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Abstract. The properties of slow MHD waves in a two dimensional model are investigated, in a low-beta plasma. Including a
horizontal density variation causes “phase mixing” and coupling between slow and fast MHD waves. The effects of different
density profiles, different driving frequencies, different values for the viscosity coefficient and plasma beta (<1) are studied.
Using numerical simulations, it was found that the behaviour of the perturbed velocity was strongly dependent on the values
of the parameters. From analytical approximations, a strong interaction with the fundamental, normal modes of the system was
found to play an important role. The coupling to the fast wave proved to be an inefficient way to extract energy from the driven
slow wave and is unlikely to be responsible for the rapid damping of propagating slow MHD waves, observed by TRACE. The
“phase mixing” of the slow waves due to the (horizontal) density inhomogeneity does cause a significant amount of damping,
but is again unlikely to be sufficiently strong to explain the rapid observed damping.
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1. Introduction

Since the launch of SOHO and TRACE, many examples
of small amplitude oscillations have been detected in a
variety of solar structures, including the propagating slow
MHD waves on which we will concentrate in this pa-
per. Ofman et al. (1997) first detected periodic density
variations in coronal plumes, using UVCS/SOHO. Similar
perturbations in plumes were also found in EIT/SOHO obser-
vations by DeForest & Gurman (1998). Ofman et al. (1999,
2000) found that these quasi-periodic disturbances could be
modelled as slow magneto-acoustic waves, propagating along
coronal plumes. Similar periodic, propagating disturbances
have been observed in coronal loops, both by EIT/SOHO
(Berghmans & Clette 1999) and TRACE (De Moortel et al.
2000). Robbrecht et al. (2001) and King et al. (2003) presented
a comparison of the properties of the density variations in
the EIT/SOHO 195 Å and TRACE 171 Å passbands, whereas
Nakariakov et al. (2000), followed by Tsiklauri & Nakariakov
(2001), constructed a model in terms of slow magneto-acoustic
waves. These latter authors also show that wide-spectrum slow
magneto-acoustic waves could provide a sufficient rate of heat
deposition to heat the coronal loops in which the perturba-
tions are observed. A similar study was carried out earlier by
Erdélyi (1996). De Moortel et al. (2002a,b) presented an ex-
tensive overview and discussion of the properties of these ob-
served longitudinal intensity oscillations in coronal loops.

This paper is the third in a series of papers looking at the
damping of slow magneto-acoustic waves in the solar corona.
The previous two papers (De Moortel & Hood 2003, 2004)
investigated the properties of uncoupled slow MHD waves,
from the point of view of boundary driven oscillations, in a
1D model. These authors found that, for the observed coro-
nal conditions, thermal conduction appeared to be the domi-
nant damping mechanism, when compared to the effect of com-
pressive viscosity and optically thin radiation. The model was
extended to include gravitational stratification and a diverging
magnetic field and it was demonstrated that a general area di-
vergence can cause a significant, additional, decrease of the
amplitudes of the perturbations. A combination of thermal con-
duction and (general) area divergence yielded detection lengths
that are in good agreement with observed values. The first two
papers in this series more or less exhausted the possibilities of
a 1D, isothermal, loop model and we now investigate a two
dimensional model. This allows us to incorporate a horizontal
density variation, which will lead to the excitation of different
MHD modes and, hence, energy could leave the system as it is
transferred to a different wave mode.

The coupling of different wave modes has been investi-
gated by many authors, in a wide variety of settings and with
varying levels of complexity. Among the first to consider the
coupling of different wave modes in the solar atmosphere are
Ferraro & Plumpton (1958). The problem was re-addressed by
Zhugzhda & Dzhalilov (1984), in terms of Meijer G-functions,
and later by Cally (2001), who pointed out an alternative
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solution in terms of (less daunting) hypergeometric 2F3 func-
tions. However, all these authors consider mode coupling
through a vertical density inhomogeneity, i.e. gravitational
stratification.

Mode coupling will also occur through a horizontal den-
sity inhomogeneity but so far, most of the studies have concen-
trated on the coupling between fast and Alfvén waves, often
in the context of phase mixing of Alfvén waves (Heyvaerts &
Priest 1983). For example, Nocera et al. (1984) considered non-
linear coupling of Alfvén waves and magneto-acoustic waves,
propagating in the longitudinal direction, whereas Nakariakov
et al. (1997) studied the nonlinear excitation of fast magnetoa-
coustic waves by phase mixed Alfvén waves, in an inhomoge-
neous, cold plasma. Subsequently, Nakariakov et al. (1998) in-
vestigated the nonlinear coupling of MHD waves when a inho-
mogeneous flow, directed along the magnetic field, is present.
Numerical simulations, presented by Botha et al. (2000)
showed that the nonlinear coupling of Alfvén waves to fast
waves is actually quite inefficient. The efficiency was estimated
to be proportional to the square of the Alfvén wave amplitude
(Malara et al. 1996; Botha et al. 2000). Some features observed
(but not explained) in the simulations by Botha et al. (2000)
are also seen in this study, and will be discussed in detail later.
Cally & Maddison (1997) describe the evolution of oscillations
when a horizontal density inhomogeneity is present, in terms of
spatial Fourier modes. The authors consider the wave evolution
in a rigid box and, mainly focus on the cascade of energy to
progressively smaller spatial scales due to the process of phase
mixing.

In the literature, the term “phase mixing” usually refers to
“phase mixing of Alfvén waves”. As Alfvén waves are unable
to propagate across the magnetic field, there is no interaction
between neighbouring field lines and hence, it is possible for
disturbances to propagate along different field lines at differ-
ent speeds. The propagating waves will quickly become out
of phase and large (horizontal) gradients will build up. This al-
lows the energy transfer to small lengthscales, where eventually
dissipation can become important. However, slow magneto-
acoustic waves exhibit largely the same anisotropic behaviour
as Alfvén waves. When a density inhomogeneity is present, the
slow waves on different field lines will propagate at different
speeds, leading to a very similar process of “phase mixing”.
It is this “phase mixing of slow waves” that is referred to in
this paper. However, unlike the Alfvén waves, the slow waves
are slightly dispersive, and hence, are not entirely confined to
propagation strictly along the magnetic field lines. This differ-
ent, physical property of the slow waves, will lead to a different
form of phase mixing.

A very detailed and comprehensive set of numerical sim-
ulations of wave propagation through the (stratified) solar at-
mosphere can be found in Rosenthal et al. (2002) and Bogdan
et al. (2003). The authors mainly concentrate on the solar pho-
tosphere and chromosphere and demonstrate that the coupling
between slow and fast modes is most effective where the sound
and Alfvén speed are comparable in magnitude, i.e. where the
plasma beta approaches unity.

The main aim of this paper is not an in-depth study of the
coupling between the various MHD modes as they propagate

through the various layers of the solar atmosphere. Instead, we
will investigate the linear coupling of boundary driven slow
waves to fast waves, through a transversal (horizontal) den-
sity inhomogeneity, in a low-beta (coronal) plasma. This will
enable us to determine the contribution of mode coupling and
phase mixing to the rapid damping of slow magneto-acoustic
waves, observed in large coronal loops. To some extend, one
can consider our numerical simulations to be a subset of the
complex work presented by Rosenthal et al. (2002) and Bogdan
et al. (2003). However, our more simplified approach allows us
to isolate the effect of a horizontal density inhomogeneity and
to obtain analytical approximations to provide a deeper under-
standing of the basic physical processes that are occuring. The
basic equations and model are presented in Sect. 2, whereas a
description of the results of the numerical simulations is given
in Sect. 3. Subsequently, several analytical approximations are
studied in Sect. 4, followed by a comparison of observed slow
MHD waves and conclusions (Sect. 5).

2. Description of the model

2.1. Basic equations

For our simple model, the equilibrium is given by a constant,
vertical background magnetic field, B0 = (0, 0, B0), an in-
homogeneous density, ρ = ρ0(x), and a constant pressure,
p = p0. For both the analytical calculations and numerical sim-
ulations presented in this paper, we use the standard, linearised
MHD equations,

ρ0
∂u1
∂t
= −∇p + j1 × B0 + ρ0ν∇2u1, (1)

∂ρ1

∂t
= −∇.(ρ0u1), (2)

∂p1

∂t
= −γp0∇.u1, (3)

∂b1

∂t
= ∇ × (u1 × B0), (4)

where ρ is the mass density, p the gas pressure, v the velocity,
j the current density and b the magnetic field. Subscript “1”
denotes perturbed quantities, whereas “0” refers to equilibrium
quantities. The viscosity ν is assumed to be constant.

Before proceeding, Eqs. (1) to (4) are made dimension-
less using the equilibrium values for pressure and density.
Furthermore, length and time are non-dimensionalised in terms
of a distance L and time t0 and the velocity is expressed as
v = v0v̄, where v0 = L/t0. The resulting system of equations
contains a dimensionless viscosity parameter,

ν̄ =
ν

ρ0v0L
1
ρ̄0
· (5)

The dimensionless Alfvén speed and adiabatic sound speed are
given by v̄2

A = 1/ρ̄0 and c̄2
s = γβ/2ρ̄0 = β̄/ρ̄0, respectively

(where β̄ = γβ/2).
In this work we study both the slow and fast MHD oscil-

lations, in a horizontally inhomogeneous medium. Hence, we
consider a density profile that has a gradient in the x-direction,
ρ0(x), and assume a vertical, background magnetic field B0,
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Fig. 1. a) A contour plot of the z component of the perturbed velocity, vz, at t = 20.2, with ε = 0.5, β = 0.1 and ω = 2π. b) Corresponding
contour plot of the x component of the perturbed velocity, vx. c)–d) Similar to a) and b) but surface plots. Note the difference in the horizontal
and vertical scales in these figures.

directed along the z-axis. Considering perturbations to the
velocity and magnetic field in both the x and z-directions and
dropping bars from dimensionless quantities, Eqs. (1) to (4) can
be combined to give

∂2vz

∂t2
= c2

s

(
∂2vx

∂z∂x
+
∂2vz

∂z2

)
+ ν∇2 ∂vz

∂t
, (6)

∂2vx

∂t2
= (c2

s + v
2
A)
∂2vx

∂x2
+ c2

s
∂2vz

∂x∂z
+ v2

A
∂2vx

∂z2
+ ν∇2 ∂vx

∂t
· (7)

The inhomogeneous density profile is obtained by setting

ρ0 = (1 − ε cos(πx))−1, (8)

where the parameter ε controls the gradient of the inhomoge-
neous density profile.

2.2. Numerical code

The system of equations described above is solved numerically,
using a centred, sixth-order finite-difference scheme, with a
third-order Runge-Kutta based time-step. We use a compu-
tational domain where the (horizontal) x-component lies be-
tween 0 and 1, whereas the (vertical) z-component lies be-
tween 0 and 15. This implies that the width of the coronal
structure will determine the basic lengthscale in our simula-
tions. For all simulations, we used 200 gridpoints in the hori-
zontal direction, and 1600 in the vertical direction, which was
sufficient to resolve the increasingly small lengthscales, as the
boundary-driven disturbances propagated (and phase mixed)
with height.

Initially, at t = 0, all variables are set equal to zero. The
boundary conditions are taken as follows:

– At z = 0,
– vz(x, 0, t) = sin(ωt),
– vx(x, 0, t) = 0.

– At x = 0 and x = 1,
– ∂vz

∂x (0, z, t) = ∂vz

∂x (1, z, t) = 0,
– vx(0, z, t) = vx(1, z, t) = 0.

3. Results of numerical simulations

In this section, we describe the results of the numerical simula-
tions in several steps. Initially, we set the viscosity coefficient
ν = 0, i.e. we consider an ideal plasma, and investigate the ef-
fect of varying the inhomogeneity parameter ε (Sect. 3.1), the
driving frequency (Sect. 3.2), and the plasma beta (Sect. 3.3).
Subsequently, we will study the effect of viscosity by setting
ν � 0 (Sect. 3.4).

3.1. Varying the density profile

As pointed out before, the density, and hence the Alfvén speed
varies in the horizontal direction. From Eq. (8), it is clear that
the speed is lowest for x = 0, i.e. at the left hand side of the
numerical box, and highest at x = 1, or the right hand side.
This will result in a turning of the wavefront, as different parts
of the wave travel at different speeds. The larger the value of ε,
the stronger the density inhomogeneity and hence the turning
of the wavefront. Figures 1a and 1b show a contour plot of
both the z and x components of the perturbed velocity at a time
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Fig. 2. a) A cross-section of the z component of the perturbed velocity, vz, at x = 0.25 and t = 20.2, with ε = 0.5, β = 0.1 and ω = 2π.
b)–c) Similar to a) but at x = 0.5 and x = 0.75, respectively. d)–f) Corresponding cross-sections of the x component of the perturbed
velocity, vx.

t = 20.2 and with ε = 0.5 and β = 0.1. For both compo-
nents, the strong turning of the wavefront is obvious (especially
if one keeps in mind that the x and z axis are scaled differ-
ently). From these graphs, we see that there are two additional
features present. Firstly, there appears to be a disturbance that
is confined to the right hand side of the domain and which is
present in both the z and x components. The wavelength of this
disturbance appears to be similar to that of the driven distur-
bance. Secondly, there is an additional, longer-wavelength, dis-
turbance present in the x component, which has its maximum
in the left half of the domain. Contrary to the boundary-driven
wave, the wavefront of this additional disturbance does not ap-
pear to turn, indicating that its propagation speed is largely in-
dependent of x. The surface plots of Figs. 1c and 1d emphasise
the different wavelenghts that are present (especially in vx) and
the complicated pattern of the amplitudes of both vz and vx. As
the perturbed velocity propagates up in height, the wavefront
does not only turn, but the amplitudes of the components build
up a strong variation in both the x and the z direction.

Figure 2 shows cross-sections of both the z and x compo-
nent of the perturbed velocity, at different values of x. Firstly,

we observe that there is relatively little change in the amplitude
of vz, for all values of x. At x = 0.5, there is no significant
change in the amplitude of vz. For very small x (i.e. near the
left-hand border of the computational domain), the amplitude
of vz decreases with height. Further away from this boundary,
but for x smaller than 0.5 there is a small increase in amplitude.
For x larger than 0.5, the amplitude appears to be modulated
by the presence of a beat. Finally, for x near the right-hand
boundary, the amplitude of the perturbed velocity increases
with height.

Reducing the value of ε to 0.1 and 0.05 results in a be-
haviour of vz that is only slightly different. For these smaller
values of ε, the amplitude of vz at x = 0.5 no longer remains
constant but decreases, and the decrease gets larger for smaller
values of ε. At small x, there is now an initial decay before
the amplitude increases again. The height at which certain fea-
tures occur in the numerical results increases as ε is decreased.
For example, the modulation of the amplitude at larger x still
occurs, but the wavelength of the modulation increases with
decreasing ε.
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Fig. 3. a) A contour plot of the z component of the perturbed velocity, vz, at t = 38.2, with ε = 0.5, β = 0.1 and ω = π. b) Corresponding contour
plot of the x component of the perturbed velocity, vx. c)–d) Cross-sections at x = 0.5 of the z component and x component, respectively. The
dot-dashed lines correspond to analytical approximations which will be discussed in Sect. 4.3.

Both the size and the behaviour of the amplitude of the
x component are radically different. The amplitude of vx is
slightly smaller for smaller ε, but the difference is not signifi-
cant, and certainly does not scale as ε. For all values of x, there
is a relatively rapid, initial growth, followed by a slower de-
cline in amplitude. The turn-around occurs at smaller heights
for smaller values of x and for larger values of ε. Figures 2d–f
show that the amplitude of the longer-wavelength disturbance
is slightly smaller for larger values of x. Additionally, the am-
plitude of this fast disturbance decreases with decreasing ε.
Finally, we notice the presence of a strong beat in Fig. 2f. For
smaller values of ε, this beat did not occur before the driven
disturbance reached the boundary of our computational domain
(zmax = 15).

3.2. Varying the driving frequency

The numerical results shown in Fig. 3 are obtained for the same
parameters as above (ε = 0.5, β = 0.1) but the frequency
of the boundary-driven disturbance has been decreased from
ω = 2π to ω = π. As the Alfvén speed profile remains un-
changed, this lower frequency will result in smaller wavenum-
bers (k = ω/cs), and hence longer wavelengths (λ = 2π/k),
which is obvious when comparing Figs. 3 and 1. A more
unexpected result of lowering the driving frequency, is that
the longer-wavelength, fast disturbance does not appear to be
present. The absence of this fast mode will be discussed in
Sect. 4.2. Again comparing Figs. 3b and 1b, we note that the
slow disturbance is now situated further away from the right
hand boundary, and more toward the centre of the domain (see
discussion at the end of Sect. 4.3).

Figures 3c and d show cross-sections of both components
of the perturbed velocity at x = 0.5. From the corresponding
cross-section for a larger driving frequency (Fig. 2b), we see
that, apart from the longer wavelength, the behaviour of the
z-components is very similar. The only slight difference is that
the amplitude of the additional mode is a little larger when the
driving frequency is smaller. A similar conclusion can be made
for the x-component. From Figs. 3d and 2e, we see that for
this cross-section, the amplitudes of the x-components are of a
similar size, where the amplitude of the large ω disturbance is
marginally smaller. The turn-around point, where the amplitude
of the x-component starts decreasing after the initial increase,
is also located at roughly the same height. Finally, note that the
additional mode, ahead of the driven disturbance (at x = 0.5), is
now the slow mode, rather than the fast mode, which explains
why it has not yet reach the top boundary of the computational
domain. This results might be seen more clearly from a com-
parison of Figs. 3b and 1b.

3.3. Varying the plasma beta

Keeping the lower driving frequency, ω = π, and the inho-
mogeneity coefficient, ε = 0.5, we now decrease the plasma
beta from β = 0.1 to a value β = 0.01. Figure 4 shows
cross-sections at x = 0.5 of both the z and x components
of the perturbed velocity at a time t = 90.2. The results de-
scribed in Sect. 3.1 largely remain the same if we decrease
the value of β (to 0.05 and 0.01). Generally the turn-around
in the behaviour of the vx amplitude (from growing to decay-
ing) happens slightly lower down for smaller β. For ε = 0.5,
the same “beating” behaviour is seen in the amplitude of vx
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Fig. 4. a) A cross-section of the z component of the perturbed velocity, vz, at x = 0.5 and t = 90.2, with ε = 0.5, β = 0.01 and ω = π.
b) Corresponding cross-sections of the x component of the perturbed velocity, vx. The dot-dashed lines correspond to analytical approximations
which will be discussed in Sect. 4.3.

Fig. 5. a) A cross-section of the z component of the perturbed velocity at x = 0.5 and t = 21.6, with ν = 0.001, ε = 0.1, β = 0.1 and ω = π.
The dot-dashed line corresponds to the predicted damping rate (Eq. (10)). The dashed line corresponds to the predicted damping rate for ε = 0.
(Eq. (11)) b) Similar to a) but with ε = 0.5.

when β = 0.05. For the smaller value of β = 0.01, it was un-
clear whether the beating did no longer occur, or whether it did
not occur inside our computational domain. The wavelength
of the driven perturbations decreases for smaller β. Indeed, for
a wavenumber k = ω/cs, where cs =

√
βvA, the wavelength

of the driven disturbance, given by λ = 2π/k = 2π
√
βvA/ω,

scales with the plasma beta. On the other hand, for this smaller
value of β, the additional, faster propagating disturbance is
again present, but with a considerably longer wavelength than
in the β = 0.1, ω = 2π case (compare Figs. 4b and 2e). The
overall amplitude of vx varies with β, i.e. the amplitude of vx

is roughly a magnitude smaller, when β is reduced by a factor
of ten. Finally, the variation in the vz amplitude also appears
to scale with β, where for β = 0.01 there was no longer a no-
ticeable decrease of the amplitude, for any value of x and for
ε = 0.5 or 0.1. This suggests that the strength or efficiency of
the mode coupling depends strongly on β. Intuitively, one can
understand this in the following way. For smaller values of the
plasma beta, pressure perturbations will become less important,
and hence the generation of compressional disturbances less ef-
ficient.

3.4. Varying the viscosity coefficient

We now include viscosity in the model by setting the viscos-
ity coefficient ν � 0. Figure 5 shows the results of numerical
simulations for ν = 0.001 and for different values of ε. The
following, simple analytical argument gives an estimate of the
damping rate due to the viscosity.

Using v2
A = 1/ρ0 and c2

s = βv2
A and setting the viscosity

coefficient ν = ν0β
2, the equation for the z component of the

perturbed velocity, Eq. (6), can be rewritten as

−ρ0
∂2vz

∂t2
+ β

∂2vx

∂z∂x
+ β

∂2vz

∂z2
+ ρ0ν∇2 ∂vz

∂t
= 0. (9)

To estimate the amplitude decay of the perturbed velocity, we
assume

vx, vz ∼ sin

(
ωt − k(x)z√

β

)
e
√
βψ(x,z).

Equating the terms of order β in Eq. (9) that contribute to the
amplitude change results in

∂ψ

∂z
= −ων0ρ0

2k

(
k2 + k

′2z2
)
.

Hence, we expect an amplitude decay of the form

vz ∼ exp

(
− ωνρ0

2kβ
√
β

(
k2z +

k
′2z3

3

))
· (10)
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For a homogeneous density profile (ε = 0), k ∼ ω and k′ = 0,
and hence, the amplitude decrease takes the form

vz ∼ exp

(
−ω

2νρ0z

2β
√
β

)
· (11)

Firstly, we consider the dashed line in Fig. 5a, which corre-
sponds to the damping rate (Eq. (11)) expected for a homoge-
neous density profile (ε = 0). In this case, there is no turning
of the wavefront, and no mode coupling and any amplitude de-
cay is purely due to viscosity. This estimated decay agreed
well with a numerical simulation for which ε = 0 but the
numerical result was not included, in order not to make the
figure needlessly complicated. If we compare this dashed line
with the solid line, we see that the small density inhomogene-
ity (ε = 0.1) causes the amplitude of vz to decrease slightly
quicker. The faster decay is due to the turning of the wave-
front, which causes the build up of transversal gradients, and
the generation of an x component of the perturbed velocity.
The dot-dashed line corresponds to the predicted damping rate
(Eq. (10)), which agrees well with the numerical result. We
also note here that this damping rate has the same form as the
damping rate of phase mixed Alfvén waves (Heyvaerts & Priest
1983), where at larger height, the behaviour will be mostly de-
termined by the exp(−z3) component.

Comparing the dot-dashed and dashed lines shows that, for
this small value of ε, most of the amplitude decay is caused by
the viscosity. Increasing ε to 0.5 (Fig. 5b) leads to a much faster
decay of the amplitude. Due to the steeper density inhomogene-
ity, large transversal gradients will be generated quicker, and
the mode coupling will be stronger. Ahead of the decaying part
of the wave is a propagating, transient pulse, as discussed by
Hood et al. (2002). These authors demonstrate that such a pulse
will decay at a slower, algebraic rate, rather than the exponen-
tial decay of an infinite wavetrain, as seen in Fig. 5. Finally
we mention that the decrease in amplitude of the perturbed ve-
locity is obviously stronger when the viscosity coefficient ν is
increased.

4. Analytical approximations

Although the full Eqs. (6) and (7) cannot be solved analyti-
cally, we can make some progress by assuming that either the
plasma beta, or the inhomogeneity coefficient ε is small. We
will use the approximate analytical solutions to explain some
of the behaviour and features described in Sect. 3. Firstly, we
will assume that the plasma beta is sufficiently small to allow
us to expand both vz and vx in powers of

√
β.

4.1. Small β expansion

The ideal, coupled equations for vx and vz are given by Eqs. (6)
and (7), with ν = 0. Using v2

A = 1/ρ0 and c2
s = βv2

A, these
equations can be rewritten as

−ρ0
∂2vz

∂t2
+ β

∂2vx

∂z∂x
+ β

∂2vz

∂z2
= 0, (12)

−ρ0
∂2vx

∂t2
+ (1 + β)

∂2vx

∂x2
+ β

∂2vz

∂x∂z
+
∂2vx

∂z2
= 0. (13)

We now expand both vz and vx in powers of β by setting

vz = sin

(
ωt − k(x)z√

β
+

√
βφ(x, z)

)
, (14)

vx = βA(x, z) sin

(
ωt − k(x)z√

β
+

√
βφ(x, z)

)
, (15)

where A(x, z) and φ(x, z) are to be determined. Using these ex-
pansions and the fact that k2 = ω2/v2

A = ω
2ρ0, the leading order

equation for vx is given by

−k
′2z2A − kk

′
z − k2A = 0,

or

A(x, z) =
−kk

′
z

k2 + k′2z2
· (16)

From this expression for the coefficient A, we can see that
the x-component of the perturbed velocity will remain zero
(i.e. there is no mode coupling) when there is no density in-
homogeneity present (k

′
= 0).

Substituting expressions (14) and (15) into Eq. (12) and
equating terms of order β results in

−kk
′
zA + 2k

∂φ

∂z
= 0,

or

∂φ

∂z
= −1

2
kk
′2z2

k2 + k′2z2
·

Integrating this expression with respect to z gives the change in
phase as

φ(x, z) = −1
2

kz +
k2 arctan(k

′
z/k)

2k′
+C(x), (17)

and finally, from vz(z = 0) = sin(ωt), we find C(x) = 0.
For small β, the components of the perturbed velocity are now
given by expressions (14) and (15), where A(x, z) is defined
in Eq. (16) and φ(x, z) in Eq. (17). Including viscosity in this
derivation would result in the same expression for the ampli-
tude change as given by Eq. (10).

Figure 6a shows the cross-section of vx at x = 0.5 for
small β (=0.01) and for different values of ε. The dot-dashed
and long-dashed lines outline the amplitude variations obtained
from the corresponding analytical approximations. For this
value of β there is a good agreement between the numerical
result and the analytical approximation. More specifically, the
coefficient A(x, z) seems to correctly predict the turn-around
in the amplitude of vx for this small value of β. From setting
∂A/∂z = 0, the location of the maximum of the coefficient A is
given by zmax = k/k

′
, and from Fig. 6b we see that this maxi-

mum will occur at smaller values of z for larger ε. Comparing
Figs. 6a and b confirms that the turn-around points for ε = 0.1
and 0.5 are indeed located at 6.3 and 1.3, respectively. As this
is only a small-beta expansion, the variation of the turn-around
point with β can not be deduced. From expression (15), it is
obvious that the amplitude of vx will indeed scale as β, as was
found in the numerical simulations discussed in Sect. 3.3. We
found an equally good agreement at different values of x and
for the z component of the perturbed velocity.
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Fig. 6. a) A cross-section of the x component of the perturbed velocity at x = 0.5 and t = 50.2, with ε = 0.5 (solid line) and ε = 0.1
(dashed line), β = 0.01 and ω = π. The dot-dashed and long-dashed lines are the corresponding analytical approximations. b) The behaviour
of k/k

′
as a function of ε. The dotted lines indicate the location of the maximum of A for ε equal to 0.1 and 0.5, respectively.

4.2. Small ε expansion

In this section, we assume that the parameter ε is small, or, in
other words, that there is only a weak density inhomogeneity
present. We will expand vz and vx in powers of ε and try to iden-
tify the two additional modes that were described in Sect. 3.1.

The coupled equations for vx and vz are given by Eqs. (6)
and (7). Setting ν = 0 and using c2

s = βv2
A and v2

A = 1 −
ε cos(πx), we get

∂2vz

∂t2
= β(1 − ε cos(πx))

(
∂2vx

∂z∂x
+
∂2vz

∂z2

)
, (18)

∂2vx

∂t2
= (1 − ε cos(πx))

(
(1 + β)

∂2vx

∂x2
+ β

∂2vz

∂x∂z
+
∂2vx

∂z2

)
· (19)

We now expand both vx and vz in powers of ε, setting

vz = vz0(z, t) + ε cos(πx)vz1(z, t) + . . . , (20)

vx = ε sin(πx)vx1(z, t) + . . . . (21)

Substituting these expressions for vx and vz into Eqs. (18)
and (19) and only considering terms of order 1, we find

∂2vz0

∂t2
= β

∂2vz0

∂z2
· (22)

Assuming vz0 = sin(ωt − kz), we find

k =
ω√
β
, (23)

which agrees with the first part of the small-beta expansion
given in expressions (14) and (15). From Eqs. (18) and (19),
the equations of order ε are given by

∂2vz1

∂t2
= β

∂2vz1

∂z2
+ βπ

∂vx1

∂z
− β∂

2vz0

∂z2
, (24)

∂2vx1

∂t2
= −π2(1 + β)vx1 − πβ∂vz1

∂z
+
∂2vx1

∂z2
· (25)

A particular integral solution to these equations can be found
by setting

vz1pi = a sin(ωt − kz), (26)

vx1pi = b cos(ωt − kz), (27)

and substituting these expressions into Eqs. (24) and (25)
we find

a =
k2(β − 1)
π2β

− β + 1
β

(28)

and

b = − k
π
· (29)

A complementary function solution to Eqs. (24) and (25) can
be found by neglecting the final term on the right hand side of
Eq. (24) and by assuming

vz1c f = A sin(ωt − Kz), (30)

vx1c f = B cos(ωt − Kz). (31)

The equations can be combined to give a quadratic equation
for K2,

(βK2 − ω2)(ω2 − π2(1 + β) − K2) − β2π2K2 = 0, (32)

and hence

K2 =
1
2

(
ω2(1 + 1/β) − π2

)

±1
2

√
[π2 + ω2(1 + 1/β)]2 − 4ω4

β
· (33)

The two solutions for K2 correspond to two different wave
modes: the positive sign gives the wave number of a slow
mode (Kslow), whereas the minus sign corresponds to a fast
mode (Kfast). Finally, expressions for the constants A and B can
be found from the boundary conditions. Thus, the solution is
made up of the driven mode plus two normal modes, corre-
sponding to fast and slow modes. It is the combination of these
modes that governs the evolution of vz and vx. To illustrate this
in detail, we investigate the fundamental, fast and slow, normal
modes in the next section.

In Fig. 7a we have plotted the variation of K2
fast (solid

line) and K2
slow (dashed line), as a function of the driving fre-

quency ω, imposed at the z = 0 boundary (with β = 0.1).
Both the fast and slow wavenumbers increase with increas-
ing frequency, or, in other words, the larger the driving fre-
quency, the shorter the wavelengths of the additional fast and
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Fig. 7. a) The variation of the (squares of) the fast (solid line) and slow (dashed line) wavenumber, given by Eq. (33), as a function of the
driving frequency ω and with β = 0.1. The dotted lines indicate ω = π and ω = 2π. b) The variation of the (square of) the fast wavenumber,
given by Eq. (33), as a function of β and with ω = π and with β = 0.1. The symbols correspond to the values obtained for the fast wavenumber
in Sect. 4.3, with ε = 0.5 (plus), ε = 0.1 (diamond) and ε = 0.05 (star).

slow modes. The vertical, dotted lines indicate ω = π and
ω = 2π, which correspond to the numerical results described
in Sect. 3.1 (Figs. 1 and 2) and Sect. 3.2 (Fig. 3), respectively.
For ω = 2π the square of the fast and slow wavenumbers ap-
pear to be of the order of 35 and 400, which correspond to
wavelengths ∼1.1 (fast mode) and ∼0.31 (slow mode). A com-
parison with the additional fast and slow modes observed in
Fig. 1 (or 2) shows that these are reasonable estimates (keeping
in mind that the small-epsilon expansion is probably no longer
valid for ε = 0.5). Forω = π, the square of the fast wavenumber
is actually negative, indicating that this mode is exponentially
decaying, which explains its absence noted in Fig. 3. The slow
wavelength obtained from this estimate is ∼0.6, which, com-
paring with Fig. 3, is again of the right order. We note here that
for smaller values of the inhomogeneity coefficient ε, there is
a very good agreement between the numerical results and the
fast and slow wavenumbers predicted by expression (33).

Figure 7b shows the variation of the square of the fast
wavenumber (solid line) with β. We see that K2

fast is negative ev-
erywhere, and hence, the fundamental fast mode would be ex-
ponentially decaying with height for all values of β. However,
we do have to keep in mind that this expansion is only valid for
small values of the inhomogeneity parameter ε.

4.3. Normal mode interpretation

To explain the nature of the two additional modes, we look at
the normal modes of the system. For a detailed overview of
such a normal mode analysis, we refer the reader to Goedbloed
(1983). The ideal equations for vz and vx can be reduced to

∂2vz

∂t2
= βv2

A
∂2vx

∂z∂x
+ βv2

A
∂2vz

∂z2
, (34)

∂2vx

∂t2
= v2

A(1 + β)
∂2vx

∂x2
+ βv2

A
∂2vz

∂x∂z
+ v2

A
∂2vx

∂z2
· (35)

Assuming an exp(i(ωt − Kz)) dependence for both vx and vz,
Eqs. (34) and (35) can be combined to give the following equa-
tion for vx,

d
dx

 (1 + β)(ω2 − βv2
AK2/(1 + β))

ω2 − βv2
AK2

dvx

dx

 +
ω2

v2
A

− K2

 vx=0. (36)

This equation has to be solved, subject to the boundary condi-
tions vx = 0 at x = 0 and x = 1. The behaviour of the solution
will strongly depend on the factor in front of the first derivative
term of Eq. (36). We remind the reader here that in our nota-
tion, c2

s = βv
2
A and c2

T = c2
s v

2
A/(c

2
s + v

2
A) = βv2

A/(1 + β). Hence,
Eq. (36) can be rewritten as

d
dx

 (1 + β)(ω2 − c2
T K2)

ω2 − c2
s K2

dvx

dx

 +
ω2

v2
A

− K2

 vx = 0. (37)

Unlike Goedbloed (1983), we will assume ω is fixed and that
the eigenvalue is K. From Eq. (37), it is clear that there is a
slow, continuous spectrum present, with min(ω/cT) < K <
max(ω/cT). Apart from this continuous spectrum, there are
two further sets of discrete modes. The first one contains an
infinite number of K-values, situated between min(ω/cs) and
min(ω/cT). These correspond to slow modes, where the small-
est value (i.e. the value of K closest to min(ω/cs)) corresponds
to the fundamental slow mode of the system and where the
higher harmonics will eventually accumulate at min(ω/cT).
Similarly, at smaller K (<max(ω/vA)), there is an infinite num-
ber of fast waves present. For the normal, fast modes, K2 can
be negative, indicating that some of the harmonics of the fast
normal modes are exponentially decaying, rather than propa-
gating. The largest of these Kfast values will correspond to the
fundamental fast mode, whereas the higher harmonics will ac-
cumulate at −∞. Theoretically, the full solution would be given
by summing over the infinite number of K’s and including the
continuum modes. In practice, we will only look for the values
of K corresponding to the fundamental slow and fast mode,
by solving Eq. (37) numerically, subject to the boundary con-
ditions above. To avoid confusion, we remind the reader that
these are the fundamental (i.e. there are no nodes inside the do-
main) modes in the x-direction, but that the obtained wavenum-
ber K is the wavenumber in the z-direction.

To illustrate the above, we reconsider the numerical simula-
tion with ε = 0.5, β = 0.1 and ω = 2π (see Fig. 2). In this case,
we find Kf = 5.98 and Ks = 16.40, where the subscript “f”
an “s” refer to “fast” and “slow” respectively. Figure 8a shows
the x-dependence of the amplitude of the x component of the
fundamental fast (solid line) and slow (dashed line) mode.
Comparing this with Fig. 1, there is a very good agreement
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Fig. 8. a) A normalised cross-section (at constant height) of the x component of the fundamental fast (solid) and slow (dashed) modes. b) Profiles
ofω/vA,ω/cs and ω/cT for ε = 0.5, β = 0.1 and ω = 2π. The long-dashed lines correspond to the fundamental fast and slow mode wavenumbers.

Fig. 9. a) A cross-section of the x component of the perturbed velocity at x = 0.75 and t = 20.2, with ε = 0.5, β = 0.1 and ω = 2π. The
dot-dashed line corresponds to the normal slow mode, whereas the long-dashed line is the normal fast mode. b) The same cross-section of vx .
The dashed line is obtained by adding the appropriate small β expansion and the normal modes.

between the maxima of these amplitudes, and the location at
which the two extra disturbances, discussed in Sect. 3.1, oc-
curred. The longer-wavelength, fast wave is mainly situated in
the left half of the domain and the fundamental slow wave, is
confined to a more narrow region near the right hand edge of
the domain. Note also that the wavenumbers Kf and Ks are in-
dependent of x and hence, that the fundamental fast and slow
modes will propagate uniformly, despite the presence of a den-
sity inhomogeneity, as was seen in all numerical results.

Figure 8b shows the profiles of ω/vA, ω/cs and ω/cT for
this particular example (ε = 0.5, β = 0.1, ω = 2π). The shaded
areas indicate where the solution to Eq. (37) will be oscilla-
tory. In the non-shaded regions, the solution will be exponen-
tially decaying. As both Kf and Ks cut through shaded and non-
shaded regions, the fundamental modes will be oscillating (in
the x-direction) in some parts of the domain, and decaying ex-
ponentially (in the x-direction) in the other parts.

Figure 9a shows the same cross-section of the x compo-
nent of the perturbed velocity, at x = 0.75 as Fig. 2f. The
two extra disturbances noted in Sect. 3.1 can be recognised
in this figure as the longer-wavelength, small-amplitude oscil-
lation and the few oscillations just ahead of the driven wave,
which appear slightly phase-shifted. Overplotted are the fits
of the fast (long-dashed) and slow (dot-dashed), fundamental
modes. Both wavenumbers Kf and Ks give a remarkably good
agreement. In Fig. 9b, we have combined all the analytical
approximations we have found so far. The dashed line is ob-
tained by adding the appropriate small-beta expansion and the

fundamental slow and fast modes together. Although the small-
beta expansion is not strictly valid for this value of β = 0.1, the
combination of our approximations gives a surprisingly good
agreement with the numerical result. The difference at z > 7
between this approximate solution and the numerical result is
simply caused by the fact that, at t ≈ 20, the driven disturbance
has only reached a height z ≈ 7, whereas the approximate so-
lution is taken as an infinite harmonic oscillation. A similarly
good fit was obtained for both vx and vz, at all values of x.
Although the amplitudes do not match exactly, the approximate
solution does correctly predict all the different features that oc-
curred in the numerical results.

For a smaller driving frequency ω = π, we obtained
Ks = 8.26, which is the wavenumber of the harmonic oscilla-
tion that was overplotted as a dot-dashed line in Figs. 3c and d.
As already discussed in the previous section, a smaller value
of ω results in a smaller wavenumber. Additionally, we found
that the maximum of the fundamental slow mode was situated
more towards the centre of the domain, which was also noted
in the corresponding numerical results (Sect. 3.2 – Fig. 3). In
agreement with the results of the small-epsilon expansion, the
fast wavenumber obtained in this case is negative, and hence,
the fundamental fast mode decays exponentially (with height).

As a final example, we overplotted the outline of the ap-
propriate analytical solution (ε = 0.5, β = 0.01 and ω = π) in
Fig. 4, and again, it is clear that the approximate solution cor-
rectly predicts the behaviour of the numerical result. For this
smaller value of β, the frequency ω = π results in a small (but
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positive) value for the fast wavenumber, and hence, a relatively
long wavelength for the fundamental fast mode, as can be seen
in Fig. 4.

We now briefly return to Fig. 7b, in particular to the sym-
bols overplotted on this graphs. They represent the values of K2

f
that were obtained for different ε and β. For ε = 0.05 (stars) and
ε = 0.1 (diamonds), these values agree extremely well with
the small-epsilon expression for Kf (Eq. (33)). For ε = 0.5
(plus-signs), the small-epsilon expansion breaks down and the
obtained values no longer agree. However, although the quanti-
tative values no longer agree, the variation of the fast wavenum-
ber with β is still very similar. From Fig. 8b we see that we
only obtained a positive value for K2

f for a large inhomogeneity
(ε = 0.5) but a small plasma beta (β ≤ 0.1).

5. Discussion and conclusions

In this paper, we investigated the propagation of slow magneto-
acoustic waves, in a 2D model of a low-beta plasma, in the pres-
ence of a horizontal density inhomogeneity. This density inho-
mogeneity results in a varying wave speed, causing the wave
front to turn as the waves propagate with height. This “phase
mixing of slow waves” is similar to phase mixing Alfvén
waves, but there are some fundamental differences. As already
pointed out before, unlike Alfvén waves, slow MHD waves are
slightly dispersive, and not restricted to propagating along the
magnetic field lines. When a density inhomogeneity is present,
it is not possible to uncouple the slow and fast waves. From
certain numerical simulations, one gets the impression that the
driven disturbances break down into their harmonic compo-
nents as they propagate up in height. However, the main aim
of this paper is to complete the study of De Moortel & Hood
(2003, 2004) to explain the rapid damping of observed, longi-
tudinal oscillations. A in-depth study of phase mixing of slow
waves is therefore beyond the scope of this paper and will be
addressed in a later paper (De Moortel et al. 2004).

The work presented here can be seen as complimetary to
the study of Rosenthal et al. (2002) and Bogdan et al. (2003).
These authors numerically investigated the behaviour of the
different wave modes as they propagate through the solar atmo-
sphere, resulting in a complicated picture of the various waves’
characteristics and interaction. Although such numerical simu-
lations are useful to address the complex and dynamic nature
of the solar atmosphere, our simplified approach takes a step
back, and concentrates solely on the propagation of slow waves
in a coronal environment. This simple model allows us to iso-
late the effect of the various parameters. Additionally, analyt-
ical approximations to the numerical results can be obtained,
enhancing our insight further.

Given the complicated nature of some of the numerical re-
sults, it is not straightforward to summarise our results. A ba-
sic feature that is always present is the turning of the wave-
front, and the coupling of the driven, longitudinal component,
vz, to a horizontal component vx. We found that the ampli-
tude of this generated vx component scales with the plasma
beta, which implies that the efficiency of the mode coupling
is mainly governed by the size of β. Indeed, when the plasma
beta is decreased, the relative importance of (plasma) pressure

perturbations decreases, making it harder to generate compres-
sional disturbances. This agrees with the results of Rosenthal
et al. (2002) and Bogdan et al. (2003) who found the mode cou-
pling to be most effective near the β ≈ 1 region. In general, we
found that the behaviour and interaction of both components of
the perturbed velocity was very sensitive to the input parame-
ters (β, ε and ω). Not unexpectedly, most of the observed fea-
tures were more pronounced for a larger density gradient (i.e. a
larger value of the inhomogeneity coefficient ε). Increasing the
driving frequency ω resulted in a larger wavelength perturba-
tion, as did increasing the plasma beta.

One of the more surprising results of our simulations was
the appearance of the fundamental fast and slow, global modes.
We correctly predicted the wavenumbers of these fundamen-
tal modes, using analytical approximations and a normal mode
approach. However, the exact reason of their excitation re-
mains unclear, and the possibility that they are generated by
our choice of boundary conditions cannot be excluded. In the
small-epsilon expansion of Sect. 4.2, the global wavenumbers
are present in the complementary function part of the solu-
tion to the coupled, partial differential equations. This sug-
gests it might be possible to choose certain boundary condi-
tions for which the complementary functions, and hence, the
global modes would be eliminated from the solution. However,
the choice of boundary conditions would be extremely specific
and thus, very unlikely to have any useful, physical applica-
tions. Therefore, we did not consider this choice of bound-
ary conditions, but retained our more general set of conditions.
Under most coronal conditions, the value of the plasma beta is
expected to be relatively small (≤0.1), in which case our results
suggest that the (linear) coupling of slow waves to fast waves
would not be an efficient mechanism. The mode coupling is un-
likely to cause a significant decay of the slow wave amplitudes,
and will certainly not be sufficient to explain the rapid damping
of disturbances propagating along coronal loops, observed by
TRACE. These results agree with the corresponding results for
Alfvén waves, presented by Botha et al. (2000). However, it is
interesting to note that these authors also found a modulation of
the driven disturbances, which was not addressed in their study.
Looking at the vx component generated by one of their numer-
ical simulations (their Fig. 9), there is a striking resemblance
with the vx components generated in our study. It seems likely
that the amplitude modulation is the result of a similar interac-
tion between the driven disturbance and the global mode(s).

Including viscosity did result in a more rapid decay of
the slow wave amplitudes. For the longitudinal component
of the perturbed velocity, we found a damping rate vz ∼
exp(−ωνρ0(k2z + k

′2z3/3)/2kβ
√
β). This has the same form as

the damping rate for phase mixed Alfvén waves (Heyvaerts
& Priest 1983), where, at larger heights, the damping will be
dominated by the z3 component. Ofman & Aschwanden (2002)
found excellent agreement between the damping time predicted
by phase mixing (of Alfvén waves) and the observed damp-
ing of transversal coronal loop oscillations, despite the fact that
these observed oscillations are unlikely to be Alfvén waves.
This is, however, in agreement with our results, which suggest
that the damping rate of other magneto-acoustic waves due to
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phase mixing is very similar to the damping rate of phase mixed
Alfvén waves.

We now return to the original question which we set out
to address in this paper. Can the presence of a density inho-
mogeneity, which leads to mode coupling and phase mixing,
explain the observed, rapid damping of slow waves in coronal
loops? To answer this question, we must first of all determine
whether our choice of parameters is a reasonable representation
of the observed coronal conditions. An inhomogeneity param-
eter ε = 0.5 would result in a density inside the coronal loop
that is a factor of 3 higher than the surrounding plasma, which
does not appear to be an unreasonable estimate. The coronal
plasma is expected to be largely dominated by the magnetic
field, and hence, a plasma beta β ≈ 0.1 is an appropriate choice.
The one parameter used in our simulations that has to be mod-
ified strongly to correspond with the observed oscillations is
the wavelengths of the driven disturbance. We can achieve this
by adapting the driving frequency ω. Using a coronal sound
speed ∼150 km s−1, the basic speed in our model is given by
v0 = cs/

√
β ≈ 500 km s−1. Assuming an average loop radius

of the order of 5 Mm (De Moortel et al. 2002a), we obtain
a basic timescale t = L/v0 ≈ 10 s. To model the observed
5-min oscillations, we would require a dimensionless driving
frequency ω ≈ 2π/300 × 10 ≈ 2π/30, which is much smaller
than the driving frequencies used in our numerical simulations.
However, we can estimate the expected decay of the longitu-
dinal oscillations from some of the analytical approximations.
The damping rate of the phase mixed slow waves is given by

vz ∼ exp

(
− ωνρ0

2kβ
√
β

(
k2z +

k
′2z3

3

))
, (38)

which will scale as e−ω2
, seeing that k ∼ ω. Therefore, reduc-

ing the driving frequency, will result in a significant increase
in the damping length. The observed perturbations usually de-
creased by a factor of about 4, in the first 10–20 Mm along
the loop. Using the same parameters as in Sect. 3.4 (but with
ω = 2π/30) and the above expression for vz, we find that, at
x = 0.5, vz would have decreased by a factor of 4 after about
100 Mm. As the phase mixing process is most efficient at the
location of the largest density gradient (which in our case is at
x = 0.5), the amplitude decay will be even slower at the cen-
tre of the loop (i.e. near x = 0). Overall, it is very unlikely that
phase mixing and mode coupling, caused by the horizontal den-
sity inhomogeneity, will be able to explain the rapid, observed
damping.

Although this model is unlikely to explain the damping
of the observed oscillations, many interesting, and unex-
pected features in the numerical results deserve further study.

In particular, the relation between “phase mixing of slow
MHD waves” and the generation of the global modes will be
the subject of a further paper.
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