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THE DAD THEOREM FOR ARBITRARY ROW SUMS1

RICHARD A. BRUALDI

ABSTRACT. Given an m x m symmetric nonnegative matrix A and

a positive vector R - (ri, • • •, rm), necessary and sufficient conditions

are obtained in order that there exist a diagonal matrix D with positive

main diagonal such that DAD  has row sum vector R.

A nonnegative  m x n matrix   A  is called completely decomposable if

there exist partitions a     a   of !l, • • • , m\ and ß., ß2 oí il, • • • , n\ into nonvacu-

ous sets such that Atcij, /3j and A[& , ß^] aie zero matrices. Here we use the no-

tation that A[cl, ß]  is the submatrix of A  whose rows are indexed by   ct and

whose columns are indexed by  ß, the rows and columns in  A[cx, ß]  appear-

ing in the same order as in A.  If m = n, the matrix A  is called completely

reducible if there exists a partition   a     a    of  ¡1, • • •, m\ into nonvacuous

sets such that A[a     a ]  and A[o.     a ] ace zero matrices.

Generalizing theorems of Sinkhorn and Knopp [10] and Brualdi, Parter,

and Schneider [l],Menon [7] proved the following theorem:  Let A  be an  m x n

nonnegative matrix and let  R = (r.,-•-, r  )  and S = (s.,-•-, s ) be posi-

tive vectors with   r, + - • •  + r    = s ,+•••+ s  .  Let  ?I(R, S)  denote the
1 ml n .

class of all  m x n nonnegative matrices with row sum vector  R  and column

sum vector 5.  Then there exist diagonal matrices   D.   and  D7  with positive

main diagonals such that  D.AD~  is in  2I(R, 5)  if and only if there is a ma-

trix in  2l(R, S)  which has the same zero pattern as  A. (We say that a matrix

ß  has the same zero pattern as  A  provided  b.. = 0   if and only if a.. = 0.)

If, in addition,  A   is not completely decomposable, the diagonal matrices

Dp D2  are unique up to positive scalar factor:  if  U .AU 2 is in ?I(R, S)

then there exists  S > 0   such that  U l = SDj, IL = 8~   D,.  Brualdi [2] proved

that given A  there exists a matrix in  2I(ß, S)  with the same zero pattern as

A  ii and only if the following condition is satisfied.
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(1) For ail partitions a a of \l, • • • , m\ and ß., ß. of \l, ■•• , n\ into non-

empty sets such that A[cy, ß^ is a zero matrix,^ . „ s.iS r. with equality

holding if and only if A\_ol     ßA  is also a zero matrix.

These two results when combined yield the following theorem.

Theorem 1.   Let A   be an   m x n nonnegative matrix and R = (r     • • • ,

r  )  and S = (s ,,••■, s   )   positive vectors with  r, + • • • + r     = s, + • • •
m 1' '      n     c 1 ml

+ s  .   There exist diagonal matrices  D,, D,   with positive main diagonals

such that D.AD2  is in  ?I(R, S)  if and only if (1) is satisfied.  The diagonal

matrices  D., D?  are unique up to scalar factor if A  is not completely de-

composable.

An alternate derivation of this result is given by Menon and Schneider

[8]; a recent slick derivation of all but the uniqueness part is given by

Sinkhorn [il].  A special case of the above theorem which is of interest is

the case of doubly stochastic matrices (m = n, R - (l, • • •, l), S = (l, • • •, l)).

This case had been previously settled by Sinkhorn and Knopp [10] and Bru-

aldi, Parter, Schneider [l].

If  m = n and A   is a symmetric matrix one naturally wonders whether

the diagonal matrices  D,, D,  in Theorem 1 can be taken to be equal.  For

the doubly stochastic case partial results have been obtained by Marcus and

Newman [5], Brualdi, Parter, and Schneider [l] and Marshall and Olkin [6].

A complete answer for the doubly stochastic case was given by Csima and

Datta [4] who proved the following theorem.

Theorem 2.   Let A   be a symmetric nonnegative matrix.   There exists a

diagonal matrix D with positive main diagonal such that  DAD  is a {sym-

metric) doubly stochastic matrix if and only if there is a symmetric doubly

stochastic matrix with the same zero pattern as A.

Csima and Datta actually state their theorem in terms of total support.

A nonnegative square matrix has total support if it has at least one positive entry

and each positive entry lies on some positive diagonal. The zero patterns of doubly

stochastic matrices are precisely the zero patterns of matrices with total support [ 9].

Our purpose here is to extend Theorem 2 to arbitrary row sum vectors.

For a positive vector  R = (y, • • • , r   )  let  2I(R)  denote the class of all

my. m symmetric nonnegative matrices with row sum vector (and thus col-

umn sum vector) equal to   R.  In  [3] we characterized the zero patterns of

matrices in  ?i(R) by the following theorem.

Theorem 3.   Let R = (y, • ■ • , r   )  be a positive vector and let A   be an
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m x m nonnegative matrix.   There exists a matrix in  2I(R)  with the same

zero pattern as A   if and only if the following condition is satisfied.

(2)  For all partitions a, ß, y of \ 1, • • •, m\ such that A[/3U y, y]  is a

zero matrix, £.^„r. ^ 2 .-„.r..

Equality is to occur if and only if /l[a, a U ß]  is also a zero matrix.

We shall prove the following theorem which generalizes Theorem 2.

Theorem 4. Let R = (r,, • • • , r ) be a positive vector and A an my. m

symmetric nonnegative matrix. There exists a diagonal matrix D with posi-

tive main diagonal such that DAD  is in  ?I(R)  if and only if (2) is satisfied.

We require two lemmas.

Lemma 5.   Let R = (r,, • • • , r  )  be a positive vector and let A   be an1' '   m r

m x m symmetric nonnegative matrix satisfying (2) which is not completely

decomposable.  Then there exists a diagonal matrix D with positive main

diagonal such that DAD  is in ?I(R).

Proof.  If A   satisfies (2), then according to Theorem 3 there exists a

matrix in  ?I(R)  with the same zero pattern as  A.  From Menon's theorem we

conclude that there exist diagonal matrices  D    and  D     with positive main

diagonals such that D ,AD2  is in  2I(R, R) with D., D~ uniquely determined

up to scalar factor.  Then (D yAD2Y = D\A1d\ = D2AD x  is also in  2I(R, R).

Thus  D2 = 8DX  so that with  D = (8)VlDv DAD  is in 2I(R, R). Since DAD  is

a symmetric matrix, DAD  is in  u(R)  and the lemma is proved.

Lemma 6.   Let A   be an m x m symmetric nonnegative matrix which is

not completely reducible.  Then either A   is not completely decomposable or

else there exists a permutation matrix  P  such that PAP    has the form

(3)

0 0 BL

0        A:        0

B\        0 0

where B,   is a nonvacuous matrix which is not completely decomposable and

A.   is a symmetric matrix which is not completely reducible.

Proof.  Suppose A   is  completely  decomposable.   Then  there  exist

partitions  a     a    and ß^, ß2 of {l, ■••, 772} into nonempty sets such that

^[a,, ß ]  and A[a     ß ] are zero matrices. Define a partition  a, jS, y
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of \l, ••• , m\ by  a = ßj\av y = a.1\ß1  and ß = il, • • •, m\\(cnj y).

Suppose j3, Ca  ,  Then ß.,ß2  is a partition of  Si, ••■, »2 S into nonempty

sets with A[ß., ß2] a zero matrix since  j8, C a      Since A   is symmetric,

A[ß7, ß.\  is also a zero matrix and this contradicts the fact that A  is not

completely reducible.  Suppose a., C ß., then a.     a    is a partition of

\l, • • • , m\ into nonempty sets with  /4[a     a ]  a zero matrix.  Since A  is

symmetric, A[cy, a ]  is also a zero matrix and we have a similar contra-

diction.  We conclude that  a and  y as defined above are nonempty.

But now A[y, y]  is a zero matrix since y C a    and yd j3, =0 so that

y C ß7. We verify  ¿4[/3, y]  is a zero matrix by first observing that  ß =

(il, ■ • ■ , m]\(a1U /Sj)) uicyn ßj.  Then A[cyn ¿6j, y]  is a zero matrix

since  a! n j8j C at  and y C ßr Also A[{l, • • • , m\\(al U ßj), y]  is a

zero matrix, since il, • • •, m}\(a jU ßf)Cß2 and y C a l  and since

A[jS2 , a. ]  is a zero matrix by the symmetry of A.

Let  R = (r., • • • , r  )  be the row (and column) sum vector of A. Since

A[cy, /32]  and  A[a     ß.]  are zero matrices, S .£a r.«2._g r. and thus

^•c^ \ a r=2.„fl  \ _ r. or equivalently  2. ,_»■.= £.,_r..  Since /I   is a

nonnegative matrix this implies that A[cl, a], A[a, ß]  and thus  A[ß, a]  by

symmetry are zero matrices.  Thus, there exists a permutation matrix  P  so

that

PAP1

ß

0

A,

Y

ßi

0

0

a

/S

Suppose  B,   were completely decomposable.  Then there exist partitions

a , a   of  a and y , y , oi y into nonempty sets such that B ,[a , y ]  and

Bj[a", y']  are zero matrices.  But then tt1 = a' [j y", rr2 = {l,-••, m\\(a' U y')

is a partition of  il, • -• , m] into nonempty sets with  /4[7y, nA  and

A{n2,   TTj]  zero matrices contradicting the fact that A  is not completely

reducible.  Thus  Bj   is not completely decomposable.   If A ,   were  nonvac-

uous and completely reducible, then  A  would be completely reducible.  The

proof of the lemma is now complete.

Corollary 7.   Let A   be an m x m symmetric nonnegative matrix.  Then

either A   is not completely decomposable or else there exists a permutation

matrix P such that PAP1 has the form
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(4)

B.

,t    Bk+l

B

where B ,, • • • , B,    ,   are not completely decomposable with  B,    ,   a pos-

sibly vacuous symmetric matrix.

The corollary follows by induction from the lemma.

Proof of Theorem 4.  Let A be an m x m symmetric nonnegative ma-

trix.  Suppose there is a diagonal matrix  D  with positive main diagonal with

DAD in  ?I(R).  Then according to Theorem 3 (and indeed it is easy to ver-

ify) (2) is satisfied.

Now suppose (2) is satisfied.  First assume that A   is not completely

reducible.  If, in addition,  A  is not completely decomposable, the existence

of the required  D  is obtained from Lemma 5.  If, on the other hand,  A  is

completely decomposable, there exists according to Corollary 7 a permuta-

tion matrix  P  such that  PAP1 has the form (4) where  B., • ■ • , B,    x  are

not completely decomposable.  We may assume without loss in generality

that  A  itself has the form (A).  Thus there exists a partition   n,, • • • , 77,,

'fe+1» of    1, , 7721 such that

AUV Pl] = J3j, ..., A\jrk, Pk] = Bk, A[nk+V rrk+l\ k+ V

Let  R       be the vector (r.: i £ n ), s = 1, + 1, and R     be the vector

(r.: i e p), t = 1, • • ■ , k, with the components occuring in the same order as in R. It

is easy to check that B . satisfies the hypothesis of Theorem 1 with respect

to the vectors  Rff   and  R     (j = I, • • • , t)  and that  B,    j   satisfies the con-

ditions of Theorem 3 with respect to the vector  R .  Thus by Theorem 1

there exist diagonal matrices  D v - - - , Dk, E v • • • , E,   with positive main

diagonals such that  D B E . is in  W.R^., Rp.)> j = I, • • • , k.  By Lemma 5

there exists a diagonal matrix  D,   j   with positive main diagonal such that

k+l   k+l   k+l

in block form by

Dk   ¡-Ak   ,D¿   i   is in  ^(R^       ).  If we let  D be the diagonal matrix given

D = diag(Dl,-..,Dk,Dk+vEk,...,E1),

Then DAD is in U(R).
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If A  were not completely reducible, then there exists a permutation ma-

trix Q  such that  QAQ1 is the direct sum of symmetric matrices   C,, • • • , C,

which are not completely reducible.  Applying the first part of the proof to the

C. and extending to A  in the obvious way, we complete the proof of the the-

orem.
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