
The Cydra 5
Departmental
Supercomputer
Design Philosophies,

Decisions, and Trade-offs

B. Ramakrishna Rau, David W.L. Yen,
Wei Yen, and Ross A. Towle

Cydrome, Inc. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgroups or departments of scien-

tists and engineers.’ I t costs about the
same as a high-end superminicomputer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
($500,000 to $1 million), but i t can achieve
about one-third to one-half the perfor-
mance of a supercomputer costing $10 to
$20 million. This results f rom using high-
speed, air-cooled, emitter-coupled logic
technology in a product that includes
many architectural innovations.

The Cydra 5 is a heterogeneous multi-
processor system. The two types of proces-
sors are functionally specialized for the
different components of the work load
found in a departmental setting. The
Cydra 5 numeric processor, based on the
company’s directed-dataflow architec-
ture,* provides consistently high perfor-
mance on a broader class of numerical
computations than d o processors based on
other architectures. It is aided by the high-
bandwidth main memory system with its
stride-insensitive performance. The inter-
active processors offload all nonnumeric
work from the numeric processor, leaving
it free to spend all its time on the numeri-
cal application. Lastly, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 / 0 processors
permit high-bandwidth 1/0 transactions

To meet

price-performance

targets for a new

minisupercomputer, a

team of computer

scientists conducted

an exhaustive-and

enlightening-

investigation into the

relative merits of

available

architectures.

with minimal involvement from the inter-
active or numeric processors. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A bersion of this article appeared In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfroc. 22nd zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHuwuii
lnl’/ Con5 on Syslerns Sciences, Jan. 3-6. 1989,
Kailua-Kona, Hawaii.

work done at TRW Array Processors and
at ESL (a subsidiary of TRW). The poly-
cyclic architecture3 developed a t
TRW/ESL is a precursor to the directed-
dataf low architecture developed at
Cydrome starting in 1984. The common
theme linking both efforts is the desire to
support the powerful and elegant dataflow
model of computation with as simple a
hardware platform as possible.

The driving force behind the develop-
ment of the Cydra 5 was the desire for
increased performance over superminis on
numerically intensive computations, but
with the following constraint: The user
should not have to discard the software,
the set of algorithms, the training, or the
techniques acquired over the years. As a
result, the user would be able to move up
in performance from the supermini to the
minisuper in a transparent fashion. This
transparency is important for a product
such as the Cydra 5 , which is aimed at the
growth phase of the minisupercomputer
market. Such a product must cater to a
broader and less forgiving user group than
the pioneers and early adopters who pur-
chased first-generation minisupercom-

12 00l8-9162/89/0l00-00I2$01 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00 c 1989 IEEE COMPUTER

puters. Ideally, a departmental super-
computer will display none of the idiosyn-
crasies of typical supercomputers and
minisupercomputers and, in fact, will
project the “feel” of a conventional
minicomputer, except for its much higher
performance on numerically intensive
tasks. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Cydra zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 system
arc hi tec ture

From the outset we were determined not
to build an attached processor. The clum-
siness of the host processor/attached
processor approach leads to difficulty of
use and loss of performance. The pro-
grammer must manage two computer sys-
tems, each with its own operating system
and its own separate memory. The pro-
grammer must explicitly manage the
movement of programs and data back and
forth between the two systems. Since the
data transfer path is slow relative to the
processing speed of both computers, it
becomes a performance bottleneck. Pro-
gram development tools for the attached
processor, such as compilers and linkers,
run on the host. To avoid an unhealthy
dependence on a single brand of host com-
puter, this software must be maintained on
multiple brands of host computer.

A self-sufficient, stand-alone computer
has none of these problems. On the other
hand, it assumes the burden of perform-
ing all of the general-purpose, nonnumeric
work-such as networking, developing
programs, and running the operating
system-in addition to the numerically
intensive jobs for which it was originally
intended. As we will show later, the trade-
offs made in designing a supercomputer
and a general-purpose processor are often
diametrically opposed. As a result, each
ends up being the most cost effective for
a different class of jobs. Whereas a super-
computer may have 20 to 30 times the per-
formance of a general-purpose processor
on numerically intensive tasks, it may have
only three or four times the performance
on general-purpose tasks. When price is
considered as well, the supercomputer
ends up having poorer cost-performance
than the general-purpose processor on
nonnumeric tasks, since its expensive
floating-point hardware is irrelevant.

We wanted the Cydra 5 to be not only
a stand-alone computer but also a depart-
mental supercomputer. By this we mean a

number of things. It should be affordable
to a small group or department of
engineers or scientists, which means an
entry-level price under zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$500,000. It should
be easy to use by such a group and not
require a “high priesthood” of skilled sys-
tems analysts catering to the idiosyncrasies
of the machine. Lastly, it should be
designed to handle all of the work load
created by a department, not just the
numerical tasks. As noted, this includes
tasks such as compiling, text editing,
executing the operating system kernel, and
networking-tasks for which a supercom-
puter architecture is not cost effective.

These goals led to one of the key deci-
sions regarding the Cydra 5 : to have a
numeric processor, highly optimized for
numerical computing, and a tightly inte-
grated general-purpose subsystem that
would handle the nonnumeric work load.
In other words the Cydra 5 was to be a het-
erogeneous multiprocessor, with each
processor functionally specialized for a
different, but complementary, class of
jobs.

Initially, we planned to acquire a
general-purpose processor on an original-
equipment-manufacturer basis and inte-
grate into it a numeric processor of our
own design. We had determined that we
needed about 10 million instructions per
second of computation capability from the
general-purpose processor to handle the
1 / 0 load imposed by the application run-
ning on the numeric processor, as well as
the rest of the general-purpose work load.
We soon discovered that a superminicom-
puter in this performance range would
itself have a list price o f abou t
$500,000-the targeted price for the entire
Cydra 5 ! We found consistently that lower
priced general-purpose computation
engines whose performance and price were
closer to what we wanted had underdevel-
oped 1 / 0 capability by departmental
supercomputer standards. This situation
remains unchanged, i f you examine the
current crop of workstations and super-
workstations. The only workable scheme
that met both our cost and performance
constraints was to design our own general-
purpose subsystem consisting of multiple
microprocessor-based processors.

Following a careful evaluation, we
chose the as yet unannounced Motorola
68020 microprocessor. The various RISC
(reduced instruct ion set computer)
microprocessors were only on the drawing
boards at the time. Around the 16-MHz

68020 we designed a fast interactive
processor incorporating a 16-Kbyte, zero-
wait-state cache. A scheme developed by
two of the authors4 maintained cache
coherency in this multiprocessor envi-
ronment.

We could not afford to develop an oper-
ating system from scratch, so we selected
Unix, the only nonproprietary operating
system available. Every workstation and
minisupercomputer vendor has had to
make the same choice for the same reason.
As a result, Unix has become the de facto
standard operating system for the
engineering and scientific community. The
more difficult choice was between the two
competing flavors of Unix: Berkeley 4.2
and AT&T System V. Although Berkeley
4.2 was clearly dominant in 1984-85, we
believed that with the addition of virtual
memory and networking, and with
AT&T’s more aggressive support, System
V would pull ahead by the time Cydra 5
was introduced. Accordingly, we took a
deep breath and jumped on the System V

bandwagon.

Although Cydrix, Cydrome’s imple-
mentation of Unix, complies with the
System V interface definition, i t does con-
tain a number of extensions, primarily
for performance reasons. For use with a
supercomputer, Unix is a rather low-
performance, uniprocessor operating sys-
tem. We rewrote the kernel significantly to
symmetrically (not in a master-slave fash-
ion) distribute i t over multiple interactive
processors so that one or more processors
could be simultaneously executing in ker-
nel mode. This allowed us to bring the
aggregate computing capability of multi-
ple processors to bear on the task of sup-
porting the 1 / 0 for the numeric processor
application. The file and 1 / 0 systems also
received numerous enhancements.

As a consequence of this series of design
decisions, the Cydra 5 Departmental
Supercomputer is two computers in one:
a numeric processor that is the functional
equivalent of other minisupercomputers,
and a general-purpose multiprocessor that
plays the role of a front-end system (Fig-
ure 1). However, these two subsystems are
very tightly integrated. They share the
same memory system and peripherals and
are managed by the same operating sys-
tem. Because of this, the Cydra 5 with
Cydrix presents the illusion of a simple
uniprocessor system to the user who does
not wish to be bothered with what is inside
the black box.

January 1989 13

I
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI

Support memory

I
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I

I -

, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMain memory

I 32 - 512 Mbytes 8-64Mbytes

Structural analysis
Fluid dynamics

Com put at ional chemistry
Seismic processing
Image processing

I

I Service processor

;
I
h

I

Operating system kernel
File zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWO

Networking
Compilation
Text editing

Figure 1. The Cydra 5 heterogeneous multiprocessor. The general-purpose subsystem consists of up to six interactive proces-
sors, up to 64 Mbytes of support memory, one or two 1/0 processors, and the service processor/system console connected
over a IOO-Mbyte/s system bus. Each 1/0 processor handles up to three VME buses, to which the peripheral controllers are
attached. Also connected to the system bus, via a lOO-Mbyte/s port, is the pseudorandomly interleaved main memory. The
numeric processor has three dedicated ports into the main memory, each providing lOO-Mbyte/s bandwidth. One of these is
for instructions; the other two are for data. The main memory and support memory share a common address space and are
both accessible from any processor.

The directed-d
architecture

ataflow

Assuming the use of the fastest reaso1.-
able technology, any further increase in
performance requires the effective exploi-
tation of parallelism in one form or
another.

Fine-grained versus coarse-grained par-
allelism. There are two major forms of
parallelism: coarse-grained and fine-
grained. Coarse-grained parallelism,
popularly referred to as parallel process-
ing, means multiple processes running on
multiple processors in a cooperative fash-

ion to perform the job of asingle program.
In contrast, fine-grained parallelism exists
within a process at the level of the individ-
ual operations (such as adds and multi-
plies) that constitute the program. Vector,
SlMD (single-instruction, multiple-data),
and the attached-processor, or VLlW
(very long instruction word), architectures
are examples of architectures that use fine-
grained parallelism.

Coarse-grained parallelism is com-
plementary to fine-grained parallelism in
that they can be used in conjunction. How-
ever, coarse-grained parallelism is not user
transparent, since state-of-the-art com-
pilers cannot, except in limited situations,
take a sequential program written in a lan-

guage such as Fortran and automatically
partition it into multiple parallel processes.
The user must explicitly restructure the
program to capitalize on this type of par-
allelism. Since this did not satisfy our
criteria for ease of use, we focused on the
exploitation of fine-grained parallelism.

A bottom-up perspective. The final
objective is to minimize the execution time
of any given program. We can express this
execution time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT as

T = N x C X S

where Nis the total number of instructions
that must be executed, C is the average

14 COMPUTER

number of processor cycles per instruc-
tion, and S is the number of seconds per
processor cycle. To a first approximation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, and S are affected primarily by the
compiler's optimization capability, the
instruction set architecture, and the imple-
mentation technology, respectively. How-
ever, the picture is more complicated, and
decisions that decrease one factor may end
up increasing another.

The techniques used to minimize Thave
been many and varied. For general-
purpose processors, the tradit ional
approach was to reduce N at the expense
of a smaller increase in C. The general
thrust was to better utilize the micro-
parallelism present in horizontal ly
microcoded machines by defining more
complex instructions with more internal
micro-parallelism in the hope that Nwould
decrease more sharply than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC would
increase. This approach is now termed
CISC (complex instruction set computer).
By contrast, the RISC approach focuses
on the use of very simple, hardwired, pipe-
lined instructions exclusively to reduce C
and S. The resulting increase in N is
minimized by the use of code optimization
techniques in the compiler for an overall
reduction in T. Although both approaches
have been successful at different times and
under different circumstances, they are
not sufficient to meet the performance
objectives of supercomputers.

The emphasis in supercomputers is on
execution of arithmetic (particularly
floating-point) operations. The starting
point for all supercomputer architectures
is multiple, pipelined, floating-point func-
tional units, in addition to any needed for
integer operations and memory accesses.
The fundamental objective is to keep them
as busy as possible. Assuming this will be
achieved, the hardware must be equipped
to provide two input operands per func-
tional unit and to accept one result per
functional unit per cycle. Furthermore,
since the results of one operation will be
required as inputs to subsequent opera-
tions, some form of interconnection is
needed between the result and input buses.
Finally, since results are not always used
immediately after generation, storage in
the form of one or more register files is
needed. Figure 2a shows the data paths of
a generic supercomputer. The details, o f
course, vary from one machine to the next;
the number and types of functional units,
the number of register files, and the struc-
ture of the interconnect can all be
different.

Interesting and rather fundamental

Interconnect

Register zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I

(a)

Context register matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,I

I '
I

I

Figure 2. (a) Generic supercomputer data paths. (b) Generic directed-dataflow-
processor data paths. Each row of cross-point register files in the context register
matrix can be written into by only a single functional unit, and all register files in a
single row have identical contents. Since each of the register files in a row can be
read in parallel, each row is logically equivalent to a single multiported register file
capable of one write and multiple reads per cycle. Each of the cross-point register
files can be written to by only a single functional unit and can be read by only a sin-
gle input of a single functional unit-the one associated with that column of cross-
point register files. This, along with the property that each register file is capable of
one read and one write each cycle, guarantees conflict-free access to the context
registers for every functional unit for inputs as well as outputs.

differences exist between the data paths of through the integer arithmetic-logic unit or
a scalar processor and those of a super- the cache, and back to the GPRs. This
computer. In the scalar processor the crit- makes it relatively easy to keep the physi-
ical data paths consist o f the circuit from cal distances small, the pipelining moder-
the general-purpose registers (GPRs), ate, and the cycle time short. In contrast,

January 1989 15

critical data paths in a supercomputer
must include multiple floating-point pipe-
lines, large numbers of register files, and
a complex interconnect. The physical dis-
tances are necessarily larger, and there are
more electrical loads to be driven on each
bus. Both factors cause a larger fraction of
the cycle to be consumed in merely trans-
ferring data from one point to another.
This makes it necessary t o increase the
depth of pipelining to avoid compromis-
ing the cycle time. Thus the trade-off is
short pipeline latencies and better sequen-
tial performance versus multiple, deep
pipelines and better parallel performance.

All the hardware in a supercomputer
can be justified only if it is kept well uti-
lized. But keeping all these pipelines busy
requires that multiple operations be issued
(as opposed to being in execution) at every
cycle. This is impossible in conventional
scalar architectures, since a maximum of
one instruction is issued per cycle.

Two styles of uniprocessor architecture
have been developed to circumvent this
bottleneck. One is the vector architecture,
which attempts to reduce zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN by the use of
very complex instruct ions-vector
instructions-where a single vector
instruction does the work of multiple,
identical scalar operations. Once a few
vector operations have been launched,
multiple operations are issued per cycle,
one each by every vector operation that is
active. This is philosophically akin to the
ClSC approach and suffers from the stan-
dard problem of complex instructions:
They work well when they exactly fit the
job that must be done, but they are useless
i f the task differs even slightly.

The second, more flexible, approach is
an architecture in which multiple opera-
tions can be issued in a single instruc-

W e can view this as a n
extension of the SIMD architecture;
instead of the same opcode’s being applied
to all the pairs of input data, as in SIMD,
distinct opcodes are used. The formal
name for such an architecture might be
single instruction, multiple operation,
multiple data (SIMOMD), or MultiOp for
short. Other terms used for such an archi-
tecture include horizontal7 or very long
instruction word (VLIW).‘ We can also
view this as a generalization of the RlSC
architecture, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC is reduced to less
than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 by issuing multiple operations (or
multiple instructions, f rom a scalar
processor point of view) per cycle.

When we started in 1984, MultiOp exe-
cution was used in a number of attached-
processor products-for example, the

t i o n , ? . 3 . c -

graninling. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn here the perspestiw is \er!
bottom-up. I n miiroprogranimirig, thc
hardware is viewed as a collection of func-
tional units and buses, and the task of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA supercomputer

architecture must do
well on all types of

numerical

computation it might

encounter.

FPS-164.6 Expert programmers were able
to coax much better sustained perfor-
mance out of these products than could be
achieved with vector processors having the
same peak performance. But program-
ming these products for high performance
had all the complexities associated with
microprogramming, and some more
besides.3,8 The problem resulted from the
processors’ having been designed entirely
from a bottom-up, hardware perspective,
with no thought to how they were to be
programmed or the obstacles the compiler
writer would face. While we felt i t con-
stituted a step in the right direction, i t was
clear to us that the attached-processor
architecture was unacceptable. Although
the general hardware structure of the
directed-dataflow architecture was dic-
tated by the considerations discussed
above, the subtler aspects resulted from a
top-down thought process driven by our
model of computation.

The model of computation. Although
there is a tendency to categorize architec-
tures superficially by their hardware attrib-
utes (pipelined or VLIW, for example), we
believe that the underlying models of com-
putation and usage are what really matter.
They determine the context within which
all of the design decisions are made, and
they lead to architectural features that,
though subtle, have a major impact on the
performance and breadth of a product’s
applicability. Just as pipelining has been
applied to a number of quite different
architectures, so too we find that theabil-
ity to issue multiple operations per cycle
has been used in at least three types of
architectures with quite distinct underly-
ing models o f compu ta t i on : the
microprogrammed attached-processor
architectures, the VLIW architecture, and
the directed-dataflow architecture.

The attached processors borrowed their
model of computation f rom micropro-

microprogrammer is to determine on a
cycle-by-cycle basis which functional unit
inputs and outputs connect to which buses.
The microprogram is generally viewed as
a sequence of micro-operations, and any
parallelism needed to exploit a horizontal
microarchitecture is exposed on a local-
ized, “peephole” basis. Microprograms
for instruction set interpretation put very
little emphasis on iterative constructs
(loops) but a lot on branching. When an
architecture with these underlying assump-
tions is adopted for numerical processing
(where the emphasis is on loops), a great
deal of programming complexity results if
one wishes to fully exploit the opportuni-
ties for parallelism.’

Although the VLIW school of thought,
too, has its roots in microprogramming,
the VLIW architecture is properly viewed
as the logical extension to the scalar RlSC
architecture. The underlying model is one
of scalar code to be executed, but with
more than one operation issued per cycle.
The obstacle to good performance is
the high frequency of branches in typical
programs, a problem common to micro-
programming. Consequent ly, t race
scheduling,’ originally developed for
microprogramming, is used with VLIW
processors. No special consideration-
beyond the standard scalar processing
compiler technique of loop unrolling-is
given to loops in software, and none what-
soever is given in hardware. Using trace-
scheduling techniques, VLlW can provide
good speedup on scalar code, and when
loop unrolling is used, some further
speedup on iterative computations occurs
as well. However, given the lack of
architectural emphasis on loops, VLIW
does not d o as well on vectorizable com-
putations as a vector processor does.

A supercomputer architecture must do
well on all types of numerical computation
i t might encounter. This includes straight-
line or sequential code as well as branch-
ing scalar code; but ciearly of equal or
greater importance are the iterative con-
structs that constitute the heart of numer-
ical computations. Loops, whether they
are vectorizable or of the type that con-
tains recurrences, conditional branching,
or irregular references to memory, must
get explicit support in the hardware.
The vector architecture provides hardware
support, but only for a limited subset of
loops (those without recurrences and con-

16 COMPUTER

ditional branches), reflecting a restrictive
model of computation. If greater general-
ity is required in the capabilities of the
architecture, a more general model of
computation is needed, one that does well
not only on scalar and vector code like the
VLIW and vector architectures, respec-
tively, but also on the important class of
loops that possess parallelism but are not
vectorizable. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The dataflow model of computation.

By making execution of an operation con-
tingent only on its inputs' being available
and a functional unit's being free to exe-
cute the operation, the dataflow model of
computation exposes and exploits every bit
of parallelism in the computation regard-
less of its form." Thus it provides an
excellent basis for a fine-grained parallel
architecture of broad applicability.

However, most dataflow research
assumes that the program is written in a
dataflow or functional language, whereas
we had to face the real world of Fortran
programs. Consequently, we had to base
our architecture on an extended depen-
dency graph model that included the con-
cept of memory and the corresponding
memory read and write operations. This,
in turn, required that the model include the
concept of antidependency and output
dependency," in addition to that of data
dependency. Also, to reflect the rather
unstructured nature of Fortran control
constructs, we had to include a richer con-
trol dependency model that went beyond
nested IF-THEN-ELSEs. Nevertheless,
the basic philosophy was unchanged; an
operation is a candidate for execution as
soon as all its incoming dependencies, of
all types, have been satisfied. Notwith-
standing the differences between the
dataflow model of computation and our
dependency graph model, we will, for the
sake of convenience, refer to our model of
computation as a dataflow model.

The dataflow model has the richness
needed to yield parallelism on both scalar
and iterative computation. I n scalar code,
parallelism is restricted by the presence of
conditional branches and their associated
control dependencies. Dataflow gets
around this problem with a mode of oper-
ation known as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeager zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAexecution, which
causes operations to be executed before i t
is certain that their execution is needed
(Figures 3a-3f). This is equivalent to selec-
tively removing certain control depen-
dence arcs to increase the parallelism.

In iterative computations, dataflow
dynamically unrolls a loop the same num-

The dataflow model

has the richness

needed to yield

parallelism on both

scalar and iterative

computation.

ber of times that the loop was supposed to
be executed.'" This generates the maxi-
mum parallelism possible, limited only by
the inherent dependencies in the computa-
tion. (The amount of this parallelism actu-
ally used depends on the number of
functional units present.) The dataflow
architecture's ability to exploit whatever
parallelism exists in all of these constructs
makes it the architecture best able to
exploit all of the fine-grained parallelism
existing in programs. Furthermore, since
parallelism is achieved without having to
make any algorithmic changes to the pro-
gram, the dataflow architecture delivers
performance increases transparently. For
these reasons the dataflow architecture
serves as the basis for the Cydra 5 .

Directed dataflow. The directed-
dataflow architecture is also significantly
influenced by another philosophy, one of
moving complexity and functionality out
of hardware and into software whenever
possible; this is the cornerstone of the
RISC concept as well. The benefits of this
philosophy are reduced hardware cost and
often the ability to make better decisions
at compile time than can be made at run-
time. In the directed-dataflow architec-
ture, the compiler makes most decisions
regarding the scheduling of operations at
compile time rather than at runtime-but
with the objective of emulating faithfully
the manner in which a hypothetical
dataflow machine with the same number
of functional units would execute a partic-
ular program.

The compiler takes a program and first
creates the corresponding dataflow graph.
I t then enforces the rules of dataflow exe-
cution, with full knowledge of the execu-
tion latency of each operation, to produce
a schedule that indicates exactly when and
where each operation will be performed.
While scheduling at compile time, the
compiler can examine the whole program,

in effect looking forward into the execu-
tion. It thus creates a better schedule than
might have been possible with runtime
scheduling. An instruction for the
directed-dataflow machine consists of a
time slice out of this schedule, that is, all
operations that the schedule specifies for
initiation at the same time. Such an
instruction causes multiple operations to
be issued in a single instruction.

So far, this is the same as any other
VLIW processor. However, more than the
ability to issue multiple operations per
cycle is needed to efficiently support the
dataflow model of computation in a
compiler-directed fashion, especially when
executing loops. Specifically, the directed-
dataf low architecture provides two
architectural features: the context register
matrix and conditional scheduling control.

The context register matrix. Unlike
the generic structure shown in Figure 2a,
a directed-dataflow machine combines
the register storage and the interconnect
between functional unit outputs and
inputs into a single entity known as the
context register matrix, as shown in Figure
2b. In general the interconnect structure
can be viewed as a sparse crossbar with
certain cross-points absent but with a reg-
ister file at each cross-point present. The
context register matrix guarantees con-
flict-free access to the context registers
for every functional unit. This in turn
guarantees that once a schedule has been
prepared by the compiler, it will not be ren-
dered infeasible because of contention in
getting data into or out of the context
registers, which is one of the fundamental
problems with the attached-processor
architectures.'

When executing loops in a maximally
parallel dataflow fashion, each iteration is
viewed as a distinct computation execut-
ing in parallel with the other iterations. As

with similar situations where the same
code is being executed by distinct parallel
computations, each iteration must have its
own context so that when two iterations
apparently refer to the same variable or,
in this case, the same register (since they
are both executing the same code), the
physical locations actually accessed are
distinct. When concurrent processes are
forked, this is achieved by providing each
process with a duplicate name space. In the
case of recursive invocations of the same
procedure, this is handled by providing
separate stack frames. Each invocation's
reference to a particular local variable is in
the context of its own stack frame. Like-

January 1989 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA17

100

200

300 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
400

TI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- x(i) + X(J)
IF (K'1.GT.J) GOTO SUO

Yfll - YfIl + T I
GOTO 4W
Y(J) - T1 - Y(J)

100

200

300

400 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3

tnl - xit) ; R1
tn2 - X(J) ; R2
T1 - tnl + tn2 ; A1
tn3 - K'I ; M1
ln4 - (tn3.GT.J) : C1
IF tn4 GOTO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA300 ; E1

tn5 - Y(l) ; R3
tn6 - In5 + T1 ; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA2
Y(1) - tn6 ; w1
GOT0400 : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA82

tn7 - Y(J) ; R4
tn8 - T1 ~ tn7 ; S1
Y(J) - tn8 ; w

__ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 3. (a) A fragment of Fortran code. (b) Expansion of the code into individual operations with a label on the right-hand
side for each operation. The scalar variables K, I , and J are assumed to be in registers already. (c) Sequential code schedule
assuming a seven-cycle latency for memory reads and a two-cycle latency for all other operations. The code fragment consists
of three basic blocks. BB2 and BB3 can be entered from BBl as well as from elsewhere. A traversal of this code fragment takes
19 cycles. Note the scheduling of operations in the delay slots of the delayed branch. (d) The dataflow graph for this code frag-
ment. Solid arcs are data dependencies. Dashed arcs are control dependencies that enable or disable operations, depending on
the Boolean result of the comparison C1. Note that branch operations have no role in the dataflow model of computation. (e)
Schedules resulting from the execution of the dataflow graph (assuming the ability to initiate two memory operations and one
other operation per cycle). Operation A1 from BB1 is initiated in parallel with the execution of either BB2 or BB3. The extent
of the overlap between the execution of BBl with the execution of either BB2 or BB3 is determined by the control dependency
from C1 to R3 or R4, which determines whether BB2 or BB3 should be executed. (f) Eager execution of R3 or R4 results from
the removal of the control dependency from C1. Now both R3 and R4 are initiated before it has been determined whether BB2

or BB3 is to be executed. As a result the total execution time is reduced. (g) Directed-dataflow code that achieves the same
effect as in (e). Operation A1 has been moved from BB1 into both BB2 and BB3. However, to preserve the original semantics,
it should be executed only if BB2 or BB3 was entered from BB1. Therefore, both copies of A1 have the predicate correspond-
ing to BB1 even though they are in BB2 and BB3. (h) Directed-dataflow code that performs the eager execution of R3 and R4

by moving them up into BB1. (They must also be copied into all basic blocks from which they can be entered.) The total execu-
tion time for this fragment of code is now 12 cycles.

18 COMPUTER

wise, the maximally parallel execution of
loop iterations requires that each itera- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

661

tion’s register references be within the con-
text of the corresponding zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiteration frame,
that is, a set of registers allocated to a par-
ticular iteration.

The directed-dataflow architecture has
the architectural facilities needed to
dynamically allocate iteration frames at
runtime and the requisite addressing capa-
bilities to reference registers in both the
current iteration frame and, in the case of
recurrences, in previous iteration frames.
Surprisingly, these architectural facilities
incur only a modest hardware cost, namely
the ability to reference the context registers
with an instruction-specified displacement
from a base register containing the itera- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
tion framepointer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(IFP). Since the IFP is
decremented each time a new iteration is
initiated, each iteration of the loop
accesses a distinct set of physical registers.
Any result computed during the same or
a previous iteration can be accessed by
using the appropriate displacement from
the current value of the IFP. This displace-
ment can be computed by the compiler,
since it knows the difference between the
current value of the 1FP and the value at
the time the result was generated, as well
as the original displacement from that
value of the IFP. Some interesting regis-
ter allocation techniques in the compiler
are central to the efficient use of the con-
text registers, but they are beyond the
scope of this article and will be reported
elsewhere.

Conditional scheduling control. In a
sequential model of computation, the pro-
gram consists of a set of basic blocks, each
containing a list of instructions. Only one
basic block is active at any one time. The
equivalent dataflow view is that a program
consists of a set of basic blocks, each con-
sisting of a dependency graph of opera-
tions executed in a parallel fashion.
Conceptually, any given operation has two
types of incoming dependencies: the data
(input operands) dependencies, which
determine when the operation can be
issued, and a control dependency from an
operation-in another basic block-that
computes the predicate. The predicate
determines whether the operations in a
basic block are to be issued at all. The
predicate is true and the operations are
issued if and only if control would have
flowed to that basic block in the cor-
responding sequential program.

Since an operation can be executed as
soon as its data and control dependencies

January 1989 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA19

If Directed-
dataflow

architecture

VLIW
arch it ect ure

I I

Iterative
computation

Scalar _____)

com putat ion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 4. Relationship between various uniprocessor architectures. On vectorizable
loops, directed-dataflow i s slightly better than the vector architecture, which i s bet-

ter than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVLIW, which in turn i s better than the scalar architecture. O n sequential
code, directed dataflow i s at least as good as VLIW, which i s better than both the
vector and scalar architectures. On nonvectorizable loops, directed dataflow i s sig-
nificantly better than all three architectures. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
have been satisfied, i t is possible to have
multiple basic blocks active at the same
time (Figures 3e and 30, particularly in the
case of loops, whether they have condi-
tional branching within the body of the
loop or not. This generates the desired par-
allelism but is possible only because
dataflow can have multiple loci of control
active simultaneously. The directed-
dataflow architecture has the goal of
achieving the same effect as dataflow, but
with a single locus of control. This is
achieved by including in each basic block
operations from other basic blocks that
should be executing in parallel (Figures 39
and 3h). This is a form of code motion, in
this case for enhancing the parallelism in
the program.

An explicit predicate is unnecessary in
the sequential model of computation,
since all operations in a single basic block,
by definition, have the same predicate.
This predicate is implied by the fact that
the program branched to this basic block;
that is, i t decided that this basic block was
to be executed. Thus the predicate’s being
true and the flow of control’s arriving at
the basic block are synonymous.

But these two concepts must be decou-
pled in the case of directed dataflow, since
a basic block can contain operations that

in the sequential program would have been
in another basic block, and thus under a
different predicate. Consequently, each
operation is provided with a third input-
the predicate-in addition to the two nor-
mal ones. An operation is issued only i f
control flows to its basic block and the
predicate is true. The predicate input speci-
fier specifies a register in a Boolean regis-
ter file, which, for historical reasons, is
termed the iteration control register (ICR)
file. Boolean values, which result from
compare operations, may be transferred
into the ICR. In loops, each iteration
generates predicates corresponding to the
conditional branches (including the loop
exit conditional) within the loop body.
Therefore, the ICR too must support the
capability for allocating iteration frames.

With hardware support in the form of
the context register matrix and conditional
scheduling control, the compiler can
generate code for the directed-dataflow
machine that retains the parallelism of the
dataflow architecture. At the same time,
i t capitalizes on the efficiencies of moving
scheduling from runtime to compile time.
I t is this architectural support for the
dataflow model of computation that sets
directed dataflow apart from other VLIW
architectures.

Comparison with other fine-grained
architectures. Figure 4 shows the relation-
ship between various architectures that
exploit fine-grained parallelism. I t uses
two criteria: performance on iterative
computations and performance on scalar
code. At opposite ends of the spectrum are
the (dynamically scheduled) dataflow
architecture, which can exploit all the par-
allelism, and the scalar architecture, which
exploits none of it. The vector architecture
is better than the scalar on the restricted
class of vectorizable computations, but no
better on scalar code. The VLIW architec-
ture does better than the scalar architecture
on scalar code and much better on iterative
computations, but it does not do as well as
the vector architecture on vectorizable
loops. This is because the loop-unrolling
techniques that i t uses can yield only short
vector performance levels. On scalar codes
the directed-dataflow architecture is at
least as good as the VLlW architecture and
better than the vector architecture. It is

slightly better than the vector architecture
on vectorizable loops, since strip mining
(Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5) is unnecessary, and i t is far bet-
ter on nonvectorizable loops. Directed
dataflow, as a result of its architectural
support for dataflow, is better than the
VLIW architecture on iterative compu-
tations.

Numeric processor
decisions and trade-offs

Technology selection. The choice of
implementation technology was perhaps
the most important decision we had to
make, since it fundamentally affected all
other decisions and trade-offs. Our back-
of-the-envelope calculations indicated
that the same architecture could be imple-
mented in TTL/CMOS at two-fifths
the performance of an emitter-coupled
logic (ECL) implementation and two-
thirds the cost (a 100-nanosecond rather
than a 40-nanosecond cycle). I f cost and
performance had been the only consider-
ations, it would have been a simple deci-
sion, since our corporate objective was to
serve the high end of the departmental
supercomputer market. However, we real-
ized that opting for an ECL implementa-
tion nould preclude the use of VLSI
floating-point chips such as the Weitek
chips and that i t would require the design
of more logic and more boards, as well as
more development time-hence, more
nonrecurring expenditures.

20 COMPUTER

Also, some people at that time believed
ECL was a doomed technology, that
CMOS would catch up in performance-
and at a fraction of the cost. Although this
belief was, and still is, incorrect, there was
tremendous pressure from the investment
community to build a TTL/CMOS prod-
uct and even to discard some of the func-
tionality and build a subset of what we
were planning. However, we were con-
vinced that the low end of the market
would be very crowded with minisuper-
computers and array processor products.
(This has, in fact, come to pass, except that
superworkstations have replaced array
processors as the threat at the low end.) We
wanted to be above the general melee, so
we decided to stick with our business plan
and implement an ECL product. We now
feel vindicated in that decision, since more
and more computer vendors are currently
moving t o th is technology. A t a
40-nanosecond cycle time, this yielded a
processor with a peak performance of 25
million floating-point operations per sec-
ond (Mflops) with 64-bit operands, 50
Mflops with 32-bit operands, and 175 mil-
lion operations per second overall.

In the interest of reducing the nonrecur-
ring development costs and the develop-
ment risk, we made another important
decision: By and large, we would use off-
the-shelf ECL components. Gate arrays
would be used only in certain
performance-critical parts of the design,
and even so, not for control logic. Since
this was the first implementation of a
directed-dataflow processor, the decision,
even in retrospect, was correct. But it had
many unpleasant consequences. The 1985
vintage of standard ECL logic was at a
very low level of integration. This meant
that the numeric processor would occupy
a lot of real estate. Since manufacturing
considerations limited us to boards of
roughly 18 inches on a side, the numeric
processor would have to be spread out
over a large number of boards. This led to
a snowballing effect; large amounts of
buffer logic were required to drive signals
between the many boards. This in turn
increased the total amount of logic even
further. If we had had the option of imple-
menting the numeric processor entirely
with gate arrays, we could have reduced its
size by a factor of three or four. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Number of functional units. Our per-
formance goal was to be able to initiate one
floating-point add and one floating-point
multiply every 40-nanosecond cycle, using
two separate pipelined functional units.

Additional functional units were required
to support these two floating-point pipe-
lines. The first issue was the number of
ports to memory that were needed. Our
thinking here was influenced by the fact
that our model of computation was
dataflow and not vectors. We viewed the
entire body of the loop as a single entity
rather than as a number of separate vector
operations. Thus we required memory
reads and writes only for the array inputs
and outputs, not for the scalar tem-
poraries, which on a vector machine would
be converted to vector temporaries. This
reduced the relative number of memory
operations needed on our machine (Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5) .

Our program statistics indicated that
within innermost loops the balance
between memory bandwidth and floating-
point computation capability was between
one and three memory operations per pair
of floating-point operations. Although
certain important computations such as
SAXPY (the addition of one vector to
another one that has been multiplied by a
scalar) require one and a half memory
operations per floating-point operation,
we felt that this was an expensive luxury in
hardware and that the need was not
statistically frequent enough to warrant
the expense. Also, half a memory opera-
tion per floating-point operation seemed
entirely inadequate. So, given the existence
of two floating-point functional units, we
decided to have two ports to memory.
Since it is necessary to compute an address
for each memory operation, typically to
increment an index into an array, this
implied the presence of two address
(unsigned integer) adders. Also, to facili-
tate dope vector calculations for random
references into multidimensional arrays,
we provided an address multiplier.

Within loops there are also, typically, a
certain number of integer operations.
Since we did not wish to have these oper-
ations steal cycles from the floating-point
units, we added an integer functional unit.
This left us with a grand total of eight pipe-
lined functional units. A subsequent crisis
caused by the burgeoning amount of logic
required a reduction in the size of the
numeric processor. As a result of this exer-
cise, we eliminated the integer unit and the
address multiply unit as separate pipelines
and merged them with the floating-point
adder and address adder units, respec-
tively.

Very early in the project, we constructed
a prototype scheduler that would generate
schedules for programs written in a low- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

D O I = l , N
Q = U(I) Y(I) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y(I) = X(l) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ
X I) = Q + V(I) X(I)

ENDLO

D O I = l . N
Q = U(l) Y(I)
Y(I) = X(I) - Q

ENDDO

DO I = 1, N, 64
DO J = I, 1+63

Q = U(I) Y(I)
Y(I) = X(I) - Q
T = V(I) X(I)
X I) = Q + T

E N D L
ENDDO

Figure 5. (a) Fortran code for a loop.

(b) Fortran loop rewritten with just one

floating-point operation per statement.

Each statement would become a vector

floating-point operation. Using registers

in a scalar machine would result in only

six memory operations (four reads and

two writes) per iteration. A memory-to-

memory vector processor would require

12 memory operations per iteration

(two reads and one write per statement).

(c) Using vector registers can bring the

memory operations back down to six

per iteration, but because of the finite

length of the vector register (assumed to

be 64 in this example), strip mining

must be used. The loop is transformed

into a doubly nested loop. The inner

loop handles 64 long chunks of the vec-

tor: the outer loop sequences through

all chunks that make up the vector. (For

simplicity, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN is assumed to be a multi-

ple of 64.) Strip mining limits the length

of vector operations to no more than

the vector register length, thus reducing

performance. In the directed-dataflow

architecture, since registers are continu-

ously deallocated from iterations that

have completed and allocated to new

iterations, the number of memory oper-

ations per iteration is six, yet there is no

restriction on the length of the vector

operation.

January 1989 21

level dependency graph language. This
scheduler worked in a table-driven man-
ner, using for this purpose a machine
description file. By modifying this
machine description file, we were able to
estimate the relative performance of the
numeric processor while varying the num-
ber of pipelines, the depth of the pipelines,
and the assignment of opcodes to func-
tional units. One of the alternatives we
experimented with was the number of
floating-point functional units, bearing in
mind that computational balance required
a memory port and an address unit for
each floating-point unit. We found that
the increase in performance with the num-
ber of floating-point units was quite sub-
linear, while the increase in cost and
complexity was most definitely super-
linear. We opted, therefore, to stay with
two floating-point units and to design
them to run as fast as possible instead of
providing many slow units. Given a certain
target performance level, the compiler
needs to find less parallelism in the pro-
gram in a processor with a few fast units
than in one with many slow units.

At this point we had six pipelined func-
tional units (including the two memory
ports), each requiring two input operands
and generating a result. Complete connec-
tivity between all outputs and all inputs
would have required a 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 12 crossbar with
a register file at each cross-point. This was
infeasible from an implementation view-
point. And yet, with our understanding of
the problems of programming Floating
Point Systems’ AP-l20B, we were unwill-
ing to eliminate cross-points in an ad hoc
manner. Some underlying scheme having
conceptual integrity and relevance from
the viewpoint of the compiler writer was
essential.

We partitioned the functional units
on the basis of data versus addresses,
placing the two floating-point units, the
integer unit, and the two memory ports in
the data cluster and the remaining func-
tional units in the address cluster. This
immediately reduced the number of cross-
points by half. The final structure of the
numeric processor’s data paths is shown in
Figure 6.

Another major constraint, especially in
the context of an interconnection-rich
architecture such as this, was the amount
of board zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI/O. Obviously, the choice of
data path width had a major impact on the
number of signals crossing board bound-
aries. With 32-bit data paths we found
ourselves up against a wall even with the
use of fairly aggressive connector technol-

22

Figure 6. Major numeric processor data paths. The numeric processor E-unit con-

tains two major parts: the data cluster and the address cluster. The data cluster

consists of four functional-unit pipelines interconnected by the data context register

matrix. These four pipelines are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1) the floating-point adder/integer ALU (four-

cycle latency), (2) the floating-point/integer multiplier (five-cycle latency) and

divider, as well as the square-root unit, (3) memory data port 1 (17-cycle latency),

and (4) memory data port 2 (17-cycle latency). The address cluster consists of two

address adder pipelines (three-cycle latency) interconnected by the address context

register matrix. In addition, the first pipeline provides a bit-reverse capability,

while the second provides an integer multiply capability. The context register

ogy. A move to 64-bit data paths would
have required the use of exotic and expen-
sive connectors. The rule of thumb we had
developed indicated that 64-bit data paths
instead of 32-bit data paths would increase
64-bit performance by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50 percent and
32-bit performance not at all. Discretion
being the better part of valor, we elected
to use 32-bit data paths.

Register storage. The context register
matrix provides the architectural facilities
needed to dynamically allocate iteration
frames at runtime. Since each iteration
initiated is allocated an iteration frame,
and since the total number of registers in
the context register matrix is fixed, the iter-
ation frames for past iterations must be
deallocated at the same rate that new ones

COMPUTER

Iteration control registers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ICR)
n n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtt

GPR input bus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
matrix (CRM) provides simultaneous, conflict-free access to all functional-unit

inputs and outputs. Also, by virtue of the iteration frame pointer relative address-

ing into it, the CRM supports overlapped execution of loops. Each functional unit

has three inputs. Two of these are the conventional operand inputs sourced by

either the CRM or the general-purpose registers (GPR). The third input is a

Boolean value from the iteration control register (ICR) used to conditionally con-

trol the issuance of operations. The output of each functional unit can go either to

its row in the CRM or to the GPR. Like the CRM, the GPR and ICR consist of as

many carbon-copy register files as there are inputs that can source them.

are allocated. While this is exactly what is
desired for loop variants (values computed
by each iteration), it poses a problem for
loop-invariant values that are used, but
never computed, within the loop. Unless
they are continuously copied from one
iteration frame to the next, they will be
overwritten. T o avoid the significant over-
head of copying loop invariants, we

January 1989

provided a register file that is global to all
iterations and does not possess the itera-
tion frame capabilities. With considerable
originality, we called this the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgenerul-
purpose register file. In a single cycle it can
be read by any number of functional unit
input ports simultaneously and at distinct
locations, just like a row in the context reg-
ister matrix, and it can be written to by the

output port of any functional unit, but
only one at a time.

One of the more ad hoc decisions we
made was choosing the number of registers
per register file. The problem we faced was
a lack of directly relevant statistics on the
effect of this parameter on performance in
the context of a directed-dataflow style of
execution. So we plucked the decision out
of thin air. Our collective intuition told us
that 32 registers per register file was too
few, and 128 registers looked difficult
from an implementation viewpoint. Thus
we settled on 64 registers per register file.
Comforted by the lack of alternatives, we
moved on.

The capacity of the iteration control reg-
ister (ICR) was determined by two oppos-
ing considerations. Since each predicate
would be used as input to operations
scheduled to execute at times separated by
rather long intervals, we expected the life-
time of these values to be long. This
implied more capacity in the ICR than in
the register files in the context register
matrix. On theother hand, thenumber of
bits available in the instruction format to
address the ICR was at a premium. We
finally decided to provide an ICR capac-
ity of 128.

Opcode repertoire. The basic philoso-
phy in the directed-dataflow architecture
is to work with atomic operations that can
be scheduled with maximum flexibility.
So, we have no operations of the CISC
type that read from memory (two oper-
ands), perform an operation, and write the
result back to memory. T o our way of
thinking, this is actually four different
operations packaged together, usurping
the compiler’s ability to achieve optimal
scheduling. Except for the memory Read
and Write opcode class, no other opcodes
access memory. Their inputs and outputs
are predominantly either the context reg-
ister matrix or the GPR file. Also, with a
few exceptions, the opcode repertoire is
the normal set of integer, logical, floating-
point, and memory operations. The few
exceptions relate to supporting the
directed-dataflow model of computation.
The opcode repertoire reflects the numer-
ical bias; while there is extensive support
for floating-point operations, there is none
for binary-coded decimal arithmetic or
string operations. Except in the case of
(bitwise) logical operations, where it would
be redundant, opcodes are provided for
both single-precision (32-bit) and double-
precision (64-bit) operations. The data
types supported by the execution unit

23

hardware are 32-bit and 64-bit IEEE float-
ing point, 32-bit and 64-bit 2’s comple-
ment integers, 32-bit unsigned in the
address cluster, and 32-bit logical.

The data paths, as well as the registers
in the numeric processor, are 32 bits wide.
We believed that register allocation in the
compiler would be simplified i f the two
halves of a 64-bit datum could be indepen-
dently assigned to unrelated registers. This
meant we would need four source-register
specifiers and two destination-register
specifiers for a 64-bit operation. Since we
have 32-bit data paths, it takes two cycles
to provide the input operands for a 64-bit
operation. Consequently, in the schedule
as well as in the code, no operation can
immediately follow a 64-bit operation. We
decided to use this dead cycle to provide
two source specifiers and one destination
specifier. The rest of the specifiers are
provided in the previous instruction (the
one initiating the 64-bit operation).

The memory opcode repertoire includes
opcodes to read and write 32-, 16-, and
8-bit data. The 16-bit reads and writes have
signed as well as unsigned versions. With
the 16-bit reads, this determines whether
the 16-bit datum is interpreted as a signed
or an unsigned integer. This in turn deter-
mines whether the sign is extended or zeros
are inserted in the high-order 16 bits of the
32-bit destination register. All integer
arithmetic is carried out thereafter on
32-bit data. When a 16-bit datum is writ-
ten back to memory, use of the signed or
unsigned opcode determines whether or
not the 32-bit quantity in the register can
be treated as a 16-bit quantity without
overflow. I f an overflow occurs, i t is
reported at the time of the 16-bit write. The
32-bit Exchange Read opcode exchanges
the contents of the specified register and
memory location as an indivisible opera-
tion. This opcode supports synchroniza-
tion between asynchronous parallel
processes.

Although the opcode repertoire is iden-
tical for both memory ports, an asym-
metry results because of insufficient
instruction word bits to go around. Mem-
ory port zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 can specify the memory address
as an instruction-specified displacement
off a base register. Memory port 2 cannot
specify a displacement.

The numeric processor has two special
opcodes to support loop execution: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbrtop
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnexti. Two types of actions must be
performed to control loops. One is to
determine whether another iteration is to
be executed and, i f so, to allocate a new
iteration frame. This is done by the nexti

opcode. The other action is to actually
branch back to the top of the loop if
another iteration is to be executed. The
brtop opcode does this in addition to
everything the nexti opcode does. If it were
not for the long, three-cycle branch
latency, the nexti operation would be
unnecessary. But in certain very small
loops, the interval between the initiation
of successive iterations can be less than the
branch latency. If not for the nexti opcode,
this would pose an unnecessary upper
bound on performance of one iteration
every three cycles. But with the nexti
opcode, i t is possible to initiate new itera-
tions in the delay slots of the brtop opera-
tion. This allows up to three iterations per
brtop executed and the initiation of up to
one new iteration every cycle. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Instruction format. The data paths of
the numeric processor can initiate six oper-
ations every cycle. Therefore, the MultiOp
instruction format (Figure 7a) must be able
to issue six operations on the six functional
units, plus an additional one to control the
instruction unit and other miscellaneous
operations. A MultiOp instruction con-
sists of seven partitions, one for each oper-
ation; each instruction looks like a
conventional RISC instruction except for
the existence of a predicate specifier. The
typical format for each operation partition
consists of an opcode, two source-register
specifiers, one destination-register speci-
fier, and one predicate-register specifier
(Figure 7b).

The data cluster has four context regis-
ter matrix rows and the GPR to select
among for a source, and one row plus the
GPR to select between for the destination.
Similarly, the address cluster has two con-
text register matrix rows and the GPR to
select among for a source, and one row
plus the GPR to select between for the des-
tination. Assuming an average of five or
six bits in the opcode field, 64 registers in
each register file, and 128 locations in the
ICR, this implies roughly 40 bits per oper-
ation partition or 240 bits per instruction.
To avoid the need for complex instruction
fetch logic, we were determined that the
instruction word width would be a power
of 2 . Thus 256 bits appeared to be a
reasonable target. Furthermore, since an
instruction word width of 512 bits would
have caused a considerable increase in the
cost and complexity of the instruction
unit, 256 bits seemed the only option avail-
able. This rigid constraint required a num-
ber of trade-offs, which are discussed
below.

In portions of the program where signif-
icant parallelism exists, including but not
limited to innermost loops, the MultiOp
format is very effective. However, because
it gobbles up 32 bytes every 40 nanose-
conds, we were worried about the effect on
instruction cache performance and capac-
ity should the MultiOp format be used
indiscriminately, even in portions of the
code where little parallelism exists. With
this in mind, we created the UniOp instruc-
tion format (Figure 7c), which allows only
a single operation to be initiated per
instruction, making it possible to fit mul-
tiple UniOp instructions in each 256-bit
container. The opcode repertoire available
in the UniOp format is identical to that in
the MultiOp format. While executing
UniOp instructions, the numeric processor
is similar to other scalar architectures that
have no pipeline interlocks in hardware.

The UniOp instruction must contain not
only all the information contained in the
corresponding MultiOp partition, but also
a few additional bits to indicate which
functional unit is being tasked. The longest
partition in the MultiOp format is for
memory port 1 , which contains a literal
field for specifying an address displace-
ment or a data literal. This partition is 44
bits long. I f each UniOp instruction is at
least 44 bits, it is possible to fit at most five
instructions per instruction container, for
an average instruction width of 51 bits. We
felt that this would dilate the size of the
compiled code to an uncomfortable
extent. As a compromise we decided to
forgo the predicate capability in UniOp,
reasoning that the UniOp sections of code
were not supposed to be performance crit-
ical anyway. Now i t was possible to fit six
UniOp instructions per container. Any
more than six per container would have
required us to reduce the 16-bit address
displacement field size. Since we felt that
16 bits was barely adequate, we were
unwilling to reduce i t further. The 40-bit
UniOp format also permitted us to provide
a 24-bit program address literal.

The MultiOp format contained zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA18 con-
text register matrix or GPR specifiers and
six ICR specifiers. Increasing the number
of registers per register file from 64 to 128
would have required 18 additional instruc-
tion bits in MultiOp, which were not avail-
able. This helped us realize that adding
more registers was not an option. Decreas-
ing the number of ICR locations from 128
to 64 would have saved six MultiOp
instruction bits-not enough to make an
appreciable difference elsewhere.

24 COMPUTER

MultiOp
format zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

FADD
IALU

FADD AADD2
IALU FMPY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMeml zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMem2 MOD1 AMW Branch

I I I I 1 1 1 1 1 1 1 1 l l l l l l l l l l l l l l l l

FMPY

Op SoUm 1 source2 &stinalion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApredicate

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Op 6oum 1 soufa2 destination predicate

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ~

Meml

UniOp
format

Mem2

Llniop
inaamam

U n i p
IfMWdOfl

MioP
1 - h zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi

bi0P
instruction

l l l l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I

AADDl

AADDP
AMPY

Branch

Figure 7. Numeric processor instruction formats. (a) The MultiOp format is 32 bytes long and permits seven operations to be

issued during each 40-nanosecond cycle. (b) The structure of each partition in the MultiOp format. (c) The UniOp format

allows six instructions to fit into a 32-byte container. Each instruction can issue only one operation per 40-nanosecond cycle.

Exception handling. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAExceptions and
interrupts pose a special challenge to
architectures such as directed dataflow,
where the execution sequence is so care-
fully and rigidly choreographed. The basic
problem in handling an exception is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsched-
ule rearing, which means the carefully
crafted computation schedule is being
drastically altered by inserting the compu-
tation corresponding to the exception han-
dler into the middle of the original
computation. The compiler-generated
schedule is literally torn apart to allow the

exception handler to execute. This can
cause two types of problems: first, the con-
flicting usage of scheduled resources, and
second, the violation of implicit dependen-
cies between operations.

Avoidance of resource conflicts is
achieved by flushing all pipelines during
transition between the user program and
the exception handler. This is done by
aborting operations in progress, by allow-
ing them to execute to completion, or by
saving and subsequently restoring their
state of partial execution. Conceptually,

the last alternative is the simplest. I t is also
the costliest in terms of hardware require-
ments, so i t is the solution of last resort.
Aborting operations is extremely compli-
cated, since those operations will need to
be reissued after exception handling,
which means the program counter and the
processor state must be backed up. Allow-
ing operations that have been issued to go
to completion is the best technique over-
all, except in certain cases. Clearly, if the
exception is due to an operand page fault
occurring in the course of executing a

January 1989 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25

memory operation, the memory operation
cannot complete until the page fault excep-
tion has been handled and the page has
been brought into physical memory. In
this case the best alternative is to save the
state of that portion of the memory pipe-
line extending through the virtual address
translation and to restore it after exception
handling.

If special care is not taken, schedule
tearing can result in the violation of
required dependencies between opera-
tions. It can cause an operation scheduled
to finish after a second one has started to
actually finish zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbefore the second one
starts. This will lead to incorrect results if
the first operation writes to the same reg-
ister the second one reads, and if the sec-
ond operation expects to get the contents
that existed prior to the register’s having
been overwritten. Such a situation is
prevented by a compiler convention that
decrees a register to be “in use” from the
beginning of the operation that writes to
it until the latest completion time of all
operations using that value. With this con-
vention in place, two operations that over-
lap each other’s execution intervals will
have to use different source and destina-
tion registers, thereby avoiding the
problem.

Clearly, handling an exception requires
that no further instructions (operations) be
issued once the exception has occurred.
But this can contradict the strategy of
executing to completion an operation in
progress if the information corresponding
to that operation is distributed across mul-
tiple instructions. This is often the case in
microprogramming-style architectures,
where, instead of providing the opcode,
the source specifiers, and the result speci-
fiers at the same time, the architecture pro-
vides the result specifier many instructions
later than the opcode, reflecting the time
when each item of information is actually
needed.

The problem is that when the exception
occurs, not all of the information needed
by the operation to execute to completion
has been issued; that is, the operation is in
a partially issued state. For the operation
to execute to completion, further instruc-
tions must be issued, which in turn would
cause further operations to be issued
whose completion would require the issu-
ance of still more instructions, and so on.
The only solution would be to issue further
instructions selectively in a way that would
prevent the issuance of new operations
until the operations already in progress
had received all the information they need

to execute to completion. After the excep-
tion has been handled, instruction issuance
would have to begin with the first instruc-
tion initiating an operation that was not
issued prior to exception handling, while
taking care to selectively mask out opera-
tions issued previously. Because this is so
messy, it is highly desirable that all infor-
mation pertaining to a single operation be
specified at the same time in the same
instruction.

In the numeric processor, however,
double-precision operations are dis-
tributed over two consecutive (in time)
instructions. Thus, at least to a limited
extent, the problems described above must
be dealt with. Two measures accomplish
this:

(1) The one instruction issued after the
exception (since it may contain the
second half of a double-precision
operation) must be issued with all
“new” (that is, single-precision or
first half of double-precision) oper-
ations disabled.

(2) The opcode for the second half of a
double-precision operation should
be such that in isolation (when
viewed as a single-precision opera-
tion or the first half of a double-
precision operation) it will be inter-
preted as a no-op.

The first requirement allows the appropri-
ate functional unit to get the information
it needs to allow a double-precision oper-
ation issued in the previous cycle to execute
to completion. The second requirement
makes it simple to resume issuing instruc-
tions after handling the exception. Since
they are interpreted as no-ops, second
halves of double-precision operations will
automatically “mask” themselves out.

However, the first requirement cannot
be met when the second half of a double-
precision operation lies in a different page
from that in which the first half lies and if
the instruction fetch for the second half
generates a page fault. In this case the
double-precision operation must be
aborted and restarted by resuming instruc-
tion issuance with the last instruction actu-
ally issued. For this to be possible, the
inputs to operations issued in the instruc-
tion to be restarted must not have been
modified. This will be true if another com-
piler convention is observed: The registers
that are sources to an operation in a par-
ticular instruction should be viewed as
“busy” through the end of the issuance of
all double-precision operations whose first
halves are in the same instruction. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

PC history queue. One consequence of
very deep pipelines is that between the issu-
ance of an operation and its completion,
it is possible to have executed multiple
branch operations. If an operation gener-
ates an exception, the deep pipelining
makes it extremely difficult for a debug-
ger to figure out the program counter value
for the instruction that initiated the
offending operation. To solve this prob-
lem, we included a circular 256-entry PC
history queue (PCHQ). During normal
operation the current PC value is written
into the PCHQ on every cycle. The state
of the PCHQ is frozen when an exception
occurs. Knowing the latency of the offend-
ing operation, the debugger can index back
into the PCHQ by that amount to locate
the PC value for the corresponding
instruction.

Although this was the original motiva-
tion for the PCHQ, it was soon pressed
into service for an additional function.
Again due to the depth of the pipelines,
between the time an exception occurs and
the time all pipelines have been flushed,
many operations complete that can gener-
ate additional exceptions. These opera-
tions will not be reissued after exception
handling, so the exceptions must all be
recorded and handled en masse. Since this
exception logging process occurs only after
the first exception has occurred, and since
the PCHQ has stopped recording P C
values at this point, we decided to switch
the PCHQ from the task of recording PC
values to the task of recording exception
records at the time the first exception
occurs.

The main memory
system

The ideal memory system for a super-
computer would provide large capacity at
a low price and extremely high bandwidth
with very low access time. Furthermore,
the bandwidth and access time would be
insensitive to the size of the data sets being
operated on, the manner in which the data
are placed in memory, and the order in
which they are referenced. Needless to say,
such a memory system has never been
built. Each computer architect must decide
which of these attributes are essential and
which can be compromised.

Data cache anomalies. General-purpose
computing almost invariably employs
caches. Assuming locality of reference and

26 COMPUTER

Memory module 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 8 12 16 20 24 28 32

Memory module 1

Memory module 2

Legend

1 5 9 13 17 21 25 29 33

2 6 10 14 18 22 26 30 34

Memory module 3 3 7 11 15 19 23 27 31 35

Module 0

Module 1

Module 2

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Module zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC

Module 1

Module zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi

Module zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf

Time
(C)

t ; i i i ; i i ; i ; i i ; i i i i i i i i i i l
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Figure 8. Sequentially interleaved memory. (a) The conventional assignment of memory locations to memory modules in a
sequentially interleaved memory system with four modules. A memory module is busy for four cycles when handling a request.
Thus, the peak bandwidth is one request per cycle. (b) With a sequential request stream, perfect operation takes place. No
request ever encounters a busy module, and the peak bandwidth is achieved. (c) For a request stream with a stride of eight,
every request is directed to the same module. Every request encounters a busy module, the processor must halt three cycles for
each cycle it advances, and the achieved bandwidth is one request per four cycles. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
28 COMPUTER

hence a high hit rate, the cache provides
the desired high bandwidth and, on the
average, low access time, while the main
memory provides large capacity at a low
price. Whereas the assumption of good
locality is usually true with general-
purpose work loads, it can be wildly wrong
in numerically intensive computing.
Often, numerical applications sweep
through large arrays such that a particu-
lar element is rereferenced only after all
other elements have been referenced.
Except in the case of toy problems, the
arrays tend to be comparable to the main
memory in physical size and considerably
larger than any realistic cache. Conse-
quently, each word is displaced from the
cache before it is next referenced, result-
ing in a low hit ratio.

The processor is now working directly
out of the main memory, which typically
is underdesigned for this situation, since
the design assumption was that only a
small fraction of the references would
come through to the main memory. Worse
yet, if the stride with which the processor
is referencing memory is equal to or
greater than the cache line size, the cache
will fetch an entire line for each reference
that the processor makes, and all but one

word of the line is wasted. Far from help-
ing the situation, the cache is now com-
pounding the problem by amplifying the
request rate to an already underdesigned
main memory. This phenomenon has been
researched and reported by Abu-Sufah
and Mahoney.‘’

In the case of a really high-performance
processor, a further problem makes using
a data cache difficult. In addition to the
bandwidth needed for instruction fetch-
ing, it zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis necessary to perform two or three
data references per processor cycle to keep
memory bandwidth in balance with the
processor’s computational capability. This
requires the use of either an interleaved
cache or multiple caches, along with a
cache coherency mechanism. At extremely
fast clock rates, both alternatives present
formidable obstacles. In view of these con-
siderations, we elected not to use a cache
for data references. We provided a
32-Kbyte cache for instructions, since
cache performance for instruction refer-
ences is not qualitatively different for
numerical programs.

Sequentially interleaved memory

architectures. The full operand request
rate now had to be handled by the main

memory, and we were back to the problem
of providing a consistently high bandwidth
and low access time using main-memory
technology. In the context of a departmen-
tal supercomputer price objective, this
meant that using fast, static, ECL RAM
was precluded, and we had to use the rela-
tively inexpensive but slow MOS DRAM
technology. The only way to achieve high
bandwidth with slow memory technology
is to use multiple memory modules in an
interleaved fashion. In a normal, sequen-
tially interleaved memory, with an inter-
leave factor of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM modules, every M t h
word is in the same memory module (Fig-
ure 8a). In the case of a sequential refer-
ence stream, this ensures high bandwidth,
since all modules are referenced before the
same module is referenced again (Figure
8b). If the degree of interleaving is large
enough compared with the ratio of the
memory cycle time to the processor cycle
time, the memory module will be ready to
handle another request by the time it is
referenced again.

Although interleaved memories can
provide the bandwidth requirements of
high-performance processors, they do not
address the desire for short access times.
Without the use of a cache, the access time, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

PIAN YOUR VISIT NOW! zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
THE FIRST AND ONLY SUPERCOMPUTING EXHIBITION AND CONFERENCE IN EUROPE!

21-23 February1989
=

JAARBEURS U UTRECHT/HOLLAND

You have the chance to see
40 major manufacturers like CRAY,
AMDAHL, IBM, CONVEX, SUPERTEK,
NEC, HlTACHl and man others.
Hear what expert speaiers have
to say about the world of super-
computing tomorrow:
Jack Dongarra from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUSA
Chris Jesshope from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU.K
Yasurnasa Kanada from Japan
And 15 vendor speakers will tell you
their experience in supercomputing,
there is no better place in Europe
to get a complete overview of the
supercomputing technologies of
toda and tomorrow! Why miss it?
Ask ydr the registration form for
the conference with the key-note
speakers or ‘ust visit the exhibition
with free admission to the vendor
speakers.

Organizerr:
Royal Netherlands Industries Fair
P.O. Box zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8500,3503 RM Utrecht,
The Netherlands
Phone: (30) 955 911. Fax: (30) 940 379
Telex: 47132 jaarb nl.

even under the best of circumstances, can
be no less than the access time of the mem-
ory technology used in the main memory.
Since in numerically intensive computa-
tions processor performance is more
rigidly linked to memory bandwidth than
to memory access time, supercomputer
architectures have evolved in such a way
as to be relatively insensitive to memory
access time. In vector processors the mem-
ory access time contributes only to the vec-
tor start-up penalty, not to the vector
execution rate. Likewise, in the dataflow
and directed-dataflow architectures, a
longer access time is handled by schedul-
ing the memory access earlier than i t is
needed.

Parenthetically, this explains why
general-purpose processors are better
“MIPS engines” than supercomputers
running at the same clock speed. In
general-purpose computing the emphasis
is less on iterative computations and mem-
ory bandwidth and more on branching,
procedure calls and returns, and memory
access time. This makes cache memories
indispensable. Without its cache memory,
a high-speed scalar processor would slow
down to a crawl. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The stride problem. In well-designed
supercomputer architectures, the trade-off
is always in the direction of ensuring con-
sistently high memory bandwidth, even at
the expense of increased access time. How-
ever, conventional, sequentially inter-
leaved memories cannot guarantee even
high bandwidth. They break down badly
i f the references have a stride that is a mul-
tiple of the degree of interleaving (Figure
Sc). When this happens, every reference is
to the very same memory module, and the
bandwidth is degraded to that of a single
memory module. The processor’s perfor-
mance drops proportionately. On existing
supercomputers, the magnitude of this
penalty is so large13 that the user is forced
to contort the algorithm to avoid this
stride problem.

Pseudorandomly interleaved memory

architecture. We found this situation
unacceptable and developed an interleaved
memory architecture that is impervious to
the stride problem. Instead of assigning
every Mth word to the same memory mod-
ule, we assigned the memory locations to
the memory modules in a carefully
engineered pseudorandom fashion such
that every reference sequence likely to
occur in practice would be as uniformly zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

fi
The ideal

memory system
for a supercomputer
would provide large
capacity, low price,

high bandwidth, and
very low access time.

distributed across the memory modules as
would a truly random request sequence
(Figure 9a). T o someone familiar with the
folklore of interleaved memory design,
this might seem like exactly the wrong
thing to do. It is a popularly held belief
that an M-way interleaved memory with a
random request sequence will only achieve
a bandwidth proportional to JMmodules
instead of getting the full benefit of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM
modules. This is true (Figure 9b) i f the
memory system does not have the facilities
to queue-up references to busy m0du1es.l~
With sufficient buffering (Figure 9c), the
full bandwidth of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM modules can be
a ~ h i e v e d . ’ ~ Furthermore, since every
request sequence, whether sequential, of
stride M , or totally scrambled, appears
equally random to the interleaved mem-
ory, this high bandwidth is consistently
achieved. The only exception is a situation
in which the same location is repeatedly
referenced (for instance, a scalar memory
reference in a loop). Standard, machine-
independent optimizations in the compiler
get rid of such situations. Thus, high band-
width is guaranteed regardless of how data
is placed in memory and how it is
referenced.

But, as always, there is no free lunch.
The price of guaranteeing consistent high
bandwidth is an increase in access time in
high-bandwidth situations. When the
request rate is high (close to the maximum
bandwidth the memory system is designed
for), the randomness of the pseudoran-
domized request sequence will cause
queues to form every so often on busy
modules. A request arriving at such a
queue will experience a delay equal to the
memory chip access time plus the time
spent waiting in line. Thus, the access time
perceived by the processor increases. Also,
this increase in access time is a stochastic

quantity, and the overall access time for a
request now lies within a range of values.
Whereas the limits on the range can be
predicted, the exact value (within that
range) for the access time of a specific
request cannot. Moreover, this range
shifts, depending on the request rate of the
processor. Under light load conditions (as
when executing scalar code), one can
expect little queueing delay, but when the
request rate increases (within innermost
loops), so will the queueing delay.

The memory latency register. In and of
itself, the increased access time is not a
major problem; the second-order penalty
due to the increased access time is more
than compensated for by the first-order
benefit of guaranteeing high bandwidth.
(This does, however, cause a further polar-
ization between a well-designed general-
purpose processor and a well-designed
supercomputer.) What zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis of concern is the
nondeterministic nature of the access time
in the context of a processor architecture
in which every operation is rigidly sched-
uled at compile time and in which the
latency of every operation, including the
memory operations, must be determinis-
tic. The way other architectures that use
compile-time scheduling normally handle
this is to “fake” a deterministic access
time.6 If the memory access occurs sooner
than expected, the data can be buffered
internally to the memory system and deliv-
ered to the processor at exactly the right
time. If, on the other hand, thedata takes
longer than expected, the processor is
“frozen” until the data is available, so that
in the processor’s “virtual time” the
request always takes the same amount of
time.

Yet another delicate trade-off exists
here. If the compiler consistently underes-
timates the access time, the processor will
spend a significant fraction of its time in
a frozen state. If the compiler consistently
overestimates the access time, the sched-
ules generated at compile time are unneces-
sarily dilated. At either extreme,
performance is less than optimal. We
addressed this issue by simulating the
memory system at various request rates
and plotting performance against the
nominal (assumed) memory latency. As
expected, we found that for each request
rate the curve peaked at a certain value of
memory latency. In the vicinity of this
optimum memory latency, performance
was not particularly sensitive to the value
of the memory latency. On the other hand,
the value of the optimum memory latency

30 COMPUTER

Memorv module 3 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 6 10 14 16 20 24 28 35 39 43 47I

Module 0

Module 1

Module 2

Module 3

Legend
i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 '! r
-w \\\\\\ 40 I

48 ' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL \ \ \ \ . - ! * W - -
Module 0

Module 1

Module 2

Module 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
10- -

11111111111111111111l l l l l l l i~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
An

56 -
164 I

I I

t i i : i i ; ; i ; i i : i i i ; : I i i i ; i I
Time 0 1 2 3 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 9. Pseudorandomly interleaved memory. (a) The assignment of memory locations to four memory modules in a pseu-
dorandomly interleaved memory. (b) Even with a stride of eight, eventually the requests are evenly distributed across all four
memory modules. However, every so often requests will encounter a busy module. If no buffering is provided at the memory
modules, the processor must halt until the module is no longer busy. (c) Although individual requests might have to wait even
with buffering, the processor need not. It can continue to issue a request every cycle, yielding full bandwidth.

32 COMPUTER

was very sensitive to the request rate. This
made us nervous about hardwiring the
nominal memory latency value into the
compiler and the hardware.

We solved this problem by incorporat-
ing a memory latency register. The MLR
is a programmatically writable register that
always holds the value of the memory
latency assumed by the compiler when
scheduling the currently executing code.
The memory system uses the value in this
register to decide whether the datum is
early or late and, consequently, whether
the datum should be buffered or the
processor frozen. When executing scalar
code with little parallelism and a low
request rate, the MLR is set to the mini-
mum possible memory access time of 17
numeric processor cycles (each cycle is 40
nanoseconds). When the program is in an
innermost loop, the MLR is set to the opti-
mum value of 26 cycles to reflect the
expected delay due to the higher request
rate. The MLR allows the compiler to treat
memory accesses as having a determinis-
tic latency but to use different values for
the latency in different portions of the
code so as to always deliver near-optimal
performance. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Compiler-scheduled memory modules.

One of the alternatives we considered, and
decided against, very early in the design
process was to place the memory modules
under the explicit scheduling control of the
compiler (much like the adder and mul-
tiplier) instead of treating the memory sys-
tem like a black box. Ideally, in such a
scheme the compiler must know zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcompile zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
time whether or not a set of references are
to distinct memory modules. It can then
schedule the initiation of the memory
requests in such a way that the referenced
memory module is no longer busy by the
time the request is made. This would elim-
inate the need for any buffering. Also,
with knowledge of the (deterministic)
memory latency that exists in the absence
of queuing, operations that use the data
from memory can be scheduled to occur
no sooner than when the data is available.
The processor would never need to be fro-
zen, nor would access times need to be
overestimated. Presumably, the hardware
would be simpler and less expensive with
no buffering facilities. Thus, near-optimal
performance could be achieved i f the
appropriate information were known at
compile time.

But commonly occurring program con-
structs can defeat such a strategy. In the
case of references to X (I) and X (J) , the

January 1989

manner in which the variables I a n d J a r e
computed may be such as to preclude the
compiler’s being able to determine
whether the modules referenced are dis-
tinct or the same. Another problem lies
with subscripted-subscript references to
arrays, such as X(JA (I)) , where the index
into one array, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX(zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA), is determined by read-
ing the contents of another array, JA (I) .
Since the contents of JA () are determined
at runtime, the compiler is once again un-
able to predict which module will be refer-
enced. In such circumstances the compiler
must either assume the worst and serialize
all such references or assume that no con-
flict exists and count on the presence of
some hardware mechanism that will freeze
the processor if a request is submitted to
a busy module. With the latter approach,
the d M l a w becomes applicable. In either
case the program experiences a sizable
drop in performance.

As we see it, the most serious drawback
of compile-time scheduling of memory
modules is that it does nothing to address
the stride problem. With a bad stride,
whether compile-time memory disambig-
uation works or not, the memory band-
width collapses. Memory disambiguation
merely confirms the bad news at compile
time. Using pseudorandom interleaving to

solve the stride problem would make the
task of compile-time disambiguation next
to impossible. So eventually the trade-off
was one of simpler hardware, more com-
plex software, and a reduced average
access time versus a guaranteed, consis-
tently high bandwidth. In view of our cen-
tral objective of providing a product with
minimal difficulty of use, we chose the
latter.

Reflections

While developing this product, we
became aware of certain broad truths, and
we have tried to convey them in this arti-
cle. The most important of these is that the
behavior of general-purpose and numeri-
cally intensive work loads can be drasti-
cally different. In nonnumeric programs
the emphasis is on branching and proce-
dure calls; in numeric programs it is on
loops. General-purpose jobs tend to access
their data with a high degree of locality.
This is not always so with numerically
intensive jobs.

Consequently, the design decisions and
trade-offs steadily push the well-designed
scalar processor and the well-designed
numeric processor apart. In a scalar

Lockheed has established a major center for artificial intelligence research,
technology transfer and training in Menlo Park near Stanford University

One of the Center’s major responsibilities is to bridge between AI research
programs and Lockheed’s other programs by transferring AI technology to
Lockheed Product Divisions. Programs such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. space station, Hubble Space
Telescope, Pilot’s Associate, Milstar and Air/Land Battle Management offer
exciting domains for the application of artificial intelligence technology

We are looking for creative, innovative self-starters with a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABs in EE, CS or a
related field (an advanced degree is preferred), a strong background in AI,
and a minimum of two years’ experience in areas such as maintenance and
diagnostics, avionics, space systems, manufacturing and C31. You must have
demonstrated leadership qualities and excellent communication skills. A
familiarity with m, KEE and Sun systems is preferred.

Help expand today’s knowledge. Send your resume to P McCloskey
Professional Staffing, Dept. 530KAPM, Lockheed Missiles & Space Company,
EO. Box 3504, Sunnyvale, CA 94088-3504. We are proud to be an equal
opportunity, aEhmative action employer. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
=aLocMeed

Mssifes & Space Company
Giving shape to imagination.

-

processor the emphasis is on short pipeline
latencies rather than on extensive parallel-
ism. In a numeric processor the emphasis
is on multiple, parallel pipelines even at the
expense of very deep pipelines and, hence,
reduced scalar performance. Whereas the
use of caches for data is virtually manda-
tory for good performance in a scalar
processor, it is far less beneficial, and
sometimes even detrimental, to the perfor-
mance of a numeric processor. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA numeric
processor is more sensitive to memory
bandwidth and less so to access time. The
opposite is true for a scalar processor.
Thus it remains as difficult now as it has
been in the past to design a single machine
that is best for both numeric and nonnu-
meric work loads.

Much has been said over the past few
years about the relative merits of RISC and
CISC approaches to hardware design. We
feel that the same issue could well be raised
regarding software, specifically compiler
software. With the headlong rush to move
complexity out of hardware and into soft-
ware, compilers are beginning to groan
under the burden of newly acquired
responsibilities. It is possible to go too far
and to end up increasing the total complex-
ity of the hardware-software system. The
designers’ responsibility is to minimize
overall complexity, not just that of the
hardware. In the Cydra zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 we decided not
to transfer complexity from hardware to
software in some areas such as the context
register matrix, conditional scheduling
control, and hardware-scheduled memory
modules. To paraphrase Einstein, “Hard-
ware should be as simple as possible, and
no simpler.”

Designing and developing a product of
this performance level and with these capa-
bilities necessitated a break with architec-
tures of the past so that we could
incorporate a more powerful model of
computation. This meant that we often
had to fly by the seat of our pants, there
being little experience or data on which to
base our decisions. Fortunately, we have
not yet discovered any major blunders,
although it is quite possible that the
machine has been overdesigned in various
places because of our tendency t o err on
the safe side. These areas of overdesign
will reveal themselves slowly as we build up
our experience in the use of this new archi-
tecture.

oday, a number of Cydra zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 sys-
tems are in use at customer sites. T The performance of these systems

has met our expectations. On widely
quoted industry-standard benchmarks
such as Linpack16 and the Livermore For-
tran Kernels,” the Cydra 5 delivers 15.4
Mflops and 5.8 Mflops, respectively. This
is the highest performance of any
minisupercomputer (even those whose
peak performance is twice that of the
Cydra 5) and about one-third the perfor-
mance of a Cray X-MP supercomputer,
which has nine times the Cydra 5’s peak
performance. On the 24 Livermore For-
tran Kernels taken as a group, the Cydra 5
can achieve 23 percent of its peak perfor-
mance as opposed to 15 percent and 8 per-
cent for VLIW and vector processors,
respectively. On Linpack, which is con-
siderably more vectorizable, the Cydra 5
achieves 60 percent of its peak perfor-
mance. The VLIW and vector processors
achieve only 40 percent and 20 percent,
respectively.

On other, less vectorizable, bench-
marks, such as ITPack” (an iterative
sparse-matrix solver), the Cydra 5
achieves half the performance of the Cray
X-MP. We have even encountered a cou-
ple of extremely nonvectorizable applica-
tions in which the Cydra 5 has actually
achieved parity with the Cray X-MP. In
general, across a spectrum of applications,

the Cydra 5 can achieve between one-
fourth and two-thirds the performance of
a Cray X-MP, depending on the extent to
which the application is vectorizable.
However, there is still room for improve-
ment, since the compiler has not yet
peaked in its ability to wring performance
out of code. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU

Acknowledgments

The Cydra 5 owes its existence to the group
of bright and dedicated individuals who make
up Cydrome. Each has left his or her mark on
this machine. We wish to acknowledge the espe-
cially important contributions of Stimson Ho,
Gary Beck, Joe Bratt, Ed Wolff, Mike Schlan-
sker, and John Brennan.

References
1. “Cydra 5 Departmental Supercomputer

Product Summary,” Cydrome, Inc., Mil-
pitas, Calif., 1988.

2. B.R. Rau, “Cydra 5 Directed Dataflow
Architecture,” Proc. Compcon Spring 88,
No. 828, Computer Society Press, Los
Alamitos, Calif., pp. 106-1 13.

3. B.R. Rau, C.D. Glaeser, and R.L. Picard,
“Efficient Code Generation for Horizon-
tal Architectures: Compiler Techniques and
Architectural Support,” Proc. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANinth Ann.

B. Ramakrishna Rau is a cofounder and the
chief technical officer of Cydrome, Inc. He is
the chief architect of Cydrome’s Cydra 5
minisupercomputer based on the company’s
directed-dataflow architecture. Previously he
held positions at Elxsi and TRW, and he taught
electrical engineering at the University of
Illinois, Urbana-Champaign. His research
interests include parallel architectures, compiler
techniques for high-performance computing,
and analytical methods for computer perfor-
mance evaluation and prediction.

Rau received a B.Tech. degree in electrical
engineering from the Indian Institute of Tech-
nology, Madras, in 1972 and MS and PhD
degrees in electrical engineering from Stanford
University in 1973 and 1977, respectively. He is
a member of the IEEE, the IEEE Computer
Society, and the Association for Computing
Machinery.

David W.L. Yen cofounded Cydrome, a
minisupercomputer manufacturer, in 1984. He
contributed to the Cydra 5 architecture design
and project planning and served as director of
hardware development. H e joined Sun
Microsystems in October 1988. In addition, Yen
has engaged in research and design for the IBM
San Jose Research Laboratory, TRW Array
Processors, and the Coordinated Science
Laboratory at the University of Illinois. His
interests include computer architecture, special
processors for high-performance requirements,
computer-aided design automation, and prod-
uct development.

Yen received a BS from National Taiwan Uni-
versity in 1973 and MS and PhD degrees from
the University of Illinois, Urbana-Champaign,
in 1977 and 1980, respectively, all in electrical
engineering. He is a member of Phi Kappa Phi
and Eta Kappa Nu, and he served as secretary
of the IEEE Computer Society’s Computer
Standards Committee from 1983 to 1984.

34 COMPUTER

Int’l Symp. Computer Architecture, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM411
(microfiche), Computer Society Press, Los
Alamitos, Calif., 1982, pp. 131-139.

4. W.C. Yen, D.W.L. Yen, and K.S. Fu,
“Data Coherence Problem in a Multicache
System,” IEEE Trans. Computers, Vol.
C-34, No. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, Jan. 1985, pp. 56-65.

5. J.A. Fisher, “Very Long Instruction Word
Architectures and the ELI-512,’’ Proc. 10th
Ann. Int’l Symp. Computer Architecture,
M473 (microfiche), Computer Society
Press, Los Alamitos, Calif., 1983, pp.
140- 150.

6. A.E. Charlesworth, “An Approach to
Scientific Array Processing: The Architec-
tural Design of the AP-12OB/FPS-164
Family,” Computer, Vol. 14, No. 9, Sept.

7. Y .N. Patt, W .-M. Hwu, and M. Shebanow,
“HPS, a New Microarchitecture: Ration-
ale and Introduction,” Proc. 18th Ann.
Workshop Microprogramming, M653
(microfiche), Computer Society Press, Los
Alamitos, Calif., 1985, pp. 103-108.

8. D. Cohen, “AMethodology for Program-
ming a Pipeline Array Processor,” Proc.
I I th A nn . Workshop Microprogramm ing ,
M204 (microfiche), Computer Society
Press, Los Alamitos, Calif., 1978, pp.
82-89.

9. J.R. Ellis, Bu1ldog:A Compilerfor VLIW
Architectures, MIT Press, Cambridge,
Mass., 1986.

10. Arvind and K.P. Gostelow, “The U-
Interpreter,” Computer, Vol. 15, NO. 2,
Feb. 1982, pp. 42-49.

1981, pp. 18-27.

11. D.J. Kuck, TheStructureofComputersand
Computation, John Wiley and Sons, Neu
York, 1978.

12. W. Abu3ufahandA.D. Mahoney, “Vec-
tor Processing on the Alliant FX/8 Multi-
processor,” Proc. Int’l Conf. Parallel
Processing, Mi24 (microfiche), Computer
Society Press, Los Alamitos, Calif., 1986,
pp. 559-563.

13. J.M. van Kats and A.J. Van der Steen,
“Minisupercomputers, a New Perspec-
tive?’’ Report TR-24, Academisch Com-
puter Centrum Utrecht, University of
Utrecht, Utrecht, Netherlands, May 1987.

14. H. Hellerman, Digital Computer System
Principles, McCraw-Hill, New York, 1967,
pp. 228-229.

15. F.A. Briggs and E.S. Davidson, “Organi-
zation of Semiconductor Memories for
Parallel-Pipelined Processors,” IEEE
Trans. Computers, Vol. C-25, Feb. 1977,
pp. 162-169.

16. J.J. Dongarra, “Performance of Various
Computers Using Standard Linear Equa-
tions Software in a Fortran Environment,”
Tech. Memo No. 23, Argonne National
Laboratory, Argonne, Ill., Jan. 1988.

17. F. McMahon, “The Livermore Fortran
Kernels,” National Technical Information
Service, Ann Arbor, Mich., Dec. 1986.

18. T.C. Oppe and D.R. Kincaid, “The Perfor-
mance of ITPACK on Vector Computers
for Solving Large Sparse Linear Systems
Arising in Sample Oil Reservoir Simulation
Problems,” Comm. Applied Numerical
Methods, Vol. 3, 1987, pp. 23-29. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Wei Yen is vice president for development, in
charge of engineering, at Cydrome. He is the
primary system architect for the Cydra 5
minisupercomputer and was extensively
involved in the design and development of
Cydrome’s operating system and compilers. He
has also worked on development projects at the
Fairchild Advanced R&D Laboratory and
Hewlett-Packard Laboratories. His technical
interests include multiprocessor systems, dis-
tributed systems, programming environments,
and dataflow compiler design.

Yen received a PhD in electrical engineering
from Purdue University in 1981. He is a mem-
ber of Phi Kappa Phi, Sigma Xi, and the Asso-
ciation for Computing Machinery.

Ross A. Towle is cofounder and president of
Apogee Software, a company specializing in
compilers for RISC and VLIW architectures.
He was also a cofounder of Cydrome, where he
served as manager of languages. His interests
include global optimization, parallelization, and
instruction scheduling.

Towle received BS and MS degrees in
mathematics and a PhD in computer science, all
from the University of Illinois, Urbana-
Champaign.

The authors can be contacted through B. Ramakrishna Rau at 159 Belvue Dr., Los Gatos, CA
95032.

January 1989

Lvailable ior the IBM‘PC AT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPS 2 and close iampatibles
‘equires MSWmdows”1 $350 and Ilaclniosh-’Plus SE I1 5250

Reader Service Number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4

	Time
	Time

