
QUARTERLY OF APPLIED MATHEMATICS
VOLUME LI, NUMBER 2
JUNE 1993, PAGES 389-398

THE DAMPED MATHIEU EQUATION
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Abstract. We establish an asymptotic lower bound for the minimum excitation
needed to cause instability for the damped Mathieu equation. The methods used
are Floquet theory and Liapunov-Schmidt, and we use a fact about the width of the
instability interval for the undamped Mathieu equation. Our results are compared
with published numerical data.

1. Introduction. The Mathieu equation

y + (A + ecos2/)y = 0 (1.1)

gives a simple model for externally driven oscillations [2, 11] and also arises from
separation of variables for elliptical regions [9], In the engineering literature, the
term ecos2? is often called a parametric excitation, of strength |e|. For Eq. (1.1) it
is known that the (A, e)-plane consists of regions of stability and instability bounded
by curves on which there is a periodic solution. These zones of instability form
tongues attached to the A-axis at A = m , m = 0,1,2,....

It is natural to consider also the damped Mathieu equation
2x + cx + (m + a + £ cos2z)x = 0, (1.2)

where c, a, e are small, A = m + a. Many authors have observed that for c > 0
the tongues separate from the A-axis. In this paper we establish an asymptotic lower
bound on the minimum forcing strength sm needed to cause instability near X — m ,
i.e., the distance of the mth tongue from the A-axis, for all m > 1 .

Theorem 1.1. For small c > 0, m > 1,
C-il/m

m!(w- !)!•- . (1.3)em ~ :=
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For c > 0, m > 1 , the vertices, i.e., the points on the mXh tongue closest to the
2A-axis, are given by (A, e) ~ (m + am , ±em), where

2/m c2

m2
d, := 0.

r c~\L!m C- [m!(m - 1)! - -J +-, m> 2, (M)

For concreteness, we present a few examples of Eqs. (1.3), (1.4), which can be
compared with numerical results of [7, 8] for unstable solutions of the undamped
Mathieu equation.

The derivations of Eqs. (1.3), (1.4) are the principal results of this paper. There are
many methods for establishing perturbation results for the Mathieu equation (1.1).
We will use primarily the method of Liapunov-Schmidt, i.e., alternative problems
[3, 4, 6]. For the damped Mathieu equation (1.2), we begin with Liapunov-Schmidt
and then draw on [1] for a crucial fact, about the "width of the instability zones" for
the undamped Mathieu equation, which is proven using the method of expansion in
Fourier series [9],

The heart of the argument for m > 3 is: For c = 0 , the bounding curves are given
approximately by (a - bj mE^)2 — Pf°r a known constant pm and other
constants b ■ m . For small c > 0, it turns out that the bounding curves are given

approximately by (a - J2jLi bj m£J)2 = p2me2m - (mc)2 , so the curves are defined for

approximately |e| > im = (rnc/pm)l/m .
Approximate bounding curves for m = 1,2,3,4 are

A = 1 ± ((e/2)2 - c2)'/2,

The latter two, as well as those for m = 5 , 6, 7 , are obtained using results for c = 0
[9], Approximate curves for m - 1,2,3, c = 0, .2, .4, .8 are depicted in Fig. 1.
Exact curves for different values of m should not cross, so we have restricted the
domain of the curves, artificially.

2. Instability intervals and periodic solutions. First we review a basic result [10]
for the undamped equation (1.1), i.e., Eq. (1.2) when c = 0.

Theorem 2.1. For every e, Eq. (1.1) has two monotonically increasing infinite se-
quences of real numbers A0, A, , A2, ... and Aj, A'2 , A3, ... such that Eq. (1.1) has
a solution of period n if and only if A = An , n — 0, 1, ... , and a solution of period
2n if and only if A = A^ , n — 1,2,.... The Afl and A'n satisfy

A0 < A'j < Aj < Aj < A2 < Aj < A^ < A3 < A4 <•••—> oo.
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The solutions of Eq. (1.1) are stable in the intervals (A0, A,), (k'2 , kx), (k2 , A'3),
(k'4,k3),....

The proof of this result is based on properties of Hill's discriminant and its rela-
tionship with the characteristic multipliers of Floquet theory. We now discuss these
things for the more general case of Eq. (1.2).

The damped Mathieu equation (1.2), where k = m2 +. a, can be rewritten as a
linear system, which is periodic with period n , so Floquet theory [6] applies. Define
two solutions x, (t; k, e, c), x2(t; k, e, c) by the initial conditions

X[(0) = 1, Xj(0) = 0 = x2(0), x2(0) = 1.

Sometimes we will suppress dependence on k, e, c if the meaning is clear. A mon-
odromy matrix

xw = (*.<*> x/;\VxiM x2(n)
has trace A = x{(n) + x2(n) and characteristic multipliers

A ± \/A2 - 4e~
V± = o 

Here we have used the result that detX(7r) = e cn [6, Lemma III.7.3], Note that
—cn

Equation (1.2) has a n (or 27r)-periodic solution if and only if one of the charac-
teristic multipliers is +1 (or ±1, respectively; if a multiplier is -1 there is a In-
periodic solution, which is not 7r-periodic), if and only if A = 1 +e cn (or -1 -e~cn ,
respectively). Stability of x = 0 is guaranteed if |yu±| < 1 , i.e., |A| < 1 + e~'" , and
instability of x = 0 is guaranteed if |1u+| > 1 or |/z_| > 1, i.e., |A| > 1 + e~CK .
Thus, for fixed c, e, the instability intervals, i.e., values of k for which x = 0 is
unstable for Eq. (1.2), are bounded by the values of k for which Eq. (1.2) has a n-
or 27r-periodic solution.

3. Perturbation equations and solution curves. Fix an integer m > 1 . For the
method of Liapunov-Schmidt it is convenient to use the van der Pol transformation
on Eq. (1.2), considered as a system. Let

(x\ .... . ( sin ml cos mt \ ,-iy = I • I > ^(0 = I ) , z = 4/(/) y.
\x \m cos mt -msmmt J

Then z satisfies

where

z = B.(t)z, (3.1)

Bx(t \ a, e, c) = - (sin2mt)A - (cos2mt)B)
a

2m'
+ ~ (cos 2mt)A + (sin 2mt)B)

+ ^(-2(cos2t)C - (sin(2m - 2)t + sin(2/?7 + 2)t)A

- (cos(2m - 2)t + cos(2m + 2)t)B),
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where

Mi-0,). *-(? J)- c-(-°.J)- '-G?
Note that #,(•) is ^-periodic and that the transformation, defined using 4*(-), is n-
periodic (or 27r-periodic) for m = even (or m = odd, respectively). Thus, Eq. (1.2)
has a ^-periodic solution if and only if Eq. (3.1) has a ^-periodic solution and
m — even, and Eq. (1.2) has a 27t-periodic solution, which is not ^-periodic, if and
only if m = odd and Eq. (3.1) has either a n-periodic or 27r-periodic solution. Of
course, all ^-periodic solutions are also 2^-periodic.

To look for ^-periodic solutions of Eq. (3.1) we can use the method of Liapunov-
Schmidt, i.e., alternative problems [3, 4, 6]. Denote by the space of func-
tions f:l-»R , which are continuous and ^-periodic, with the usual norm |f| =
max0<,<;r |f(f)|, and denote by Pi the mean value of f, i.e., Pi - [X/n) /0"f. Note

# 2
that P : 3°n —► is a bounded linear operator, in fact, a projection: P = P.
Let be the space of differentiate functions whose derivative is in
derivative of f, i.e., L0f = f, and L^{a,e,c)i = /?,(•; a, e, c)i. Then L0 and
L, are bounded linear operators: and L, is small if |a|, |e|, c > 0
are small. The existence of a n-periodic solution of z of Eq. (3.1) is equivalent to
solving L0z = Lj(a, e , c)z, z £ , and this can be written as a system

(/ - JP)L0(a + (/ - P)z) = (/ - P)LX (a + (/ - P)z), (3.2)
PL0(a + (/ - P)z) = PL] (a + (/ - P)z), (3.3)

where a = Pz e M2. The operator (I - P)L0: (/ - P)3°l -> (/ - P)3°n has a right
inverse Jf: {I — P)&>n —> (I — P. Explicitly, if f e (I-P)3°n , i.e., f is ^-periodic
with mean value zero, then there is a unique ^-periodic function z with mean value
zero such that z = f, namely, z is the unique indefinite integral of f with mean
value zero, i.e., z = (/ - P) ft. Noting that LQP = 0 , the "auxiliary equation" (3.2)
can be rewritten as

(I - P)z = 3?{I - P)L{ (a + (/ - P)z). (3.4)

Since L, = L{(a, e, c) is small for small (a, e, c), one can solve Eq. (3.4) by
iteration: Let

z(0) = a, z("+l) = a + JT(/-/>)£,(a+ (/-JP)z(")), n > 0. (3.5)

We see that z n) involves aJekc , where j, k, I > 0 and j + k + I < n .
The "bifurcation equations" are obtained by substituting the solution of Eq. (3.4),

(I - P)z, into Eq. (3.3) after noting that PLQ5f = 0 :

0 = PLx(a, e, c)(a + (/ - P)z) := D(a, e, c)a, (3.6)

where D(a, e, c) is a matrix. At each stage of the iteration one can substitute z"!l
into Eq. (3.3) to get truncated bifurcation equations

0 = PLi{a,e,c)(a + (I - P)z(n]) := D(n\a, e, c) a, (3.7)
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where D[n\a, e, c) is a matrix. We see that D(n\a, e, c) involves a1skc , where
j, k, I > 0 and j + k +1 < n + 1. If D{n\a, e, c) contains enough terms so as to
be able to determine how many solution curves there are in the (A, e)-plane for all
small c > 0, one can obtain approximate solutions of Eq. (3.6) from

0 = det D{n\a,e,c), (3-8„)

because D(a, e, c) = D(n){a, e, c) + + |e| + |c|)"+2), as |a| + |e| + |c| -» 0.
Note that Eq. (1.2) depends on m . In effect, we are considering an infinite col-

lection of perturbation problems.
For m = 1, z(0) = a, D(0\a, e, c) - -aC/2 - c//2 - eB/4 contains enough

information because Eq. (3.80) is

0=idetf ~°n a + £/2),
4 \a-e/2 -c J

i.e.,
2 , 2c + a —(f) •

For each small c > 0, there are two approximate solution curves a± ~
2 2 1 / 2±((e/2) —c ) , defined approximately for |e/2| > c, i.e., |e| > e, ~ e, = 2c.

The scaling argument is similar to [3, pp. 435-436], The value of £[ agrees with
Eq. (1.3).

For m>2, e, c) = j(-aC/(2m) - cl/2) does not contain enough infor-
mation; so one needs at least to iterate once in Eq. (3.5).

After some calculations one obtains

Z(1)=a + a-(-(cos2mt)A + (sin2mt)B) - (sin(2mt)A + cos(2mt)B)
4 m2 4 m

s ( /cos(2m - 2)t cos(2m + 2)t
+ _ (-(s,n2,)C+ ( \m_2' + ^m + 2

/sin(2m - 2)t sin(2m + 2)A
\ 2m -2 + 2m + 2 )

and, after more calculations, noting that AB = C = -BA , AC = B = -CA , one
obtains

D(1\a,e,c) =

where ym = 1 if m = 2, rj = 0 if m > 3 .1 m ' I m
r^Antomc pnAimh infnrmatmn Kppqucp Pn (1 ^

2 2 2 2 \
-2c Ma —

For m = 2, £>(1)(a,e,c) contains enough information, because Eq. (3.8.) is
2 2c a
4 16 24' 16

2 2 2
q_   e I £_ _?/•
16 24 ^ 16

i.e.,

0 = 4c" +
/ 2 2 2 >2.1 c a £~ "4 ~ 16 ~ 24
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For each small c > 0, there are two approximate solution curves

2

24±\J
defined for approximately |e2/16| > 2c, i.e., for |e| > e2 ~ e2 = \/32c. The value
of e2 agrees with Eq. (1.3); the corresponding value of cL = \c + c2/4 agrees with
Eq. (1.4).

For m > 3, D^\a,e,c) does not contain enough information. Rather than
attempt to continue the iteration in Eq. (3.5), one can use information about the
"width of the instability intervals" for the undamped Mathieu equation, i.e., c = 0.
In [1, 5] Fourier series are used to show that for the undamped Mathieu equation
(1.1), for any m > 1 there are two solution curves, which are in (m - l)st-order
contact at (a, e) = (0, 0). It follows that the curves must be of the form, for some
constants b- m,

Jlbj,meJ ±PmE'n> (3.10)J
j= 1

where 2pme"' is the width of the instability interval. It is known from [1] that the
instability interval has width

I IW\Q\
2- l)!)2

where e = -2q in Bell's notation; hence pm = ,3m-2((|w_l),)2 • ^ follows from
Eq. (3.10) that, up to a multiplicative constant k,

k det D{"'l\a, e, 0) = ~ p],/™ ■

But, since D(m ''(a, e, 0) = D[]\a, e, 0) + (terms of degrees between 3 and m),

de.D-v,., 0, = U - Y6-£r-T) -±h^A2-{tty+
(3.1 r

j=3

Furthermore, since D(m~ {a, e, c) is real-analytic in c, Eq. (3.9) implies

2
J ^ \ j . r\(w—0/ *-detZ) (a, e, c) = det/) (a,e,0) + —.

It follows that, to lowest order, up to a multiplicative constant, Eq. (3.9) implies

2m
£ .

7 = 1
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For each small c > 0, there are two approximate solution curves
2 2 m  

a± ~ ^+8(J-i)+J^bj'm£j ± \ipym-{mc)2>

defined for |e| > em ~ em = {mpmc)x^m = [23m~2m({m - 1 )!)2c]I/m , which agrees

with Eq. (1.3). The corresponding value of am = e2m/(S(m2 - 1)) + c2/4 agrees with
Eq. (1.4).

To complete the proof of Theorem 1.1, it suffices to look for 2re-periodic solutions
of Eq. (3.1). Now let Pi = {\/2n) i. Because Bx{t\ a, s, c) only involves even
Fourier terms, for all n , in Lx(a, e, c)(a + (/ - P)z1"^) the only terms of nonzero
mean value over the interval 0 < t < 2n will be exactly the same as the only terms
of nonzero mean value over the interval 0 < t < n , namely, constant terms obtained
from products of the form sin(2m-2l)t sin(2m-2/)/ or cos(2w-2/)?cos(2m-2/)/.
It follows that the truncated bifurcation equations will duplicate those for the search
for n-periodic solutions and so will not produce any new 2^-periodic solutions.

4. Comparison with numerical results. In [7, §3.6] one finds some numerical results
for the undamped Mathieu equation (1.1), including curves in the (A, e)-plane on
which the characteristic multipliers ju± satisfy |/<±| = e±v , v > 0 . There is a simple
connection between those curves and the curves in the (A, e)-plane we obtain, for
fixed c > 0, for the damped Mathieu equation (1.2). This connection enables us
to compare our approximate curves' vertices (am , &m) with numerical results of [7],
We can also compare directly our approximate vertices with numerical results of [8]
for the damped Mathieu equation.

The equations

x + cx + (A + £cos2?)x = 0, (4.1)
y + (A + e cos 2t)y = 0 (4.2)

are related by y{t) = ec'^2x(t), 1 = X — c2/4. It follows that the characteristic
multipliers fix± of Eq. (4.1) are related to the characteristic multipliers ny± of (4.2) by
fix±eCKl2 = n± ■ We note fiy • ny_ = 1 . We know that Eq. (4.1) has a periodic solution
if and only if |^| = 1 or \fix_\ = 1 , in which case Eq. (4.2) has a characteristic
multiplier \[iy+\ = ecx^2 or \j/_\ = eCK1/2. Since /uy+ • fiy_ = 1 , it follows that Eq. (4.1)
has a periodic solution if and only if Eq. (4.2) has multipliers of magnitude e±cn^2 for
"2
A = A — c /4. In [7] iso-curves are in the (A, e)-plane where Eq. (4.2) has multipliers
of magnitude e±cn/2. In Table 1 we give some comparisons of the vertices of these
curves, obtained from hand measurements of the figures [7, pp. 90-92], with our
approximate vertices in Theorem 1.1.

In [8] one finds some numerical results for the damped Mathieu equation. Again,
from hand measurements of [8, Figure 1], in Table 2 we compare our results for the
approximate vertices in Theorem 1.1.

For both Tables 1, 2 we use the same units as in our paper; for example, in [8] 2y
is our c and 2e is our e.
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Table 1

m C (e"m' &m - t) fr°m (1J-4) (em > Qm)* from t7]

1 .2 (.4,0) (.40,0)
1 .8 (1.6,-.09) (1.6,-.25)

2 .2 (2.53,.267) (2.5,.25)
2 .4 (3.58,.533) (3.6, .54)

3 .1 (5.36,.451) (5.3,.44)
3 .2 (6.75,.721) (6.8,.69)
3 .3 (7.72,.955) (7.7,.92)

Table 2

m c em from (1.3-4) em* from [8]

1 .2 .40 .4
1 1 2.00 2.2
1 2 4.00 4.6

2 .2 2.53 2.6
2 1 5.66 6.8
2 2 8.00 11.6

5. Remarks. The em provide an asymptotic upper bound on the maximum exci-
tation, which does not cause loss of stability. For each m > 1 , im is an increasing
function of c, for small positive c, as one would expect. For each fixed small
positive c, with c < 8, em is increasing in m , for m > 1 ; in fact, for m > 2

- N m(m+1) . , , ,, m m .
£m+l \ 4 (W + 1) ^ 4 2
em J c (m - 1)! m\ c

and, for m = 1 , (e2/e,)2 = 8/c. So e, = 2c provides an asymptotic upper bound,
which is good for all m > 1 .

Define
2

A±(c, e) = rn + C— + Yl,bj me] ± \/(/>mem)2 - {mcf,
7=1

2
<t>±{c, e) =X±(c, e) -A±(0, e) = C—± [sj(pmem)2 - (mc)2 - .

One can see (Fig. 1) that the curves for c > 0 are inside the curves for c = 0, at
least for 0 < c < 4, by showing that </>_(c, e) > 0 > <f>+{c, e). This can be shown

after noting that ±^(c, e) < 0 for |e| > sm , c > 0.

* Only two digits retained from inspections of graphical data.
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Fig. 1.  c-0, c = 0.2,— c = 0.4, c = 0.8.

The characteristic exponents are \/n times the branches of the logarithm of the
characteristic multipliers, which are complex numbers. If v denotes the real part of
a characteristic exponent, v = c/2 , then the curves in [7] of iso- v have asymptotic
vertices (A, e) = (m2 + a -v2, e ), where from Eqs. (1.3) and (1.4)

em =
.V

2 J
l/m

m\(m- 1)!- , am — —^—r m\(m - \)\-
.v'2

2/m 2
+ V ,

for m >2, and el = , dj = 0.
m" — 1

The damped Mathieu equation is in some ways more akin to the undamped Math-
ieu equation than it is to the damped harmonic oscillator equation x + cx + <x>2x = 0.
The latter does not have oscillations, i.e., periodic solutions. Also, the latter has
damped oscillatory solutions with "quasi-frequency" \Joj2 - c1 j4 for small c > 0;
no such frequency shift occurs for the damped Mathieu equation.
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