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Abstract
Background COVID-19 is now a worldwide pandemic. Among the many extra-pulmonary manifestations of COVID-19, 
recent evidence suggested a possible occurrence of thyroid dysfunction.
Purpose The Aim of the present review is to summarize available studies regarding thyroid function alterations in patients 
with COVID-19 and to overview the possible physio-pathological explanations.
Conclusions The repercussions of the thyroid of COVID-19 seem to be related, in part, with the occurrence of a “cytokine 
storm” that would, in turn, induce a “non-thyroidal illness”. Some specific cytokines and chemokines appear to have a direct 
role on the hypothalamus–pituitary–thyroid axis. On the other hand, some authors have observed an increased incidence of 
a destructive thyroiditis, either subacute or painless, in patients with COVID-19. The hypothesis of a direct infection of the 
thyroid by SARS-Cov-2 stems from the observation that its receptor, ACE2, is strongly expressed in thyroid tissue. Lastly, 
it is highly probable that some pharmaceutical agents largely used for the treatment of COVID-19 can act as confounding 
factors in the laboratory evaluation of thyroid function parameters.
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Introduction

Ten months after the first report of pneumonias of unknown 
origin in Wuhan (China) [1], the Coronavirus Disease 2019 
(COVID-19), caused by the respiratory syndrome coronavi-
rus 2 (SARS-CoV-2), resulted in a world-spread pandemic. 
As of November 2020, the number of confirmed cases of 
COVID-19 has exceeded 35 million worldwide, with more 
than 1 million COVID-19-related fatalities. The epidemic 
has put public health systems under severe strain and lead to 
establishing various degrees of socio-economic lockdowns, 
both in the developing world and in western countries.

The clinical presentation of COVID-19 patients can vary 
remarkably, going from completely asymptomatic forms to 
extremely severe, multisystem clinical involvement. The 
most common presenting symptoms are due to lung and sys-
temic involvement, and include fever, fatigue and dry cough 
that can rapidly evolve toward respiratory failure and acute 
respiratory distress syndrome (ARDS), requiring intensive 
care support. Less commonly, COVID-19 patients can pre-
sent a variety of non-pulmonary manifestations, including 
neurological disorders (both central and peripheral), cardiac 
abnormalities (including heart failure and arrhythmias), 
renal failure, liver disease, rhabdomyolysis, coagulopathy 
and thrombosis [2]. Among the many extra-pulmonary man-
ifestations, researchers have sought the possible occurrence 
of thyroid dysfunction. Up to now, very few studies have 
tackled this issue, and there is evidence of discrepancies 
among different clinical settings. Aim of the present review 
is to summarize available studies regarding thyroid function 
alterations in patients with COVID-19 and to overview the 
possible physio-pathological explanations.
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The cytokine storm induced by SARS‑Cov‑2 
infection

The term “cytokine storm syndrome” describes a clinical 
syndrome that can occur in patients with severe COVID-
19 disease, being characterized by a fulminant and often 
fatal hyper-cytokinemia leading to multi-organ failure 
[3, 4]. The term was originally employed to describe the 
impressive activation of the immune system in the con-
text of graft-versus-host disease [5]. Similar conditions 
were also described in other pathologic conditions, both 
infectious (i.e., avian H5N1 influenza virus infection 
[6] and SARS-Cov-1 infection) and non-infectious (i.e., 
leukemia patients receiving engineered T cell therapy). 
The widespread use of the term “cytokine storm” is prob-
ably due to its immediate meaning, which actually recalls 
the role of the immune system in producing an uncon-
trolled inflammatory response that is detrimental to host 
cells. Nevertheless, there is still no consensus regarding 
the exact definition of “cytokine storm”. In the case of 
COVID-19 disease, the cytokine storm could be the patho-
genic process leading to ARDS, which characterizes the 
most severe cases [7, 8]. ARDS is a devastating event, with 
an estimated mortality of approximately 40%, defined as 
lung edema (not explained by cardiac failure or fluid over-
load) and acute onset of bilateral infiltrates, which result 
in severe hypoxemia [9, 10]. The exact physio-pathologic 
mechanisms underlying COVID-19 related cytokine storm 
are not fully understood; however, data from recent in vitro 
and in vivo studies and evidence coming from other coro-
naviruses (such as SARS and MERS) suggest an inflam-
matory vicious cycle that derives both from the direct 
cytotoxic effect of the virus on target cells and from the 
activation of immune cells. [11]. SARS-Cov-2, similarly 
to SARS-CoV and MERS-CoV viruses, uses the angioten-
sin-converting enzyme-related carboxypeptidase (ACE-2) 
receptor to infect target cells [12]. In addition to furin 
pre-cleavage, the cellular serine protease TMPRSS2 is 
also required to properly process the SARS- CoV-2 spike 
protein and facilitate host cell entry. When SARS-CoV-2 
infects ACE-2-expressing cells, such as pneumocytes, the 
active replication and release of the virus can cause abrupt 
cell damage. This process is called pyroptosis, an abrupt 
inflammatory form of programmed cell death that leads to 
the subsequent release of intracellular molecules, includ-
ing ATP, nucleic acids and damage-associated molecular 
patterns (PAMPs). These mediators are recognized by 
nearby endothelial and epithelial cells and alveolar mac-
rophages, triggering the production of pro-inflammatory 
cytokines, in particular IL-1 β. Using a variety of pattern- 
recognition receptors (PRRs), alveolar epithelial cells 
and alveolar macrophages detect the released PAMPs, 

such as viral RNA, and damage- associated molecular 
patterns (DAMPs), including ATP, DNA and protein oli-
gomers. A wave of local inflammation ensues, involving 
increased secretion of the pro-inflammatory cytokines 
and chemokines (i.e., IL-6, IFNγ, MCP1 and CXCL-10) 
into the blood of affected patients. The secretion of such 
cytokines and chemokines attracts immune cells, notably 
monocytes and T lymphocytes, but not neutrophils, from 
the blood into the infected site. Pulmonary recruitment 
of immune cells from the blood and the infiltration of 
lymphocytes into the airways may explain the lympho-
penia and increased neutrophil/lymphocyte ratio seen 
in around 80% of patients with SARS- CoV-2 infection. 
The ACE-2 is also present in many immune cells, such 
as macrophages, dendritic cells and monocytes [13, 14]. 
The direct SARS-Cov-2 infection of these cell subtypes 
results in their activation and secretion of inflammatory 
cytokines, such as interleukin-6 (IL-6) [15]. IL-6 is cru-
cially involved in acute inflammation due to its role in 
regulating the acute phase response [16]. It is produced 
by almost all stromal cells and by B lymphocytes, T lym-
phocytes, macrophages, monocytes, dendritic cells, mast 
cells and other non-lymphocytic cells, such as fibroblasts, 
endothelial cells, keratinocytes, glomerular mesangial 
cells and tumor cells [17]. While in most cases, the infec-
tion is followed by an efficient defensive immunological 
response, in some patients the response is dysfunctional, 
causing a flood cytokines and chemokines in the serum and 
resulting in severe lung and even systemic damage. In this 
scenario, IL-6 exerts potent pro-inflammatory activities 
through binding to both its membrane receptor (mIL6-R) 
on immune cells and to a soluble receptor (sIL-6R). The 
activation of mIL6-R leads to pleiotropic effects on both 
the innate and acquired immune system. IL-6 binding to 
sIL-6R also forms a dimeric complex that can bind to the 
surface of any cell, including lung endothelial cells, result-
ing in the massive secretion of chemotactic molecules such 
as vascular endothelial growth (VEGF), monocyte che-
moattractant protein–1 (MCP-1), CXCL8 and additional 
IL-6. This phenomenon attracts more immune cells in the 
infection site, causing an exponential escalation of the 
inflammatory process, commonly referred to as “cytokine 
storm”. Moreover, reduced E-cadherin expression and 
increased secretion of VEGF increase vascular permeabil-
ity and leakage, which further contribute to the pathogen-
esis of ARDS [18]. In spite of the many cytokines, such 
as IL-1β [19–23], IL-10 [7, 19–21, 24], TNF-α: [1, 19, 22, 
23, 25–27] and IFNγ [19, 21, 26, 27], and chemokines, 
such as CXCL8: [7, 19, 21–23, 25, 28–31], CXCL9: [20, 
22, 31, 32], CCL5 [24, 25, 30, 33, 34], CCL2 [1, 19, 
22–25, 32, 35], CCL20: [24, 36], CCL3: [1, 19, 22–24, 
35, 36] and CCL4 [19, 22, 35, 36] involved in the dysfunc-
tional immunologic response in COVID-19 disease (which 



893Journal of Endocrinological Investigation (2021) 44:891–904 

1 3

are summarized in Table 1), the cytokine IL-6 [20–22, 
27–29, 33, 36–45] and the chemokine CXCL10 [1, 20, 
22–25, 27, 28, 31, 32, 35, 46, 47] have clearly emerged as 
recurrent markers of disease severity and poor outcome 
[38, 41, 42, 48].

Cytokines as the main mediators 
of the non‑thyroidal illness (NTI) syndrome

Alterations in thyroid function parameters, which are 

Table 1  Summary of the cytokines and chemokines involved in COVID-19 pathogenesis

Cytokines
IL-1β Increased in COVID-19 patients compared with controls [19]. Increased in patients with severe disease when compared with 

those with mild disease [20], increased in the acute phase of multisystem inflammatory syndrome in children (MIS-C) 
[21], increased release in broncholaveolar lavage fluid [22], overexpressed mRNA by lung macrophages [22, 23]

IL-6 Increased in patients with severe disease when compared with those with mild disease [29, 37–39, 106]. Elevated in late 
stages of sever COVID-19 [33]. Correlated with disease severity [28, 41], predictor of mortality [42–44], higher in patients 
requiring ICU admission [41], correlated with RNAemia [101], increased release in broncholaveolar lavage fluid [22], 
overexpressed mRNA by lung macrophages [22] and pneumocytes [27], increased in the acute phase of multisystem 
inflammatory syndrome in children (MIS-C) [21, 36]

IL-10 Increased in patients with severe disease when compared with those with mild disease [7, 20, 24], Increased in COVID-19 
patients compared with controls [19], increased in the acute phase of multisystem inflammatory syndrome in children 
(MIS-C) [21]

TNF-alfa Increased in COVID-19 patients compared with controls [19]. Increased in patients with severe disease when compared with 
those with mild disease [1, 25]. Up-regulation of the tumor necrosis factor-driven inflammatory response in PBMCs from 
COVID-19 patients [26], overexpressed mRNA by lung macrophages [22, 23] and pneumocytes [27]

IFNγ Increased in COVID-19 patients compared with controls [19], Up-regulation of the IFNγ-driven inflammatory response in 
PBMCs from COVID-19 patients [26], increased in the acute phase of multisystem inflammatory syndrome in children 
(MIS-C) [21]. Lack of IFN response by lung macrophages [27]

Chemokines
CXCL10 (IP10) Increased in COVID-19 patients when compared with controls [32], Increased in patients with severe disease when 

compared with those with mild disease [1, 20, 24, 25, 46, 47], Correlated with disease severity [28], increased release in 
broncholaveolar lavage fluid [35], overexpressed mRNA by lung macrophages [22, 23] and pnemocytes [27], predictor of 
mortality [24], overexpression in nasal swabs of COVID-19 patients [31]

CXCL8 (IL-8) Correlated with disease severity [7, 25, 28, 29], Increased in COVID-19 patients compared with controls [19], increased 
release in broncholaveolar lavage fluid [22], overexpressed mRNA by lung macrophages [23], increased in the acute phase 
of multisystem inflammatory syndrome in children (MIS-C) [21, 30], overexpression in nasal swabs of COVID-19 patients 
[31]

CXCL9 (MIG) Increased in COVID-19 patients when compared with controls [32], Increased in patients with severe disease when com-
pared with those with mild disease [20], overexpressed mRNA by lung macrophages [22], overexpression in nasal swabs of 
COVID-19 patients [31]

CCL5 (RANTES) Increased in patients with severe disease when compared with those with mild disease [24, 25], predictor clinical outcome 
[33], increased in children with COVID-19 as compared with adults [30, 34]

CCL2 (MCP-1) Increased in COVID-19 patients when compared with controls [32], increased in patients with severe disease when com-
pared with those with mild disease [1, 24, 25], increased release in broncholaveolar lavage fluid [35], increased in COVID-
19 patients compared with controls [19], overexpressed mRNA by lung macrophages [22, 23]

CCL20 (MIP3 α) Increased in patients with severe disease when compared with those with mild disease [24], increased in the acute phase of 
multisystem inflammatory syndrome in children (MIS-C) [36]

CCL3 (MIP1α) Increased in patients with severe disease when compared with those with mild disease [1, 24] increased release in bron-
cholaveolar lavage fluid [35], increased in COVID-19 patients compared with controls [19], overexpressed mRNA by lung 
macrophages [22, 23], increased in the acute phase of multisystem inflammatory syndrome in children (MIS-C) [36]

CCL4 (MIP1β) increased release in broncholaveolar lavage fluid [35], Increased in COVID-19 patients compared with controls [19], overex-
pressed mRNA by lung macrophages [22], increased in the acute phase of multisystem inflammatory syndrome in children 
(MIS-C) [36]
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commonly referred to as “non thyroidal illness” (or 
sick euthyroid syndrome, or low T3 syndrome), can be 
detected in many severe clinical conditions, both acute 
(sepsis, trauma, acute myocardial infarction) and chronic 
(severe malnutrition, liver failure, end-stage renal disease 
requiring hemodialysis, cancer). The most typical altera-
tion is a decrease in serum T3 level, that can be accom-
panied, or not, by a slight decrease in TSH level and, as 
the severity and length of the NTI syndrome increases, 
also in total T4 [49]. The magnitude of TSH and thyroid 
hormone changes is proportional to the severity of the 
underlying NTI and these alterations usually recede after 
the patient has recovered from the causative condition. 
The NTI syndrome appears to be an adaptive response 
to reduced tissue metabolism to preserve energy during 
systemic illnesses. In this scenario, deiodinases, a group 
of oxidoreductases that catalyze thyroid hormone activa-
tion and/or inactivation, creating a potent mechanism that 
tightly regulates plasma and intracellular levels of thyroid 
hormone, play a pivotal role in pathogenesis of the NTI 
syndrome. The activation of the pro- hormone T4 into the 
biologically active hormone T3 is catalyzed by type1 (D1) 
and type 2 (D2) deiodinases via outer-ring deiodination 
[50]. In contrast, type 3 deiodinase (D3) catalyzes the 
inactivation of both T4 and T3, by promoting the con-
version of T4 to reverse T3 and the conversion of T3 to 
3,3-T2, both biologically inactive. Thus, D3 contributes 
to thyroid hormone homeostasis protecting tissues from 
excess of thyroid hormones. D1 and D2 differ by their 
kinetic properties, substrate, specificity, and susceptibility 
to inhibitory drugs, as well as by their response to changes 
in the thyroid hormone status. While D2 is an exclusive 
outer-ring deiodinase, D1 promotes inner ring as well as 
outer-ring deiodination. The highest levels of D1 activity 
in humans are found in thyroid, liver, and kidney; while 
D2 is more widely expressed, being found in the pitui-
tary, brain, thyroid, skin, skeletal, and heart muscles [51]. 
Reduced conversion of T4 to T3, and increased activity 
of D3 are typically observed in the NTI syndrome [52].

The NTI syndrome was consistently reported in patients 
admitted to intensive care units (ICU) [53, 54] and in 
patients with pneumonia [55]. Thus, it appears highly prob-
able that patients experiencing severe COVID-19 disease 
requiring ICU admission could manifest this syndrome. 
Although the mechanisms underlying the NTI syndrome 
are multifactorial, circulating cytokines are considered as its 
main mediators, due to their multiple effects on the hypotha-
lamic-pituitary thyroid axis, on circulating thyroid hormone 
binding proteins and on the peripheral metabolism of thyroid 
hormones [56]. In vitro and in vivo data demonstrating these 
effects are summarized in Table 2 for four main cytokines: 
IL-1β [57–69], TNF-α [7, 57, 60, 70–77], IL-6 [74, 78–88] 
and IFN-γ [77, 89–99].

Although CXCL10 and other IFN-inducible chemokines 
have been thoroughly studied for their pivotal role in the 
pathogenesis and maintenance of autoimmune thyroid 
diseases [100], their role in thyroid function perturbation 
occurring in critically ill patients is probably negligible. 
As their name suggests, chemokines act as potent chemo-
attractants towards cells that express their surface receptors, 
mainly belonging to the immune subset. For this reason, 
chemokines usually exert their action by attracting target 
cells via a chemical gradient into a specific site. This action 
is radically different from that of cytokines, which usually 
have pleiotropic and systemic effects on several cell types. 
Indeed, no in vitro study has ever highlighted alterations 
in thyroid hormone production or deiodinase activity after 
treatment with CXCL10.

Thyroid function alterations in patients 
with COVID‑19 disease

Six main studies investigated thyroid function in hospital-
ized patients with Covid 19 disease. Several case reports 
were also published, mainly in outpatients suffering with 
subacute thyroiditis.

Chen et al. investigated thyroid function parameters in a 
group of 50 patients with unremarkable history of thyroid 
disease hospitalized for COVID-19 (15 mild, 23 severe and 
12 critical cases). Two control groups were also investigated: 
54 healthy subjects and 50 patients with non-COVID-19 
pneumonia of similar severity. A low TSH was present in 
56% of COVID-19 patients. COVID-19 patients were also 
found to have significantly lower serum TSH and total T3 
levels as compared both with healthy subjects and with 
patients affected by non-COVID-19 pneumonia. Moreover, 
there was a significant association between a trend towards 
a reduction in serum TSH and total T3 levels and the dis-
ease severity. Serum total T4 levels were similar in the three 
groups. Although these findings were consistent with the 
development of an NTI syndrome in patients with severe 
COVID-19 disease, the fact that significant differences 
occurred between COVID-19 patients and patients with 
severe pneumonia suggested a specific role of SARS-Cov-2 
infection in thyroid function alteration [101].

A completely different thyroid function picture was 
described by Lania et al. in Italy. These Authors investigated 
287 consecutive COVID-19 patients (193 males and 183 
females with a median age of 66 years) being hospitalized 
in a non-intensive care unit. No control group was enrolled. 
They found that 58 (20.2%) of these patients had serum TSH 
levels below the reference range, with 31 of them having 
laboratory evidence of overt thyrotoxicosis and 27 having 
normal serum FT3 and FT4 levels. Fifteen patients (5.2%) 
had laboratory data indicating hypothyroidism, which was 
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overt in 3 and subclinical in 13 of them. None of the patients 
complained of pain in the neck, while a new-onset atrial 
fibrillation was observed in 10 patients with overt thyro-
toxicosis. Five thyrotoxic patients experienced a throm-
boembolic event (venous thromboembolism in 3 cases, 
ischemic stroke in 2 cases). No patient tested positive for 
thyroid autoantibodies. Eight thyrotoxic patients underwent 
thyroid ultrasound, showing signs of thyroid inflammation 
in 2 patients, small thyroid nodules in 3 patients and no sig-
nificant alteration in the remaining 3 patients. In none of 
the them the classic ultrasound findings of subacute thy-
roiditis were described. In multivariate analysis, a signifi-
cant inverse correlation between serum IL-6 and TSH levels 
was observed. In 7 thyrotoxic patients, thyroid function was 
longitudinally investigated for a short follow up (median 
10 days). A progressive decrease in serum FT4 levels was 
detected, which was not influenced by methimazole treat-
ment in 2 of them. Based on these findings the Authors 
hypothesized that their COVID-19 patients experienced a 
destructive, “silent” thyroiditis [102].

The hypothesis that the thyroid gland could be involved 
in COVID-19 disease stems from experiences in previ-
ous coronavirus pandemics (such as SARS and MERS) 
and from the potential susceptibility of thyroid cells to 
SARS-Cov-2 infection. Alterations of both thyroid func-
tion and structure were reported in patients affected by 
SARS-CoV-1. In autopsy specimens of 5 patients died of 
SARS, an extensive apoptotic process in follicular epithe-
lium, causing exfoliation of epithelial cells into the follicle 
and alterations in follicular morphology were observed. 
No inflammatory infiltration was found in any specimen 
[103]. The same authors published a report regarding the 
immunohistochemical evaluation of pituitary histology 
on the same 5 patients, showing that the number and the 
staining intensity of TSH-expressing cells was remark-
ably reduced when compared with controls [104]. The 
anatomic location of the thyroid, which is contiguous to 
the upper airways, a main entrance site of corona viruses, 
further supports the hypothesis that the thyroid could be 
a direct target of SARS-CoV-2. As previously discussed, 
SARS-COV-2, similarly to the virus that caused SARS, 
uses the ACE-2 as its cellular entry receptor [105]. In this 
regard it is important to recall that a recent study demon-
strated that ACE-2 in strongly expressed in follicular thy-
roid cells making them a potential target for SARS-COV-2 
entry [106, 107]. In line with this in vitro data, several 
recent case reports described patients with SARS-Cov-2 
infection being diagnosed with typical painful subacute 
thyroiditis [108–113]. It should be highlighted that these 
patients suffered with a mild (in 4 cases) or moderate (in 
4 cases, requiring hospitalization) COVID-19 disease, but 
none of them experienced a cytokine storm or required 
ICU admission. Most of them were female patients (7 out 

of 8) and their sign and symptoms of subacute thyroid-
itis occurred between 5 and 36 days (median 19) after 
the onset of COVID-19 disease. In all cases a TSH value 
below 0.1 µU/ml at the onset of subacute thyroiditis was 
observed, while thyroid autoantibodies were undetectable 
in all cases.

A further study in hospitalized patients provides evidence 
for the occurrence of a destructive thyroiditis in patients 
with COVID-19. Muller et al. investigated thyroid function 
in 85 patients who were admitted to a high intensity care 
unit (HICU) in 2020 because of COVID-19. Non COVID-19 
patients admitted to the same HICU in 2019 and COVID-
19 patients admitted to a low-intensity care unit (LICU) 
in 2020 served as controls. They found that 13 (15%) of 
85 patients admitted to the HICU for COVID-19 disease 
had thyrotoxicosis (defined as TSH < 0.28 mIU/L and/or 
FT4 > 21.9 pmol/L). As compared with this figure, one 
(1%) out of 78 non COVID-19 patients hospitalized in 2019 
in the same HICU and one (2%) of 41 COVID-19 patients 
admitted to the LICU were thyrotoxic. Three patients (3.5%) 
in the COVID-19 group, as compared with 7 (9%) and 4 
(9.8%) patients in the non-Covid HICU group and in the 
LICU group, respectively, were hypothyroid (defined as 
TSH > 4.30 mIU/L and/or FT4 < 10.3 pmol/L). COVID-19 
patients hospitalized in the HICU had lower serum TSH 
and higher serum FT4 levels than patients in both control 
groups, while FT3 levels were similarly low in the three 
groups. In 8 thyrotoxic patients (1 patient with subclinical 
hypothyroidism, 1 patient with overt hypothyroidism, and 6 
thyrotoxic patients) with COVID-19 disease a post-discharge 
follow-up was available: the 2 hypothyroid patients were still 
hypothyroid at the initial follow-up. One patient had posi-
tive AbTg and AbTPO, while the other had negative thyroid 
autoantibodies. Both patients had a marked diffuse hypo-
echoic pattern of the thyroid at ultrasound. The 6 patients 
with low or suppressed TSH concentrations or thyrotoxicosis 
at baseline had normal thyroid function and were negative 
for thyroid autoantibodies at follow-up; none reported neck 
pain ever. Thyroid ultrasound was performed in 5 of these 
patients: all of them had a diffuse mild hypoechoic pattern at 
thyroid ultrasound, while in 3 patients focal markedly hypo-
echoic areas, typical of subacute thyroiditis, were observed. 
Such areas corresponded to focal reduced Technetium-99 m 
uptake at single-photon emission Computed Tomography 
imaging, and the thyroid gland showed a general low to 
normal or reduced Technetium- 99 m uptake. The authors 
described their finding as a combination of thyrotoxicosis 
(possibly due to a subacute thyroiditis) and NTI syndrome 
[113]. From a clinical point of view, the fact that some of the 
classic symptoms of subacute thyroiditis (such as asthenia, 
fever and neck pain) are shared by COVID-19 patients could 
suggest that, unless specifically searched for, the thyroid dis-
ease might be overlooked. Moreover, the frequent use of 
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corticosteroids such, as dexamethasone, in the therapy of 
patients with severe COVID-19 could abolish neck pain in 
those with concomitant subacute thyroiditis.

Compared with the previous studies of Lania et al. [102] 
and Muller et al. [113], Khoo et al. [114] recently reported 
different results. The authors described a cohort of 456 hos-
pitalized patients from 3 hospitals in London with a clinical 
suspicion of COVID-19 in which both TSH and FT4 levels 
were routinely evaluated. In particular, the authors compared 
thyroid function parameters between the 334 patients with a 
confirmed diagnosis of COVID-19 and 122 patients without 
a COVID-19 diagnosis. Results showed that the vast major-
ity (86.5%) of patients with COVID-19 were euthyroid, 
while only a minority were subclinical hypothyroid (5.1%) 
or overt hypothyroid (0.6%). Eight patients had a suspect 
of secondary hypothyroidism (2.4%). No patient received 
a diagnosis of neither subclinical nor overt thyrotoxico-
sis. The distribution of thyroid function alterations was 
similar between COVID-19 and non-COVID-19 patients. 
The authors observed slightly lower TSH and FT4 levels 
among COVID-19 patients when compared with the non-
COVID-19 ones, even within the normal range. Moreover, 
lower TSH and FT4 levels were observed in patients with 
a fatal disease and in those admitted to ICU. A significant 
inverse relationship between C-reactive protein and cortisol 
levels and TSH levels was observed in COVID-19 patients. 
In a subset of patients where previous evaluations of TSH 
and FT4 levels were available, a slight reduction in both TSH 
and FT4 levels was observed in COVID-19 patients, but not 
in the non-COVID-19 ones. Lastly, among 55 patients in 
which an evaluation of thyroid function parameters before 
admission, at the moment of admission and after a median 
follow-up time of 79 days, was performed, results showed 
that thyroid function parameters returned to baseline levels 
after recovery of COVID-19. The authors concluded that in 
their cohort there was no suggestion of a COVID-19-related 
thyroiditis/thyrotoxicosis, but that their findings are more 
indicative of a NTI syndrome. Most importantly, all patients 
taking corticosteroids either at baseline or during COVID-19 
were excluded from this study. One of the limitations of this 
study is the lack of measurements of thyroid autoantibod-
ies and of FT3 or rT3. On the other hand, the study has the 
advantage of including patients in whom both TSH and FT4, 
irrespectively of TSH levels, were evaluated.

In another recent study from Hong Kong, Lui et al. [115] 
evaluated 191 COVID-19 patients admitted to a non-inten-
sive care unit. Among enrolled patients, 11 cases showed 
reduced serum TSH levels with normal fT4 and fT3, but in 
none of them overt thyrotoxicosis was found. Three of these 
patients also had detectable levels of TSH receptor antibod-
ies (TRAb), suggesting a diagnosis of Graves’ disease. The 
authors highlighted that a higher SARS-CoV-2 load charac-
terized patients with a reduced TSH. Moreover, an isolated 

low serum fT3 level was detected in12 other patients, who 
had higher acute-phase indexes (C-reactive protein levels, 
erythrocyte sedimentation rate and LDH) levels as compared 
with the rest of the cohort. Patients with low serum FT3 
levels had a higher chance of clinical deterioration during 
the follow-up. The authors concluded that in their cohort 
two distinct groups of patients with COVID-19 related thy-
roid dysfunction could be identified: one characterized by 
subclinical thyrotoxicosis (mostly related with a thyroiditis 
process) and one characterized by a low T3 levels (probably 
due to a NTI syndrome).

In further study by Gao et al. [116], thyroid function 
parameters were evaluated in a cohort of 100 COVID-19 
patients from Wuhan, and findings were compared between 
critical and non-critical patients. Results showed that TSH 
and FT3 levels, but not FT4 levels, were significantly lower 
in critically ill patients when compared with the non-crit-
ically ill ones. Moreover, FT3 levels at baseline, but not 
TSH or FT4, were independent predictors of mortality 
in this cohort of patients. An inverse correlation between 
C-reactive protein, TNF-alfa and IL-6 levels and TSH and 
FT3 levels was observed, while no correlation with FT4 was 
found. These data strongly suggest the occurrence of a NTI 
syndrome in this cohort of patients.

Lastly, some anecdotal case report described cases of 
severe hypothyroidism or Graves’ thyrotoxicosis onset after 
COVID-19 [117, 118], but no systematic study has evaluated 
this issue so far.

Confounding factors: COVID‑19 therapies

Among the increasing number of drugs that are or have been 
recommended for the treatment of COVID-19 patients, some 
do interfere with the hypothalamic-pituitary thyroid axis or 
with laboratory tests for the measurement of free thyroid 
hormones.

Glucocorticoids

The use of glucocorticoids in COVID-19 patients has been 
widely debated [119, 120]. In the early phases of the pan-
demic, many national guidelines either contraindicated or 
did not recommend glucocorticoid treatment [121]. How-
ever, in the clinical practice, almost 50% of COVID-19 
patients have been treated with some form of glucocorticoid 
[122, 123]. Afterwards, a randomized clinical trial provided 
evidence that treatment with dexamethasone could reduce 
the 28-day mortality in COVID-19 patients receiving respir-
atory support, with no benefit (and possible harm) in those 
who do not require oxygen [124].

Glucocorticoids have long been known to affect serum 
TSH levels in humans [125, 126]. Even low doses of 
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dexamethasone can lower serum TSH levels, while higher 
doses of prednisone are required to reach the same effect 
[126]. Glucocorticoids appear to suppress release of TSH 
through a direct inhibitory effect on pituitary thyrotrope 
cells [127] and an inhibition of TRH release in the hypo-
thalamus [128, 129]. Moreover, glucocorticoids can interfere 

with the production of active T3, through a direct induction 
of type 3 deiodinase and an increased conversion of T3 to 
reverse T3 [130]. Acute administration of glucocorticoids 
to humans or rats decreases the ratio of circulating T3 to 
T4, implying that these agents block T4 to T3 conversion. 
Recent studies in humans indicate that D3 activity is induced 

Fig. 1  Schematic representation of the possible mechanisms causing alterations in thyroid function parameters in patients with COVID-19

Fig. 2  Schematic representation of the mechanisms through which SARS-Cov-2 related cytokine storm can cause a Non-Thyroidal-Illness syn-
drome in COVID-19 patients
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by dexamethasone, and the acute decrease in serum  T3 that 
follows a high dose of glucocorticoids may be due to an 
increase in D3-mediated T3 clearance via 5 deiodination 
[131]. The resulting reduction in T3 levels can mimic a NTI 
syndrome [132, 133] (Fig. 1).

Heparin

Heparin or low molecular weight heparin (LMWH) is 
increasingly prescribed in COVID-19 patients. An anti-
thrombotic prophylaxis is mandatory in hospitalized and 
bedridden patients, who are also exposed to an increased 
pro-thrombotic risk directly related to COVID-19 disease. 
Moreover, heparin has potential beneficial non-anticoagulant 
effects, including reduction of endothelial leakage, neutrali-
zation of cytokines and chemokines, interference with leu-
kocyte trafficking and with viral cellular entry [134] (Fig. 2).

Unfortunately, heparin is known to interfere in free thy-
roid hormone assays. Heparin liberates lipoprotein lipase 
from the vascular endothelium. As consequence, blood 
samples from heparin-treated patients have increased lipo-
protein lipase activity, which persists in vitro and generates 
non-esterified fatty acids (NEFA) during sample storage or 
incubation. Free thyroid hormone assays, especially those 
with prolonged incubation periods, such as measurement 
by means of equilibrium dialysis, are most affected, since 
NEFA displace T4 and T3 from binding proteins, causing 
spuriously high values [135]. The effect is greater if samples 
are stored for a long time before the assay. Similar effects are 
seen with LMWH preparations [136]. Standard competitive 
free hormone assays are generally less affected by this phe-
nomenon, since the incubation period is shorter and occurs 
at a temperature lower than 37 °C, but the interference can-
not be completely excluded neither in this case. If the sample 
is stored for a long time the amount of NEFA in the samples 
constitutes an insuperable pre-clinical problem, that can be 
overcome only adding a non-toxic additive that can block 
the heparin-induced lipase at the moment of sample collec-
tion. If these laboratory alterations are suspected, the assay 
should be repeated at least 10 h after heparin withdrawal 
[136]. Moreover, total T4 and total T4 are likely to be more 
informative in this context [137].

Combined confounding factors

A study by Sapin et al. demonstrated how multiple inaccura-
cies of the hormonal thyroid profile can occur in critically 
ill patients submitted to multiple therapies. These authors 
evaluated serum FT4 results obtained with 6 different com-
mercial kits in 20 patients who had undergone bone marrow 
transplantations and who were previously euthyroid. Patients 
were treated with heparin and glucocorticoids, similarly to 
what happens in COVID-19 patients. Assay methods that 

involved sample incubation at 37 °C (such as equilibrium 
dialysis) gave falsely high FT4 values in 20–40% of patients, 
while analogue tracer methods, influenced by tracer binding 
to albumin, gave subnormal estimates of FT4 in 20–30% of 
them, even if the values were closer to the reference range. 
By contrast, total T4 was normal in the majority of these pre-
sumably euthyroid subjects. Interestingly, marked alterations 
in serum TSH were found, since half of the subjects had 
a suppressed serum TSH value. This change was probably 
attributable to glucocorticoid treatment. It is evident that in 
this context dosing artefacts in TSH and FT4 could be falsely 
interpreted as a case of thyrotoxicosis [138].

Conclusions

Patients with severe COVID-19 disease may undergo the so-
called cytokine storm. In vitro studies, experiments in ani-
mal models, and evidence in humans indicate that cytokines 
play an important role in the development of the NTI syn-
drome observed in critically ill patients. Several studies in 
hospitalized patients with COVID-19 disease indicate that 
the NTI syndrome is the most consistently observed altera-
tion of thyroid function parameters. SARS-CoV-2 may also 
infect the thyroid producing a typical (painful) or, possibly, 
an atypical (painless) subacute thyroiditis. At present there is 
no evidence for a direct thyroid cytotoxic effect of cytokines 
on thyroid cells, at least in humans. Glucocorticoids and 
heparin, frequently administered to COVID-19 patients, may 
act as confounding factors due to their effect on the HPT axis 
(glucocorticoids) and to their interference (heparin) in the 
assays for free thyroid hormones.
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