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Abstract

We investigate geometric and topological properties of d-majorization – a generalization
of classical majorization to positive weight vectors d ∈ Rn. In particular, we derive a
new, simplified characterization of d-majorization which allows us to work out a halfspace
description of the corresponding d-majorization polytopes. That is, we write the set of all
vectors which are d-majorized by some given vector y ∈ Rn as an intersection of finitely
many half spaces, i.e. as solutions to an inequality of the type Mx ≤ b. Here b depends
on y while M can be chosen independently of y. This description lets us prove continuity
of the d-majorization polytope (jointly with respect to d and y) and, furthermore, lets us
fully characterize its extreme points. Interestingly, for y ≥ 0 one of these extreme points
classically majorizes every other element of the d-majorization polytope.

Moreover, we show that the induced preorder structure on Rn admits minimal and max-
imal elements. While the former are always unique the latter are unique if and only if they
correspond to the unique minimal entry of the d-vector.

Keywords: majorization relative to d, d-majorization polytope, convex polytopes, extreme
points
2020 MSC: 15B51, 26A51, 52B11, 52B12

1. Introduction

The concept of d-majorization is a natural generalization of the classical notion of ma-
jorization as we will see in a moment. But let us first describe a deep relation between d-
majorization, d-stochastic matrices, and quantum physics. Readers who are not familiar with
the relevant quantum-mechanical terminology can skip the following two paragraphs as—
although we will draw some connections to the physics literature throughout this article—we
will not use any of these results.

Over the last few years, sparked by Brandão, Horodecki, Oppenheim [5, 26], and further
pursued by others [19, 21, 35, 46, 40, 1], thermo-majorization and in particular its resource
theory approach has been a widely discussed and researched topic in quantum physics. Here
the central question is: Given a fixed “background temperature” T > 0 as well as initial
and target states (density operators) of a quantum system, can the former be mapped to
the latter by means of a thermal operation? Here the set of all thermal operations which
constitutes a compact, convex semigroup within the set of all quantum channels [37, App. C]
consists of all linear maps which can be approximated arbitrarily well by quantum channels
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of the form

Φ(·) = trB

(
U
(

(·)⊗ e−HB/T

tr(e−HB/T )

)
U∗
)
,

where HB is an arbitrary “bath” Hamiltonian, HS the system’s Hamiltonian, U any unitary
operator satisfying the stabilizer condition U(HS⊗1B +1S⊗HB)U∗ = HS⊗1B +1S⊗HB,
and trB denotes the partial trace operation with respect to the “bath”, cf. [27, 6].

Two key properties of thermal operations are that e−HS/T is a fixed point of all thermal
operations—that is, the Gibbs state of the system is preserved—and that they commute
with the system’s “natural” dynamics at all times, i.e.

Φ(e−iHSt(·)eiHSt) = e−iHStΦ(·)eiHSt , (1)

for all t ≥ 0 which is equivalent to [Φ, adHS ] = 0 [36]. However, these two features do not
fully characterize thermal operations, meaning there exist quantum channels which satisfy
the above properties but lie outside the set of thermal operations [13]. For a comprehensive
introduction to this topic we refer to the review article [34].

For finite-dimensional systems, the above commutation relation (1) allows for a partial
answer to the state-conversion problem posed above because it reveals that Φ and adHS share
common invariant subspaces. In particular, if HS ∈ Cn×n is diagonal with non-degenerate
spectrum the set of diagonal density matrices is a common invariant and the action of
thermal operations on it coincides with the action of d-stochastic1 matrices on Rn, cf. [34,
Thm. 1]. The vector d then consists of the diagonal2 entries of the matrix e−HS/T (up to a
global constant which can be disregarded). Thus, if the initial state and the final state are
both “diagonal” then the d-stochastic matrices fully characterize all possible state transitions
[26, 30].

From a mathematical point of view this puts us in the realm of majorization relative to a
positive vector d ∈ Rn as introduced by Veinott [51] and, in the quantum regime, by Ruch,
Schranner, and Seligman [45]. For positive d, some vector x is said to be d-majorized by y,
denoted by x ≺d y, if there exists a d-stochastic matrix A such that x = Ay. A variety of
characterizations of ≺d and d-stochastic matrices can be found in the work of Joe [28] and
in Prop. 1 below.

Certainly, the concept of classical majorization as first introduced by Muirhead [42] and
more widely spread by Hardy, Littlewood, and Pólya [23] is a special case of d-majorization.
More precisely, one says that a vector x ∈ Rn is classically majorized by y ∈ Rn, denoted by
x ≺ y, if

∑n
i=1 xi =

∑n
i=1 yi and

∑j
i=1 x[i] ≤

∑j
i=1 y[i] for all j = 1, . . . , n − 1, where x[i], y[i]

are the components of x, y in decreasing order. This is well known to be equivalent to the
existence of a doubly-stochastic matrix A, that is, a d-stochastic matrix with d = (1, . . . , 1)>,
such that x = Ay [23, Thm. 46]. A comprehensive survey on classical majorization can
be found in [39]. For numerous applications in various fields of science we also refer to
[33, 12, 43, 4, 48, 17].

1A matrix A ∈ Rn×n is said to be d-stochastic if it is column-stochastic with Ad = d, where column-
stochastic means that all its entries are non-negative and each column sums up to one.

2Certainly, it suffices to require that the density matrices are represented in an eigenbasis of HS in which
case d consists of the eigenvalues of e−HS/T .

2



Interestingly, for x, y ∈ Rn one has x ≺ y if and only if x lies in the convex hull of all
permutations of y (as shown in, e.g., [44], or as a direct consequence of Birkhoff’s theorem
[39, Ch. 2, Thm. A.2]). Therefore the set {x ∈ Rn : x ≺ y} is a convex polytope with
at most n! corners. Hence it has a half-space description, that is, it can be written as
the intersection of finitely many half-spaces or equivalently as the solution to finitely many
linear (in-)equalities. The precise result as first stated in [11, Thm. 1] reads as follows: Given
y ∈ Rn one has

{x ∈ Rn : x ≺ y} =
{
x ∈ Rn :

( n∑
j=1

xi =
n∑
j=1

yi

)
∧
(
∀m∈{0,1}n m>x ≤

m1+...+mn∑
i=1

y[i]

)}
.

This result motivated us to work out a half-space description of “the” d-majorization poly-
tope to study its extreme points as well as further topological properties.

In the main, this manuscript is concerned with analyzing the preorder structure of d-
majorization and its geometry. It is organized as follows: First, in Section 2 we extend the
list of existing characterizations of d-majorization by a novel one, which allows to check d-
majorization in finitely many steps (Prop. 1 (vi)), and we identify the minimal and maximal
elements of this preorder (Thm. 3). In Section 3 we briefly revisit convex polytopes and their
equivalent descriptions before studying d-majorization from this perspective in Section 4. In
particular, the novel characterization of Prop. 1 allows us to work out a half-space description
of “the” corresponding d-majorization polytope (Thm. 10) and to prove its continuity with
respect to d and y (Thm. 12). Moreover, we identify its extreme points (Thm. 14) and –
as for classical majorization – we show that the number of extreme points is always upper
bounded by n! (Coro. 15). Finally we conclude that if the “initial” vector y is non-negative,
then one of the extreme points majorizes every element of the polytope classically (Thm. 16).

2. Characterizations and Preorder Properties of d-Majorization

For the purpose of this paper be aware of the following notions and notations:

• In accordance with Marshall and Olkin [39], Rn
+ (Rn

++) denotes the set of all real
vectors with non-negative (strictly positive) entries. Whenever it is clear that x is a
real vector of length n we occasionally write x ≥ 0 (x > 0) to express non-negativity
(strict positivity) of its entries.

• e shall denote the column vector of ones, i.e. e = (1, . . . , 1)>.

• ‖ · ‖1 is the usual 1-norm on Rn (or Cn).

• Sn is the symmetric group (the group of all permutations of {1, . . . , n}).

• The standard simplex ∆n−1 ⊆ Rn is given by the convex hull of all standard basis
vectors e1, . . . , en and precisely contains all probability vectors, that is, all vectors
x ∈ Rn

+ with e
>x = 1.

Having reviewed classical vector majorization as well as its polytope properties in the in-
troduction, let us now dive into the “non-symmetric” case of majorization, that is, the case
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where doubly stochastic matrices (having e as “left” and “right” fixed point) are replaced by
d-stochastic matrices (having e and d ∈ Rn

++ as “left” and “right” fixed point, respectively).
As also explained in the introduction this concept is closely related to thermo-majorization
and quantum thermodynamics in general, and we will occasionally point out some connec-
tions to the physics literature if appropriate. For the following definition we mostly3 follow
[39, p. 585].

Definition 1. Let d ∈ Rn
++ and x, y ∈ Rn be given. A square matrix A ∈ Rn×n is said to

be column-stochastic if Aij ≥ 0 for all i, j = 1, . . . , n (i.e. A ∈ Rn×n
+ ) and e

>A = e
>. If,

additionally, Ad = d then A is said to be d-stochastic. The set of all d-stochastic n × n
matrices is denoted by sd(n). Moreover, x is said to be d-majorized by y, denoted by x ≺d y,
if there exists A ∈ sd(n) such that x = Ay.

In particular, x ≺d y implies e
>x = e

>Ay = e
>y. Also note that this definition of ≺d

naturally generalizes to complex vectors, cf. also [20].

Remark 1. (i) For any d ∈ Rn
++, the set sd(n) constitutes a convex, compact subsemi-

group of Cn×n with identity element In. In particular it acts contractively in the
1-norm: for all z ∈ Rn and A ∈ Rn×n

+ with e
>A = e

> one has the estimate

‖Az‖1 =
n∑
i=1

∣∣∣ n∑
j=1

Aijzj

∣∣∣ ≤ n∑
i,j=1

Aij|zj| =
n∑
j=1

( n∑
i=1

Aij

)
|zj| =

n∑
j=1

|zj| = ‖z‖1 . (2)

(ii) Note that d-majorization is a special case of so-called matrix majorization: Given
matrices A ∈ Rm×p, B ∈ Rn×p – keeping in mind footnote 3 – one says A majorizes
B (denoted by A ≺ B) if there exists X ∈ Rm×n

+ with e
>X = e

> such that XB = A
[10, 9]. With this one recovers d-majorization by setting B = (d y), A = (d x) because
then A ≺ B holds iff x ≺d y as is readily verified.

(iii) By Minkowski’s theorem [7, Thm. 5.10], the previous point implies that sd(n) can be
written as the convex hull of its extreme points. However—unless d = e—this does
not prove to be all too helpful as stating said extreme points (for n > 2) becomes
quite delicate4. To substantiate this the extreme points for n = 3 and non-degenerate
d ∈ R3

++ can be found in Lemma 18 (Appendix A).

(iv) If some entries of the d-vector coincide, then ≺d is known to be a preordering but not
a partial ordering. Contrary to what is written in [28, Rem. 4.2] this in general does
not change if the entries of d are pairwise distinct: To see this, consider d = (3, 2, 1)>,
x = (1, 0, 0)>, y = (0, 2

3
, 1
3
)>, and

A =

0 1 1
2
3

0 0
1
3

0 0

 ∈ sd(3) .

3Usually d-stochastic matrices are defined via d>A = d> and Ae = e which is equivalent to the definition
below as it only differs by transposing once. This is because we consider d, x, y to be usual column vectors
whereas [28, 39] consider row vectors.

4The number of extreme points of sd(n) is lower bounded by n! and upper bounded by
(
n2

2n−1
)
, cf. [28,

Rem. 4.5].

4



Then Ax = y and Ay = x so x ≺d y ≺d x, but obviously x 6= y.

Now let us summarize the known characterizations of ≺d: While the equivalences of (i)
through (v) in the following proposition are due to Joe [28, Thm. 2.2], number (vi) will be
a new result of ours. Moreover, (vii) is related to the definition most prominent among the
physics literature, called “thermo-majorization curves” [26]. Indeed the criterion (vii) we
present here is a more explicit version of [2, Thm. 4]; for more on this, cf. Ch. 4.3.

Proposition 1. Let d ∈ Rn
++ and x, y ∈ Rn be given. The following are equivalent.

(i) x ≺d y

(ii)
∑n

j=1 djψ(
xj
dj

) ≤
∑n

j=1 djψ(
yj
dj

) for all continuous, convex functions ψ : D(ψ) ⊆ R→ R
such that {xj

dj
: j = 1, . . . , n}, { yj

dj
: j = 1, . . . , n} ⊆ D(ψ).

(iii)
∑n

j=1(xj − tdj)+ ≤
∑n

j=1(yj − tdj)+ for all t ∈ R where (·)+ := max{·, 0}.

(iv)
∑n

j=1(xj − tdj)+ ≤
∑n

j=1(yj − tdj)+ for all t ∈ {xi
di
, yi
di

: i = 1, . . . , n}.

(v) ‖x− td‖1 ≤ ‖y − td‖1 (i.e.
∑n

j=1 |xj − tdj| ≤
∑n

j=1 |yj − tdj|) for all t ∈ R.

(vi) e
>x = e

>y and ‖x− yi
di
d‖1 ≤ ‖y − yi

di
d‖1 for all i = 1, . . . , n.

(vii) e
>x = e

>y and for all j = 1, . . . , n− 1∑j

i=1
xσ(i) ≤ min

i=1,...,n

(
e
>
(
y − yi

di
d
)
+

+
yi
di

(∑j

k=1
dσ(k)

))
where σ ∈ Sn is any permutation such that

xσ(1)
dσ(1)
≥ . . . ≥ xσ(n)

dσ(n)
.

Proof. (v) ⇒ (vi): For t large enough all entries of x− td, y − td are non-positive so

−e>(x− td) = ‖x− td‖1 ≤ ‖y − td‖1 = −e>(y − td)

and thus e
>x ≥ e

>y. Doing the same for −t large enough gives e
>x ≤ e

>y so together
e
>x = e

>y.
(vi) ⇒ (v): Define P := {xi

di
, yi
di

: i = 1, . . . , n}; w.l.o.g. |P | > 1. As argued before,

e
>x = e

>y implies ‖x− td‖1 = ‖y − td‖1 on t ∈ (−∞,minP ] ∪ [maxP,∞). Now define

gx : [minP,maxP ]→ R+

t 7→ ‖x− td‖1 =
∑n

i=1
di

∣∣∣xi
di
− t
∣∣∣

and gy analogously. Thus all that is left to show is gx(t) ≤ gy(t) for all t ∈ [minP,maxP ].
First note that gx(minP ) = gy(minP ), gx(maxP ) = gy(maxP ), and gx(

yi
di

) ≤ gy(
yi
di

) for
all i = 1, . . . , n by assumption, meaning we can choose t ∈ (minP,maxP ) \ { y1

d1
, . . . , yn

dn
}.
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Hence there exists i = 0, . . . , n such that yi
di
< t < yi+1

di+1
where y0

d0
:= minP , yn+1

dn+1
:= maxP .

Defining λ := ( yi+1

di+1
− t)/( yi+1

di+1
− yi

di
) ∈ (0, 1) and using convexity of gx we compute

gx(t) = gx

(
λ
yi
di

+ (1− λ)
yi+1

di+1

)
≤ λgx

(yi
di

)
+ (1− λ)gx

(yi+1

di+1

)
≤ λgy

(yi
di

)
+ (1− λ)gy

(yi+1

di+1

)
= gy

(
λ
yi
di

+ (1− λ)
yi+1

di+1

)
= gy(t) .

In the last line we used that gy is affine linear on each interval [ yi
di
, yi+1

di+1
].

As stated before, the equivalence of (i) through (v) is due to [28, Thm. 2.2]. However for
the sake of this work being self-contained (and possibly filling some gaps in the literature)
let us show a proof, or at least sketch the ideas. First of all (ii) ⇒ (iii) ⇒ (iv) is obvious.

(i) ⇒ (v): There exists A ∈ sd(n) which maps y to x so A(y − td) = Ay − tAd = x− td
for all t ∈ R, hence (v) is a direct consequence of (2).

(v)⇒ (iv): Because e>x = e
>y, just as in the proof of Lemma 9 trace equality and trace

norm inequality implies the inequality for the positive part of the vectors.
(iv) ⇒ (ii): Let a continuous convex function ψ : D(ψ) ⊆ R → R be given such that

P := {xj
dj
,
yj
dj

: j = 1, . . . , n} ⊆ D(ψ). In particular one can construct a continuous function

ψ̃ : R→ R such that

• ψ̃(
xj
dj

) = ψ(
xj
dj

) and ψ̃(
yj
dj

) = ψ(
yj
dj

) for all j = 1, . . . , n

• ψ̃ is piecewise linear with change in slope only at the elements of P .

• ψ̃ is convex (evident because ψ is convex).

In other words ψ̃ is the “piecewise linearization” of ψ (with respect to P ). Thus it suffices
to prove (ii) for all such ψ̃ because then∑n

j=1
djψ
(xj
dj

)
=
∑n

j=1
djψ̃
(xj
dj

)
≤
∑n

j=1
djψ̃
(yj
dj

)
=
∑n

j=1
djψ
(yj
dj

)
Now let φ : R→ R continuous, convex and piecewise linear (with respect to P ) be given.

Then φ can be written as a (non-negative) linear combination of the maps5 {φp : p ∈ P}
where φp(t) := (p− t)+. But all φp satisfy (ii) by assumption, hence φ does as well.

(ii) ⇒ (i): The idea here is much in the spirit of Kemperman [29, Thm. 2]. Finding
A ∈ Rn×n

+ with e
>A = e

>, Ad = d and Ay = x is equivalent (by vectorization, cf. [38,
Ch. 2.4]) to finding a solution z ∈ Rn2

+ toy> ⊗ Ind> ⊗ In
In ⊗ e

>

 z =

xd
e


5This is true up to an affine linear map which due to e

>x = e
>y yields equality in (ii), thus can be

disregarded.
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where ⊗ is the usual Kronecker product [38, Ch. 2.2] and z = vecA. By Farkas’ lemma6

such a solution exists if (and only if) for all w ∈ R3n which satisfy

(y> ⊗ Ind> ⊗ In
In ⊗ e

>

> ~w1

~w2

~w3

)
n(j−1)+k

=
( (

(y ⊗ In) ~w1 (d⊗ In) ~w2 (In ⊗ e) ~w3

) )
n(j−1)+k

= yjwk + djwn+k + w2n+j ≤ 0 (3)

for all j, k = 1, . . . , n one has∑n

j=1
(xjwj + djwn+j + w2n+j) ≤ 0 .

Consider the convex (because affine linear) functions ψj : R → R, t 7→ wjt + wn+j for all
j = 1, . . . , n. Then

ψ : R→ R t 7→ max
j=1,...,n

ψj(t)

is convex and continuous as well so by assumption and because d > 0∑n

j=1
(xjwj + djwn+j + w2n+j) =

∑n

j=1
djψj(

xj
dj

) + w2n+j

≤
∑n

j=1
djψ(

xj
dj

) + w2n+j

≤
∑n

j=1
djψ(

yj
dj

) + w2n+j .

But now for every j = 1, . . . , n exists k = k(j) such that ψ(
yj
dj

) = ψk(j)(
yj
dj

) by definition of ψ

(the maximum has to be attained by at least one of the ψk). Hence∑n

j=1
(xjwj + djwn+j + w2n+j) ≤

∑n

j=1
djψ(

yj
dj

) + w2n+j

=
∑n

j=1
djψk(j)(

yj
dj

) + w2n+j

=
∑n

j=1
yjwk(j) + djwn+k(j) + w2n+j︸ ︷︷ ︸

≤0 by (3)

≤ 0

so we are done. Note that we needed access to not all, but only to the piecewise linear convex
functions—this is the same effect as in the proof of (iv) ⇒ (ii).

(i) ⇔ (vii): This will be a direct consequence of our considerations in Section 4 so we
will postpone this part of the proof to Section 4.3. Note that we will not use this result
anywhere in the paper, meaning we are not at risk to run into a circular argument.

Remark 2. (i) In terms of numerics, Prop. 1 (vi) is the most efficient one for checking d-
majorization as it encapsulates at most n+1 constraints one has to verify. In contrast,

6Farkas’ lemma states that for m,n ∈ N, A ∈ Rm×n, b ∈ Rm, the system of linear equations Ax = b has a
solution in Rn+ if and only if for all y ∈ Rm which satisfy A>y ≤ 0 one has b>y ≤ 0, refer to [47, Coro. 7.1.d]
(when replacing A, b by −A,−b).
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the definition of d-majorization, i.e. finding a d-stochastic matrix which maps y to
x boils down to a linear programming problem which is by far not as easy to check
as condition (vi). The other conditions from Prop. 1 consist of either uncountably
many constraints (conditions (ii), (iii), and (v)), or at most 2n (condition (iv)) or n2

steps (condition (vii), because each of the n − 1 constraints features a minimum over
n numbers which one has to compute before checking the actual constraint).

(ii) In the physics lecture, also connected to the notion of thermo-majorization, a freshly
published result [50] gives a direct proof of (vii) ⇒ (i) from Prop. 1. Given two
vectors x, y ∈ Rn of the same “trace” such that y thermo-majorizes x, Shiraishi gave
a constructive algorithm for a d-stochastic matrix which sends y to x.

Recently Alhambra et al. [1] were able to find conditions under which classical majoriza-
tion implies d-majorization for d from some parameter range. As their result was obtained in
the context of dephasing thermalization let us reformulate it by casting it into our notation:

Proposition 2. The following statements hold.

(i) Let x, y ∈ Rn and d ∈ Rn
++ be given. If x, y are similarly d-ordered, i.e. there exists a

permutation σ ∈ Sn such that
xσ(1)
dσ(1)

≥ . . . ≥ xσ(n)
dσ(n)

and
yσ(1)
dσ(1)

≥ . . . ≥ yσ(n)
dσ(n)

, then x ≺d y
holds if and only if x ≺ y.

(ii) Let y ∈ Rn
+ and d ∈ Rn

++. If y1 ≤ . . . ≤ yn and d1 ≥ . . . ≥ dn, then σy ≺d y for all
σ ∈ Sn.

(iii) Let y ∈ Rn
+ with y1 ≤ . . . ≤ yn be given. Then for all x ∈ Rn one has x ≺ y if and only

if x ≺d y for all d ∈ Rn
++ with d1 ≥ . . . ≥ dn.

Proof. (i): [28, Coro. 2.5]. Note that x ≺d y if and only if σx ≺σd σy for all σ ∈ Sn as is
readily verified, so it suffices to have x, y similarly d-ordered. (ii): One can explicitly write
down generalized T-transforms which first shift y1 to yσ(1), then y2 to yσ(2), and so on. The
details are carried out in [1, p. 13 & 14]. (iii), ⇐: Obvious. (iii), ⇒: Let x ∈ Rn with
x ≺ y be given and let τ ∈ Sn be any permutation such that τx1 ≤ . . . ≤ τxn. Then (ii)
implies σ τx ≺d τx for all σ ∈ Sn and all d ∈ Rn

++ with d1 ≥ . . . ≥ dn, so choosing σ = τ−1

yields x ≺d τx. On the other hand τx and y are similarly d-ordered for all such d—because
(τx)1
d1
≤ . . . ≤ (τx)n

dn
and y1

d1
≤ . . . ≤ yn

dn
—so we have τx ≺d y by (i). Using that ≺d is a

preorder this yields x ≺d τx ≺d y, that is, x ≺d y as claimed.

To conclude this section we make some statements about minimal and maximal elements
of the preorder ≺d.

Theorem 3. Let d ∈ Rn
++ be given. The following statements hold.

(i) d is the unique minimal element within {x ∈ Rn : e>x = e
>d} with respect to ≺d .

(ii) Let j, k ∈ {1, . . . , n}, j 6= k be given. Then ej ≺d ek if and only if dj ≥ dk.

(iii) If k is chosen such that dk is minimal in d, then (e>d)ek is maximal in (e>d)∆n−1 =
{x ∈ Rn

+ : e
>x = e

>d} with respect to ≺d. It is the unique maximal element in
(e>d)∆n−1 with respect to ≺d if and only if dk is the unique minimal element of d.

8



Proof. (i) Consider de>/(e>d) ∈ sd(n) which maps any x ∈ Rn with e
>x = e

>d to d so
d ≺d x. Uniqueness is obvious as d is a fixed point of every d-stochastic matrix.

(ii): Applying Prop. 1 (vi), ej ≺d ek is equivalent to ‖ej − 1
dk
d‖1 ≤ ‖ek − 1

dk
d‖1 (as the

n− 1 other inequalities read 1 ≤ 1 and thus are redundant). But this is satisfied iff∣∣∣1− dj
dk

∣∣∣+
dk
dk
≤ dj
dk

+
∣∣∣1− dk

dk

∣∣∣ ⇔
∣∣∣dj
dk
− 1
∣∣∣ ≤ dj

dk
− 1

which obviously holds iff
dj
dk
− 1 ≥ 0, that is, dj ≥ dk.

(iii): W.l.o.g. e>d = 1. Because dk ≤ dj for all j = 1, . . . , n, (ii) implies ej ≺d ek which,
using convexity of ≺d, shows maximality of ek. Moreover, if dk is not the unique minimal
element—but there exists i 6= k such that di = dk—then by the same argument ei is maximal
in ∆n−1 w.r.t. ≺d, so there exist at least two maximal elements.

Thus all that is left to show is that if dk is the unique minimal element of d, then ek ≺d x
for any x ∈ ∆n−1 implies x = ek meaning there cannot be any maximal element other than
ek. Indeed ek ≺d x by Prop. 1 (vi) is equivalent to ‖ek− xi

di
d‖1 ≤ ‖x− xi

di
d‖1 for all i = 1, . . . , n

which after a straightforward computation reads

1 +
xi
di

(1− di − dk) ≤ 1− 2
∑

{α:xα
dα
<
xi
di
}

xα +
xi
di

(
1− 2di − 2

∑
{α:xα

dα
>
xi
di
}

dα

)
≤ 1 +

xi
di

(1− 2di) ≤ 1 +
xi
di

(1− di − dk) .

Hence all these inequalities are actually equalities; in particular the last step then implies
xi = 0 for all i 6= k because di > dk by assumption.

Remark 3. The fact that every e1, . . . , en is maximal in the standard simplex ∆n−1 for
d = e is lost in the general setting (consider the example from Remark 1 (iv)).

However, for strictly positive vectors z ∈ Rn
++ one still has (e>z)ek 6≺d z for all k =

1, . . . , n. More generally, if y ≺d z then y has to be strictly positive as well; otherwise the
corresponding transformation matrix (non-negative entries) would contain a row of zeros
which—due to d > 0—contradicts d being one of its fixed points. This is a special case of
strict positivity of matrix-D-majorization [16, Coro. 4.7]

3. Descriptions & Properties of Convex Polytopes

Before we investigate what Proposition 1 tells us about sets of the form {x ∈ Rn : x ≺d y}
for some y ∈ Rn, d ∈ Rn

++ we need some basic knowledge of convex polytopes. Usually,
convex polytopes are introduced as subsets of Rn which can be written as the convex hull
of finitely many vectors from Rn, cf. [47, Ch. 7.2], [22, Ch. 3]. Now it is well known that
such polytopes can be characterized via finitely many affine half-spaces: More precisely a
set P ⊂ Rn is a convex polytope if and only if P is bounded and there exist m ∈ N,
A ∈ Rm×n, and b ∈ Rm such that P = {x ∈ Rn : Ax ≤ b} [47, Coro. 7.1c]. These
characterizations of convex polytopes are also known as vertex- and halfspace-description
(V - and H -description), respectively [22, Ch. 3.6].
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Remark 4. Let any A ∈ Rm×n, b, b′ ∈ Rm, and p ∈ Rn be given. The following observations
are readily verified:

{x ∈ Rn : Ax ≤ b} ∩ {x ∈ Rn : Ax ≤ b′} = {x ∈ Rn : Ax ≤ min{b, b′}}
{x ∈ Rn : Ax ≤ b}+ p = {x ∈ Rn : Ax ≤ b+ Ap}

b ≤ b′ ⇔ {x ∈ Rn : Ax ≤ b} ⊆ {x ∈ Rn : Ax ≤ b′} .

Here and henceforth, we for simplicity use the convention that min and max operate entry-
wise on vectors, e.g., min{b, b′} = (min{bj, b′j})mj=1 for b, b′ ∈ Rm. The above results are not
too surprising as A in some sense describes the geometry of the polytope which intuitively
should not change under the above operations.

In the following we are primarily interested in the case where A and b have a very particular
structure. After all, in the introduction we have seen that the orientation of the half-spaces
which describe classical majorization are precisely given by the collection of all binary vectors
{0, 1}n. Thus to introduce this special structure we define

M :=


M1

M2

...
Mn−1
e
>

−e>

 ∈ R2n×n , (4)

where the rows of Mj ∈ R(nj)×n consist of all elements of {0, 1}n which sum up to j. The
order of these rows can be chosen arbitrarily but shall be fixed henceforth.

Moreover, b ∈ R2n will be partitioned in the same way and our focus will be on the case
where b′n + b′n+1 = 0 or, equivalently,

b =


b′1
...

b′n−1
b′n
−b′n

 ∈ R2n .

with b′j ∈ R(nj) for all j = 1, . . . , n; in particular b′n ∈ R. The last two conditions on M and b
obviously allow us to guarantee that any solution of Mx ≤ b satisfies the “trace condition”
e
>x =

∑n
j=1 xj = b′n.

Lemma 4. Let M be the matrix (4) and let b ∈ R2n with b′n + b′n+1 = 0 be given. If
{x ∈ Rn : Mx ≤ b} is non-empty then it is a convex polytope of dimension at most n− 1.

Proof. Because b′n+b′n+1 = 0 by assumption, all solutions to Mx ≤ b have to satisfy e>x = b′n
which reduces the dimension of {x ∈ Rn : Mx ≤ b} by at least 1. Now if we can show that
{x ∈ Rn : Mx ≤ 0} = {0} then the set in question is bounded (cf. [47, Ch. 8.2]) so by the
above characterization of convex polytopes we are done. Indeed let x ∈ Rn satisfy Mx ≤ 0.
Then M1x ≤ 0, implying xi ≤ 0 for all i = 1, . . . , n. But this together with the “trace
condition” e

>x = 0 shows xi = 0 for all i, as desired.
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Now an immediate question is the one concerning the vertices (extreme points) of convex
polytopes of the above form. This will be the topic of the remainder of this section. For
this we need a characterization of the extreme points, given a H -description of a convex
polytope.

To characterize these extreme points in a convenient way we need a formalism to pick
rows from the matrix M and the corresponding entry of the vector b. Since we do not want
to fix any “unnatural” order of the rows of M , we define an abstract mapping which does
this job for us. While this procedure would not be necessary for classical majorization –
because there the vector b is of convenient structure – for studying general d-majorization
this map will be indispensable.

Definition 2. Let a ∈ {0, 1}n, a 6= 0 be given. Then the row vector a corresponds to a
(unique) row of M ∈ R2n×n, hence there exist unique m1 ∈ {1, . . . , n}, m2 ∈ {1, . . . ,

(
n
m1

)
}

such that a is the m2-th row of the submatrix Mm1 of M in (4). This lets us define

m : {0, 1}n → N0 × N0

a 7→

{
(0, 0) if a = 0

(m1,m2) else
.

Now given b ∈ R2n with b′n + b′n+1 = 0 we can define an analogous mapping

b : {0, 1}n → R

a 7→

{
0 if a = 0

(b′m1
)m2 else

where (m1,m2) = m(a).

In other words Mx ≤ b then is equivalent to a>x ≤ b(a>) for all a ∈ {0, 1}n together with
e
>x = b′n. Certainly the maps m, b generalize to matrices A ∈ {0, 1}m×n, b ∈ Rm (m ∈ N)

by applying them to every row of A individually7.

Lemma 5. Let b ∈ R2n with b′n + b′n+1 = 0 as well as p ∈ Rn be given such that Mp ≤ b.
The following statements are equivalent.

(i) p is an extreme point of {x ∈ Rn : Mx ≤ b}.

(ii) There exists a submatrix M ′ ∈ {0, 1}n×n of M—one row of M ′ being equal to e
>—such

that M ′p = b(M ′) =: b′ and rankM ′ = n.

Proof. “(ii)⇒ (i)”: Assume there exist x1, x2 ∈ {x ∈ Rn : Mx ≤ b} and λ ∈ (0, 1) such that
p = λx1 + (1− λ)x2. Then M ′x1 ≤ b′, M ′x2 ≤ b′ by assumption and thus

b′ = M ′p = λM ′x1 + (1− λ)M ′x2 ≤ λb′ + (1− λ)b′ = b′ ⇒ M ′x1 = M ′x2 = b′ .

7For this map to be well-defined we need the assumption that no row of A appears twice. But this is
rather natural because one of the two inequalities a>x ≤ b, a>x ≤ b′ is redundant and can be disregarded.
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But M ′ ∈ Rn×n is of full rank so the system of linear equations M ′y = b has a unique solution
in Rn, hence x1 = x2 = p is in fact an extreme point of {x ∈ Rn : Mx ≤ b}.

“(i) ⇒ (ii)”: Each extreme point p of {x ∈ Rn : Mx ≤ b} is determined by n linearly
independent equations from Mx = b so there exists a submatrix M̂ ∈ Rn×n of M of full
rank such that M̂p = b(M̂) =: b̂, cf. [47, Thm. 8.4 ff.]. If one row of M̂ equals e> then we
are done. If M̂ features −e> replace it by e

> and flip the sign of the corresponding entry in
b(M̂). Otherwise define

M̃ :=

(
M̂
e
>

)
∈ R(n+1)×n and b̃ := b(M̃) =

(
b̂
b′n

)
∈ Rn+1

so M̃p = b̃ because p satisfies the “trace condition” e
>p = b′n. But this system of linear

equations is now overdetermined so there exists a row of M̂ which can be replaced by e
>

such that the resulting matrix M ′ ∈ {0, 1}n×n—which still satisfies M ′p = b(M ′)—has again
full rank.

This enables—in some special cases—an explicit description of the extreme points of the
polytope induced by M and b. Henceforth the symbol Λ will denote the lower triangular
matrix

Λ =


1 0 · · · 0
...

. . .
. . .

...
...

. . . 0
1 · · · · · · 1

 . (5)

Definition 3. Let b ∈ R2n with b′n + b′n+1 = 0 and arbitrary σ ∈ Sn be given. Denote by σ
the permutation matrix8 induced by σ. Then the unique solution to

Λσx = b
(
Λσ
)

=: b′σ (6)

(with Λ from (5)) shall be denoted by x = Eb(σ).

Now Eb(σ) is of the following simple form.

Lemma 6. Let b ∈ R2n with b′n + b′n+1 = 0, arbitrary σ ∈ Sn, as well as p ∈ Rn be given.
Then for all j = 1, . . . , n and for all σ ∈ Sn

(Eb(σ))σ(j) = b
(∑j

i=1
e>σ(i)

)
− b
(∑j−1

i=1
e>σ(i)

)
= (b′σ)j − (b′σ)j−1 (7)

(with b′σ from (6)), as well as Eb+Mp(σ) = Eb(σ) + p.

Proof. The j-th row of (6) for x = Eb(σ), j = 1, . . . , n reads∑j

i=1
(Eb(σ))σ(i) =

(∑j

i=1
e>σ(i)

)
Eb(σ) = b

(∑j

i=1
e>σ(i)

)
8Given some permutation σ ∈ Sn the corresponding permutation matrix is given by

∑n
i=1 eie

>
σ(i). In

particular the identities (σx)j = xσ(j) and σ ◦ τ = τ · σ hold.
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which implies (7). Also one readily verifies

(b+Mp)′σ = b′σ +
(∑j

i=1
pσ(i)

)n
j=1︸ ︷︷ ︸

corresponding entry in Mp

= b′σ + Λσp

for any σ ∈ Sn, so Eb+Mp(σ) = Eb(σ) + p by uniqueness of the solution of (6).

Clearly if Eb(σ) ∈ {x ∈ Rn : Mx ≤ b} for some σ ∈ Sn, then it is an extreme point
by Lemma 5 although, in general, not every Eb(σ) needs to be in {x ∈ Rn : Mx ≤ b} for
arbitrary b ∈ R2n with b′n + b′n+1 = 0 (cf. Example 1, Appendix D). However for the well-
structured polytopes we will deal with later on all of these Eb(σ) lie within the polytope, in
which case they are the only extreme points:

Theorem 7. Let b ∈ R2n with b′n + b′n+1 = 0 be given such that {Eb(σ) : σ ∈ Sn} ⊂ {x ∈
Rn : Mx ≤ b}. Then every extreme point of {x ∈ Rn : Mx ≤ b} is of the form Eb(σ) for
some σ ∈ Sn, and therefore {x ∈ Rn : Mx ≤ b} = conv{Eb(σ) : σ ∈ Sn}.

Proof. Let p ∈ {x ∈ Rn : Mx ≤ b} be extremal so by Lemma 5 there exists a submatrix
M ′ ∈ {0, 1}n×n of M of full rank, one row of M ′ being equal to e

>, such that M ′p = b(M ′).
By Minkowski’s theorem [7, Thm. 5.10] if we can show that p = Eb(σ) for some σ ∈ Sn this
would conclude the proof.

Indeed consider any two rows m1,m2 of M ′. The idea will be to show that mminp =
b(mmin) and mmaxp = b(mmax) where mmin := min{m1,m2}, mmax := max{m1,m2}. Thus
M ′ can be extended by these rows while keeping the equality M ′p = b(M ′). This would
conclude the proof by means of an abstract result which, roughly speaking, states that any
matrix of full rank which has e

> as a row and satisfies this min-max-property necessarily
features a submatrix of the form Λσ for some σ ∈ Sn (Lemma 19 (iii), Appendix B), so
p = Eb(σ).

Now note that mmin ≤ mmax, meaning one finds τ ∈ Sn such that mmin, mmax are rows
of Λ τ 9, as well as mmin +mmax = m1 +m2. This has two immediate consequences: firstly,
M ′p = b(M ′) and Mp ≤ b imply

b(m1) + b(m2) = (m1 +m2)p = (mmin +mmax)p ≤ b(mmin) + b(mmax) ,

and secondly, Λ τEb(τ) = b′τ and MEb(τ) ≤ b (because Eb(τ) ∈ {x ∈ Rn : Mx ≤ b} by
assumption) yield

b(mmin) + b(mmax) = (mmin +mmax)Eb(τ) = (m1 +m2)Eb(τ) ≤ b(m1) + b(m2) .

Combining these two we get

b(m1) + b(m2) = (mmin +mmax)p ≤ b(mmin) + b(mmax) ≤ b(m1) + b(m2) ,

that is, (mmin +mmax)p = b(mmin)+b(mmax). But mminp ≤ b(mmin), mmaxp ≤ b(mmax) (due
to Mp ≤ b), hence mminp = b(mmin) and mmaxp = b(mmax). As stated before, this means

9If mmin = 0 then one can trivially find τ ∈ Sn such that mmax is a row of Λ τ .
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we can extend M ′ by mmin,mmax—assuming these were not part of M ′ in the first place—to
a matrix M ′′ which still satisfies M ′′p = b(M ′′). Repeating this enlargement process over
and over will terminate eventually as {0, 1}n is finite, yielding M̃ of full rank, containing e

>,
and, most importantly, for any two rows m1, m2 of M̃ , min{m1,m2} and max{m1,m2} are
rows of M̃ as well. Therefore Lemma 19 (iii) (Appendix B) yields a permutation σ ∈ Sn
such that every row of Λσ is a row of M̃ , so M̃p = b(M̃) implies Λ σp = b(Λσ), that is,
p = Eb(σ).

Remark 5. This result is remarkable because it shows that under certain requirements on
b the special structure of M allows to simplify the procedure of finding the extreme points
of the induced polytope significantly. Usually one would have to determine all invertible
submatrices of M , solve the corresponding linear equations (cf. [47, Thm. 8.4 ff.]), and
finally check whether these solutions satisfy the remaining inequalities. However, M has
way more invertible submatrices than actual extreme points (i.e. n!) in this case.

Following Remark 10 (Appendix B) one can even improve Thm. 7: If the matrix M ′

corresponding to p contains two incomparable rows m1,m2, that is, m1 6≥ m2 6≥ m1, then
there exist at least two permutations σ1, σ2 ∈ Sn such that Eb(σ1) = p = Eb(σ2). Notably in
such a situation the map σ 7→ Eb(σ) is not injective.

4. The d-Majorization Polytope

4.1. Characterizing the d-Majorization Polytope

With the tools surrounding convex polytopes developed in Section 3 we are finally ready
to explore the “geometry” of d-majorization. For this let us consider the set of all vectors
which are d-majorized by some y ∈ Rn; more generally we introduce the map

Md : P(Rn)→ P(Rn)

S 7→
⋃

y∈S
{x ∈ Rn : x ≺d y}

where P denotes the power set. For convenience Md(y) := Md({y}) for any y ∈ Rn, which
then equals the set of all vectors which are d-majorized by y. Note that the idea here is
close to—but should not be confused with—the (d-)majorization polytope of two vectors [9]
which, given two real vectors, is the set of all (d-)stochastic matrices which map one vector
to the other.

Lemma 8. Let d ∈ Rn
++. Then Md is a closure operator10. In particular, for any x, y ∈ Rn

one has x ≺d y if and only if Md(x) ⊆Md(y).

Proof. The first statement is a simple consequence of the d-stochastic matrices sd(n) forming
a semigroup with identity. For the second statement note that x ≺d y, that is, x ∈ Md(y)
implies Md(x) ⊆Md(Md(y)) = Md(y).

10Recall that an operator J on the power set P(S) of a set S is called closure operator or hull operator if
it is extensive (X ⊆ J(X)), increasing (X ⊆ Y ⇒ J(X) ⊆ J(Y )) and idempotent (J(J(X)) = J(X)) for all
X,Y ∈ P(S), cf., e.g., [8, p. 42].
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Now Prop. 1 (vi) directly implies

Md(y) =
⋂n

i=1

{
x ∈ Rn : e>x = e

>y ∧
∥∥∥x− yi

di
d
∥∥∥
1
≤
∥∥∥y − yi

di
d
∥∥∥
1

}
=
⋂n

i=1

{
x ∈ Rn : e>

(
x− yi

di
d
)

= e
>
(
y − yi

di
d
)
∧
∥∥∥x− yi

di
d
∥∥∥
1
≤
∥∥∥y − yi

di
d
∥∥∥
1

}
=
⋂n

i=1

({
x̃ ∈ Rn : e>x̃ = e

>
(
y − yi

di
d
)
∧ ‖x̃‖1 ≤

∥∥∥y − yi
di
d
∥∥∥
1

}
+
yi
di
d
)

(8)

for all y ∈ Rn, d ∈ Rn
++.

Lemma 9. Let z ∈ Rn. Then

{x ∈ Rn : e>x = e
>z ∧ ‖x‖1 ≤ ‖z‖1} =

{
x ∈ Rn

∣∣x ≺ (e>z+,−e>z−, 0, . . . , 0)>
}

where z = z+− z− is the unique decomposition of z into positive and negative part, i.e. z+ =
(max{zj, 0})nj=1, z− = (−z)+ = (max{−zj, 0})nj=1) ∈ Rn

+.

Proof. For what follows let ẑ := (e>z+,−e>z−, 0, . . . , 0).
“ ⊇ ”: Majorization by definition forces e>x = e

>z+− e
>z− = e

>(z+− z−) = e
>z. Also

if x ≺ ẑ then there exists a doubly stochastic matrix A which maps ẑ to x so using (2) we
compute

‖x‖1 = ‖Aẑ‖1 ≤ ‖ẑ‖1 = e
>z+ + e

>z− =
∑n

j=1
|zj| = ‖z‖1 .

“ ⊆ ”: Decompose x = x+ − x− with x+, x− ∈ Rn
+ as above. By assumption

e
>x = e

>x+ − e
>x− = e

>z+ − e
>z− = e

>z

‖x‖1 = e
>x+ + e

>x− ≤ e
>z+ + e

>z− = ‖z‖1

so taking the sum of these conditions gives e>x+ ≤ e
>z+. Thus for all k = 1, . . . , n− 1∑k

i=1
x[i] ≤

∑k

i=1
(x[i])+ ≤ e

>x+ ≤ e
>z+ = e

>z+ + 0 + . . .+ 0︸ ︷︷ ︸
k−1 zeros

=
∑k

i=1
ẑ[i]

which—together with e
>x = e

>z—shows x ≺ ẑ.

The previous lemma is the key to transferring the H -description of classical majorization
over to d-majorization:

Theorem 10. Let y ∈ Rn, d ∈ Rn
++. Then Md(y) = {x ∈ Rn : Mx ≤ b} with M being the

matrix (4) and

b = min
i=1,...,n


e
>(y − yi

di
d)+e + yi

di
M1d

...
e
>(y − yi

di
d)+e + yi

di
Mn−1d

e
>y
−e>y

 ∈ R2n . (9)
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Proof. Using [11, Thm. 1] as well as (8), Lemma 9, and Remark 4 we find

Md(y) =
⋂n

i=1

({
x̃ ∈ Rn : e>x̃ = e

>
(
y − yi

di
d
)
∧ ‖x̃‖1 ≤

∥∥∥y − yi
di
d
∥∥∥
1

}
+
yi
di
d
)

=
⋂n

i=1

({
x ∈ Rn : x ≺


e
>(y − yi

di
d)+

−e>(y − yi
di
d)−

0
...
0

}+
yi
di
d
)

=
⋂n

i=1

{
x ∈ Rn : Mx ≤


e
>(y − yi

di
d)+

...
e
>(y − yi

di
d)+

e
>(y − yi

di
d)

−e>(y − yi
di
d)

+
yi
di
Md
}

=
{
x ∈ Rn : Mx ≤ min

i=1,...,n


e
>(y − yi

di
d)+e + yi

di
M1d

...
e
>(y − yi

di
d)+e + yi

di
Mn−1d

e
>y
−e>y

} .
Setting d = e in Thm. 10—together with Lemma 20 (iii) (Appendix C)—recovers the known
H -description of classical majorization [11, Thm. 1] as expected.

The previous theorem shows that, roughly speaking, ≺d and ≺ share the same geometry,
i.e. the faces of Md(y) for arbitrary y ∈ Rn, d ∈ Rn

++ are all parallel to some face of
a classical majorization polytope, but the precise location of the halfspaces (respectively
faces) may differ.

Remark 6. The description of d-majorization via halfspaces is not only conceptionally in-
teresting, it also enables an algorithmic computation of the extreme points of Md(y). In
general, the problem of converting an H -description to a V -description is known as vertex
enumeration problem and well-studied in the field of convex polytopes and computational
geometry, see [3] for an overview. For arbitrary polytopes this is a hard problem but in our
case—due to the particular structure of Md(y)—one can achieve an explicit (even analytic)
solution, cf. Section 4.3.

4.2. Geometric and Topological Properties of the d-Majorization Polytope

If Md acts on a set consisting of more than one vector we can state further geometric
and topological results. This will be of use when treating continuity questions of the map
(d, P ) 7→Md(P ) afterwards.

Theorem 11. Let d ∈ Rn
++ and an arbitrary subset P ⊆ Rn be given. Then the following

statements hold.

(i) If P lies within a trace hyperplane, i.e. there exists c ∈ R such that e>x = c for all
x ∈ P , then Md(P ) is star-shaped with respect to c

e
>d
d.

(ii) If P is convex, then Md(P ) is path-connected.
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(iii) If P is compact, then Md(P ) is compact.

Proof. (i): Every x ∈ P is directly connected to e
>x
e
>d
d = c

e
>d
d within Md(P ) (Thm. 3 &

convexity of ≺d). (ii): Let y, z ∈ P , λ ∈ [0, 1] be arbitrary. Then λy + (1− λ)z ∈ P and

λ
e
>y

e>d
d+ (1− λ)

e
>z

e>d
d =

e
>(λy + (1− λ)z)

e>d
d ∈Md(λy + (1− λ)z) ⊆Md(P ) .

Thus e
>y
e
>d
d and e

>z
e
>d
d are path-connected in Md(P ), hence (ii) follows from (i).

(iii): As matrix multiplication is continuous, Md(P ) = {Az : A ∈ sd(n), z ∈ P} is
compact as the image of the compact set sd(n)× P under a continuous function.

The previous theorem still holds when extending ≺d to complex vectors. Also one might hope
that Thm. 11 (ii) is not optimal in the sense that convexity of general P implies convexity
of Md(P ). Example 2 (Appendix D), however, gives a negative answer.

Now the description of Md(y) as a convex polytope is powerful enough to answer conti-
nuity questions regarding the map Md.

Theorem 12. Let Pc(Rn) denote the collection of all compact subsets of Rn and let δ be the
Hausdorff metric11 on Pc(Rn) with respect to ‖ · ‖1. Then the following statements hold.

(i) For all d ∈ Rn
++, Md is non-expansive under δ, that is, for all P, P ′ ∈ Pc(Rn) one has

δ(Md(P ),Md(P
′)) ≤ δ(P, P ′).

(ii) The following map is continuous:

M : Rn
++ × (Pc(Rn), δ)→ (Pc(Rn), δ)

(d, P ) 7→Md(P )

Proof. Note that the image of a compact set under Md remains compact by Thm. 11
(iii) so this guarantees that the image of the map M is contained in Pc(Rn) and that
δ(Md(P ),Md(P

′)) is well-defined. (i): As a direct consequence of (2) one has

max
z∈Md(P )

min
w∈Md(P ′)

‖z − w‖1 = max
A∈sd(n)
z1∈P

min
B∈sd(n)
z2∈P ′

‖Az1 −Bz2‖1 ≤ max
A∈sd(n)
z1∈P

min
z2∈P ′

‖A(z1 − z2)‖1

≤ max
A∈sd(n)
z1∈P

min
z2∈P ′

‖z1 − z2‖1 = max
z∈P

min
w∈P ′
‖z − w‖1 .

Interchanging P and P ′ yields the desired estimate.

(ii): Our proof can be divided into the following five steps.

11Given a metric space (X, d) and A,B ⊆ X non-empty and compact, the Hausdorff distance

δ(A,B) := max
{

max
z∈A

min
w∈B

d(z, w),max
z∈B

min
w∈A

d(z, w)
}

is a metric on the space of all non-empty compact subsets of X, cf. [31, §21.VII].

17



Step 1: For all y ∈ Rn the vector b from (9) continuously depends on d ∈ Rn
++ as a

composition and a finite sum of continuous functions, using that the minimum over finitely
many continuous functions remains continuous. Here we use that d > 0 so d 7→ 1

d
is

continuous.

Step 2: If a sequence (b(m))m∈N ⊂ R2n with b
(m)
2n−1+b

(m)
2n = 0 for all m ∈ N converges to b ∈ R2n

in norm and all the induced convex polytopes {x ∈ Rn : Mx ≤ b(m)}, {x ∈ Rn : Mx ≤ b}
are non-empty, then limm→∞ δ({x ∈ Rn : Mx ≤ b(m)}, {x ∈ Rn : Mx ≤ b}) = 0.

This follows directly from [32, Thm. 2.4]—or, originally, [24]—which yields a constant
cM > 0 (only depending on M) such that

δ({x ∈ Rn : Mx ≤ b(m)}, {x ∈ Rn : Mx ≤ b}) ≤ cM‖b(m) − b‖1
m→∞→ 0 .

Step 3: d 7→Md(y) is continuous on Rn
++ for all y ∈ Rn.

Let d(m) ⊂ Rn
++ be a sequence with limit d ∈ Rn

++. As shown in Step 1 this implies that
b(m) = b(d(m)) ⊂ R2n

++ converges to b(d) ∈ R2n

++ so Step 2 together with Thm. 10 yields

lim
m→∞

Md(m)(y) = lim
m→∞

{x ∈ Rn : Mx ≤ b(m)} = {x ∈ Rn : Mx ≤ b} = Md(y) .

Step 4: d 7→Md(P ) is continuous on Rn
++ for all P ∈ Pc(Rn).

As before let d(m) ⊂ Rn
++ be a sequence which converges to d ∈ Rn

++ and let ε > 0 be given.

Because P is compact one finds y1, . . . , yk ∈ P , k ∈ N with P ⊆
⋃k
i=1Bε/2(yi). On the other

hand (by Step 2) for every i = 1, . . . , k one finds Ni ∈ N such that δ(Md(m)(yi),Md(yi)) <
ε
2

for all m ≥ Ni. We want to show δ(Md(m)(P ),Md(P )) < ε for all m ≥ N := max{N1, . . . , Nk}
which would imply the claim.

Let m ≥ N and x ∈ Md(m)(P ) so one finds A ∈ sd(m)(n) and y ∈ P such that x = Ay.
First compactness of P yields yi ∈ P such that ‖y− yi‖ < ε

2
. Then Ayi is in Md(m)(yi) which

lets us pick x̃ ∈ Md(yi) ⊂ Md(P ) with ‖Ayi − x̃‖1 < ε
2

(because δ(Md(m)(yi),Md(yi)) <
ε
2
).

Using (2) we compute

‖x− x̃‖1 ≤ ‖Ay − Ayi‖1 + ‖Ayi − x̃‖1 ≤ ‖y − yi‖1 + ‖Ayi − x̃‖1 <
ε

2
+
ε

2
= ε .

Analogously for every x̃ ∈ Md(P ) one finds x ∈ Md(m)(P ) such that ‖x− x̃‖1 < ε which by
definition of δ implies δ(Md(m)(P ),Md(P )) < ε for all m ≥ N .

Step 5: M is continuous (in the product topology).
Let (d(m), Pm)m∈N ⊂ Rn

++ × Pc(Rn) converge to (d, P ) ∈ Rn
++ × Pc(Rn) in the product

topology, i.e. limm→∞ ‖d(m) − d‖1 = 0 and limm→∞ δ(P
(m), P ) = 0. By Step 4 the former

implies limm→∞ δ(Md(m)(P ),Md(P )) = 0 so using that Md(m) is non-expansive we find

δ(Md(m)(P (m)),Md(P )) ≤ δ(Md(m)(P (m)),Md(m)(P )) + δ(Md(m)(P ),Md(P ))

≤ δ(P (m), P ) + δ(Md(m)(P ),Md(P ))
m→∞→ 0 .

Remark 7. (i) Continuity of the map M is supported by the fact that the half-spaces
limiting Md(y) are independent of d, y. An example of a discontinuous relation between
A ∈ Rm×n and the induced polytope {x ∈ Rn : Ax ≤ b} can be found in Example 6.

(ii) While Md is, in principle, defined for arbitrary d ∈ Rn the continuity statement from
Thm. 16 (ii) fails if the domain is extended to Rn

+×Pc(Rn). A counterexample is given
in Example 3 (Appendix D).
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4.3. Analyzing the d-Majorization Polytope

So far we learned that the majorization polytope Md(y) induced by a single vector y ∈ Rn

with respect to some d ∈ Rn
++ differs from the classical majorization polytope not in the

orientation of the faces but only in their precise location. By Thm. 10 this difference is fully
captured by the following map:

f : [0, e>d]→ R

c 7→ min
i=1,...,n

(
e
>
(
y − yi

di
d
)
+

+
yi
di
c
) (10)

Thus if we want to learn more about the d-majorization polytope we are well-advised to
study the properties of (10).

Lemma 13. Let y ∈ Rn, d ∈ Rn
++ be given and let σ ∈ Sn be any permutation which orders

( yi
di

)ni=1 decreasingly, i.e.
yσ(1)
dσ(1)
≥ . . . ≥ yσ(n)

dσ(n)
. Then the map (10) has the following properties.

(i) f is continuous, piecewise linear, and concave.

(ii) For arbitrary j = 1, . . . , n and c ∈ (
∑j−1

i=1 dσ(i),
∑j

i=1 dσ(i))

f(c) =
∑j−1

i=1
yσ(i) +

yσ(j)
dσ(j)

(
c−

∑j−1

i=1
dσ(i)

)
as well as f ′(c) =

yσ(j)
dσ(j)

so the (weak) derivative of f is monotonically decreasing.

(iii) For all j = 0, . . . , n one has f(
∑j

i=1 dσ(i)) =
∑j

i=1 yσ(i) so in particular f(0) = 0 and
f(e>d) = e

>y.

(iv) Let k = 1, . . . , n − 1, τ ∈ Sn, and pairwise different α1, . . . , αk ∈ {1, . . . , n} be given.
Then ∑k

j=1
f
(∑αj−1

i=1
dτ(i)

)
+ f
(∑k

i=1
dτ(αi)

)
≥
∑k

j=1
f
(∑αj

i=1
dτ(i)

)
.

(v) For all j = 1, . . . , n− 1

f
(∑j

i=1 d[i]
)
− f

(∑j−1
i=1 d[i]

)
d[j]

≥
f
(∑j+1

i=1 d[i]
)
− f

(∑j
i=1 d[i]

)
d[j+1]

.

Proof. (i): The minimum over finitely many affine linear functions (in particular these func-
tions are continuous & concave) is piecewise linear, continuous, and concave. (ii): Direct
consequence of Lemma 20 (Appendix C). (iii): Follows from (ii) together with continuity
of f . (iv): Because f is continuous & concave (−f is continuous & convex) this is a direct
consequence of Prop. 1 (ii) (for d = e) together with Lemma 21 (Appendix C) and f(0) = 0
from (iii). (v): Define d̃ := (d[j], d[j+1])

> ∈ R2
++. Evidently(∑j

i=1
d[i]

)
d̃ =

(
d[j]
∑j

i=1 d[i]
d[j+1]

∑j
i=1 d[i]

)
≺d̃
(
d[j]
∑j+1

i=1 d[i]
d[j+1]

∑j−1
i=1 d[i]

)
19



due to minimality of d̃ w.r.t. ≺d̃ (Thm. 3 (i)) and because the entries of the two vectors sum
up to the same. Again Prop. 1 (ii) for d→ d̃ yields

d[j]f
(∑j

i=1
d[i]

)
+ d[j+1]f

(∑j

i=1
d[i]

)
= d[j]f

(d[j]∑j
i=1 d[i]
d[j]

)
+ d[j+1]f

(d[j+1]

∑j
i=1 d[i]

d[j+1]

)
≥ d[j]f

(d[j]∑j+1
i=1 d[i]
d[j]

)
+ d[j+1]f

(d[j+1]

∑j−1
i=1 d[i]

d[j+1]

)
= d[j]f

(∑j+1

i=1
d[i]

)
+ d[j+1]f

(∑j−1

i=1
d[i]

)
because −f is convex, which readily implies (v).

For all rows m ∈ {0, 1}n of M , the b-vector of the d-majorization polytope satisfies
b(m) = f(md) so, in slight abuse of notation, Md(y) = {x ∈ Rn : Mx ≤ f(Md)}.

Remark 8. Recall that in the physics literature, thermo-majorization is usually defined via
curves of the following form: Given any vector z ∈ Rn and d ∈ Rn

++ consider the piecewise

linear, continuous curve fully characterized by the elbow points {
(∑j

i=1 dσ(i),
∑j

i=1 zσ(j)
)
}nj=0,

where σ is any permutation such that
zσ(1)
dσ(1)
≥ . . . ≥ zσ(n)

dσ(n)
. Then a vector y is said to thermo-

majorize x if e>x = e
>y and if the curve induced by y is never below the curve induced by

x [26]. But by the previous lemma this thermo-majorization curve is precisely the function
f which characterizes the polytope meaning x ≺d y is equivalent to fx(c) ≤ fy(c) for all
c ∈ [0, e>d]; more on this in a bit.

While this confirms the (well-known) equivalence of d-majorization and thermo-majorization,
we can reduce the comparison of the two curves to just the “elbow points” of the lower
curve—as already observed in [2, Thm. 4]—by means of the following elegant proof:

Proof of Prop. 1 (i) ⇔ (vii). By Lemma 8, x ≺d y is equivalent to Md(x) ⊆ Md(y) which
by Thm. 10 and Remark 4 holds if and only if e>x = e

>y and fx((Md)i) ≤ fy((Md)i) for all
i = 1, . . . , 2n − 2. Now we may apply Lemma 13 and the “elbow point principle” (i.e. only
check the elbow points of the lower concave curve, similar to the proof of Prop. 1) to arrive
at the equivalent condition: e>x = e

>y and
∑j

i=1 xσ(i) = fx(
∑j

i=1 dσ(i)) ≤ fy(
∑j

i=1 dσ(i)) for
all j = 1, . . . , n− 1, which concludes the proof.

Another advantage of introducing and studying the function f is that its properties
transfer to Md(y) which suffices to fully characterize the extreme points of the d-majorization
polytope, thus generalizing [44]:

Theorem 14. Let y ∈ Rn, d ∈ Rn
++. Then the extreme points of Md(y) are precisely the

Eb(σ), σ ∈ Sn from Definition 3. In particular Md(y) = conv{Eb(σ) : σ ∈ Sn}.

Proof. If we can show {Eb(σ) : σ ∈ Sn} ⊆Md(y) then by Thm. 7 we are done. Let arbitrary
σ ∈ Sn be given. Showing Eb(σ) ∈Md(y) by Thm. 10 is equivalent to showing MEb(σ) ≤ b,
i.e.

j∑
i=1

(Eb(σ))σ(αi) =
( j∑
i=1

eσ(αi)

)>
Eb(σ) ≤ b

( j∑
i=1

e>σ(αi)

)
= f

( j∑
i=1

dσ(αi)

)
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for all j = 1, . . . , n− 1 and all pairwise different α1, . . . , αj ∈ {1, . . . , n} where f is the map
from (10). Be aware that writing σ(αi) instead of αi in above inequality yields an equivalent
problem as the αi can be chosen arbitrarily anyway; this will be advantageous because the
expression (Eb(σ))σ(αi) is easier to handle than (Eb(σ))αi . Indeed by Lemma 6

(Eb(σ))σ(αj) = b
( αj∑
i=1

e>σ(i)

)
− b
( αj−1∑

i=1

e>σ(i)

)
= f

( αj∑
i=1

dσ(i)

)
− f

( αj−1∑
i=1

dσ(i)

)
for all j = 1, . . . , k. Hence showing Eb(σ) ∈Md(y) is equivalent to∑k

j=1

(
f
(∑αj

i=1
dσ(i)

)
− f

(∑αj−1

i=1
dσ(i)

))
≤ f

(∑k

i=1
dσ(αi)

)
which holds due to Lemma 13 (iv).

We immediately obtain the following result.

Corollary 15. Let y ∈ Rn, d ∈ Rn
++. Then Md(y) is a non-empty convex polytope of

dimension at most n− 1 and, moreover, has at most n! extreme points.

Proof. For non-emptiness note that y ∈Md(y) because In ∈ sd(n). By Thm. 10 there exists
b ∈ R2n such that Md(y) = {x ∈ Rn : Mx ≤ b} so Md(y) is a convex polytope of at most n−1
dimensions (Lemma 4). Finally the extreme points of Md(y) are given by {Eb(σ) : σ ∈ Sn}
(Thm. 14) which due to |Sn| = n! concludes the proof.

Remark 9. (i) These results (Thm. 14 & Coro. 15) recently appeared in the physics lit-
erature for the special case y ≥ 0 [1, Sec. 2.2] but with an entirely different proof
strategy: Alhambra et al. explicitly constructed a family {P (π,α)}α of d-stochastic ma-
trices called “β-permutations” with the property that {P (π,α)y}α contains all extreme
points of Md(y), which—in our language—necessarily have to be of the form Eb(σ) [35,
Lemma 12].

(ii) Analyzing and structuring the situations when Md(y) has less than n! corners, i.e. when
d, y are chosen such that the map Eb is not injective reveals further connections between
Md(y) and the map f that determines the entries of the vector b. We will treat this
question in a forthcoming paper [18].

Now one of these extreme points has the property of classically majorizing every other
element inside the d-majorization polytope. The result, which is of particular interest, e.g.,
to tackle reachability questions in quantum control theory [49, 15], reads as follows:

Theorem 16. Let y ∈ Rn
+, d ∈ Rn

++. Then there exists z ∈ Md(y) such that x ≺ z for all
x ∈Md(y), i.e. Md(y) ⊆Me(z), and this z is unique up to permutation.

More precisely if σ ∈ Sn orders d decreasingly, that is, dσ(1) ≥ . . . ≥ dσ(n), then one has
Md(y) ⊆ Me(Eb(σ)). Thus z can be chosen to be the extreme point Eb(σ), i.e. the solution
to

Λσz = min
i=1,...,n


e
>(y − yi

di
d)+ + yi

di
dσ(1)

...

e
>(y − yi

di
d)+ + yi

di

∑n−1
j=1 dσ(j)

e
>y

 (10)
=
(
f
(∑j

i=1
dσ(i)

))n
j=1

. (11)

Moreover Md(z) ⊆Me(z), and z
d

and d are similarly ordered, i.e.
zσ(1)
dσ(1)
≥ . . . ≥ zσ(n)

dσ(n)
.
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Proof. Uniqueness of such z (up to permutation) is the easiest to show: If there exist z1, z2 ∈
Md(y) such that Md(y) ⊆ Me(zi) for i = 1, 2, then in particular z2−i ∈ Md(y) ⊆ Me(zi).
Hence z1 ≺ z2 ≺ z1 and one finds a permutation τ ∈ Sn such that z1 = τz2.

For existence let σ ∈ Sn be any permutation which orders d decreasingly. From Thm. 14
we know that z := Eb(σ) ∈Md(y). By (11) for all j = 1, . . . , n− 1 one finds

zσ(j) = f
(∑j

i=1
dσ(i)

)
− f

(∑j−1

i=1
dσ(i)

)
= f

(∑j

i=1
d[i]

)
− f

(∑j−1

i=1
d[i]

)
. (12)

Therefore
zσ(j)
dσ(j)
≥ zσ(j+1)

dσ(j+1)
is equivalent to

f
(∑j

i=1 d[i]
)
− f

(∑j−1
i=1 d[i]

)
d[j]

≥
f
(∑j+1

i=1 d[i]
)
− f

(∑j
i=1 d[i]

)
d[j+1]

which holds due to Lemma 13 (v), meaning z
d

and d are indeed similarly ordered, as claimed.
More importantly because z ∈ Rn

+ (stochastic matrices preserve non-negativity of y) one

even has zσ(j) = z[j] for all j = 1, . . . , n because zσ(j) ≥
dσ(j)
dσ(j+1)

zσ(j+1) =
d[j]
d[j+1]

zσ(j+1) ≥ zσ(j+1).

Now recall that Me(z) = {x ∈ Rn : Mx ≤ b′z} [11, Thm. 1] where b′z is of the following
form: the first

(
n
1

)
entries equal z[1] = zσ(1), the next

(
n
2

)
entries equal z[1] + z[2] = zσ(1) + zσ(2)

and so forth until
(
n
n−1

)
entries equaling

∑n−1
i=1 z[i] =

∑n−1
i=1 zσ(i). Writing Md(y) = {x ∈ Rn :

Mx ≤ b} (Thm. 10), if we can show that b ≤ b′z then we get Md(y) ⊆Me(z) (Remark 4) as
desired.

For all k = 1, . . . , n − 1 and all τ ∈ Sn by Lemma 22 (Appendix C)—which we may
apply because yi

di
≥ 0 for all i—we compute

b
( k∑
j=1

e>τ(j)

)
= min

i=1,...,n
e
>(y − yi

di
d
)
+

+
yi
di

k∑
j=1

dτ(j)

≤ max
τ∈Sn

min
i=1,...,n

e
>(y − yi

di
d
)
+

+
yi
di

k∑
j=1

dτ(j)

= min
i=1,...,n

e
>(y − yi

di
d
)
+

+
yi
di

(
max
τ∈Sn

k∑
j=1

dτ(j)

)
= min

i=1,...,n
e
>(y − yi

di
d
)
+

+
yi
di

( k∑
j=1

d[j]

)
(12)
=

k∑
i=1

zσ(i) = b′z

( k∑
j=1

e>τ(j)

)
so b ≤ b′z as claimed. To conclude the proof note that by Lemma 8 z ∈ Md(y) implies
Md(z) ⊆ (Md ◦Md)(y) = Md(y) ⊆Me(z).

Non-negativity of y in Thm. 16 is actually necessary as Example 4 (Appendix D) shows.

Given our knowledge of this maximal point (w.r.t. classical majorization) in the d-
majorization polytope, one can now give a necessary condition for when the initial vector y
itself is this maximal element.
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Corollary 17. Let y ∈ Rn
+, d ∈ Rn

++. If y
d

and d are similarly ordered, that is, there

exists a permutation σ ∈ Sn such that dσ(1) ≥ . . . ≥ dσ(n) and
yσ(1)
dσ(1)

≥ . . . ≥ yσ(n)
dσ(n)

, then

Md(y) ⊆Me(y).

Proof. If d and y
d

are similarly ordered (by means of σ) then, by Thm. 16, Md(y) ⊆Me(Eb(σ))

with ΛσEb(σ) = (f(
∑j

i=1 dσ(i)))
n
j=1 = (

∑j
i=1 yσ(i))

n
j=1 = Λσy by Lemma 13 (iii), hence

Eb(σ) = y.

Be aware that the converse to Coro. 17 does not hold, refer to Example 5, Appendix
D. To see how the d-majorization polytope behaves (aside from continuity) when changing
only d while leaving the initial vector y untouched we refer to Example 7. This example also
illustrates Coro. 17 because the whole trajectory {d(λ) : λ ∈ [0, 1]} taken by the d-vector
satisfies y1

(d(λ))1
≥ . . . ≥ yn

(d(λ))n
so maximality of y (w.r.t. classical majorization) is preserved

throughout.

Appendix A. Extreme Points of sd(3)

Lemma 18. Let d ∈ R3
++ with d1 > d2 > d3.

(i) If d1 ≥ d2 + d3, then the 10 extreme points of sd(3) are given by

I3

1 0 0
0 1− d3

d2
1

0 d3
d2

0

 1− d3
d1

0 1

0 1 0
d3
d1

0 0

 1− d2
d1

1 0
d2−d3
d1

0 1
d3
d1

0 0


1− d3

d1

d3
d2

0

0 1− d3
d2

1
d3
d1

0 0

 1− d2
d1

1 0
d2
d1

0 0

0 0 1

 1− d3
d1

0 1
d3
d1

1− d3
d2

0

0 d3
d2

0


1− d2−d3

d1
1− d3

d2
0

d2−d3
d1

0 1

0 d3
d2

0

 1− d2
d1

1− d3
d2

1
d2
d1

0 0

0 d3
d2

0

 1− d2+d3
d1

1 1
d2
d1

0 0
d3
d1

0 0


(ii) If d1 < d2 + d3, then the 13 extreme points of sd(3) are given by

I3

1 0 0
0 1− d3

d2
1

0 d3
d2

0

 1− d3
d1

0 1

0 1 0
d3
d1

0 0

 1− d2
d1

1 0
d2−d3
d1

0 1
d3
d1

0 0


1− d3

d1

d3
d2

0

0 1− d3
d2

1
d3
d1

0 0

 1− d2
d1

1 0
d2
d1

0 0

0 0 1

 1− d3
d1

0 1
d3
d1

1− d3
d2

0

0 d3
d2

0


1− d2−d3

d1
1− d3

d2
0

d2−d3
d1

0 1

0 d3
d2

0

 1− d2
d1

1− d3
d2

1
d2
d1

0 0

0 d3
d2

0

  0 1 d1−d2
d3

d2
d1

0 0

1− d2
d1

0 1− d1−d2
d3


 0 d1−d3

d2
1

1− d3
d1

1− d1−d3
d2

0
d3
d1

0 0

  0 d1−d3
d2

1
d2
d1

0 0

1− d2
d1

1− d1−d3
d2

0

  0 1 d1−d2
d3

1− d3
d1

0 1− d1−d2
d3

d3
d1

0 0
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Proof. The respective number of extreme points is stated in [28, Remark 4.5] or, more
recently, [41, Ch. IV]. Then one only has to verify that the above matrices (under the given
assumptions) are in fact extremal in sd(3).

Once we allow components of d to coincide, the above extreme points simplify slightly
(as already observed in [28, Remark 4.5]). Within the setting of (i) if d2 = d3 then one is
left with 7 extreme points. For (ii) if either d1 = d2 or d2 = d3 then one has 10 extreme
points and if d1 = d2 = d3 then there are 6 extreme points—namely the 3 × 3 permutation
matrices—which recovers Birkhoff’s theorem, cf. [39, Thm. 2.A.2].

Appendix B. Appendix to Section 3

In order to keep the main part of this paper sufficiently structured we outsourced some
of the lengthy and technical lemmata.

Lemma 19. Let A ∈ {0, 1}m×n be a matrix such that rank(A) = n, e> is a row of A, and for
any two rows a1, a2 of A their entrywise minimum min{a1, a2} and maximum max{a1, a2}
are rows of A, as well. Then the following statements hold.

(i) There exists a row a of A such that ae = n− 1.

(ii) For every row a of A with ae > 1 one finds a row ã of A such that ãe = ae − 1 and
ã ≤ a.

(iii) There exist rows a1, . . . , an−1 of A and a permutation σ ∈ Sn such that

Λσ =


a1
...

an−1
e
>

 . (B.1)

Proof. (i): For all j = 1, . . . , n define Sj := {a : a is a row of A and aej = 0} \ {0} as the
collection of all (non-zero) rows of A the j-th entry of which vanishes12. Defining aj := maxSj
this is a row of A (due to the maximum property) with aje ≤ n− 1. It is obvious that any
non-zero row a of A is in Sj if and only if a ≤ aj—hence aj = ak for any two j, k implies
Sj = Sk. Now there exists k ∈ {1, . . . , n} such that

ake = max
j=1,...,n

aje (≥ 1) . (B.2)

If ake = n − 1 then we are done. If ake < n − 1 then one finds an index i 6= k such that
akei = 0. Therefore ak ∈ Si so ak ≤ ai but ake ≥ aie by (B.2); this shows ak = ai and thus
Sk = Si. We claim that this forces all rows a of A to satisfy a(ei + ek) ∈ {0, 2}; but then the

12It may happen that A contains (at most, due to rank condition) one column of ones so (at most) one of
the Sj might be empty, but one can still guarantee the existence of some j such that Sj 6= ∅ (because n ≥ 2,
the case n = 1 is trivial).
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linear span of all rows of A has this property as well so it cannot contain ek, contradicting
rank(A) = n.

Indeed let a be any row of A. If a ∈ Sk = Si then aei = aek = 0 = aei + aek. If
a 6∈ Sk = Si then aei = aek = 1 so aei + aek = 2.

(ii): We prove this via induction. The case n = 1 is trivial. Now for n → n + 1 let
A ∈ {0, 1}m×(n+1) with the above properties be given. Be aware of the following argument:

For τ =

(
1 2 · · · j − 1 j j + 1 · · · n+ 1
2 3 · · · j 1 j + 1 · · · n+ 1

)
and all j = 1, . . . , n+ 1 the matrix

Aj := Aτj


0 · · · 0
1 0

. . .

0 1

 ∈ Rm×n

is the original matrix A but without the j-th column. Using this is easy to see that
rank(Aj) = n (follows from, e.g., [25, Thm. 0.4.5.(c)]), e> ∈ Aj, and the min-max con-
dition for the rows of Aj hold for all j = 1, . . . , n + 1. Hence we may apply the induction
hypothesis to any of these matrices Aj.

Now consider any row a of A with ae > 1. There are two cases which, once verified,
conclude the proof of (ii).

Case 1: a = e
>. By (i) we find j ∈ {1, . . . , n+ 1} such that e> − e>j is a row of A.

Case 2: a 6= e
> so there exists j ∈ {1, . . . , n+ 1} such that aej = 0. Consider Aj ∈ Rm×n and

the truncated row b of Aj corresponding to a. By induction hypothesis (be = ae > 1)
we find b̃ ∈ Aj such that b̃e = be− 1 and b̃ ≤ b. Now there exists a row â of A which
becomes b̃ when removing the j-th entry. Defining ã := min{â, a} we know that this is
a row of A (min-max-property of A) and ã ≤ a as well as ãe = b̃e = be− 1 = ae− 1.

(iii): By assumption e
> ∈ A so using (ii) A contains some an−1 of row sum n− 1, which

in turn yields an−2 ∈ A of row sum n − 2 with an−2 ≤ an−1, and so forth. Eventually one
ends up with rows a1, . . . , an−1 of A which satisfy aje = j for all j = 1, . . . , n− 1 as well as
a1 ≤ . . . ≤ an−1; hence there exists a permutation τ ∈ Sn such that (B.1) holds.

Remark 10. With an analogous argument one can show that every such matrix A contains
a standard basis vector as a row, and that for every row a with ae < n one finds ã ∈ A with
ãe = ae+ 1 and ã ≥ a. Therefore every row of A can be completed to a matrix of the form
(B.1).

Appendix C. Appendix to Section 4.3

Lemma 20. Let y ∈ Rn, d ∈ Rn
++ be arbitrary and let σ ∈ Sn satisfy13

yσ(1)
dσ(1)

≥
yσ(2)
dσ(2)

≥ . . . ≥
yσ(n)
dσ(n)

. (C.1)

Then the following statements hold.

13Such a permutation σ always exists as it is just the decreasing ordering of the vector y
d := ( yidi )ni=1.
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(i) For all c ∈ R, k = 1, . . . , n.

e
>
(
y −

yσ(k)
dσ(k)

d
)
+

+
yσ(k)
dσ(k)

c =
yσ(1)
dσ(1)

c−
k−1∑
i=1

(yσ(i)
dσ(i)

−
yσ(i+1)

dσ(i+1)

)(
c−

i∑
j=1

dσ(j)

)
.

(ii) Let c ∈ (0, e>d] and let k ∈ {1, . . . , n} be the unique index such that c−
∑k−1

i=1 dσ(i) > 0

but c−
∑k

i=1 dσ(i) ≤ 0. Then

min
i=1,...,n

(
e
>
(
y − yi

di
d
)
+

+
yi
di
c
)

=
(∑k−1

i=1
yσ(i)

)
+
yσ(k)
dσ(k)

(
c−

∑k−1

i=1
dσ(i)

)
.

(iii) If d = e, then mini=1,...,n e
>(y − yie)+ + kyi =

∑k
i=1 y[i] for all k = 1, . . . , n.

Proof. (i): This identity comes from

yσ(1)
dσ(1)

c−
k−1∑
i=1

(yσ(i)
dσ(i)

−
yσ(i+1)

dσ(i+1)

)
c =

yσ(1)
dσ(1)

c−
yσ(1)
dσ(1)

c+
yσ(k)
dσ(k)

c =
yσ(k)
dσ(k)

c

as well as

e
>
(
y −

yσ(k)
dσ(k)

d
)
+

=
k−1∑
j=1

(yσ(j)
dσ(j)

−
yσ(k)
dσ(k)

)
dσ(j)

=
k−1∑
j=1

k−1∑
i=j

(yσ(i)
dσ(i)

−
yσ(i+1)

dσ(i+1)

)
dσ(j) =

k−1∑
i=1

i∑
j=1

(yσ(i)
dσ(i)

−
yσ(i+1)

dσ(i+1)

)
dσ(j)

where in the last step one just re-enumerates the index set {(i, j) : 1 ≤ j ≤ i ≤ k − 1}.
(ii): Using (i)

min
i=1,...,n

e
>
(
y − yi

di
d
)
+

+
yi
di
c = min

`=1,...,n
e
>
(
y −

yσ(`)
dσ(`)

d
)
+

+
yσ(`)
dσ(`)

c

=
yσ(1)
dσ(1)

c− max
`=1,...,n

`−1∑
i=1

(yσ(i)
dσ(i)

−
yσ(i+1)

dσ(i+1)

)(
c−

i∑
j=1

dσ(j)

)
.

There are two important things to notice here: the expression
yσ(i)
dσ(i)
− yσ(i+1)

dσ(i+1)
is always non-

negative by (C.1) and, moreover, the map g : {0, . . . , n} → R, i 7→ c −
∑i

j=1 dσ(j) satisfies

g(0) = c > 0, g(n) = c− e
>d ≤ 0, and is strictly monotonically decreasing. Thus the index

k described above exists, is unique, and we get

max
`=1,...,n

`−1∑
i=1

(yσ(i)
dσ(i)

−
yσ(i+1)

dσ(i+1)

)(
c−

i∑
j=1

dσ(j)

)
=

k−1∑
i=1

(yσ(i)
dσ(i)

−
yσ(i+1)

dσ(i+1)

)(
c−

i∑
j=1

dσ(j)

)
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as we simply disregard all negative summands (i ≥ k). Therefore

min
i=1,...,n

e
>
(
y − yi

di
d
)
+

+
yi
di
c =

yσ(1)
dσ(1)

c−
k−1∑
i=1

(yσ(i)
dσ(i)

−
yσ(i+1)

dσ(i+1)

)(
c−

i∑
j=1

dσ(j)

)
(i)
= e

>
(
y −

yσ(k)
dσ(k)

d
)
+

+
yσ(k)
dσ(k)

c

=
∑k−1

i=1
dσ(i)

(yσ(i)
dσ(i)

−
yσ(k)
dσ(k)

)
+
yσ(k)
dσ(k)

c

=
(∑k−1

i=1
yσ(i)

)
+
yσ(k)
dσ(k)

(
c−

∑k−1

i=1
dσ(i)

)
.

(iii): Direct consequence of (ii).

Lemma 21. Let d ∈ Rn
++, k = 1, . . . , n − 1, τ ∈ Sn, and pairwise different numbers

α1, . . . , αk ∈ {1, . . . , n} be given. Then

v :=


∑α1−1

i=1 dτ(i)
...∑αk−1

i=1 dτ(i)∑k
i=1 dτ(αi)

 ≺

∑α1

i=1 dτ(i)
...∑αk

i=1 dτ(i)
0

 =: w ∈ Rk+1 .

Proof. W.l.o.g. α1 > . . . > αk—reordering the αi amounts to reordering v, w but classical
majorization is permutation invariant. By definition v ≺ w holds iff e

>v = e
>w and together

with
∑`

i=1 v[i] ≤
∑`

i=1w[i] for all ` = 1, . . . , k (the former is readily verified). Because the αi
are ordered decreasingly one finds unique ξ ∈ {1, . . . , k + 1} such that∑αξ−1

i=1
dτ(i) <

∑k

i=1
dτ(αi) ≤

∑αξ−1−1

i=1
dτ(i)

(where α0 := n+ 1 and αk+1 := 0). Thus v ≺ w is equivalent to

[v] =



∑α1−1
i=1 dτ(i)

...∑αξ−1−1
i=1 dτ(i)∑k
i=1 dτ(αi)∑αξ−1
i=1 dτ(i)

...∑αk−1−1
i=1 dτ(i)∑αk−1
i=1 dτ(i)


≺



∑α1

i=1 dτ(i)
...∑αξ−1

i=1 dτ(i)∑αξ
i=1 dτ(i)∑αξ+1

i=1 dτ(i)
...∑αk

i=1 dτ(i)
0


= [w] .

The first ξ − 1 partial sum conditions are evident. Now consider ` ∈ {ξ, . . . , k}. Then

∑̀
j=1

w[j] −
∑̀
j=1

v[j] =
∑̀
j=1

( αj∑
i=1

dτ(i)

)
−
( `−1∑
j=1

( αj−1∑
i=1

dτ(i)

)
+

k∑
i=1

dτ(αi)

)
=

α∑̀
i=1

dτ(i) +
`−1∑
j=1

dτ(αj) −
k∑
i=1

dτ(αi) =

α∑̀
i=1

dτ(i) −
k∑
i=`

dτ(αi) ≥ 0
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where in the last step we used that the entries of d are non-negative and, more importantly,
that {αk, αk−1, . . . , α`+1, α`} ⊆ {1, 2, . . . , α` − 1, α`} due to the ordering of the αi

Lemma 22. Let m,n ∈ N and x ∈ Rn, y ∈ Rn
+, z ∈ Rm be given. Then

max
k=1,...,m

min
i=1,...,n

(xi + yizk) = min
i=1,...,n

(
xi + yi

(
max

k=1,...,m
zk
))
.

Proof. Direct computation:

max
k=1,...,m

min
i=1,...,n

(xi + yizk) ≤ min
i=1,...,n

max
k=1,...,m

(xi + yizk)

= min
i=1,...,n

(
xi + yi

(
max

k=1,...,m
zk
))
≤ max

k=1,...,m
min

i=1,...,n
(xi + yizk)

The first step is the usual max-min inequality, the second step works because y ≥ 0, and
in the final step we use that mini=1,...,n

(
xi + yizl) ≤ maxk=1,...,m mini=1,...,n(xi + yizk) for all

l = 1, . . . ,m—which in particular holds for the index l which satisfies zl = maxk=1,...,m zk.

Appendix D. Examples and Counterexamples

Example 1. Let n = 4 so

M =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1
1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1
1 1 1 1
−1 −1 −1 −1



and choose b =



0
0
0
0
0
−1/2
−1/4

0
0
0
−1/2
−1/2
−5/8

0
−1
1



.

By Definition 3 and Lemma 6

{Eb(σ) : σ ∈ S4} =
{ 0

0
−1/2
−1/2

 ,

 0
−3/8
−1/2
−1/8

 ,

 0
−1/4
−1/2
−1/4

 ,

 0
−3/8
−3/8
−1/4

 ,

−1/2
0
0
−1/2

 ,

−1
0
0
0

 ,

−1/2
0
−1/2

0

 ,

−1/2
−3/8

0
−1/8

 ,

−5/8
−3/8

0
0

 ,

−1/4
−1/4
−1/2

0

 ,

−1/4
−3/8
−3/8

0

} .
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The second and the fourth vector from this list are the solutions to1 0 0 0
1 0 1 0
1 0 1 1
1 1 1 1

p =

 0
−1/2
−5/8
−1

 and

1 0 0 0
1 0 0 1
1 0 1 1
1 1 1 1

p =

 0
−1/4
−5/8
−1

 ,

respectively and are not in {x ∈ R4 : Mx ≤ b}—but every other point of {Eb(σ) : σ ∈ S4}
is in. On the other hand one readily verifies that p = −1

8
(1, 3, 3, 1)> satisfies Mp ≤ b and

solves 1 0 1 0
1 0 0 1
1 0 1 1
1 1 1 1

p =

−1/2
−1/4
−5/8
−1


so it is extreme in {x ∈ R4 : Mx ≤ b} by Lemma 5 but p 6∈ {Eb(σ) : σ ∈ S4}. Thus there
exist extreme points of {x ∈ R4 : Mx ≤ b} not of the form Eb(σ).

Example 2. Let n = 3 and d = e (so ≺d becomes ≺). Consider the probability vectors
x = 1

5
(2, 1, 2)>, y = 1

4
(1, 2, 1)>, and their joining line segment P := conv{x, y}. Be aware

that P as well as Me(P ) =
⋃
z∈P{v ∈ Rn : v ≺ z} are subsets of ∆2. One readily verifies

Me(P ) = {v ∈ Rn : v ≺ x ∨ v ≺ y} = Me(x) ∪Me(y) , (D.1)

refer also to Fig. D.1. Now although x, ỹ := 1
4
(1, 1, 2)> are in Me(P ) one has

1

2
x+

1

2
ỹ =

1

40

13
9
18

 =

0.325
0.225
0.45

 (D.1)

6∈ Me(P )

as it is neither majorized by x nor by y; therefore Me(P ) is not convex.

Example 3. Consider y = (1, 1, 1)>, λ ∈ [0, 1
2
], and d(λ) = (1, λ, λ2). For all λ ∈ (0, 1

2
]—

using Thm. 10 & 14—by direct computation one obtains

Md(λ)(y) =
{
x ∈ R3 : Mx ≤

(
3− λ− λ2, 2− λ, 1, 3− λ2, 3− λ, 2, 3,−3

)>}
= conv

{(3− λ− λ2
λ
λ2

)
,

(
1 + λ− λ2

2− λ
λ2

)
,

(
1

2− λ
λ

)
,

(
2− λ
λ
1

)
,

(
1
1
1

)}
.

as well as14

Md(λ)(y)
λ→0+→ conv

{(3
0
0

)
,

(
1
2
0

)
,

(
2
0
1

)
,

(
1
1
1

)}
6= conv

{(3
0
0

)
,

(
1
2
0

)
,

(
1
0
2

)}
= Md(0)(y) .

14For λ = 0, i.e. d = d(0) = (1, 0, 0) it is easy so see that every d-stochastic matrix is of the form

A =

1
0 v w
0

 with arbitrary v, w ∈ ∆2 .

Thus Md(0)(y) = {Ay : A ∈ sd(0)(3)} = {(1 + v1 + w1, v2 + w2, v3 + w3)> : v, w ∈ ∆2} which has extreme

points (3, 0, 0)>, (1, 2, 0)>, (1, 0, 2)>.
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Figure D.1: Visualization of Example 2 on the 3-dimensional standard simplex. The image on the right
zooms in on Me(P ) and shows the decomposition into Me(x) and Me(y). In particular one sees that for all
z ∈ P one has either z ≺ x (⇔ z ∈Me(x)) or z ≺ y (⇔ z ∈Me(y)) which implies (D.1).

Example 4. Let y = (1, 1,−1)>, d = (1, 2, 3)>. Using Thm. 10 & 14, by direct computation

Md(y) =
{
x ∈ R3 : Mx ≤ 1

6

(
6, 9, 12, 12, 10, 8, 6,−6

)>}
= conv

{( 1
1
−1

)
,

(
1
−2/3
2/3

)
,

(
1/2
3/2
−1

)
,

(
−1/3
3/2
−1/6

)
,

(
−1/3
−2/3

2

)}
so the only possible candidate for the point z from Thm. 16 is the vector z = (−1/3, 2/3, 2)
(because z[1] = 2 > x[1] for all other extreme points x). However, one has y 6≺ z because
y[1] + y[2] = 1 + 1 = 2 > 5

3
= z[1] + z[2].

Example 5. Let y = (4, 0, 1)>, d = (4, 2, 1)>. Using Thm. 10 & 14, by direct computation

Md(y) =
{
x ∈ R3 : Mx ≤ (4, 2, 1, 5, 5, 3, 5,−5)>

}
= conv

{(4
1
0

)
,

(
4
0
1

)
,

(
3
2
0

)
,

(
2
2
1

)}
.

Therefore Md(y) ⊆Me(y), but y
d

= (1, 0, 1)> and d are not similarly ordered. Be aware that
this example generalizes to y = (α2, 0, 1)>, d = (α2, α, 1)> for all α > 1 so the phenomenon
occurs no matter whether d1 ≥ d2 + d3 or d1 < d2 + d3 (cf. Appendix A).

Example 6. To see discontinuity of the map

P (b) : D(P )→ Pc(Rn) A 7→ PA(b) = {x ∈ Rn : Ax ≤ b}
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for arbitrary but fix b ∈ Rm and domain15 D(P ) consisting of all A ∈ Rm×n such that
PA(0) = {0} and PA(b) 6= ∅, consider the following: let

A =

 1 0
−1 0
0 1
0 −1

 , At =

 1 0
−1 0

sin(t) cos(t)
0 −1

 and b =

1
1
0
0


for all t ∈ (0, 1]. It is readily verified that

PA(b) = conv
{(−1

0

)
,

(
1
0

)}
as well as

PAt(b) = conv
{(0

0

)
,

(
−1
0

)
,

(
−1

tan(t)

)}
for all t > 0

and (At)t≥0 ⊂ D(P ). Thus by definition of the Hausdorff metric

δ(PAt(b), PA(b)) ≥ max
z∈PA(b)

min
w∈PAt (b)

‖z − w‖1 ≥ min
w∈PAt (b)

∥∥(1
0

)
− w

∥∥
1

= 1

for all t > 0 but, obviously, limt→0+ ‖At − A‖ = 0 so P (b) cannot be continuous.

Example 7. Let y = (3, 2, 1)>, λ ∈ [0, 1] and d(λ) = (2 + λ, 2, 2− λ) so

Md(0)(y) = Me(y) = conv{σy : σ ∈ S3} and Md(1)(y) = My(y) = {y}

(cf. also Example ??). Thus the parameter λ ∈ [0, 1] describes the deformation of a classical
majorization polytope into a singleton. Indeed one readily computes

Md(λ)(y) =
{
x ∈ R3 : Mx ≤



3
6

2+λ
6−3λ
2+λ

5
5− λ
5− 2λ

6
−6


}

= conv
{(3

2
1

)
,

(
3

1 + λ
2− λ

)
,

1

2 + λ

(
4 + 5λ

6
2 + λ

)
,

1

2 + λ

(
2λ2 + 5λ+ 2

6
−2λ2 + λ+ 4

)
,

1

2 + λ

(
−λ2 + 6λ+ 4
λ2 + 3λ+ 2

6− 3λ

)
,

1

2 + λ

(
2λ2 + 5λ+ 2
−2λ2 + 4λ+ 4

6− 3λ

)}
.

Acknowledgments. The authors are grateful to Narutaka Ozawa for providing the coun-
terexample in Remark 1 (iv) in a discussion on MathOverflow [14], as well as the anonymous
referee for making them aware of reference [11] and for beneficial remarks which led to
a substantially improved presentation of the material. The authors also thank Thomas
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(i) (ii)

(iii) (iv)

Figure D.2: Visualization of Example 7. (i): Shows Md(0)(y) = Me(y) = conv{σy : σ ∈ S3} inside (a
multiple of) the 3-dimensional standard simplex. (ii): Zooms in on the classical majorization polytope
Me(y). The shaded area is Md(λ)(y) for λ = 0.3. (iii): Shows Md(λ)(y) for λ = 0.7. (iv): The graph of the
map λ 7→ ext(Md(λ)(y)).
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