at  a time. 

One of the more ad hoc decisions we 
made was choosing the number of registers 
per register file. The problem we faced was 
a lack of directly relevant statistics on the 
effect of this parameter on performance in 
the context of a directed-dataflow style of 
execution. So we plucked the decision out 
of thin air. Our collective intuition told us 
that 32 registers per register file was too 
few, and 128 registers looked difficult 
from an implementation viewpoint. Thus 
we settled on 64 registers per register file. 
Comforted by the lack of alternatives, we 
moved on. 

The capacity of the iteration control reg- 
ister (ICR) was determined by two oppos- 
ing considerations. Since each predicate 
would be used as input to operations 
scheduled to execute at times separated by 
rather long intervals, we expected the life- 
time of these values to  be long. This 
implied more capacity in the ICR than in 
the register files in the context register 
matrix. On theother hand, thenumber of 
bits available in the instruction format to 
address the ICR was at a premium. We 
finally decided to provide an ICR capac- 
ity of 128. 

Opcode repertoire. The basic philoso- 
phy in the directed-dataflow architecture 
is to work with atomic operations that can 
be scheduled with maximum flexibility. 
So, we have no operations of the CISC 
type that read from memory (two oper- 
ands), perform an operation, and write the 
result back to  memory. T o  our way of 
thinking, this is actually four different 
operations packaged together, usurping 
the compiler’s ability to achieve optimal 
scheduling. Except for the memory Read 
and Write opcode class, no other opcodes 
access memory. Their inputs and outputs 
are predominantly either the context reg- 
ister matrix or the GPR file. Also, with a 
few exceptions, the opcode repertoire is 
the normal set of integer, logical, floating- 
point, and memory operations. The few 
exceptions relate to  supporting the 
directed-dataflow model of computation. 
The opcode repertoire reflects the numer- 
ical bias; while there is extensive support 
for floating-point operations, there is none 
for binary-coded decimal arithmetic or 
string operations. Except in the case of 
(bitwise) logical operations, where it would 
be redundant, opcodes are provided for 
both single-precision (32-bit) and double- 
precision (64-bit) operations. The data 
types supported by the execution unit 
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hardware are 32-bit and 64-bit IEEE float- 
ing point, 32-bit and 64-bit 2’s comple- 
ment integers, 32-bit unsigned in the 
address cluster, and 32-bit logical. 

The data paths, as well as the registers 
in the numeric processor, are 32 bits wide. 
We believed that register allocation in the 
compiler would be simplified i f  the two 
halves of a 64-bit datum could be indepen- 
dently assigned to unrelated registers. This 
meant we would need four source-register 
specifiers and two destination-register 
specifiers for a 64-bit operation. Since we 
have 32-bit data paths, it takes two cycles 
to provide the input operands for a 64-bit 
operation. Consequently, in the schedule 
as well as in the code, no operation can 
immediately follow a 64-bit operation. We 
decided to use this dead cycle to provide 
two source specifiers and one destination 
specifier. The rest of the specifiers are 
provided in the previous instruction (the 
one initiating the 64-bit operation). 

The memory opcode repertoire includes 
opcodes to read and write 32-, 16-, and 
8-bit data. The 16-bit reads and writes have 
signed as well as unsigned versions. With 
the 16-bit reads, this determines whether 
the 16-bit datum is interpreted as a signed 
or an unsigned integer. This in turn deter- 
mines whether the sign is extended or zeros 
are inserted in the high-order 16 bits of the 
32-bit destination register. All integer 
arithmetic is carried out thereafter on 
32-bit data. When a 16-bit datum is writ- 
ten back to memory, use of the signed or 
unsigned opcode determines whether or 
not the 32-bit quantity in the register can 
be treated as a 16-bit quantity without 
overflow. I f  an overflow occurs, i t  is 
reported at the time of the 16-bit write. The 
32-bit Exchange Read opcode exchanges 
the contents of the specified register and 
memory location as an indivisible opera- 
tion. This opcode supports synchroniza- 
tion between asynchronous parallel 
processes. 

Although the opcode repertoire is iden- 
tical for both memory ports, an asym- 
metry results because of insufficient 
instruction word bits to go around. Mem- 
ory port zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 can specify the memory address 
as an instruction-specified displacement 
off a base register. Memory port 2 cannot 
specify a displacement. 

The numeric processor has two special 
opcodes to support loop execution: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbrtop 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnexti. Two types of actions must be 
performed to control loops. One is to 
determine whether another iteration is to 
be executed and, i f  so, to allocate a new 
iteration frame. This is done by the nexti 

opcode. The other action is to actually 
branch back to  the top of the loop if 
another iteration is to be executed. The 
brtop opcode does this in addition to 
everything the nexti opcode does. If it were 
not for the long, three-cycle branch 
latency, the nexti operation would be 
unnecessary. But in certain very small 
loops, the interval between the initiation 
of successive iterations can be less than the 
branch latency. If not for the nexti opcode, 
this would pose an unnecessary upper 
bound on performance of one iteration 
every three cycles. But with the nexti 
opcode, i t  is possible to initiate new itera- 
tions in the delay slots of the brtop opera- 
tion. This allows up to three iterations per 
brtop executed and the initiation of up to 
one new iteration every cycle. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Instruction format. The data paths of 
the numeric processor can initiate six oper- 
ations every cycle. Therefore, the MultiOp 
instruction format (Figure 7a) must be able 
to issue six operations on the six functional 
units, plus an additional one to control the 
instruction unit and other miscellaneous 
operations. A MultiOp instruction con- 
sists of seven partitions, one for each oper- 
ation; each instruction looks like a 
conventional RISC instruction except for 
the existence of a predicate specifier. The 
typical format for each operation partition 
consists of an opcode, two source-register 
specifiers, one destination-register speci- 
fier, and one predicate-register specifier 
(Figure 7b). 

The data cluster has four context regis- 
ter matrix rows and the GPR to select 
among for a source, and one row plus the 
GPR to select between for the destination. 
Similarly, the address cluster has two con- 
text register matrix rows and the GPR to 
select among for a source, and one row 
plus the GPR to select between for the des- 
tination. Assuming an average of five or 
six bits in the opcode field, 64 registers in 
each register file, and 128 locations in the 
ICR, this implies roughly 40 bits per oper- 
ation partition or 240 bits per instruction. 
To avoid the need for complex instruction 
fetch logic, we were determined that the 
instruction word width would be a power 
of 2 .  Thus 256 bits appeared to be a 
reasonable target. Furthermore, since an 
instruction word width of 512 bits would 
have caused a considerable increase in the 
cost and complexity of the instruction 
unit, 256 bits seemed the only option avail- 
able. This rigid constraint required a num- 
ber of trade-offs, which are discussed 
below. 

In portions of the program where signif- 
icant parallelism exists, including but not 
limited to innermost loops, the MultiOp 
format is very effective. However, because 
it gobbles up 32 bytes every 40 nanose- 
conds, we were worried about the effect on 
instruction cache performance and capac- 
ity should the MultiOp format be used 
indiscriminately, even in portions of the 
code where little parallelism exists. With 
this in mind, we created the UniOp instruc- 
tion format (Figure 7c), which allows only 
a single operation to be initiated per 
instruction, making it possible to fit mul- 
tiple UniOp instructions in each 256-bit 
container. The opcode repertoire available 
in the UniOp format is identical to that in 
the MultiOp format. While executing 
UniOp instructions, the numeric processor 
is similar to other scalar architectures that 
have no pipeline interlocks in hardware. 

The UniOp instruction must contain not 
only all the information contained in the 
corresponding MultiOp partition, but also 
a few additional bits to indicate which 
functional unit is being tasked. The longest 
partition in the MultiOp format is for 
memory port 1 ,  which contains a literal 
field for specifying an address displace- 
ment or a data literal. This partition is 44 
bits long. I f  each UniOp instruction is at 
least 44 bits, it is possible to fit at most five 
instructions per instruction container, for 
an average instruction width of 51 bits. We 
felt that this would dilate the size of the 
compiled code to an uncomfortable 
extent. As a compromise we decided to 
forgo the predicate capability in UniOp, 
reasoning that the UniOp sections of code 
were not supposed to be performance crit- 
ical anyway. Now i t  was possible to fit six 
UniOp instructions per container. Any 
more than six per container would have 
required us to reduce the 16-bit address 
displacement field size. Since we felt that 
16 bits was barely adequate, we were 
unwilling to reduce i t  further. The 40-bit 
UniOp format also permitted us to provide 
a 24-bit program address literal. 

The MultiOp format contained zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA18 con- 
text register matrix or GPR specifiers and 
six ICR specifiers. Increasing the number 
of registers per register file from 64 to 128 
would have required 18 additional instruc- 
tion bits in MultiOp, which were not avail- 
able. This helped us realize that adding 
more registers was not an option. Decreas- 
ing the number of ICR locations from 128 
to 64 would have saved six MultiOp 
instruction bits-not enough to make an 
appreciable difference elsewhere. 
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Figure 7. Numeric processor instruction formats. (a) The MultiOp format is 32 bytes long and permits seven operations to be 

issued during each 40-nanosecond cycle. (b) The structure of each partition in the MultiOp format. (c) The UniOp format 

allows six instructions to fit into a 32-byte container. Each instruction can issue only one operation per 40-nanosecond cycle. 

Exception handling. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAExceptions and 
interrupts pose a special challenge to 
architectures such as directed dataflow, 
where the execution sequence is so care- 
fully and rigidly choreographed. The basic 
problem in handling an exception is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsched- 
ule rearing, which means the carefully 
crafted computation schedule is being 
drastically altered by inserting the compu- 
tation corresponding to the exception han- 
dler into the middle of the original 
computation. The compiler-generated 
schedule is literally torn apart to  allow the 

exception handler to execute. This can 
cause two types of problems: first, the con- 
flicting usage of scheduled resources, and 
second, the violation of implicit dependen- 
cies between operations. 

Avoidance of resource conflicts is 
achieved by flushing all pipelines during 
transition between the user program and 
the exception handler. This is done by 
aborting operations in progress, by allow- 
ing them to execute to  completion, or by 
saving and subsequently restoring their 
state of  partial execution. Conceptually, 

the last alternative is the simplest. I t  is also 
the costliest in terms of hardware require- 
ments, so i t  is the solution of last resort. 
Aborting operations is extremely compli- 
cated, since those operations will need to 
be reissued after exception handling, 
which means the program counter and the 
processor state must be backed up. Allow- 
ing operations that have been issued to go 
to completion is the best technique over- 
all, except in certain cases. Clearly, if the 
exception is due to  an  operand page fault 
occurring in the course of  executing a 
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memory operation, the memory operation 
cannot complete until the page fault excep- 
tion has been handled and the page has 
been brought into physical memory. In 
this case the best alternative is to save the 
state of that portion of the memory pipe- 
line extending through the virtual address 
translation and to restore it after exception 
handling. 

If special care is not taken, schedule 
tearing can result in the violation of 
required dependencies between opera- 
tions. It can cause an operation scheduled 
to finish after a second one has started to 
actually finish zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbefore the second one 
starts. This will lead to incorrect results if 
the first operation writes to the same reg- 
ister the second one reads, and if the sec- 
ond operation expects to get the contents 
that existed prior to the register’s having 
been overwritten. Such a situation is 
prevented by a compiler convention that 
decrees a register to be “in use” from the 
beginning of the operation that writes to 
it until the latest completion time of all 
operations using that value. With this con- 
vention in place, two operations that over- 
lap each other’s execution intervals will 
have to use different source and destina- 
tion registers, thereby avoiding the 
problem. 

Clearly, handling an exception requires 
that no further instructions (operations) be 
issued once the exception has occurred. 
But this can contradict the strategy of 
executing to completion an operation in 
progress if the information corresponding 
to that operation is distributed across mul- 
tiple instructions. This is often the case in 
microprogramming-style architectures, 
where, instead of providing the opcode, 
the source specifiers, and the result speci- 
fiers at the same time, the architecture pro- 
vides the result specifier many instructions 
later than the opcode, reflecting the time 
when each item of information is actually 
needed. 

The problem is that when the exception 
occurs, not all of the information needed 
by the operation to execute to completion 
has been issued; that is, the operation is in 
a partially issued state. For the operation 
to execute to completion, further instruc- 
tions must be issued, which in turn would 
cause further operations to be issued 
whose completion would require the issu- 
ance of still more instructions, and so on. 
The only solution would be to issue further 
instructions selectively in a way that would 
prevent the issuance of new operations 
until the operations already in progress 
had received all the information they need 

to execute to completion. After the excep- 
tion has been handled, instruction issuance 
would have to begin with the first instruc- 
tion initiating an operation that was not 
issued prior to exception handling, while 
taking care to selectively mask out opera- 
tions issued previously. Because this is so 
messy, it is highly desirable that all infor- 
mation pertaining to a single operation be 
specified at the same time in the same 
instruction. 

In the numeric processor, however, 
double-precision operations are dis- 
tributed over two consecutive (in time) 
instructions. Thus, at least to a limited 
extent, the problems described above must 
be dealt with. Two measures accomplish 
this: 

(1) The one instruction issued after the 
exception (since it may contain the 
second half of a double-precision 
operation) must be issued with all 
“new” (that is, single-precision or 
first half of double-precision) oper- 
ations disabled. 

(2) The opcode for the second half of a 
double-precision operation should 
be such that in isolation (when 
viewed as a single-precision opera- 
tion or the first half of a double- 
precision operation) it will be inter- 
preted as a no-op. 

The first requirement allows the appropri- 
ate functional unit to get the information 
it needs to allow a double-precision oper- 
ation issued in the previous cycle to execute 
to completion. The second requirement 
makes it simple to resume issuing instruc- 
tions after handling the exception. Since 
they are interpreted as no-ops, second 
halves of double-precision operations will 
automatically “mask” themselves out. 

However, the first requirement cannot 
be met when the second half of a double- 
precision operation lies in a different page 
from that in which the first half lies and if 
the instruction fetch for the second half 
generates a page fault. In this case the 
double-precision operation must be 
aborted and restarted by resuming instruc- 
tion issuance with the last instruction actu- 
ally issued. For this to be possible, the 
inputs to operations issued in the instruc- 
tion to be restarted must not have been 
modified. This will be true if another com- 
piler convention is observed: The registers 
that are sources to an operation in a par- 
ticular instruction should be viewed as 
“busy” through the end of the issuance of 
all double-precision operations whose first 
halves are in the same instruction. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

PC history queue. One consequence of 
very deep pipelines is that between the issu- 
ance of an operation and its completion, 
it is possible to  have executed multiple 
branch operations. If an operation gener- 
ates an exception, the deep pipelining 
makes it extremely difficult for a debug- 
ger to figure out the program counter value 
for the instruction that initiated the 
offending operation. To solve this prob- 
lem, we included a circular 256-entry PC 
history queue (PCHQ). During normal 
operation the current PC value is written 
into the PCHQ on every cycle. The state 
of the PCHQ is frozen when an exception 
occurs. Knowing the latency of the offend- 
ing operation, the debugger can index back 
into the PCHQ by that amount to locate 
the PC value for the corresponding 
instruction. 

Although this was the original motiva- 
tion for the PCHQ, it was soon pressed 
into service for an additional function. 
Again due to the depth of the pipelines, 
between the time an exception occurs and 
the time all pipelines have been flushed, 
many operations complete that can gener- 
ate additional exceptions. These opera- 
tions will not be reissued after exception 
handling, so the exceptions must all be 
recorded and handled en masse. Since this 
exception logging process occurs only after 
the first exception has occurred, and since 
the PCHQ has stopped recording P C  
values at this point, we decided to switch 
the PCHQ from the task of recording PC 
values to the task of recording exception 
records at the time the first exception 
occurs. 

The main memory 
system 

The ideal memory system for a super- 
computer would provide large capacity at 
a low price and extremely high bandwidth 
with very low access time. Furthermore, 
the bandwidth and access time would be 
insensitive to the size of the data sets being 
operated on, the manner in which the data 
are placed in memory, and the order in 
which they are referenced. Needless to say, 
such a memory system has never been 
built. Each computer architect must decide 
which of these attributes are essential and 
which can be compromised. 

Data cache anomalies. General-purpose 
computing almost invariably employs 
caches. Assuming locality of reference and 
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Figure 8. Sequentially interleaved memory. (a) The conventional assignment of memory locations to memory modules in a 
sequentially interleaved memory system with four modules. A memory module is busy for four cycles when handling a request. 
Thus, the peak bandwidth is one request per cycle. (b) With a sequential request stream, perfect operation takes place. No 
request ever encounters a busy module, and the peak bandwidth is achieved. (c) For a request stream with a stride of eight, 
every request is directed to the same module. Every request encounters a busy module, the processor must halt three cycles for 
each cycle it advances, and the achieved bandwidth is one request per four cycles. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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hence a high hit rate, the cache provides 
the desired high bandwidth and, on the 
average, low access time, while the main 
memory provides large capacity at a low 
price. Whereas the assumption of good 
locality is usually true with general- 
purpose work loads, it can be wildly wrong 
in numerically intensive computing. 
Often, numerical applications sweep 
through large arrays such that a particu- 
lar element is rereferenced only after all 
other elements have been referenced. 
Except in the case of toy problems, the 
arrays tend to be comparable to the main 
memory in physical size and considerably 
larger than any realistic cache. Conse- 
quently, each word is displaced from the 
cache before it is next referenced, result- 
ing in a low hit ratio. 

The processor is now working directly 
out of the main memory, which typically 
is underdesigned for this situation, since 
the design assumption was that only a 
small fraction of the references would 
come through to the main memory. Worse 
yet, if the stride with which the processor 
is referencing memory is equal to or 
greater than the cache line size, the cache 
will fetch an entire line for each reference 
that the processor makes, and all but one 

word of the line is wasted. Far from help- 
ing the situation, the cache is now com- 
pounding the problem by amplifying the 
request rate to an already underdesigned 
main memory. This phenomenon has been 
researched and reported by Abu-Sufah 
and Mahoney.‘’ 

In the case of a really high-performance 
processor, a further problem makes using 
a data cache difficult. In addition to the 
bandwidth needed for instruction fetch- 
ing, it zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis necessary to perform two or three 
data references per processor cycle to keep 
memory bandwidth in balance with the 
processor’s computational capability. This 
requires the use of either an  interleaved 
cache or multiple caches, along with a 
cache coherency mechanism. At extremely 
fast clock rates, both alternatives present 
formidable obstacles. In view of these con- 
siderations, we elected not to use a cache 
for data references. We provided a 
32-Kbyte cache for instructions, since 
cache performance for instruction refer- 
ences is not qualitatively different for 
numerical programs. 

Sequentially interleaved memory 

architectures. The full operand request 
rate now had to be handled by the main 

memory, and we were back to the problem 
of providing a consistently high bandwidth 
and low access time using main-memory 
technology. In the context of a departmen- 
tal supercomputer price objective, this 
meant that using fast, static, ECL RAM 
was precluded, and we had to  use the rela- 
tively inexpensive but slow MOS DRAM 
technology. The only way to achieve high 
bandwidth with slow memory technology 
is to use multiple memory modules in an 
interleaved fashion. In a normal, sequen- 
tially interleaved memory, with an inter- 
leave factor of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM modules, every M t h  
word is in the same memory module (Fig- 
ure 8a). In the case of a sequential refer- 
ence stream, this ensures high bandwidth, 
since all modules are referenced before the 
same module is referenced again (Figure 
8b). If the degree of interleaving is large 
enough compared with the ratio of the 
memory cycle time to the processor cycle 
time, the memory module will be ready to 
handle another request by the time it is 
referenced again. 

Although interleaved memories can 
provide the bandwidth requirements of 
high-performance processors, they do not 
address the desire for short access times. 
Without the use of a cache, the access time, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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even under the best of circumstances, can 
be no less than the access time of the mem- 
ory technology used in the main memory. 
Since in numerically intensive computa- 
tions processor performance is more 
rigidly linked to memory bandwidth than 
to memory access time, supercomputer 
architectures have evolved in such a way 
as to be relatively insensitive to memory 
access time. In vector processors the mem- 
ory access time contributes only to the vec- 
tor start-up penalty, not to  the vector 
execution rate. Likewise, in the dataflow 
and directed-dataflow architectures, a 
longer access time is handled by schedul- 
ing the memory access earlier than i t  is 
needed. 

Parenthetically, this explains why 
general-purpose processors are better 
“MIPS engines” than supercomputers 
running at the same clock speed. In 
general-purpose computing the emphasis 
is less on iterative computations and mem- 
ory bandwidth and more on branching, 
procedure calls and returns, and memory 
access time. This makes cache memories 
indispensable. Without its cache memory, 
a high-speed scalar processor would slow 
down to a crawl. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The stride problem. In well-designed 
supercomputer architectures, the trade-off 
is always in the direction of ensuring con- 
sistently high memory bandwidth, even at 
the expense of increased access time. How- 
ever, conventional, sequentially inter- 
leaved memories cannot guarantee even 
high bandwidth. They break down badly 
i f  the references have a stride that is a mul- 
tiple of the degree of interleaving (Figure 
Sc). When this happens, every reference is 
to the very same memory module, and the 
bandwidth is degraded to that of a single 
memory module. The processor’s perfor- 
mance drops proportionately. On existing 
supercomputers, the magnitude of this 
penalty is so large13 that the user is forced 
to contort the algorithm to avoid this 
stride problem. 

Pseudorandomly interleaved memory 

architecture. We found this situation 
unacceptable and developed an interleaved 
memory architecture that is impervious to 
the stride problem. Instead of assigning 
every Mth word to the same memory mod- 
ule, we assigned the memory locations to 
the memory modules in a carefully 
engineered pseudorandom fashion such 
that every reference sequence likely to 
occur in practice would be as uniformly zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

fi 
The ideal 

memory system 
for a supercomputer 
would provide large 
capacity, low price, 

high bandwidth, and 
very low access time. 

distributed across the memory modules as 
would a truly random request sequence 
(Figure 9a). T o  someone familiar with the 
folklore of interleaved memory design, 
this might seem like exactly the wrong 
thing to do. It is a popularly held belief 
that an M-way interleaved memory with a 
random request sequence will only achieve 
a bandwidth proportional to JMmodules 
instead of getting the full benefit of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM 
modules. This is true (Figure 9b) i f  the 
memory system does not have the facilities 
to queue-up references to busy m0du1es.l~ 
With sufficient buffering (Figure 9c), the 
full bandwidth of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM modules can be 
a ~ h i e v e d . ’ ~  Furthermore, since every 
request sequence, whether sequential, of 
stride M ,  or totally scrambled, appears 
equally random to the interleaved mem- 
ory, this high bandwidth is consistently 
achieved. The only exception is a situation 
in which the same location is repeatedly 
referenced (for instance, a scalar memory 
reference in a loop). Standard, machine- 
independent optimizations in the compiler 
get rid of such situations. Thus, high band- 
width is guaranteed regardless of how data 
is placed in memory and how it is 
referenced. 

But, as always, there is no free lunch. 
The price of guaranteeing consistent high 
bandwidth is an increase in access time in 
high-bandwidth situations. When the 
request rate is high (close to the maximum 
bandwidth the memory system is designed 
for), the randomness of the pseudoran- 
domized request sequence will cause 
queues to form every so often on busy 
modules. A request arriving at such a 
queue will experience a delay equal to the 
memory chip access time plus the time 
spent waiting in line. Thus, the access time 
perceived by the processor increases. Also, 
this increase in access time is a stochastic 

quantity, and the overall access time for a 
request now lies within a range of values. 
Whereas the limits on the range can be 
predicted, the exact value (within that 
range) for the access time of a specific 
request cannot. Moreover, this range 
shifts, depending on the request rate of the 
processor. Under light load conditions (as 
when executing scalar code), one can 
expect little queueing delay, but when the 
request rate increases (within innermost 
loops), so will the queueing delay. 

The memory latency register. In and of 
itself, the increased access time is not a 
major problem; the second-order penalty 
due to the increased access time is more 
than compensated for by the first-order 
benefit of guaranteeing high bandwidth. 
(This does, however, cause a further polar- 
ization between a well-designed general- 
purpose processor and a well-designed 
supercomputer.) What zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis of concern is the 
nondeterministic nature of the access time 
in the context of a processor architecture 
in which every operation is rigidly sched- 
uled at compile time and in which the 
latency of every operation, including the 
memory operations, must be determinis- 
tic. The way other architectures that use 
compile-time scheduling normally handle 
this is to “fake” a deterministic access 
time.6 If the memory access occurs sooner 
than expected, the data can be buffered 
internally to the memory system and deliv- 
ered to the processor at exactly the right 
time. If, on the other hand, thedata takes 
longer than expected, the processor is 
“frozen” until the data is available, so that 
in the processor’s “virtual time” the 
request always takes the same amount of 
time. 

Yet another delicate trade-off exists 
here. If the compiler consistently underes- 
timates the access time, the processor will 
spend a significant fraction of its time in 
a frozen state. If the compiler consistently 
overestimates the access time, the sched- 
ules generated at compile time are unneces- 
sarily dilated. At either extreme, 
performance is less than optimal. We 
addressed this issue by simulating the 
memory system at various request rates 
and plotting performance against the 
nominal (assumed) memory latency. As 
expected, we found that for each request 
rate the curve peaked at a certain value of 
memory latency. In the vicinity of this 
optimum memory latency, performance 
was not particularly sensitive to the value 
of the memory latency. On the other hand, 
the value of the optimum memory latency 
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Figure 9. Pseudorandomly interleaved memory. (a) The assignment of memory locations to four memory modules in a pseu- 
dorandomly interleaved memory. (b) Even with a stride of eight, eventually the requests are evenly distributed across all four 
memory modules. However, every so often requests will encounter a busy module. If no buffering is provided at the memory 
modules, the processor must halt until the module is no longer busy. (c) Although individual requests might have to wait even 
with buffering, the processor need not. It can continue to issue a request every cycle, yielding full bandwidth. 
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was very sensitive to the request rate. This 
made us nervous about hardwiring the 
nominal memory latency value into the 
compiler and the hardware. 

We solved this problem by incorporat- 
ing a memory latency register. The MLR 
is a programmatically writable register that 
always holds the value of the memory 
latency assumed by the compiler when 
scheduling the currently executing code. 
The memory system uses the value in this 
register to decide whether the datum is 
early or late and, consequently, whether 
the datum should be buffered or the 
processor frozen. When executing scalar 
code with little parallelism and a low 
request rate, the MLR is set to the mini- 
mum possible memory access time of 17 
numeric processor cycles (each cycle is 40 
nanoseconds). When the program is in an 
innermost loop, the MLR is set to the opti- 
mum value of 26 cycles to  reflect the 
expected delay due to the higher request 
rate. The MLR allows the compiler to treat 
memory accesses as having a determinis- 
tic latency but to use different values for 
the latency in different portions of the 
code so as to always deliver near-optimal 
performance. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Compiler-scheduled memory modules. 

One of the alternatives we considered, and 
decided against, very early in the design 
process was to place the memory modules 
under the explicit scheduling control of the 
compiler (much like the adder and mul- 
tiplier) instead of treating the memory sys- 
tem like a black box. Ideally, in such a 
scheme the compiler must know zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcompile zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
time whether or not a set of references are 
to distinct memory modules. It can then 
schedule the initiation of the memory 
requests in such a way that the referenced 
memory module is no longer busy by the 
time the request is made. This would elim- 
inate the need for any buffering. Also, 
with knowledge of the (deterministic) 
memory latency that exists in the absence 
of queuing, operations that use the data 
from memory can be scheduled to occur 
no sooner than when the data is available. 
The processor would never need to be fro- 
zen, nor would access times need to be 
overestimated. Presumably, the hardware 
would be simpler and less expensive with 
no buffering facilities. Thus, near-optimal 
performance could be achieved i f  the 
appropriate information were known at 
compile time. 

But commonly occurring program con- 
structs can defeat such a strategy. In the 
case of references to  X ( I )  and X ( J ) ,  the 
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manner in which the variables I a n d  J a r e  
computed may be such as to preclude the 
compiler’s being able to  determine 
whether the modules referenced are dis- 
tinct or the same. Another problem lies 
with subscripted-subscript references to  
arrays, such as X(JA ( I ) ) ,  where the index 
into one array, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA), is determined by read- 
ing the contents of another array, JA ( I ) .  
Since the contents of JA ( ) are determined 
at runtime, the compiler is once again un- 
able to predict which module will be refer- 
enced. In such circumstances the compiler 
must either assume the worst and serialize 
all such references or assume that no con- 
flict exists and count on the presence of 
some hardware mechanism that will freeze 
the processor if a request is submitted to  
a busy module. With the latter approach, 
the d M l a w  becomes applicable. In either 
case the program experiences a sizable 
drop in performance. 

As we see it, the most serious drawback 
of compile-time scheduling of memory 
modules is that it does nothing to address 
the stride problem. With a bad stride, 
whether compile-time memory disambig- 
uation works or not, the memory band- 
width collapses. Memory disambiguation 
merely confirms the bad news at compile 
time. Using pseudorandom interleaving to 

solve the stride problem would make the 
task of compile-time disambiguation next 
to impossible. So eventually the trade-off 
was one of simpler hardware, more com- 
plex software, and a reduced average 
access time versus a guaranteed, consis- 
tently high bandwidth. In view of our cen- 
tral objective of providing a product with 
minimal difficulty of use, we chose the 
latter. 

Reflections 

While developing this product, we 
became aware of certain broad truths, and 
we have tried to  convey them in this arti- 
cle. The most important of these is that the 
behavior of general-purpose and numeri- 
cally intensive work loads can be drasti- 
cally different. In nonnumeric programs 
the emphasis is on branching and proce- 
dure calls; in numeric programs it is on 
loops. General-purpose jobs tend to access 
their data with a high degree of locality. 
This is not always so with numerically 
intensive jobs. 

Consequently, the design decisions and 
trade-offs steadily push the well-designed 
scalar processor and the well-designed 
numeric processor apart. In a scalar 
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processor the emphasis is on short pipeline 
latencies rather than on extensive parallel- 
ism. In a numeric processor the emphasis 
is on multiple, parallel pipelines even at the 
expense of very deep pipelines and, hence, 
reduced scalar performance. Whereas the 
use of caches for data is virtually manda- 
tory for good performance in a scalar 
processor, it is far less beneficial, and 
sometimes even detrimental, to the perfor- 
mance of a numeric processor. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA numeric 
processor is more sensitive to memory 
bandwidth and less so to access time. The 
opposite is true for a scalar processor. 
Thus it remains as difficult now as it has 
been in the past to design a single machine 
that is best for both numeric and nonnu- 
meric work loads. 

Much has been said over the past few 
years about the relative merits of RISC and 
CISC approaches to hardware design. We 
feel that the same issue could well be raised 
regarding software, specifically compiler 
software. With the headlong rush to move 
complexity out of hardware and into soft- 
ware, compilers are beginning to groan 
under the burden of newly acquired 
responsibilities. It is possible to go too far 
and to end up increasing the total complex- 
ity of the hardware-software system. The 
designers’ responsibility is to minimize 
overall complexity, not just that of the 
hardware. In the Cydra zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 we decided not 
to transfer complexity from hardware to 
software in some areas such as the context 
register matrix, conditional scheduling 
control, and hardware-scheduled memory 
modules. To paraphrase Einstein, “Hard- 
ware should be as simple as possible, and 
no simpler.” 

Designing and developing a product of 
this performance level and with these capa- 
bilities necessitated a break with architec- 
tures of the past so that we could 
incorporate a more powerful model of 
computation. This meant that we often 
had to fly by the seat of our pants, there 
being little experience or data on which to 
base our decisions. Fortunately, we have 
not yet discovered any major blunders, 
although it is quite possible that the 
machine has been overdesigned in various 
places because of our tendency t o  err on 
the safe side. These areas of overdesign 
will reveal themselves slowly as we build up 
our experience in the use of this new archi- 
tecture. 

oday, a number of Cydra zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 sys- 
tems are in use at customer sites. T The performance of these systems 

has met our expectations. On widely 
quoted industry-standard benchmarks 
such as Linpack16 and the Livermore For- 
tran Kernels,” the Cydra 5 delivers 15.4 
Mflops and 5.8 Mflops, respectively. This 
is the highest performance of any 
minisupercomputer (even those whose 
peak performance is twice that of the 
Cydra 5 )  and about one-third the perfor- 
mance of a Cray X-MP supercomputer, 
which has nine times the Cydra 5’s peak 
performance. On the 24 Livermore For- 
tran Kernels taken as a group, the Cydra 5 
can achieve 23 percent of its peak perfor- 
mance as opposed to 15 percent and 8 per- 
cent for VLIW and vector processors, 
respectively. On Linpack, which is con- 
siderably more vectorizable, the Cydra 5 
achieves 60 percent of its peak perfor- 
mance. The VLIW and vector processors 
achieve only 40 percent and 20 percent, 
respectively. 

On other, less vectorizable, bench- 
marks, such as ITPack” (an iterative 
sparse-matrix solver), the Cydra 5 
achieves half the performance of the Cray 
X-MP. We have even encountered a cou- 
ple of extremely nonvectorizable applica- 
tions in which the Cydra 5 has actually 
achieved parity with the Cray X-MP. In 
general, across a spectrum of applications, 

the Cydra 5 can achieve between one- 
fourth and two-thirds the performance of 
a Cray X-MP, depending on the extent to 
which the application is vectorizable. 
However, there is still room for improve- 
ment, since the compiler has not yet 
peaked in its ability to wring performance 
out of code. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU 
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