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Abstract We have identified the decay modes of the D+
s →

π+K ∗+K ∗−, π+K ∗0 K̄ ∗0 reactions producing a pion and
two vector mesons. The posterior vector–vector interaction
generates two resonances that we associate to the f0(1710)

and the a0(1710) recently claimed, and they decay to the
observed K+K− or K 0

S K
0
S pair, leading to the reactions

D+
s → π+K+K−, π+K 0

SK
0
S . The results depend on two

parameters related to external and internal emission. We
determine a narrow region of the parameters consistent with
the large Nc limit within uncertainties which gives rise to
decay widths in agreement with experiment. With this sce-
nario we make predictions for the branching ratio of the
a0(1710) contribution to the D+

s → π0K+K 0
S reaction, find-

ing values within the range of (1.3±0.4)×10−3. Comparison
of these predictions with coming experimental results on that
latter reaction will be most useful to deepen our understand-
ing on the nature of these two resonances.

1 Introduction

The f0(1710) is a well established meson in the RPP (Review
of Particle Physics) [1]. In the relativized quark model of
Godfrey and Isgur [2] it appears as an I G(J PC ) = 0+(0++)

state at 1780 MeV with the 2 3P1 configuration. In the same
work a state with the same mass and configuration appears for
I = 1. Similar results are also reported in [3]. The f0(1710)

is also obtained in [4] with the same configuration, but no
mention is made of the possible I = 1 partner. These mod-
els consider the excitation of u, d quarks. However, the fact
that the f0(1710) decays mostly in K K̄ , ηη with only about
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c e-mail: lisheng.geng@buaa.edu.cn

4% branching ratio to ππ decay [1] indicates that this state
should have large components of ss̄ quarks.

A different picture for the f0(1710) comes from the work
of [5], where the interaction of vector mesons studied in [6]
for the ρρ case is extended to the SU(3) space. The f0(1710)

is found around 1726 MeV and couples mostly to K ∗ K̄ ∗, but
also to ωφ, φφ, ωω, ρρ in that order. The vector–vector inter-
action is taken from the local hidden gauge approach [7–10],
which stems from a contact term plus vector exchange. Con-
sidering box diagrams with intermediate two pseudoscalar
mesons, decay rates to K K̄ , ηη, ππ were evaluated in [5]
and found consistent with experimental data. Interestingly,
in [5] a partner state of the f0(1710) with 1−(0++) a0 state
is also found at 1780 MeV with � ∼ 130 MeV. This state
couples mostly to K ∗ K̄ ∗ but also to ρω and ρφ. The picture
of [5] for the f0(1710) has been tested in different processes.
In [11] the γ γ decay rate is evaluated and found consistent
with the RPP information [1]. In [12] it is also suggested that
the peak observed at the φω threshold in the φω mass distri-
bution of the J/ψ → γφω decay [13] is due to the f0(1710)

resonance. Predictions for other decay modes, and rates for
f0(1710) production are done in [14–19].

The success of the predictions for other vector–vector
molecules obtained in [5] discussed in the former references
gives us confidence in that model and concretely about the
existence of the I = 1 partner of the f0(1710) state, which we
will call the a0(1710) by analogy to the f0(1710). A different
formalism to deal with the unitarity in coupled channels in
the vector–vector interaction, using the same kernels for the
interaction, is presented in [20] based upon the use of disper-
sion relations. The regions of validity and limitations of that
approach were discussed in [21], but it is interesting to note
that in the region of validity of the approach, both a 0+(0++)

state with mass [1.58–1.76 GeV] and a 1−(0++) state with
mass [1.75–1.79 GeV] were found, in good agreement with
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the results of [5], 1.73 GeV for the mass of the 0+(0++) state
and 1.78 GeV for the mass of the 1−(0++) state. Hence, both
approaches predict the existence of an a0 state with mass
around 1.78 GeV. Yet, this state is not reported in the RPP
[1]. The situation has changed recently with the appearance
of two works showing evidence for this state. One of these
works is the clear observation of a peak around 1710 MeV in
the π+η mass distribution in the ηc → ηπ+π− decay [22].
The other work is the study of the D+

s → π+K 0
SK

0
S decay

[23] showing a peak around 1710 MeV in the K 0
SK

0
S mass

distribution with an abnormally large strength compared to
the one of a similar peak seen in the D+

s → π+K+K− decay
[24]. This cannot be explained from a K K̄ state in I = 0,
implying that there must also be an I = 1 state with a similar
mass. The I = 0 and I = 1 states have relative opposite sign
in the K+K− or K 0 K̄ 0 components and the contribution of
the two states around 1710 MeV will give differences in the
K+K− or K 0 K̄ 0 production rates.

Our aim in the present work is to show that from the per-
spective of Refs. [5,20] for the f0(1710) and a0(1710) it
is natural to reproduce the experimental data on K K̄ pro-
duction in the D+

s → π+K K̄ decay. At the same time we
can make predictions for the rate of the I = 1 a0(1710)

production in the K+K 0
S invariant mass distribution of the

D+
s → π0K+K 0

S reaction, which, as mentioned in [23] is in
the process of being analyzed at BESIII.

2 Formalism

We look at the mechanism for D+
s → π+K K̄ production at

the quark level starting from the dominant external emission
process and then considering the internal emission, both in
the Cabibbo-favored mode [25]. The external emission with
π+ production is shown in Fig. 1.

Since we wish to have three mesons in the final state we
must hadronize a pair of quarks introducing an extra q̄q with
the vacuum quantum numbers (q̄q = ūu + d̄d + s̄s). Also,
the hadronization must produce a pair of vector mesons, such
that their interaction can produce the f0(1710) and a0(1710)

resonances. Then, hadronizing ss̄ we will have

ss̄ →
∑

i

s q̄i qi s̄ = V3i Vi3 = (V 2)33, (1)

where V is the qi q̄ j matrix written in terms of the vector
meson

V =

⎛

⎜⎜⎝

ρ0√
2

+ ω√
2

ρ+ K ∗+

ρ− − ρ0√
2

+ ω√
2
K ∗0

K ∗− K̄ ∗0 φ

⎞

⎟⎟⎠ . (2)

Then we have the hadronic state

H1 = (V 2)33π
+ = (K ∗−K ∗+ + K̄ ∗0K ∗0 + φφ) π+ . (3)

With the implicit isospin phase convention of this matrix,
with the (K ∗+, K ∗0), (K̄ ∗0,−K ∗−) isospin doublets, the for-
mer combination represents K ∗ K̄ ∗ in isospin I = 0, as it
should be, plus φφ, also I = 0, since originally we had the
I = 0 ss̄ state.

The two isospin states of K ∗ K̄ ∗ are given by

|K ∗ K̄ ∗, I = 0〉 = − 1√
2

(
K ∗+K ∗− + K ∗0 K̄ ∗0) ,

|K ∗ K̄ ∗, I = 1, I3 = 0〉 = − 1√
2

(
K ∗+K ∗− − K ∗0 K̄ ∗0) ,

|K ∗ K̄ ∗, I = 1, I3 = 1〉 = K ∗+ K̄ ∗0 . (4)

For later use we also write the K K̄ wave functions

|K K̄ , I = 0〉 = − 1√
2

(
K+K− + K 0 K̄ 0) ,

|K K̄ , I = 1, I3 = 0〉 = − 1√
2

(
K+K− − K 0 K̄ 0) ,

|K K̄ , I = 1, I3 = 1〉 = K+ K̄ 0 . (5)

We could also think of hadronizing the ud̄ pair with VV
but then ss̄ should be a pseudoscalar, in this case a com-
bination of η and η′, and we do not get the π+K K̄ mode.
Note that if we wish to have π+K K̄ , we could also have
the ss̄ as the φ meson and then φ → K K̄ , but the invariant
mass of K K̄ will peak at the φ mass and we are only con-
cerned about the vicinity of 1710 MeV, where the f0(1710)

and a0(1710) resonances appear. This decay mode and the
K+K−π+ spectrum at low K+K− invariant mass has been
studied in detail in [26]. We shall concentrate here only in
the region of f0(1710) and a0(1710) production.

We have then another possibility which is to hadronize the
ud̄ component with V P or PV (P for pseudoscalar meson).
Similarly to Eq. (2) we have theqi q̄ j matrix for pseudoscalars

P =

⎛

⎜⎜⎝

π0√
2

+ η√
3

π+ K+

π− − π0√
2

+ η√
3

K 0

K− K̄ 0 − η√
3

⎞

⎟⎟⎠ , (6)

where we have used the η and η′ mixing of Ref. [27] and
neglected the η′ which does not play any role here. The mix-
ing of Ref. [27] corresponds to

η = cos θpη8 − sin θpη1 , η′ = sin θpη8 + cos θpη1 ,

where η1, η8 are the singlet and octet state of SU(3) with
I = 0, with cos θp = 2

√
2/3, sin θp = −1/3. These results

are close to the empirical numbers used in [28], with θp =
−14.47◦. The use of one or the other mixing angles leads to
results with negligible differences in observables [29].

In this case we obtain the contribution

ud̄ →
∑

i

u q̄i qi d̄ = M1i M
′
i2 = (MM ′)12 , (7)
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Fig. 1 Cabibbo-favored decay mode of D+
s at the quark level with external emission (a); Hadronization of the ss̄ component (b); hadronization

of the d̄u component (c)

but now M, M ′ can be vector or pseudoscalar. Hence, we
obtain the combinations

(V P)12 =
(

ρ0

√
2

+ ω√
2

)
π+ + ρ+

(−π0

√
2

+ η√
3

)

+K ∗+ K̄ 0 (8)

(PV )12 =
(

π0

√
2

+ η√
3

)
ρ+ + π+

(−ρ0

√
2

+ ω√
2

)

+K+ K̄ ∗0 , (9)

and the ss̄ pair will provide the φ meson.
We aim at getting π+ f0(1710) and π+a0(1710) which

haveG-parity negative and positive respectively. Neither V P
or PV of Eqs. (8), (9) have good G-parity but the combina-
tions V P ± PV have. Thus, we construct

H2 = φ[(V P)12 + (PV )12]
=

[
2

ω√
2
π+ + 2√

3
ρ+η + K ∗+ K̄ 0 + K+ K̄ ∗0

]
φ (10)

H3 = φ[(V P)12 − (PV )12]
=

[
2

ρ0
√

2
π+ − 2√

2
ρ+π0 + K ∗+ K̄ 0 − K+ K̄ ∗0

]
φ . (11)

The combination of Eq. (10) has G-parity positive while the
case of Eq. (11) has G-parity negative.1 With the latter com-
bination we are able to reach the π+ f0(1710) state, while
from Eq. (10) we can produce π+a0(1710).

So far we have relied upon external emission. Suppressed
by a color factor 1

Nc
we have internal emission, which is

depicted in Fig. 2. We could hadronize the sd̄ or us̄ compo-
nents with VV but then we neither get a pion nor the VV
combination to give the nonstrange f0(1710) or a0(1710).
We must hadronize with V P and PV combinations and we
get

1 To facilitate testing the G-parity of the K , K ∗ states we note that we
have GK+ = K̄ 0, GK 0 = −K−, GK̄ 0 = −K+, GK− = K 0, and
the same with a global minus sign for K ∗, since we have the convention
Cρ0 = −ρ0, for the charge conjugation of vector mesons.

(V P)32 = K ∗−π+ + K̄ ∗0
(−π0

√
2

+ η√
3

)
+ φ K̄ 0

(PV )32 = K−ρ+ + K̄ 0
(−ρ0

√
2

+ ω√
2

)
− η√

3
K̄ ∗0

(V P)13 =
(

ρ0

√
2

+ ω√
2

)
K+ + ρ+K 0 − K ∗+ η√

3

(PV )13 =
(

π0

√
2

+ η√
3

)
K ∗+ + π+K ∗0 + K+φ . (12)

We must form the good G-parity combinations from the
former terms and we find

H4 = K ∗+(V P)32 + K̄ ∗0(PV )13

= π+(K ∗+K ∗− + K̄ ∗0K ∗0) + 2√
3
ηK ∗+ K̄ ∗0

+φ(K ∗+ K̄ 0 + K̄ ∗0K+) (13)

H5 = K ∗+(V P)32 − K̄ ∗0(PV )13

= π+(K ∗+K ∗− − K̄ ∗0K ∗0) − √
2π0K ∗+ K̄ ∗0

+φ(K ∗+ K̄ 0 − K̄ ∗0K+) . (14)

Note that (PV )32 and (V P)13 combinations have no pions
and do not lead to our desired final state. We see again that
H4 has G-parity negative and can lead to π+ f0(1710), while
H5 has G-parity positive and can lead to π+a0(1710). The
different mechanisms have different weights and we shall
give weights:

H1 : A H2 : Aα H3 : Aβ H4 : Aγ H5 : Aδ .

From this hadronic combinations we select the terms that
have a π+ state. In this way we only have one VV interaction
leading to the resonances f0(1710) and a0(1710). We hence
discard other possibilities that would require extra interac-
tions to produce the required π+VV modes. Any extra inter-
action weakens the amplitude, and even more if it is of the PV
type which has no particular strength in the final K K̄ peaks.
The same can be said about producing K K̄ instead of K ∗ K̄ ∗
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Fig. 2 Internal emission. (a)
With hadronization of the sd̄
pair; (b) with hadronization of
the us̄ pair
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Fig. 3 Box diagrams considered in [5] to evaluate the width of the
vector–vector molecular states

K∗
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K

ρ, ω, φ K̄
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Fig. 4 K ∗ K̄ ∗ → K K̄ transitions driven by π exchange (a) and
φ(ρ, ω, φ) → K K̄ transitions driven by K exchange (b)

pairs, since we require again an extra K K̄ → K ∗ K̄ ∗ interac-
tion and this is weak compared to the K ∗ K̄ ∗ → K ∗ K̄ ∗ that
produce the resonances (see Appendix B of Ref. [30], also
reflected in the very small real parts of the box diagrams in
[5,6]).

We will evaluate ratios of π+K 0
SK

0
S and π+K+K− pro-

duction and the global factor A disappears. Then we have
4 parameters to adjust an experimental ratio, which seems
an excessive freedom, but we will see that in practice we
have only two effective free parameters, which facilitates the
study.

The hadronic states Hi (i = 1, 2, 3, 4, 5) do not have K K̄
in the final state. We must produce the f0(1710) anda0(1710)

and then let them decay into K K̄ . The mechanisms for K K̄
decay are explained in [5]. The K K̄ decay widths of the states
were obtained via box diagrams as depicted in Fig. 3, which
were added to the potential stemming from vector exchange
and used as kernel in the Bethe-Salpeter equation. However,
here we are interested in interference of amplitudes and then
we have to look explicitly into the amplitudes generated by
the VV → K K̄ transitions depicted in Fig. 4.

We can see how the different Hi terms contribute to
π+ f0(1710), π+a0(1710)(I3 = 0) and π+a0(1710)(I3 =

D+
s

π+, π0

Vi

R

V ′
i

K

K̄

Fig. 5 Mechanisms for D+
s → π+K+K−(K 0 K̄ 0) and D+

s →
π0K+ K̄ 0. For π+ f0(1710) production Vi V ′

i ≡ K ∗ K̄ ∗, ωφ, φφ;
for π+a0(1710) (I3 = 0) production Vi V ′

i ≡ K ∗ K̄ ∗, ρ0φ; for
π+a0(1710) (I3 = 1) production Vi V ′

i ≡ K ∗ K̄ ∗, ρ+φ

1).
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1 : π+ f0(1710) with π+K ∗ K̄ ∗ and π+φφ terms.
H2 : π+ f0(1710) with ωφπ+ term.

H3 : π+a0(1710) (I3 = 0) with π+ρ0φ term;
π+a0(1710) (I3 = 1) with π0ρ+φ term.

H4 : π+ f0(1710) with π+K ∗ K̄ ∗ term.

H5 : π+a0(1710) (I3 = 0) with π+K ∗ K̄ ∗ term;
π+a0(1710) (I3 = 1) with π0K ∗ K̄ ∗ term.

(15)

The mechanism for f0(1710) and a0(1710) production and
K K̄ final state are depicted in Fig. 5.

All this said, and with the weights of the different mech-
anisms, we can write

t̃ f0 = A

{
− √

2 (1 + γ )GK ∗ K̄ ∗(Minv) g f0,K ∗ K̄ ∗

+2 × 1

2
Gφφ(Minv)

√
2 g f0,φφ

+√
2 α Gωφ(Minv) g f0,ωφ

}
(16)

t̃a0(I3 = 0) = A

{√
2 β Gρφ(Minv) ga0,ρφ

−√
2 δ GK ∗ K̄ ∗(Minv) ga0,K ∗ K̄ ∗

}
(17)

t̃a0(I3 = 1) = A

{√
2 β Gρφ(Minv) ga0,ρφ

−√
2 δ GK ∗ K̄ ∗(Minv) ga0,K ∗ K̄ ∗

}
, (18)

where we have taken into account the K ∗ K̄ ∗ wave func-
tions of Eq. (4), and, considering the isospin multiplet
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Table 1 Couplings of f0(1710) and a0(1710) to VV channels. All quantities are in units of MeV

K ∗ K̄ ∗ ρρ ωω ωφ φφ

g[ f0(1710)] (7124, i96) (−1030, i1086) (−1763, i108) (3010,−i210) (−2493,−i204)

K ∗ K̄ ∗ ρρ ρω ρφ

g[a0(1710)] (7525,−i1529) 0 (−4042, i1391) (4998,−i1872)

(−ρ+, ρ0, ρ−), the ρφ wave functions

|ρφ; I = 1, I3 = 0〉 = ρ0φ

|ρφ; I = 1, I3 = 1〉 = −ρ+φ . (19)

The G functions in Eqs. (16), (17), (18) are the loop func-
tions for pairs of vector mesons, which are calculated using a
cutoff method with qmax = 960 MeV, giving similar results
as those found in [5], where dimensional regularization was
used.

Since in all mechanisms we started from sd̄ ,us̄, this state is
I = 1, I3 = 1. Considering the phase of π+ ((−π+, π0, π−)
isospin multiplet), the components π+a0 (I3 = 0) and
π0a0 (I3 = 1) have the same weights, which means that
Eqs. (17), (18) should be the same, which is indeed the case.

TheGωφ andGρφ loop functions are remarkably similar to
GK ∗ K̄ ∗ given the proximity of the ωφ, ρφ, K ∗ K̄ ∗ thresholds.
This allows us to rewrite Eqs. (16), (17), (18) by

t̃ f0 = A

{
− √

2 GK∗ K̄∗ (Minv) g f0,K∗ K̄∗ + Gφφ(Minv)
√

2 g f0,φφ

−√
2

(
γ − α

g f0,ωφ

g f0,K∗ K̄∗
)
GK∗ K̄∗ (Minv) g f0,K∗ K̄∗

}

= A

{
− √

2 GK∗ K̄∗ (Minv) g f0,K∗ K̄∗ + Gφφ(Minv)
√

2 g f0,φφ

−√
2 γ ′ GK∗ K̄∗ (Minv) g f0,K∗ K̄∗

}
(20)

t̃a0 = −A
√

2 GK∗ K̄∗ (Minv) ga0,K∗ K̄∗
{
δ − β

g f0,ρφ

ga0,K∗ K̄∗

}

= −A
√

2 δ′ GK∗ K̄∗ (Minv) ga0,K∗ K̄∗ (21)

And now we have only two effective parameters

γ ′ = γ − α
g f0,ωφ

g f0,K ∗ K̄ ∗
, δ′ = δ − β

g f0,ρφ

ga0,K ∗ K̄ ∗
. (22)

We do not know the values of γ , α, δ, β, but since exter-
nal emission is color enhanced by a factor Nc, taking |α|,
|β| equal 1 and |γ |, |δ| of the order of equal 1/3 (we take
2/3 to have a bigger margin of freedom), and considering
the couplings of Table 1 (we neglect the relatively smaller
imaginary parts), we obtain a range for the parameters:

γ ′ ∈ [−1, 1] ; δ′ ∈ [−1.3, 1.3] . (23)

The strategy to follow is to find a band of allowed values of
γ ′, δ′ within the range of Eq. (23) that agree with the K+K−
and K 0 K̄ 0 experimental branching ratios, and then predict

R
K

K̄ i

R

Vi

V ′
i

π(K)

K(K̄)

K̄(K)

Fig. 6 Amplitude for R → K K̄ for a resonance build up from the
Vi , V ′

i channels. Diagrams with K̄ K instead of K K̄ in the final state
appear with ρ, ω, φ vector mesons but not for the Vi , V ′

i ≡ K ∗ K̄ ∗

the branching ratio for the K+K 0
S production corresponding

to the a0 excitation.
We need one more step to construct the K+K−, K 0 K̄ 0

amplitudes. So far we have the amplitudes that produce the R
resonances, f0, a0 in Fig. 5. Next we need to see how the res-
onances f0, a0 decay into K K̄ , the last vertex in Fig. 5. This
requires to use the dynamics employed in Ref. [5] applied to
the transitions of Fig. 4. The decay of a resonance made of
VV ′ coupled channels proceeds as shown in Fig. 6.

We need the Lagrangian for V → PP given by

LV PP = −ig 〈[P, ∂μP]Vμ〉 , (24)

g = MV

2 f
, (MV = 800 MeV, f = 93 MeV).

Following [31], we can proceed factorizing the VV ′ →
K K̄ transition on shell for VV ′ → K K̄ and performing the
loop function for the two vector mesons. One can see indeed
that the pion or the kaon exchanged are very far off shell
which justifies that factorization. Indeed, the q2 for the π ,
K exchanged evaluated at the K ∗ K̄ ∗ threshold is (2ωK =
2MK ∗ )

q2 = (pK ∗ − pK )2 = M2
K ∗ + m2

K − 2MK ∗ωK

= −M2
K ∗ + m2

K ,

and the π or K propagators are

Dπ = 1

−M2
K ∗ + m2

K − m2
π

, DK = 1

−M2
K ∗

, (25)

which shows that DK is suppressed with respect to Dπ
2

2 An exact calculation with the three propagators of Fig. 6 can be done.
One performs the q0 loop integration using Cauchy’s residue and the
d3q integration posteriorly. After the q0 integration one has the relevant
analytical structure given by 1

P0−ω(q)−ω′(q)+iε
1

P0−k0−ωV (q)−ωP (q+k)

where P0 is the energy of the resonance and k0 the one of the
outgoing kaon, ωV (q), ω′

V (q), ωP (q + k) the energies of the
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Since we are only interested in ratios of production rates
and the K K̄ final momenta are the same for all the channels,
in the region of the resonances where we are concerned we
do not need to evaluate explicitly the amplitudes but have
enough with the coefficients that are different for the different
channels. Thus, using Eq. (24) we obtain the weights W̃i

I = 0

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

K ∗ K̄ ∗ → K K̄ , W̃ = 3
2 Dπ

φω → K K̄ , W̃ = 2 DK

φφ → K K̄ , W̃ = −2 DK

ρρ → K K̄ , W̃ = √
3 DK

ωω → K K̄ , W̃ = −DK

(26)

I = 1

⎧
⎨

⎩

K ∗ K̄ ∗ → K K̄ , W̃ = − 1
2 Dπ

φρ → K K̄ , W̃ = 2 DK

ωρ → K K̄ , W̃ = −√
2 DK ,

, (27)

where the unitary normalization, as used in [5], is taken for
the states with two identical particle ( 1√

2
ωω, etc). Then the

weights for f0 or a0 production are given by

W f0 =
∑

i

g f0,i W̃i Gi (Minv) ,

Wa0 =
∑

i

ga0,i W̃i Gi (Minv) , (28)

where the sum over i goes over the channels of I = 0 and
I = 1 of Eqs. (26), (27), respectively.

We see that |W f0/Wa0 |2 around 1710 MeV, which gives
the relative weight of �K K̄ for the two resonances, is about a
factor of two. This is consistent with what was found in [5].
Indeed in [32] one finds that �K K̄ /�tot � 55% for f0 and
about 27% for a0. Taking the value of �tot in the real axis
for the two resonances, one finds that �K K̄ ( f0)/�K K̄ (a0) �
1.83.

Considering the weights of Eqs. (28) of the resonances to
K K̄ and the wave functions of Eqs. (5) , we can then write:

tK+K− = −t̃ f0
1

M2
inv − M2

f0
+ iM f0� f0

W f0
1√
2
gK K̄

−t̃a0

1

M2
inv − M2

a0
+ iMa0�a0

Wa0

1√
2
gK K̄

tK 0 K̄ 0 = −t̃ f0
1

M2
inv − M2

f0
+ iM f0� f0

W f0
1√
2
gK K̄

+t̃a0

1

M2
inv − M2

a0
+ iMa0�a0

Wa0

1√
2
gK K̄

tK+ K̄ 0 = t̃a0

1

M2
inv − M2

a0
+ iMa0�a0

Wa0 gK K̄

Footnote 2 continued
intermediate vectors and the exchanged pseudoscalar, with k the
momentum of the external kaon. Calculated for instance for the K ∗ K̄ ∗
channel and K ∗ K̄ ∗ threshold, the inverse of the term coming from the
exchanged pseudoscalar propagator is P0 −k0 −ωV (q)−ωP (q+k) =
MK ∗ −

√
M2

K ∗ + q2 −
√
m2

P + (q + k)2, which is never zero.

tK+K 0
S

= − 1√
2
tK+ K̄ 0 , (29)

where in the last equation we have taken into account that
K 0

S = 1√
2
(K 0 − K̄ 0).

We can see how t̃ f0 , t̃a0 appear with opposite relative signs
in K+K− or K 0 K̄ 0 production, which explains why there
can be differences in these production rates. We should note
that Eqs. (29) contain much dynamics from the assumed
vector–vector nature of the f0 and a0 resonances and their
decay modes into K K̄ .

Finally we have to calculate the differential decay width
given by

d�i

dMinv(K K̄ )
= 1

(2π)3

1

4M2
Ds

pπ p̃k |ti |2 (30)

for i = π+K+K−, π+K 0 K̄ 0, π0K+K 0
S , with

pπ = λ1/2(M2
Ds

,m2
π , M2

inv(K K̄ ))

2MDs

,

p̃k = λ1/2(M2
inv(K K̄ ),m2

K ,m2
K )

2Minv(K K̄ )
. (31)

We integrate from Minv = 1600 MeV to 1870 MeV to obtain
the integrated width into π f0,πa0 and use the data of the RPP
for the f0(1710) and from [5] for the a0,

M f0 = 1732 MeV; � f0 = 147 MeV

Ma0 = 1777 MeV; �a0 = 148 MeV. (32)

3 Results

We must evaluate �i for the different channels in terms of
the parameters A, γ ′, δ′. We define the ratio

R1 = �(D+
s → π+K 0 K̄ 0)

�(D+
s → π+K+K−)

, (33)

using the results of Eqs. (29) and (30). Similarly we also
define

R2 = �(D+
s → π0K+K 0

S)

�(D+
s → π+K+K−)

, (34)

and we integrate d�/dMinv over the range of Minv ∈ [1600−
1870] MeV.

We should compare our results with experiment. Recall-
ing the discussion in Ref. [23], we see that Br[D+

s →
π+ f0(1710)] from [24] is3

Br[D+
s → π+“ f0(1710)”; “ f0(1710))” → K+K−]

= (1.0 ± 0.2 ± 0.3) × 10−3 , (35)

3 Recall that the message in Ref. [23] is that both in [23,24] what is
assumed f0(1710) is actually a combination of f0(1710) and a0(1710).
This is what we mean by “ ”.
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Fig. 7 Shaded area: overlap of the region −1 < γ ′ < 1, −1.3 <

δ′ < 1.3, giving R1 between 5.5 and 6.9. The two near straight lines
correspond to the experimental lower and upper limits of R1 = 5.5 (a)
and R1 = 6.9 (b)
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Fig. 8 Mass distributions d�/dMinv for the cases of Eq. (39)

and from [23]

Br[D+
s → π+“ f0(1710))”; “ f0(1710))” → K 0

SK
0
S]

= (3.1 ± 0.3 ± 0.1) × 10−3 , (36)

This gives

R1 = 2 × �(D+
s → π+K 0

S K
0
S)

�(D+
s → π+K+K−)

= 6.20 ± 0.67 , (37)

where we have added experimental errors in quadrature. We
have a bracket of experimental values of R1 ∈ [5.57−6.83].

To evaluate theoretically the width we proceed in the fol-
lowing way. R1 is evaluated as a function of γ ′, δ′ and we
take a band of values γ ′, δ′ inside the rectangle of Eqs. (23)
that gives R1 between 5.5 and 6.9. This band is shown in
Fig. 7.

We also plot in the figure the values of γ ′, δ′ that lead to
the experimental lower and upper limits of R1. The accepted
value of γ ′, δ′ with these constraints are those in the shaded
overlap region of Fig. 7. We observe then that it is possible
to explain the experimental value of R1 with our theory with
values of γ ′, δ′ consistent with the large 1/Nc limit within
uncertainties.

The challenge of the approach is now to make predic-
tions for the D+

s → π0K+K 0
S reaction to be contrasted with

coming results from BESIII. For this purpose we take ran-
dom numbers of γ ′, δ′ in the overlap region of Fig. 7 and
evaluate R2 for each of them. We find results in the range

Rtheo
2 ∈ [1.20, 1.60] .

We also evaluate the average and the dispersion and find

Rtheo
2 � 1.31 ± 0.12 .

We can convert this result into a branching ratio using the
experimental branching ratio of Eq. (35). Adding the three
errors in quadrature we obtain

Br[D+
s → π0a0(1710); a0(1710) → K+K 0

S]
� (1.3 ± 0.4) × 10−3 , (38)

the largest source of error coming from the experimental
branching ratio of Eq. (35).

To finalize our study we plot in Fig. 8 the results of
d�/dMinv(K K̄ ) of Eq. (30) with the different amplitudes
ti of Eq. (29), with

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1) ti = t̃ f0 part of tK+K−

2) ti = t̃a0 part of tK 0 K̄ 0

3) ti = tK+K−

4) ti = tK 0 K̄ 0 .

(39)

We show the distributions with a global normalization in
arbitrary units for a value of the parameters γ ′ = −0.5,
δ′ = −0.75, in the middle of the allowed region of Fig. 7.
The strength of the distributions for other parameters in the
allowed band can change about a factor of two, but the relative
strengths are practically unaltered. This allows us to reach
some conclusions from there.

As we can see, the differential mass distribution for the
case of only the f0(1710) contribution has a bigger strength
than the one with only the a0(1710) contribution. The peak
of the a0 contribution is displaced to the right relative to
the f0 contribution because we use the theoretical mass of
[5] for the a0 [see Eq. (32)]. This distribution should be the
same seen in the D+

s → π0K+K 0
S reaction around the peak.

It will be most interesting to see the peak position in the
coming experiment of the D+

s → π0K+K 0
S decay. Note

that uncertainties of 30 − 40 MeV in the predicted position
of the resonance are normal in the approach of [5]. The sharp
peak seen in some curves correspond to cusp at the K ∗ K̄ ∗
threshold, indicating the major role played by this channel in
the reactions. It would be washed out if we take into account
the width of the K ∗, but we avoid doing this exercise, since
we only wish to show the main effect of the interference of
the amplitudes.
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What is clear from the figure is that in the K 0 K̄ 0 mass
distribution there has been a constructive interference of the
f0 and a0 resonances, while in the K+K− mass distribution
the interference has been destructive. This is exactly the rea-
son suggested in the analysis of the D+

s → π+K+K− and
D+
s → π+K 0

SK
0
S reactions [23] to justify the existence of the

a0(1710) resonance, which should give the same K+K− or
K 0 K̄ 0 mass distributions should there be only the f0(1710)

state.

4 Conclusions

The appearance of the D+
s → π+K 0

SK
0
S experiment [23]

contrasting the results with those observed in the D+
s →

π+K+K− reaction in [24] and claiming the existence of
an a0 resonance around 1710 MeV, the isospin parter of the
f0(1710) (with mass 1735 MeV in the RPP), motivated us to
perform this work, since indeed such a resonance had been
predicted in Ref. [5] as a molecular state of K ∗ K̄ ∗ and other
vector–vector coupled channels, and was corroborated in the
work of Ref. [20] .

We looked into the possible ways that the f0(1710) and
a0(1710) could be produced in the D+

s →π+K+K−, π+K 0

K̄ 0, π0K+ K̄ 0 decays and we identified five different modes
in which they could be produced. Three of them asso-
ciated with external emission, to which we gave weights
A, Aα, Aβ and two modes associated with internal emis-
sion with weights Aγ, Aδ. The value of A is irrelevant since
it is related to the global strength and disappears when we
perform ratios of rates at the peak of the K K̄ distributions.
While it might look like we have four free parameters, this
is not the case, and we showed that taking A = 1, we could
write the amplitudes in terms of two effective free parameters
γ ′, δ′ with a range of values restricted by the large Nc con-
straints. We calculated the ratio of the D+

s → π+K 0 K̄ 0 and
D+
s → π+K+K− decay widths R1, as a function of γ ′, δ′

and looked for the overlap region of the γ ′ and δ′ parame-
ters that give the experimental band for this ratio with the
constraint |γ ′| < 1, |δ′| < 1.3. The overlap region with
these constraints allowed us to determine the γ ′, δ′ parame-
ters within a reasonable range. In this way we have shown that
the picture of [5,20] for the a0(1710) state provides results
for the ratio R1 in agreement with the findings of the exper-
iment.

Another interesting result of our study is that we make pre-
dictions for the branching ratio of the, yet, unknown results
for the D+

s → π0K+K 0
S reaction. We calculated this branch-

ing fraction using values of γ ′, δ′ randomly chosen from the
allowed region for the ratio of R1, and counting different
uncertainties we found a branching ratio for this reaction
of (1.3 ± 0.4) × 10−3. This is a prediction of our theoreti-
cal approach which is only tied to the theoretical couplings

of the f0(1710) and a0(1710) resonances found in [5] to
the different coupled channels that build up the resonance,
their decay amplitudes to K K̄ , and to the experimental value
of the ratio of branching ratios of D+

s → π+K 0
SK

0
S and

D+
s → π0K+K− found in [23] at the peak of the f0, a0

K K̄ distributions. An agreement of the coming results of the
D+
s → π0K+K 0

S reaction with the predictions made here
would give a boost to the molecular interpretation on the
nature of these two resonances. The present work makes then
very valuable the expected results for the D+

s → π0K+K 0
S

reaction.
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