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Fédérale de Lausanne, 1015 Lausanne, Switzerland

bDepartment of Mathematics,

University of British Columbia, Vancouver V6K 2A5, Canada

Abstract

In this paper we investigate the dam-break problem for viscoplastic (Herschel-
Bulkley) fluids down a sloping flume: a fixed volume of fluid initially contained
in a reservoir is released onto a slope and flows driven by gravitational forces until
these forces are unable to overcome the fluid’s yield stress. Like in many earlier
investigations, we use lubrication theory and matched asymptotic expansions to de-
rive the evolution equation of the flow depth, but with a different scaling for the flow
variables, which makes it possible to study the flow behavior on steep slopes. The
evolution equations takes on the form a nonlinear diffusion-convection equation. To
leading order, this equation simplifies into a convection equation and reflects the
balance between gravitational forces and viscous forces. After presenting analytical
and numerical results, we compare theory with experimental data obtained with
a long flume. We explore a fairly wide range of flume inclinations from 6◦ to 24◦,
while the initial Bingham number lies in the 0.07–0.26 range. Good agreement is
found at the highest slopes, where both the front position and flow-depth profiles
are properly described by theory. In contrast, at the lowest slopes, theoretical pre-
dictions substantially deviate from experimental data. Discrepancies may arise from
the formation of unsheared zones or lateral levees that cause slight flow acceleration.

Key words: lubrication theory, plasticity, yield stress, shallow-flow equations,
Herschel-Bulkley model

1 Introduction

Viscoplastic models are of common use to describe natural gravity-driven flows
down steep slopes. Typical examples include mud and debris flows [1–3], snow
avalanches [4, 5], and lava flows [6]. At first sight, the idea of viscoplastic
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behavior is very appealing since it explains why natural bulk materials be-
have like solids when they are at rest and why under some circumstances they
yield and start to flow like fluids. Yet, from the rheological point of view,
given how difficult it is to characterize the flow properties of natural samples
using rheometers, this idea has received little attention so far. From labora-
tory and outdoor experiments, Dent and Lang [4, 7] together with Kern and
coworkers [8] provided evidence that an empirical relation such as the Bing-
ham or Herschel-Bulkley models closely approximates the flow behavior of
snow flowing down a flume. The relevance of viscoplasticity to debris flows is
still vigorously debated within the scientific community (see [9–12] and refer-
ences therein). While small-scale laboratory experiments clearly demonstrated
the potential of viscoplastic models to describe the behavior of fine mud and
clay dispersions (e.g., kaolin, bentonite) [3, 13–16], large-scale indoor and out-
door experiments carried out with poorly sorted materials have shown a more
contrasted and complex behavior: the flow properties depend a great deal on
the flow organization, i.e. the existence of lateral levees, a front rich in coarse
materials, segregation, as well as entrainment/deposition processes [9, 17, 18].
Field data and comparison with historical events have not settled this con-
troversial issue [19–23] since traces left by debris flows could be interpreted
using viscoplastic theory, whereas other clues argue in favor of a Coulomb be!
havior. The same difficulties arise in the rheology of lava, with an additional
degree of complexity induced by temperature and phase changes [6, 24–27].

In this delicate context, it is of great interest to gain insight into the dy-
namic behavior of finite volumes of viscoplastic materials down sloping beds.
This issue has attracted growing attention in recent years. Two theoretical
approaches have been used to derive the governing equations. In what we can
refer to as the Saint-Venant approach, the governing equations are derived by
averaging the local mass and momentum balance equations across the stream
depth [3, 14, 15, 28–30]. The crux is the computation of the bottom shear
stress for out-of-equilibrium flows [31, 32]. An alternative approach is lubri-
cation theory, which takes its roots in Reynolds’ pioneering work. The theory
is based on an approximation to the governing equations for shallow slopes
and thin low-inertia flows through an asymptotic expansion in the aspect ratio
ǫ = H∗/L∗, with H∗ and L∗ the flow-depth and length scales [13, 24, 33–41]. As
pointed out by Balmforth and coworkers [40], this theory can be extended to
steep slopes by changing the scaling that underpins the asymptotic reduction
of the local equations.

The objective of this paper is to work out a model describing the behavior
of a thin viscoplastic sheet flowing down a sloping bed using lubrication the-
ory. We consider an idealized setting: in a dam-break flow, a fixed volume of
a Herschel-Bulkley fluid is instantaneously released and flows down a slope
under gravity effects. Contrary to Newtonian fluids [42], the motion is finally
arrested when the gravity forces are unable to overcome the resistance force
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arising from yield stress. In § 2, we show how the lubrication approximation
leads to an evolution equation for the flow depth. In contrast with earlier
work, we focus on steep slopes. To leading order ǫ0, there is no difference
between this equation and the one derived using the Saint-Venant approach,
but substantial differences arise at higher orders ǫk (k = 1, 2 · · · ). Theory is
then compared with experimental results. Carrying out such experiments is
difficult. The reasons are twofold. First, the Herschel-Bulkley model is an ide-
alization of viscoplastic behavior. Most fluids used to date exhibit rheological
properties (e.g., viscoelasticity, thixotropy, ageing), which are not accounted
for in this model. In fluid rheometry, one is able to explore a narrow range
of flow conditions (viscometric flows), which means that the real behavior in
more complex flow geometries is unknown to a large degree; in particular, this
includes the effect of normal stresses on bulk dynamics and pre- and post-
yielding behaviors. In the 1990s and early 2000s, the typical material used
in most experiments was kaolin, a clay suspension which usually exhibits vis-
coplastic properties. In fact, compared to other clays, kaolin has an unusual
behavior, partly because yield stress arises from steric interactions (jamming)
between flocs rather than colloidal interactions. In recent years, Carbopol has
been increasingly used as a Herschel-Bulkley fluid, but taking a closer look
at rheometrical data reveals more subtle behavior, a! s is usu ally observed
for yield-stress fluids [43]; it should be then kept in mind that the Herschel-
Bulkley approximation holds for a finite range of shear rates. Second, tracking
the free surface of a time-dependent flow remains a challenging task. Here we
take advantage of sophisticated image processing techniques [44, 45] to mea-
sure the flow-depth profiles and front velocity of finite volumes of Carbopol
Ultrez 10. In § 3, we present our experimental data and compare them with
theoretical predictions. We then summarize our findings and draw conclusions.

2 Theory

2.1 Setting and scaling

We consider an infinite plane tilted at an angle θ to the horizontal. We use
a Cartesian coordinate system, where x denotes the downstream coordinate
measured from the top of the plane, while y denotes the coordinate normal
to the slope (see Fig. 1). A rectangular box of length ℓ, equipped with a gate
perpendicular to the slope, and placed at the plane inlet is partially filled with
a volume V of a Herschel-Bulkley fluid with density ρ. The rear end of this
reservoir is chosen to be the origin of the x-axis. At time t = 0, the lock gate
is suddenly opened and the fluid is released onto the plane. Initially the flow
depth is denoted by

hi(x) = hg + (x − ℓ) tan θ, (1)
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Fig. 1. Sketch defining the flow configuration.

with hg the gate aperture, for 0 ≤ x ≤ ℓ and hi = 0 for x > ℓ. We are
interested in determining the flow-depth profile h(x, t) and the position xf of
the front, i.e. the point where the flow depth drops to zero: h(xf ) = 0. h is
the flow depth measured normal to the plane.

Conservation of mass and momentum read

∂u

∂x
+

∂v

∂y
= 0, (2)

ρ
du

dt
= ρg sin θ − ∂p

∂x
+

∂σxx

∂x
+

∂σxy

∂y
, (3)

ρ
dv

dt
= −ρg cos θ − ∂p

∂y
+

∂σxy

∂x
+

∂σyy

∂y
, (4)

where g denotes gravity acceleration, σxx, σyy, and σxy are the normal stress in
the x-direction, normal stress in the y-direction, and shear stress, respectively.
They are the components of the extra-stress tensor [12]

σ =

(

τc

γ̇
+ 2nKγ̇n−1

)

d, for τ > τc, (5)

d = 0 for τ ≤ τc, (6)

where d is the strain-rate tensor, γ̇ =
√

1
2
tr(d · d) is the second invariant of

d, and τ =
√

1
2
tr(σ · σ) is the second invariant of the extra-stress tensor σ.

The relation τ = τc is referred to as the yield condition. In this constitutive
equation, n is an index usually satisfying n ≤ 1, K is the consistency, and τc is
the yield stress. The equations (2)–(4) are subject to the kinematic boundary
conditions

u = v = 0 for y = 0 (7)

at the bottom, while at the free surface (which is assumed to be stress free),
we have

(−p1 + σ) · n = 0 for y = h, (8)

with n = (−∂xh, 1) a vector normal to the free surface, together with the
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kinematic condition

v =
∂h

∂t
+ u

∂h

∂x
for y = h. (9)

Mass conservation also implies that

∫ xf

0
h(x, t)dx = V =

1

2
ℓ(2hg − ℓ tan θ). (10)

We introduce the aspect ratio

ǫ =
H∗

L∗

,

which is considered to be low. A natural choice to define the typical scales
introduced in this ratio is to take the reservoir dimensions: H∗ = hg and L∗ =
ℓ, but this produces artificially high ǫ values in the early stages of the release.
Another choice is to consider that the final state provides an appropriate cross-
stream length scale: H∗ = hc = τc/(ρg sin θ); volume conservation then implies
L∗ = ℓc = V/H∗.

We introduce the generalized Reynolds and Bingham numbers

Re = ρ
U∗H∗

K
(

U∗

H∗

)n−1 and Bi =
τc

K
(

U∗

H∗

)n .

As usual, the Reynolds number can be interpreted as the ratio of inertia
to viscous forces, while the Bingham number is a dimensionless yield stress
(relative to the viscous forces); the Bingham number is sometimes referred to
as the Herschel-Bulkley or Oldroyd number.

We use the following dimensionless variables

x = L∗x̃, y = ǫL∗ỹ, and t = T∗t̃, (11)

u = U∗ũ and v = ǫU∗ṽ, (12)

σxx = K
(

U∗

H∗

)n

σ̃x̃x̃ and σyy = K
(

U∗

H∗

)n

σ̃ỹỹ, (13)

σxy = K
(

U∗

H∗

)n

σ̃x̃ỹ and p = P∗p̃, (14)

with

P∗ = ρgH∗ cos θ and T∗ =
L∗

U∗

, (15)

the pressure and time scales, respectively. The velocity scale U∗ depends on the
flow regime considered. Hereafter we will address two limiting flow regimes.
We refer to the diffusive regime as the flow for which the pressure gradient
is counterbalanced by viscous forces (acting in the cross-stream direction)
and bed inclination is shallow. This gives the velocity scale U∗ = Udiff =

(ρg cos θ/K)1/nH
1+2/n
∗ /L

1/n
∗ and imposes the constraint tan θ/ǫ = O(1); see
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Appendix A. The other regime is referred to as the slope-dominated regime.
It corresponds to the limiting flow conditions where the pressure gradient (in
the downstream direction) becomes negligible compared to the gravity and
viscous forces (see § 2.2); the flow reaches a near-equilibrium regime, where
viscous forces balance gravity acceleration. The velocity scale is then

U∗ = Uconv = (ρg sin θ/K)1/nH1+1/n
∗

. (16)

Note that with this scaling and because of mass conservation, the dimension-
less stress and strain-rate invariants are

τ̃ = |σ̃x̃ỹ + σ̃x̃x̃| and ˜̇γ =
1

2
[4(ǫ∂x̃ũ)2 + (∂ỹũ + ǫ2∂x̃ṽ)2]1/2. (17)

The yield condition in a dimensionless form is then τ̃ = Bi.

2.2 Slope-dominated regime

The scaled governing equations are made up of the mass and momentum
balance equations:

∂u

∂x
+

∂v

∂y
= 0, (18)

ǫRe
du

dt
= 1 − ǫ cot θ

∂p

∂x
+ ǫ

∂σxx

∂x
+

∂σxy

∂y
, (19)

ǫ2Re
dv

dt
= − cot θ

(

1 +
∂p

∂y

)

+ ǫ
∂σxy

∂x
+

∂σyy

∂y
, (20)

where the tilde decoration has been dropped. The stress boundary conditions
(8) at the free surface y = h(x, t) become

σxy = ǫ
∂h

∂x
(σxx − p cot θ), (21)

ǫ
∂h

∂x
σxy = σyy − p cot θ, (22)

while the kinematic boundary conditions are v = dh/dt for y = h(x, t) and
u = v = 0 for y = 0. The flow depth vanishes at the front:

h(xf , t) = 0. (23)

Mass conservation also implies that the volume of the flow is preserved:

∫ xf

0
h(x, t)dx = V. (24)
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The initial value for h is

h(x, 0) = hg + κ(x − ℓ), (25)

with κ = L∗ tan θ/H∗ = tan θ/ǫ.

We use perturbation methods and matched asymptotic expansions to study
the behavior of the viscoplastic fluid released down an inclined plane [46].
There are two issues that must be addressed:

• The first issue is related to the dynamics of the flow and is somehow in-
dependent of the constitutive equation: as sketched in Fig. 1, the flow can
be split into two different regions: the body and the front, where the flow
depth drops to zero. For the body, the leading-order terms of the govern-
ing equations are obtained by removing the contributions that depend on
ǫ in equations (19)–(20). As readily seen in the momentum equations, the
bulk of the flow is in a nearly steady regime, where gravity acceleration
is counterbalanced by the cross-stream gradient of the shear stress. Since
this behavior conflicts with the boundary condition (23), a boundary-layer
correction is needed at the front. Indeed, the steady-regime solution is no
longer valid within the tip region because the pressure gradient ǫ∂xp be-
comes non-negligible. The dynamics of the front is then controlled by the
balance between the streamwise pressure and stress gradients, ǫ∂xp ∼ ǫh/ξ
and ∂yσxy ∼ (u/h)n/h, respectively:

ǫ
h

ξ
∼ (u/h)n

h
,

with ξ = x−xf and u ∝ h1/n+1. The extent of the boundary layer can then
be estimated as ξ = O(ǫh). In this subsection, we will describe the solution
for the body, referred to as the outer solution, while in the next subsection,
attention will be focused on the boundary-layer correction (called the inner

solution). The inner solution smoothly connects to the outer solution at
x = xf .

• The second issue arises from the occurrence of a nearly steady regime while
the fluid is viscoplastic. In a genuinely steady uniform regime, part of the
fluid is sheared close to the bottom boundary while there is a rigid plug flow
near the free surface [47]. Since to leading order, the governing equations are
similar to those describing the steady uniform regime, it is expected that
the plug structure subsists here, but it cannot be a true plug because this
would conflict with the flow structure (which depends on x). To avoid incon-
sistencies in the perturbation analysis, we follow the treatment suggested by
Balmforth and Craster [38], which consists in considering two asymptotic
expansions (one for the sheared layer and the other one for the pseudo-plug
layer) and matching them through a ‘fake’ yield surface, i.e. the interface
at which the second stress invariant τ is at the yield stress value to leading
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order. We refer the reader to Reference [38] for further developments; here
we will focus on the leading-order terms and skip details in the matching of
solutions at the fake yield surface.

Anticipating the existence of a pseudo-plug [38], where the strain-rate invari-
ant γ̇ is virtually zero, we distinguish

• a sheared layer close to the bottom (0 ≤ y ≤ Y ); and
• a plug zone near the free surface (Y ≤ y ≤ h).

Y denotes the position of the interface (‘fake’ yield surface) between the
sheared and pseudo-plug layers and is unknown for the moment. In the shear
layer, the fluid is fully sheared; with the scaling (11)–(15), we have σxx =
O(ǫ) and σyy = O(ǫ), but σxy = O(1). We then introduce the ǫ-expansions:
σyy = ǫσ1,yy + · · · , σxx = ǫσ1,xx + · · · , and σxy = σ0,xy + ǫσ1,xy + · · · . We
pose the expansion u(x, y, t) = u0(x, y, t) + ǫu1(x, y, t) + · · · , leading to γ̇ =
1
2
|∂yu0| + 1

2
ǫ∂yu1 + O(ǫ2).

Within the plug layer, there is little deformation, γ̇ being close to zero. In that
case, we pose u(x, y, t) = u′

0(x, t) + ǫu′

1(x, y, t) + · · · , where the dependence
on y in the 0-order term has disappeared. Because of this, we must expand
the stress components differently when n < 1: σyy = σ0,yy + ǫnσn,yy + ǫ1σ1,yy +
ǫn+1σn+1,yy · · · , σxx = σ0,xx + ǫnσn,xx + · · · , σxy = σ0,xy + ǫσ1,xy + · · · , and
p = ǫn−1pn−1 + p0 + ǫp1 + · · · . Note that for Bingham fluids (n = 1), the
expansions are regular power series of ǫ. Since u′

0 does not depend on y, we

have γ̇ = 1
2
ǫ
√

(∂yu′

1)
2 + 4(∂xu′

0)
2 +O(ǫ2), showing that γ̇ is order ǫ unless ∂yu

′

1

and ∂xu
′

0 vanish simultaneously.

We also introduce Y = Y0+ǫY1+· · · , h = h0+ǫh1+· · · , and τ = τ0+ǫτ1+· · · .
To order ǫ0, we have to solve

0 = 1 +
∂σ0, xy

∂y
, (26)

0 = −1 − ∂p0

∂y
for y ≤ Y0, (27)

0 = − cot θ +
∂

∂y
(σ0,yy − p0 cot θ) for y ≥ Y0, (28)

subject to
σ0,yy − p0 cot θ = 0 and σ0, xy = 0 for y = h0. (29)

In the limit of Re → 0 and to order ǫ in (19)–(20), we obtain

0 = − cot θ
∂p0

∂x
+

∂σ1, xy

∂y
, (30)

0 = − cot θ
∂p1

∂y
+

∂σ0, xy

∂x
+

∂σ1, yy

∂y
, (31)
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subject to



















σ1, xy = −h1
∂σ0, xy

∂y
− cot θ

∂h0

∂x
p0

σ1,yy − p1 cot θ = cot θ
∂p0

∂y
h1 +

∂h0

∂x
σ0,xy

at y = h0. (32)

Solving equations (26)–(29) leads to the following stress fields

σ0, xy = h0 − y, (33)

σ0, yy − p0 cot θ = (h0 − y) cot θ, (34)

which are identical to the expressions found for a steady uniform flow. The
yield condition is τ0 = |σ0,xy| = Bi, from which we deduce that the position of
the fake yield surface is given by Y0 = h0 − Bi.

To order ǫ, we deduce from (30)–(32)

σ1, xy = h1 − cot θ
∂h0

∂x
(h0 − y), (35)

σ1,yy − p1 cot θ = −h1 cot θ +
∂h0

∂x
(h0 − y). (36)

We now pursue by inferring the velocity field from the stresses. Within the
shear layer, the constitutive equation to orders ǫ0 and ǫ1 are

σ0,xy = Bi +

(

∂u0

∂y

)n

, (37)

σ1,xy = n

(

∂u0

∂y

)n−1
∂u1

∂y
, (38)

while in the pseudo-plug layer, it takes on the form

σ0,xy =
Bi

√

4(∂xu′

0)
2 + (∂yu′

1)
2

∂u′

1

∂y
. (39)

Using velocity continuity at the interface y = Y0, we obtain the cross-stream
velocity to order ǫ0

u0(x, y, t) =
n

(

Y
1+ 1

n
0 − (Y0 − y)1+ 1

n

)

n + 1
for y ≤ Y0, (40)

u′

0(x, t) =
n

n + 1
Y

1+ 1

n
0 for y ≥ Y0, (41)
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Fig. 2. Normalized velocity profile: velocity profile at order ǫ0 (solid line) and
first-order correction (dashed or dotted line). The first-order correction was com-
puted for ∂xh0 = 0.1 (dashed line) and ∂xh0 = 0.01 (dotted line). Computations
made for θ = 12◦, Bi = 0.5, n = 1/3, ǫ = 0.1, and h1 = 0. up is the plug velocity.

together with its correction to order ǫ1

u1(x, y, t) = f(x, y, t) − f(x, 0, t) for y ≤ Y0, (42)

u′

1(x, y, t) = 2Y
1/n
0 ∂xh0

√

(y − Y0)(2h0 − Y0 − y) for y ≥ Y0, (43)

with f = (Y0 − y)1/n[cot θ(nBi + h0 − y)∂xh0 − (n + 1)h1]/(n + 1). Figure 2
shows a typical velocity profile at leading order together with its first-order
correction. ǫ was set to 0.1 and two values were considered for the streamwise
gradient of the flow depth: ∂xh0 = 0.1 (dashed line) and ∂xh0 = 0.01 (dotted
line). The flow-depth gradient has strong influence on the shape of the velocity
profile. Note also that since the shear-layer and plug solutions were patched
together at the yield surface y = Y0, an unrealistic kink at y = Y0 arises in the
first-order velocity profile, as seen for ∂xh0 = 0.1. In fact, the two solutions
should have been connected over a region of width ǫ centered around the yield
surface because the shear-stress expansion is non-uniform when ∂yu0 is order
ǫ (e.g., see Appendix A in [38]).

The integration of the cross-stream velocity profiles provides the flow-depth
averaged velocity

ū0 =
n

(n + 1)(2n + 1)

Y
1+ 1

n
0 (h0 + (Bi + h0)n)

h0

. (44)

We finally obtain an evolution equation for h in the form of a nonlinear con-
vection equation.

∂h

∂t
+

∂

∂x
F (h) = 0, (45)
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with Y = max (h − Bi, 0) and

F (h) = nY 1+1/n (2n + 1)h − nY

(2n + 1)(n + 1)
.

Equation (45) has also been obtained by a number of authors, including Balm-
forth and coworkers [40] and Huang and Garćıa [14]. These latter authors used
a Saint-Venant approach to derive the equations of motion of a viscoplastic
sheet flowing down a sloping bed. Using singular perturbations techniques,
they found that the outer solution (i.e. the solution representing the flow be-
havior far from the front) was given by Eq. (45); behavior close to the front
was described by seeking the inner solution.

Equation (45) is a nonlinear convection equation, which can be solved ana-
lytically using the method of characteristics. This technique has been used
in a number of related problems [14, 28, 48, 49], usually with the additional
assumption of a point source as initial condition. In that particular case, the
solution to the nolinear evolution equation (45) is a similarity solution. In
Appendix B, we solve the full initial-boundary-value problem (45) subject to
(23)–(25) using the method of characteristics. The main difference with the
treatment used by Huang and Garćıa [14, 28] lies in the occurrence of two
waves, originally emanating from each end of the volume released (shock and
rarefaction waves), which then collapse to form a single wave. This analytical
solution will be used in the sequel to plot the outer solution in Figs. 3 through
12.

2.3 Behavior within the tip region

As shown in the previous subsection, there is a boundary layer of size ǫ at the
front. To see what is occurring in this boundary layer, we make the following
change of variable

x′ =
x − xf (t)

ǫ
.

In the mobile frame attached to the front, the dominant balance in the mo-
mentum balance equation (19) is between the streamwise gradient of the pres-
sure and the cross-stream gradient of the shear stress, suggesting that the
proper velocity scale is now Udiff = ǫ1/nU∗ (U∗ = Uconv) like for the diffusive
regime. The flow depth must then scale as h = ǫ1/(n+1) so that the stream-
wise gradient of the pressure balances the cross-stream gradient of the shear
stress provided that O(cot θǫ1/(n+1)) = 1; note that a similar constraint is
met for the diffusive regime. For a fully sheared material, this scaling sug-
gests that σxy ∼ (∂yu)n ∼ (ǫ1/n−1/(n+1)u′/h′)n = O(ǫ1/(n+1)) while σxx ∼
(∂yu)n−1ǫ∂xu ∼ ǫ2/(n+1)(u′/h′)n = O(ǫ2/(n+1)). We now embody this scaling
analysis into an asymptotic analysis by substituting the following stretched
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variables into the governing equations (18)–(24): x = xf + ǫx′, y = ǫ1/(n+1)y′,
t = ǫt′, u = ǫ1/nu′

0 + · · · , h = ǫ1/(n+1)h′

0 + · · · , σxx = ǫ2/(n+1)σ′

0,x′x′ + · · · ,
σyy = ǫ2/(n+1)σ′

0,y′y′ + · · · , σxy = ǫ1−nσ′

0,x′y′ + · · · , and p = ǫ1/(n+1)p′0 + · · · .

The re-scaled momentum balance equations are

Re

(

du

dt′
− ẋf

∂u

∂x′

)

= 1 − cot θ
∂p

∂x′
+

∂σx′x′

∂x′
+

1

ǫ1/(n+1)

∂σx′y′

∂y′
, (46)

ǫRe

(

dv

dt′
− ẋf

∂v

∂x′

)

= − cot θ

(

1 +
1

ǫ1/(n+1)

∂p

∂y′

)

+
∂σx′y′

∂x′
+

1

ǫ1/(n+1)

∂σy′y′

∂y′
.

(47)

The stress boundary conditions at the free surface y = h(x, t) are

σxy =
∂h

∂x′
(σxx − p cot θ), (48)

∂h

∂x′
σxy = σyy − p cot θ. (49)

The matching conditions also demand that the stress fields smoothly connect
to the outer solution for x′ → −∞; among others, we have

lim
x′
→−∞

σ′

0,x′y′ = h′

0 − y′ and lim
x′
→−∞

h(x′, t′) = hf , (50)

with hf the flow depth at x = xf given by the outer solution. Keeping Re and
S = cot θǫ1/(n+1) order one and dropping all terms of order ǫ or higher, we can
integrate the momentum balance equations (46)–(47) to obtain

p′0 = h′

0 − y′ and σ′

0,x′y′ = (1 − S∂x′h′

0)(h
′

0 − y′). (51)

With the latter expression, we can derive the velocity profile (see Appendix
A):

u0 =
n

n + 1
(1 − cot θ∂x′h0)











Z
1+1/n
0 − (Z0 − y)1+1/n

Z
1+1/n
0

, (52)

where

Z0 = max

(

h − Bi

|1 − cot θ∂x′h0|

)

.

Integrating this profile leads to the flow-depth averaged velocity and then the
evolution equation for the flow depth

∂h0

∂t′
+

∂

∂x′
G(h0) = 0, (53)

G(h) = nZ
1+1/n
0

(2n + 1)h0 − nZ0

(2n + 1)(n + 1)

(

1 − cot θ
∂h0

∂x′

)1/n

,

12



and subject to the boundary condition limx′
→−∞ h0 = hf . Since the volume

of fluid contained in the inner region is order ǫ, mass is merely redistributed
with no creation or loss within the head. The initial condition for the evolution
equation (53) is











h(x′, 0) = hf for x′ ≤ 0,

h(x′, 0) = 0 for x′ > 0.
(54)

The initial-boundary-value problem (53)–(54) must be solved numerically. For
this purpose we used the pdepe routine provided in Matlab to solve parabolic
differential equations in one space variable.

After substituting the stretched variables (x′, t′) with the original scaled vari-
ables (x = xf + ǫx′, t = ǫt′) in the solution to equation (53), we obtain a
composite solution made up of the outer solution houter and the inner solution
hinner

hcomp. = houter + hinner − hfront, (55)

where hfront = hf is their overlap value, i.e., the flow depth at the front of
the outer solution, houter the solution to (45), and hinner the solution to (53).
The composite solution provided a uniform approximation of the solution to
leading order.

As shown in Fig. 3, the flow-depth profile is influenced a great deal by channel
slope. At steep slopes [see Fig. 3(b)], the flow head is characterized by a blunt
nose occupying a small fraction of the total length. In contrast, at shallow
slopes [see Fig. 3(a)], the leading edge is acute and extends over most of the
flow. This also shows that the position of the front is fairly accurately predicted
by the outer solution at the steepest slopes, while we need to compute the full
solution for the shallowest slopes.

3 Experiments

3.1 Experimental facility

We used a 30-cm-wide, 4-m-long flume fed by a reservoir, as sketched in Fig. 1.
The flume laid on an aluminium plate, which was 4 m long, 1.8 m wide, and
could be inclined from 0◦ to 45◦. Its position was accurately controlled using
a digital inclinometer with a resolution of 0.1◦.

The reservoir was positioned at the top of the inclined plane behind the
dam wall. The maximum capacity of the reservoir was 120 kg. The dam wall
was composed of a 1.6×0.8 m2 ultralight carbon plate. Two pneumatic jacks
opened the lock gate at the desired aperture within 0.5 s. An ultralight dam
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Fig. 3. Flow depth profiles at times t = 0 (dotted line), t = 10, t = 100, and t = 1000
(solid lines) obtained by taking the composite solution. The dashed lines stand for
the outer solution at the same times. (a) θ = 6◦, Bi = 1.52, ǫ = 0.1, κ = 1.05,
n = 0.388 [values drawn for run (a) in Table 5]. (b) θ = 24◦, Bi = 0.36, ǫ = 0.1,
κ = 0.45, n = 0.388 [values drawn for run (a) in Table 2].

wall was needed to reduce dam-wall inertia, plane vibration, and jerk. The
two jacks were quickly raised by injecting air pressured at 7 MPa. Two elec-
tromagnetic sensors were located at the tip of each jack to control its position
and reset the clock.

Before each run, the fluid was gently poured into the reservoir, while the
inclined plane was kept in the horizontal position. The flume was then inclined
at a given slope. The free surface was then carefully smoothed out until it was
horizontal. At time t = 0, the sluice gate was raised and the material started
accelerating and flowing. The surge motion was imaged by a digital camera.
When the front went beyond the imaged area, we stopped recording images.
The material was then removed from the flume and the plane was carefully
cleaned out.

To measure accurately the surge’s free-surface variations with time, we have
developed a new imaging system, consisting of a digital camera (Basler A202k
Pixels camera provided by Qualimatest, Geneva, Switzerland) coupled with a
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Fig. 4. Reconstruction of the free surface using image processing for slope θ = 12◦.
The photograph on the left shows the setup when patterns (here regularly spaced
strips) are projected. The picture on the right shows the reconstructed free surface.
Figure drawn from [44].

synchronized micromirror projector (modified z-Snapper provided by ViaLux,
Chemnitz, Germany). The object’s surface was imaged into a camera and pat-
terns were projected onto the surface under an angle of incidence that differed
from the imaging direction [44, 45]. From the deformed pattern recorded by
the camera, the phase could be extracted and, using unwrapping algorithms,
the height was computed and the free surface reconstructed. We were able to
measure the free surface of the flow to within 1 mm every 22 ms.

Figure 4 shows a typical run, with both real and reconstructed free surfaces.
We measured the flow depth profile at the centerline of the flow. To attenuate
noise effects, the flow depth was averaged over at 10-pixel band along the
centerline (approximately 1 cm). The position of the front was evaluated at
the flow centerline seeking the position at which the flow thickness dropped
below a given threshold. On some occasions, locating the front accurately was
difficult because of glints arising at the free surface near the contact line;
these glints blurred the projected patterns and introduced noise in the post-
treatment phase. The uncertainty on the front position could then be as high
as 5 mm.

3.2 Material

We used a viscoplastic stable polymeric gel called Carbopol Ultrez 10, pro-
duced by Noveon and provided by Gattefossé (Luzern, Switzerland). An-
hydrous NaOH Pellets RPE-ACS-ISO (provided by Reactolab SA, Servion,
Switzerland) were used to neutralize the Carbopol solution. The solvent was
demineralized water. Carbopol Ultrez 10 is weakly thixotropic and viscoelastic
like other Carbopol gels [50, 51]. Over quite a wide range of shear rates, its rhe-
ological behavior can be closely approximated by a Herschel-Bulkley model.
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The rheological properties depend a great deal on the Carbopol concentra-
tion. Table 1 reports the Herschel-Bulkley parameters adjusted on our data as
a function of the mass concentration in Carbopol. The density is ρ = 1000 kg
m−3. See [52] for additional information.

Table 1
Rheological characteristics of the Carbopol samples used.

Concentration 0.25% 0.30% 0.35% 0.40%

τc [Pa] 78 89 102 109

K [Pa s−n] 32.1 47.68 58.91 75.84

n [-] 0.388 0.415 0.505 0.579

The flow curve of the viscoplastic gel was determined using a Bohlin CVOR
rheometer equipped with a Couette cell. We first determined the yield stress
using a creep test [52]. We then determined the flow curve, i.e., the shear-
stress/shear-rate relation. To that end, we used a standard technique, which
involved imposing a step-like ramp of stress and recording the resulting defor-
mation until equilibrium was reached (i.e. shear rate was constant). We deter-
mined the flow curve by solving the Couette inverse problem using Tikhonov
regularization techniques [53]. We adjusted the Herschel-Bulkley simple-shear-
flow equation

σxy = τc + Kγ̇n, (56)

on the resulting data. τc was set to the value determined by the creep test
while K and n were computed using a least-square approach.

3.3 Experimental results for θ = 24◦

Table 2 summarizes the main parameters for all runs carried out for θ = 24◦.
We report two values for the aspect ratio ǫ: its initial value ǫ0 = hg/ℓ and
its final value ǫf = hc/ℓc = h2

c/V (when the material approaches the arrested
state). With the latter scaling, the Bingham number is always unity; we also
report the initial value taken by the Bingham number Bi0 computed with
ǫ = ǫ0 (that is, H∗ = hg and L∗ = ℓ). For all runs, the released mass was
the same (23 kg) and sole the rheological parameters of the Carbopol samples
varied.

Figure 5 reports the variation in the front position with time. We have plot-
ted both experimental data and theoretical curves given by the outer solution
(dashed lines) provided in Appendix B and the composite solution (dotted
lines) worked out in § 2.3. The vertical dashed line marks the limit of in-
fluence of the initial flow depth (t < tA) for the dam-break problem (see
Appendix B). On the whole, agreement is good between experiments and the-
ory, the only significant difference being observed at early times during the
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Table 2
For each run carried out with a slope of θ = 24◦, we report the values of the critical
flow depth hc, the gate aperture hg, the dimensionless numbers ǫf = h2

c/V and Re
related to the final (arrested) state, the initial value of the aspect ratio ǫ0 = hg/ℓ
and Bingham number Bi0. The rheological parameters n, K, and τc are also recalled
for convenience (see Table 1). The reservoir length was ℓ = 0.51.

run hc (m) hg (m) ǫf ǫ0 Bi0 Re n K (Pa s−n) τc (Pa)

(a) 0.019 0.26 4.9 × 10−3 0.52 0.07 0.47 0.39 32.10 78.00

(b) 0.022 0.26 6.4 × 10−3 0.52 0.08 0.11 0.42 47.68 89.00

(c) 0.025 0.26 8.5 × 10−3 0.52 0.10 0.05 0.51 58.91 102.00

(d) 0.027 0.26 9.9 × 10−3 0.52 0.10 0.02 0.58 75.84 110.00

slumping phase, when the front vigorously accelerated. There is also a slight
lag between experimental and theoretical curves, which can be positive or neg-
ative. The general impression is that the computed front velocity is slightly
higher than the observed one. On the same plot, the dots represent the times
at which the flow-depth profiles reported in Fig. 6 were measured; three times
were selected (short, intermediate, long times). Concerning the two theoretical
approximations, note that (i) there is little difference between the outer and
composite solutions and (ii) there is no change in behavior of the xf (t) curves
at the transition time t = tA, which shows that here, the details of the initial
flow-depth profile are of little importance to determining the behavior of the
flow after the release. This is in line with Huang and Garćıa’s findings [14].

In practice, because of the limited length of the imaged area, we could not
reconstruct the free surface close to the reservoir, which implies that only
measurements for 1.5 < x/ℓ < 6 (0.2 < x < 0.9 in a dimensionless form here)
were taken. The main characteristics of the flow depth profile (magnitude,
overall shape, front) are correctly described with the composite solution:

• On the whole, the shape of the avalanching mass is the same: a steep front
is followed by a body with a nearly constant flow depth. In addition to the
slight lag between experimental and theoretical curves.

• Naturally, the real flow-depth profiles are more irregular than the theoret-
ical profiles: the more concentrated in Carbopol the sample was, the more
corrugated the free surface was.

• The only significant difference is the early-time behavior, where the shape
of the collapsing mass substantially differed from the one predicted by the
composite solution, which is normal since our theoretical approximation
does not hold for large-aspect-ratio flows, in particular if they are in an
inertial phase as expected during the slumping phase.
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Fig. 5. Variation in the front position with time for θ = 24◦. The solid line represents
experimental data, while the dotted line represents the theoretical front position
determined by solving the coupled equations ṡ = F (hf )/hf and s = hf (hf −Bi)1/nt
for t > tA, and s = (hf −Bi)1/nt+κ−1(hf −hg)+ ℓ for t ≤ tA [see Eqs (B.2)–(B.4)].
The big dots indicate the times at which the flow-depth profiles were measured (see
Fig. 6). The vertical dashed line is time tA marking the maximum time for which
the initial flow-depth profile still influences the flow (see Appendix B). The dashed
line stands for the position of the front for the composite solution xf + ǫx′

f (see
§ 2.3). See Table 2 for the flow conditions pertaining to runs (a) through (d).

3.4 Experimental results for θ = 18◦

We repeated our experimental procedure with the flume inclined at θ = 18◦

to the horizontal. We released either 23-kg or 43-kg masses of Carbopol (i.e.
gate aperture hg fixed at 26 or 36 cm, respectively). We also changed the
rheological properties of the fluid by altering the Carbopol concentration. All
important parameters for each run are summarized in Table 3.

The same remarks as those made for θ = 24◦ hold here, in particular:

• The time variation in the front position xf is fairly well predicted by theory,
with a maximum deviation between theory and experiment of 15% (except
for the early times t < 0.1).

18



HaL

t
=

0.
05

t
=

0.
2

t
=

1.
57

0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

hH
x,

tL

HbL

t
=

0.
03

t
=

0.
23

t
=

3.
74

0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

HcL

t
=

0.
03

t
=

0.
4

t
=

12
.9

4

0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

x

hH
x,

tL

HdL

t
=

0.
02

t
=

0.
6

t
=

19
.2

9

0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

x

Fig. 6. Flow-depth profiles taken at different times for θ = 24◦: experimental data
(solid line) are reported together with the composite solutions hcomp computed at
the same times (dashed line). The dimensionless time at which the profile is taken
is also indicated just above the front; these times correspond to the dots plotted in
Fig. 5.

• There is no significant difference between the outer and composite solutions
for the front position.

• Except for the slight lag time between theory and experiments, the predicted
flow-depth profile hcomp(x, t) is in good agreement with experimental data.
In particular, the size of the head and the flow-depth gradient of the body
are closely approximated by the composite solution.

Note that for the 43-kg mass [runs (b), (d), (f), and (h)], the front velocity was
quite high compared to that reached by the 23-kg mass, but not sufficiently
high for a convective regime to be achieved. This explains why the bulk of the
flow was in a slumping regime [notably for run (a)] and the experimental xf

deviated from the theoretical curve.

3.5 Experimental results for θ = 12◦

As for θ = 18◦ and 24◦, we report the experimental conditions corresponding
to runs (a) to (h) in Table 4. Figure 9 shows the variation in the front position
with time, while Fig. 10 shows flow-depth profiles taken at different times.
The experimental procedure was strictly identical to the one used for θ = 18◦;
in particular, we used two masses (23 and 43 kg) and varied the rheological
properties in the same way. To these two masses corresponded two gate aper-
tures (hg = 0.20 m and 0.34 m, respectively) and initial ǫ0 values (ǫ = 0.40
and 0.66, respectively)
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Fig. 7. Variation in the front position with time for θ = 18◦. The solid line represents
experimental data, while the dotted line represents the theoretical front position
determined by solving the coupled equations ṡ = F (hf )/hf and s = hf (hf −Bi)1/nt
for t > tA, and s = (hf −Bi)1/nt+κ−1(hf −hg)+ ℓ for t ≤ tA [see Eqs (B.2)–(B.4)].
The big dots indicate the times at which the flow-depth profiles were measured (see
Fig. 8). The vertical dashed line is time tA marking the maximum time for which
the initial flow-depth profile still influences the flow (see Appendix B). The dashed
line stands for the position of the front for the composite solution xf + ǫx′

f (see
§ 2.3).
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Table 3
For each run carried out with a slope of θ = 18◦, we report the values of the critical
flow depth hc, the gate aperture hg, the dimensionless numbers ǫf = h2

c/V and Re
related to the final (arrested) state, the initial value of the aspect ratio ǫ0 = hg/ℓ
and Bingham number Bi0. The rheological parameters n, K, and τc are also recalled
for convenience (see Table 1). The reservoir length was ℓ = 0.51.

run hc (m) hg (m) ǫf ǫ0 Bi0 Re n K (Pa s−n) τc (Pa)

(a) 0.025 0.23 8.6 × 10−3 0.46 0.11 0.82 0.39 32.10 78.00

(b) 0.025 0.36 4.6 × 10−3 0.71 0.07 0.82 0.39 32.10 78.00

(c) 0.029 0.23 1.1 × 10−3 0.46 0.13 0.19 0.42 47.68 89.00

(d) 0.029 0.36 0.6 × 10−3 0.71 0.08 0.19 0.42 47.68 89.00

(e) 0.033 0.23 14 × 10−3 0.46 0.14 0.09 0.51 58.91 102.00

(f) 0.033 0.36 7.8 × 10−3 0.71 0.09 0.09 0.51 58.91 102.00

(g) 0.036 0.23 17 × 10−3 0.46 0.16 0.04 0.58 75.84 110.00

(h) 0.036 0.36 9.1 × 10−3 0.71 0.10 0.04 0.58 75.84 110.00

Contrary to steep slopes, there is poor agreement between theory and exper-
imental data concerning the front position. The theoretical curves not only
deviate substantially from the experimental curves [up to 40% for run (b)],
but also the shape is quite different: surprisingly enough, the experimental
curves are convex, which shows that the front slightly accelerated in spite
of shallow slope, whereas the theoretical curves are grossly concave for small
volumes, indicating front deceleration.

Agreement is somewhat better for the flow-depth profiles (except for early-
time profiles), but taking a closer look at the body shape clearly shows that no
nearly-uniform regime was achieved in this region for the 23-kg mass, whereas
theory predicts that such a regime occurs at sufficiently long times (the flow
depth is nearly constant for the dashed curves). For the large mass (43 kg),
this difference is not obvious.

At first glance, all these elements lead us to think that when slopes are mild,
flows do not reach equilibrium; their dynamics seems to be controlled by grav-
itational forces, viscous dissipation, and pressure gradient, which makes it
difficult any attempt to derive analytical approximation of the flow behavior.
As we will see with experiments conducted at 6◦, the bulk behavior is probably
more complex than believed.
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Fig. 8. Flow-depth profiles taken at different times for θ = 18◦: experimental data
(solid line) are reported together with the composite solutions hcomp computed at
the same times (dashed line). The dimensionless time at which the profile is taken
is also indicated just above the front; these times correspond to the dots plotted in
Fig. 7.

3.6 Experimental results for θ = 6◦

The experimental conditions are reported in Table 5. Figure 11 shows the vari-
ation in the front position with time, while Fig. 12 shows flow-depth profiles
taken at different times. The shortcomings pinpointed in § 3.5 are exacerbated
here. In particular, there are substantial differences between the theoretical
and experimental xf (t) curves. As noted in § 3.5, the experimental curves are
convex, which shows that the mass was slightly accelerating whereas theory
predicts that the mass should have started decelerating and approaching the
final state for t ≥ 100. This surprising behavior cannot be easily understood
unless we assume that the slight acceleration of the front is in fact due to a de-
crease in flow resistance or increase in supplied energy. The latter explanation
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Fig. 9. Variation in the front position with time for θ = 12◦. The solid line represents
experimental data, while the dotted line represents the theoretical front position
determined by solving the coupled equations ṡ = F (hf )/hf and s = hf (hf −Bi)1/nt
for t > tA, and s = (hf −Bi)1/nt+κ−1(hf −hg)+ ℓ for t ≤ tA [see Eqs (B.2)–(B.4)].
The big dots indicate the times at which the flow-depth profiles were measured (see
Fig. 10). The vertical dashed line is time tA marking the maximum time for which
the initial flow-depth profile still influences the flow (see Appendix B). The dashed
line stands for the position of the front for the composite solution xf + ǫx′

f (see
§ 2.3).
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Table 4
For each run carried out with a slope of θ = 12◦, we report the values of the critical
flow depth hc, the gate aperture hg, the dimensionless numbers ǫf = h2

c/V and Re
related to the final (arrested) state, the initial value of the aspect ratio ǫ0 = hg/ℓ
and Bingham number Bi0. The rheological parameters n, K, and τc are also recalled
for convenience (see Table 1). The reservoir length was ℓ = 0.51.

run hc (m) hg (m) ǫf ǫ0 Bi0 Re n K (Pa s−n) τc (Pa)

(a) 0.038 0.20 1.9 × 10−2 0.40 0.19 1.82 0.39 32.10 78.00

(b) 0.038 0.34 1.0 × 10−2 0.66 0.11 1.82 0.39 32.10 78.00

(c) 0.043 0.20 2.4 × 10−2 0.40 0.21 0.43 0.42 47.68 89.00

(d) 0.043 0.34 1.3 × 10−2 0.66 0.13 0.43 0.42 47.68 89.00

(e) 0.050 0.20 3.2 × 10−2 0.40 0.24 0.21 0.51 58.91 102.00

(f) 0.050 0.34 1.7 × 10−2 0.66 0.15 0.21 0.51 58.91 102.00

(g) 0.053 0.20 3.7 × 10−2 0.40 0.26 0.09 0.58 75.84 110.00

(h) 0.053 0.34 2.0 × 10−2 0.66 0.16 0.09 0.58 75.84 110.00

Table 5
For each run carried out with a slope of θ = 6◦, we report the values of the critical
flow depth hc, the gate aperture hg, the dimensionless numbers ǫf = h2

c/V and Re
related to the final (arrested) state, the initial value of the aspect ratio ǫ0 = hg/ℓ
and Bingham number Bi0. The rheological parameters n, K, and τc are also recalled
for convenience (see Table 1). The reservoir length was ℓ = 0.51.

run hc (m) hg (m) ǫf ǫ0 Bi0 Re n K (Pa s−n) τc (Pa)

(a) 0.076 0.177 7.5 × 10−2 0.34 0.11 7.2 0.39 32.10 78.00

(b) 0.076 0.307 7.5 × 10−2 0.60 0.07 7.2 0.39 32.10 78.00

(c) 0.086 0.177 3.9 × 10−2 0.34 0.12 1.7 0.42 47.68 89.00

(d) 0.086 0.307 3.9 × 10−2 0.34 0.08 1.7 0.42 47.68 89.00

(e) 0.099 0.177 2.9 × 10−2 0.60 0.14 0.85 0.51 58.91 102.00

(f) 0.099 0.307 2.9 × 10−2 0.34 0.09 0.85 0.51 58.91 102.00

(g) 0.10 0.177 2.0 × 10−2 0.60 0.15 0.37 0.58 75.84 110.00

(h) 0.10 0.307 2.0 × 10−2 0.34 0.09 0.37 0.58 75.84 110.00

can be discarded since the energy supplied by gravity acceleration remains
constant, while elastic recovery is too low to affect the flow properties. The
former explanation seems more plausible since a number of disturbing effects
such as diffusion and bottom slip can affect the bulk behavior.

Since we are at shallow slopes, we can wonder whether the diffusive-regime
theory outlined in Appendix A is more appropriate and yields better agree-
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Fig. 10. Flow-depth profiles taken at different times for θ = 12◦: experimental data
(solid line) are reported together with the composite solutions hcomp computed at
the same times (dashed line). The dimensionless time at which the profile is taken
is also indicated just above the front; these times correspond to the dots plotted in
Fig. 9.

ment with experiments. In Fig. 13, we reported the experimental xf (t) curve
together with the front position provided by the convective-regime theory
(xf +ǫx′

f , dashed curve) and that given by the diffusive-regime theory (dotted
curve). For the latter curve, we used the pdepe routine in Matlab to solve the
nonlinear diffusion equation (A.11) numerically and determine the front posi-
tion by seeking xf such that h(xf ) = 0 (dotted curve). Sensitivity tests were
also conducted on the initial time at which the mass was released. Indeed, since
it took 0.5 s to open the lock gate (see § 3.1) and part of the fluid was lifted up
when removing the gate, the initial time was not known accurately. Numerical
tests showed that the results were affected a great deal because of the vigor-
ous acceleration experienced by the fluid during the slumping phase. This may
somehow spoil comparison with experimental data because of this. This issue
turned out to be of lower importance than initially believed since whatever
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Fig. 11. Variation in the front position with time for θ = 6◦. The solid line represents
experimental data, while the dotted line represents the theoretical front position
determined by solving the coupled equations ṡ = F (hf )/hf and s = hf (hf −Bi)1/nt
for t > tA, and s = (hf −Bi)1/nt+κ−1(hf −hg)+ ℓ for t ≤ tA [see Eqs (B.2)–(B.4)].
The big dots indicate the times at which the flow-depth profiles were measured (see
Fig. 12). The vertical dashed line is time tA marking the maximum time for which
the initial flow-depth profile still influences the flow (see Appendix B). The dashed
line stands for the position of the front for the composite solution xf + ǫx′

f (see
§ 2.3).
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Fig. 12. Flow-depth profiles taken at different times for θ = 6◦: experimental data
(solid line) are reported together with the composite solutions hcomp computed at
the same times (dashed line). The dimensionless time at which the profile is taken
is also indicated just above the front; these times correspond to the dots plotted in
Fig. 11.

the theoretical approximation used, we failed to reproduce the experimen-
tal curves: indeed they systematically exhibited convex shapes at sufficiently
long times whereas the theoretical curves were concave and tended towards
an asymptotic value x∞ (as shown in Appendix A). We then concluded that
the discrepancies between theory and experiments could not be explained by
the growing importance of diffusion effects at shallow slopes.

Wall slip can be another explanation for front acceleration. Indeed, slip is often
associated with low-shear-stress regimes [54] and since at shallow slopes, the
bottom shear stress was significantly lower than for steep slopes, slip could
have occurred in spite of our efforts to remove or alleviate its effects. Careful
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Fig. 13. Variation in the front position with time for θ = 6◦. The solid line represents
experimental data, while the dotted line represents the theoretical front position
determined by solving the nonlinear evolution equation (A.11) for a creeping flow
in a diffusive regime (see Appendix A). The dashed line stands for the position of
the front for the composite solution xf + ǫx′

f (see § 2.3) as for Fig. 11. For this
figure we used a different scaling: ǫ = tan θ (so that S = 1), H∗ = 0.05 m (arbitrary
value), and L∗ = H∗/ǫ.
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Fig. 14. Sketch depicting the sudden formation of lateral levees from weakly sheared
rims for an unconfined flow: (a) once the flow was released, low-shear regions formed
at the flow periphery. (b) Suddenly, the margins became unsheared and formed
lateral levees confining the sheared material in the core region and the head.

examination of image records together with individual samples poured on the
inclined reveal did not provide any evidence that at shallow slopes, the head
slipped along the bottom surface.

A third explanation was uncovered by looking at our movies, in particular
movies recording unconfined flows down gentle slopes; a typical movie can
be downloaded from our website http://lhe.epfl.ch/films/Carbopol.mpg. At
the very beginning, after the material started flowing down the plane, the
core of the flow was strongly sheared, whereas the fluid near the lateral rims
experienced weak shear [see Fig. 14(a)]. Once the flow width reached a nearly
constant value, the rims ‘froze’ almost instantaneously and formed thick levees
[see Fig. 14(b)]. At the same time, a pulse originating from the flow rear
overtook the front and gave new impetus to the head. This produced the kink
that can be seen in all xf (t) curves for unconfined flows [52] and to lesser
extent for confined flows [in particular runs (b), (d), (f), and (h) in Fig. 12].
Indeed, the flow rate remaining nearly constant over some period of time, flow
narrowing caused by lateral levees led to swiftly increasing the mean velocity.
If this scenario is correct, our two-dimensional analysis is too crude to capture
the flow properties, notably the change in the front velocity induced by the
levee formation. This scenario however remains speculative and calls for more
work to elucidate this point.
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4 Conclusion

In this paper, we investigated the behavior of a fixed volume of Herschel-
Bulkley fluid down a sloping bed. With an appropriate scaling of the local
governing equations and using matched asymptotic expansions, we derived an
evolution equation for the flow depth, which takes on the form of a nonlin-
ear convection equation for the body (outer solution). For the head (inner
solution), a nonlinear diffusion equation is required to account for the large
variations of the flow depth over short length scales. To leading order, the evo-
lution equation for the flow depth within the body is similar to the equation
worked out by Huang and Garćıa [14] using a kinematic-wave approxima-
tion and Saint-Venant approach. For the head, the evolution equation differs:
Huang and Garćıa [14] found that the flow-depth averaged velocity was uni-
form (independent of x) and equal to the front velocity within the tip region;
this means that the leading edge behaves like a traveling wave. In our analysis,
we found that the tip region was in a diffusive regime, which explains why the
resulting governing equation looks like the nonlinear diffusion equation worked
out by Liu and Mei [13] and Balmforth and Craster [38]. Compared to earlier
work using the same framework as here (lubrication theory), the innovative
point lies in the scaling, which makes it possible to derive an evolution equa-
tion for steep slopes, whereas with the scaling used in previous investigations,
bed slope was necessarily shallow.

We also compared theory with experimental data. As Herschel-Bulkley fluids,
we used Carbopol Ultrez 10, whose behavior in viscometric experiments can
be closely approximated by the Herschel-Bulkley equation over a relatively
wide range of shear rates. The rheological properties of our Carbopol samples
were measured independently using a rheometer. Disturbing effects such as
slip, thixotropy, and viscoelasticity, were negligible or controlled to a large
extent. An experimental set-up was designed to generate dam-break flows,
i.e. a fixed volume of fluid was released onto an inclined flume. Using image
processing techniques, we were able to accurately reconstruct the free surface
of the avalanching mass at fairly high rates (45 Hz), which made it possible to
track the free surface and contact line position over time. The flume inclination
ranged from 6◦ to 24◦. The initial Bingham number Bi0 was in the 0.07–0.26
range, i.e., the samples fell into the low-yield-stress fluid category. 23-kg and
43-kg masses of Carbopol were tested, which led to different initial aspect-ratio
values (initially, ǫ0 was in the 0.3–0.7 range).

Experiments at the highest slopes (24◦) showed good agreement between the-
ory and experimental data: both the front position and shape of the avalanch-
ing mass were correctly described by the zero-order approximation of the gov-
erning equation. At milder slopes, discrepancies appeared and were exacer-
bated at gentle slopes. For shallow slopes, the substantial deviations between
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theory and experiments did not arise from diffusion effects or slip, but more
probably from unsheared-zone (levee) formation, which made the flow struc-
ture three-dimensional. Note also that in agreement with theory, we did not
observe a mass coming to a halt, which confirms that the final (arrested) state
is not reached in finite time. This experimental observation contrasts with
some observations made with kaolin (e.g., see the slump tests presented in
[55]), where complete arrest was observed quickly after the release; this sug-
gests that the choice of the material is essential to properly comparing theory
and experiments for this kind of fluids.
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A Appendix A: Diffusive regime

In this appendix, we outline the characteristics of the diffusive regime. With
the dimensionless variables and scales introduced in § 2, we end up with scaled
governing equations:

ǫRe
du

dt
= S − ∂p

∂x
+ ǫ

∂σxx

∂x
+

∂σxy

∂y
, (A.1)

ǫ3Re
dv

dt
= −1 +

∂p

∂y
+ ǫ2∂σxy

∂x
+ ǫ

∂σyy

∂y
, (A.2)

where S = tan θ/ǫ) is a slope parameter that can be set to unity unless the
plane is horizontal. We pose the regular ǫ-expansions: p = p0 + ǫp1 + · · · ,
h = h0 + ǫh1 + ·, and σ = σ0 + ǫσ1 + · · · , where σ generically refers to the
extra-stress components. If the Reynolds number is finite and we consider
terms appearing to order ǫ0, we have to solve

0 = S − ∂p0, x

∂x
+

∂σ0, xy

∂y
, (A.3)

0 = −1 − ∂p0

∂y
, (A.4)

subject to p0 = 0 and σ0, xy = 0 for y = h0. On integrating these equations,
we obtain

σ0, xy = (S − ∂xh0)(h0 − y) (A.5)

p0 = h0 − y, (A.6)

We now pursue by inferring the velocity field u from the stresses. By posing
u = u0 + ǫu1 + · · · and keeping zero-order terms, we derive

(

∂u0

∂y

)n

= σ0,xy − Bi for σ0,xy > Bi, (A.7)

∂u0

∂y
= 0 for σ0,xy < Bi, , (A.8)

The yield condition τ = Bi is reached at elevation y = Y0(x, t) = h0 − Bi|S −
∂xh0|−1. For y ≤ Y0, we obtain

u0(x, y, t) =
n

n + 1
(S − ∂xh0)

1/n
(

Y
1+ 1

n
0 − (Y0 − y)1+ 1

n

)

, (A.9)

while for y ≥ Y0, the velocity is constant to leading order: u0 = n
n+1

(S −
∂xh0)

1/nY
1+ 1

n
0 . Integrating the cross-stream velocity profile provides the flow-
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depth averaged velocity

ū =
n

(n + 2)(n + 1)
Y0[(S − ∂xh0)Y0]

1/n (2n + 1)h0 − nY0

h0

. (A.10)

Integrating the continuity equation provides the governing equation for h

∂h

∂t
+

∂

∂x
F (h) = 0, (A.11)

with

F (h) = nY
[(S − ∂xh)Y ]1/n((2n + 1)h − nY )

(n + 2)(n + 1)
and Y = max

(

h − Bi|S − ∂xh0|−1, 0
)

.

When S > 0 and in the limiting case of the Newtonian (n = 1 and Bi = 0) and
power-law (Bi = 0) fluids, this evolution equation does not admit similarity
or other exact solutions and so must be integrated numerically; when S = 0,
similarity solutions can be worked out [41]. Figure A.1 shows the typical flow
depth profiles at different times, produced by the slump of a fixed volume on
a dry horizontal boundary for two values of n (n = 1/2 and n = 1). The flow
depth profile tends slowly towards a final stationary profile h∞(x) for which
Y = 0. In the low-Bingham-number limit (Bi ≤ 1

3
), this profile is given by

h∞(x) =
√

2Bi(x∞ − x), (A.12)

with x∞ = (9/(8Bi))1/3 the final position reached by the front [37, 39]. Con-
vergence is very slow, typically on the order of t−n [37]. The behavior and
relevance of this equation to physical problems have been discussed in a num-
ber of earlier papers [13, 37, 39] and therefore we will not pay more attention
on it.

B Appendix B: Characteristic form

To leading order, the governing equation for h is given by equation (45), which
can be recast in the characteristic form

∂h

∂r
= 0 along

∂t

∂r
= 1 and

∂x

∂r
= ∂hF (h) = h(h − Bi)1/n, (B.1)

subject to the constraint h ≥ Bi and where r is a dummy variable. This
convection equation being hyperbolic, discontinuities may arise at x = s(t)
and propagate at a velocity ṡ given by

ṡJhK = JF (h)K (B.2)
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Fig. A.1. (a) Flow depth profiles for times t = 0.1, 1, 10, and 1000 (solid line); the
initial flow depth is also reported (dashed line). Numerical computations made for
θ = 0◦, ℓ = 1, Bi = 0.1, n = 1, ∆x = 0.01, ∆t = 0.002. (b) Flow depth profiles with
the same features as in (a) except that n = 1/2.

where JhK, respectively JF (h)K, is the jump experienced by h, respectively
F (h), across the shock located at x = s(t).

It is straightforward to solve equation (B.1): using the initial conditions t(0) =
0, x(0) = xi, and h(x, 0) = hi(xi) = hg+κ(xi−ℓ) given by (25) and eliminating
r, we find that the flow depth is the solution to the implicit equation

h + κh(h − Bi)1/nt = hg + κ(x − ℓ). (B.3)

Let us only consider the case where the initial thickness hi is above Bi through-
out the reservoir. In the converse case, this means that part of the volume in
the reservoir will not flow once the lock gate is opened: for hi < Bi, i.e. for
0 ≤ x ≤ κ−1(Bi−hg)+ ℓ, there will be no motion. This is in fact equivalent to
considering a reservoir, the length of which is decreased by κ−1(Bi − hg) + ℓ.
In the following, we then assume that Bi < hg − κℓ.

Initially, at x = 0 and x = ℓ, the flow depth discontinuously drops to 0, which
gives rise to either a rarefaction wave or a shock [56, 57]. On the right of
the reservoir, the initial discontinuity at the lock gate necessarily causes the
formation of a shock, which propagates rightward at the velocity ṡ prescribed
by (B.2): ṡ = F (hf )/hf , where hf denotes the flow depth at the front and is
evaluated using (B.3) at x = s. On the left, a centered rarefaction wave must
occur and propagate from the rear end into the tail of the avalanching mass
(see Fig. B.1). Its features are deduced by seeking similarity solutions in the
form H(ζ) (with ζ = x/t) to the convection equation (45) [56, 58]. We find
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that H is implicitly given by

H(ζ)(H(ζ) − Bi)1/n = ζ. (B.4)

Except for some special values of n, this equation does not admit analytical
solutions. For n = 1 (Bingham fluid), we retrieve the similarity solution worked
out by Huang and Garćıa [28]

H(ζ) =
1

2

(

Bi +
√

Bi2 + 4ζ
)

. (B.5)

For n = 1/2 (a reasonable approximation for many Herschel-Bulkley fluids),
we find that

H(ζ) =
1

6

(

4Bi +
2 3
√

2Bi2

J(ζ)
+ 22/3J(ζ)

)

, (B.6)

with J(ζ) = 3

√

−2Bi3 + 27ζ + 3
√

3

√

ζ
(

27ζ − 4Bi3
)

.

As shown in Fig. B.1(a), the characteristics associated with this rarefaction
wave form a fan of straight lines emanating from the point of origin (x, t) =
(0, 0): x = mt, with m a parameter satisfying 0 ≤ m ≤ m0 and m0 = (hg −
κℓ)(hg − κℓ − Bi)1/n. At time tA, the steepest characteristic coming from O
intersects the frontal shock curve x = s(t) at point A. For time t ≤ tA,
the flow-depth profile is piecewise continuous with h(x, t) given by (B.3) for
m0t ≤ x ≤ s(t) and by (B.4) for 0 ≤ x ≤ m0t. Time tA is the time at which
the flow depth becomes independent of the initial conditions and conforms to
a parabolic-like shape given by (B.4), as shown in Fig. B.1(b). For t ≥ tA, the
flow depth profile is given by the similarity form (B.4). Figure B.1(b) shows
flow depth profiles taken at different times ranging from t = 0 to t = 103.
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