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ABSTRACT
By decomposing the damping tail of cosmic microwave background (CMB) anisotropies into a series

of transfer functions representing individual physical e†ects, we provide ingredients that will aid in the
reconstruction of the cosmological model from small-scale CMB anisotropy data. We accurately cali-
brate the model-independent e†ects of di†usion and reionization damping, which provide potentially the
most robust information on the background cosmology. Removing these e†ects, we uncover model-
dependent processes, such as the acoustic peak modulation and gravitational enhancement, that can help
distinguish between alternate models of structure formation and provide windows into the evolution of
Ñuctuations at various stages in their growth.
Subject headings : cosmic microwave background È cosmology : theory

1. INTRODUCTION

Much e†ort is being expended to measure the angular
power spectrum of the cosmic microwave background
(CMB) anisotropy on increasingly smaller angular scales.
For many types of models for structure formation, the spec-
trum can be predicted to a precision of about 1% et al.(Hu

raising the hope that the cosmological parameters1995),
that are the input to these calculations can be extracted to
comparable precision (see, e.g., et al. TheJungman 1996b).
““ inverse problem ÏÏ of reconstructing the model given a
spectrum is less well understood than the ““ forward
problem ÏÏ of predicting it given the model. For this purpose,
it is important to assess the generation of anisotropies in a
manner that is not tied to any given model for structure
formation. From the theory of anisotropy formation, we
know that CMB Ñuctuations su†ered causal processing and
damping of the primordial signal. In this paper, we numeri-
cally calibrate such e†ects, extending and improving upon
prior work (Hu & Sugiyama hereafter1995a, 1995b, 1996,

respectively ; & WhiteHSa, HSb, HSc, Hu 1996b).
A particularly fruitful way to visualize the CMB spec-

trum, and one that provides a framework for the inverse
problem, is as a product of transfer functions representing
individual physical e†ects. The spectrum is then constructed
out of physical elements rather than a model-dependent
parameterization. Conceptually, the evolution of CMB
anisotropies processes primordial metric or gravitational
potential perturbations into features observable in the spec-
trum today (see, e.g., & White SinceBond 1996 ; Hu 1996b).
the evolution obeys linear perturbation theory, its e†ects
are described by a series of transfer functions that multiply
the underlying perturbations. The form of these functions
depends on the cosmological model, not only for the back-
ground expansion and thermal history (see, e.g., et al.Bond

Sugiyama, & Silk but also for1994 ; Seljak 1994 ; Hu, 1996b)
structure formation (see, e.g., & TurokCrittenden 1995 ;

et al. Gangui, & SakellariadouMagueijo 1996 ; Durrer,
Spergel, & White By decomposing the1996 ; Hu, 1996a).

evolution into functions representing separate physical
e†ects, we can isolate portions of the anisotropy spectrum

that are the most sensitive to particular aspects of the
cosmological model.

In particular, processes that damp CMB anisotropies,
photon di†usion and rescattering &(Silk 1968) (Efstathiou
Bond depend mainly on the background parameters1987),
and little on the perturbations that form structure in the
universe. In we isolate these e†ects in a numerical treat-° 2,
ment. From this damping calibration, we produce conve-
nient Ðtting formulae that accurately describe the behavior
of the di†usion and reionization damping transfer func-
tions, or envelopes, directly in anisotropy multipole space.
In we illustrate the reconstruction process by testing it° 3,
with known models within the cold dark matter (CDM)
scenario. By removing the model-independent e†ects of
damping, one uncovers important model-dependent e†ects
such as the baryon drag modulation of the peaks the(HSa),
potential envelope that describes gravitational driving of
acoustic oscillations and the regeneration of aniso-(HSc),
tropies during reionization & Zeldovich(Sunyaev 1970 ;
Kaiser 1984).

In the context of currently popular models, recovery of
these signatures will help distinguish between such pos-
sibilities as an inÑationary or cosmological-defect origin of
Ñuctuations & Turok et al.(Crittenden 1995 ; Durrer 1996 ;

& White The e†ects of damping are also intrin-Hu 1996b).
sically interesting because they provide the most model-
independent probes of the background cosmology. We also
consider how di†usion damping can be used to constrain
the curvature of the universe and reionization damping to
determine the redshift and extent of reionization in the uni-
verse. In this way, the study of e†ects in the damping tail of
CMB anisotropies presented here will aid in the future
reconstruction of the cosmological model from the anisot-
ropy data.

2. DAMPING CALCULATION

Damping processes that a†ect CMB anisotropies provide
the most model-independent information available in the
spectrum and allow constraints on cosmological param-
eters such as the curvature and the thermal history of the
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universe. Furthermore, these universal e†ects obscure the
model-dependent signatures that are useful to determine
the mechanism for structure formation in the universe and
the ultimate source of density perturbations.

For both these reasons, an accurate calibration of
damping e†ects is desirable. In this section, we begin with
the formalism necessary to describe them and simple(° 2.1)
approximations to help understand their nature We(° 2.2).
then turn to numerical calibration of these e†ects (° 2.3).
Finally, we give convenient Ðtting formulae to their e†ects
on the anisotropy power spectrum that encapsulate these
results (° 2.4).

2.1. Boltzmann Formalism
In this section, we provide the formalism for the evolu-

tion of CMB anisotropies that underlie the calculations that
follow. It may be skimmed upon Ðrst reading.

The anisotropy in the CMB is described by small pertur-
bations of the photon distribution function around a homo-
geneous and isotropic blackbody. The Boltzmann equation
describes the evolution of the distribution function f,
through Compton scattering with electrons df/dg[g, x(g),
p(g)]\ C[ f ], where the collision term is written schemati-
cally as C[ f ]. Here g is the conformal time and p is the
photon momentum. In the absence of spectral distortions,
the magnitude of the momentum can be integrated over,
leaving only its directional dependence c and the e†ect of
gravitational redshifts on the photon temperature pertur-
bation #. Because of azimuthal symmetry and the decoup-
ling of modes in linear theory, it is convenient to decompose
the Ñuctuation in a Fourier or normal mode k into angular
moments, e.g., in Ñat space #(g, k, c) \;

l
([i)l#

l
P
l
(k Æ c)

with an appropriate generalization to curved spaces
& Scott Here are the direction(Wilson 1983 ; White 1996). c

icosines of the photon momenta. The Boltzmann equation
then becomes an inÐnite hierarchy of coupled ordinary dif-
ferential equations,

#0 0\ [13k#1[ '0 ,
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b
) ,
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[ q5 #
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(see, e.g., & Bertschinger whereMa 1995), i
l
\ [1[

(l2[ 1)K/k2]1@2 modiÐes the angular hierarchy for geo-
desic deviation in spaces of constant comoving curvature

with a Hubble constant ofK \[H02(1 [ )0[ )"), H0\
100 h km s~1 Mpc~1. The metric perturbations are rep-
resented by ', the Ñuctuation of the spatial curvature in
Newtonian gauge, and (, the Newtonian potential. The
collision terms from C[ f ] are proportional to q5 \ n

e
pT a,

the di†erential optical depth to Compton scattering, where
is the free electron density and is the Thomson crossn

e
pTsection.

Scattering by electrons with velocity generates av
bDoppler e†ect on the photons. Scattering of anisotropic

radiation creates a polarization, described by the tem-
perature perturbation in the Stokes parameter Q, and gov-

erned by a separate hierarchy,

Q0 0\ [13kQ1[ q5 [12Q0 [ 110(#2] Q2)] ,

Q0 1\ k(Q0[ 25i2Q2) [ q5 #1 ,

Q0 2\ k(23i2Q1[ 37i3Q3) [ q5 ( 910Q2[ 110#2 [ 12Q0) ,

<

Q0
l
\ k
A l
2l [ 1

i
l
Q

l~1[ l ] 1
2l ] 3

i
l`1 Q

l`1
B

[ q5Q
l

(l [ 2) (2)

& Efstathiou(Bond 1984).
To complete these equations, we need the baryon Euler

equation, which determines the evolution of the baryon
velocity,

v5
b
\ [(a5 /a)v

b
] k( ] q5 (#1[ v

b
)/R . (3)

Finally, the observable anisotropy spectrum follows by inte-
grating over the k-modes :

2l ] 1
4n

C
l
\ 1

2n2
P dk

k
k3 o#

l
(g0, k) o2

2l ] 1
. (4)

The interpretation of these equations is quite straightfor-
ward. The metric Ñuctuations feed power into hierarchy
through the gravitational redshift e†ects of density dilution

in l \ 0) and potential infall (k( in l \ 1). If the optical('0
depth across a wavelength this power Ñows toq5 /k > 1,
higher l much like a wave pulse Ñows along a string, being
concentrated in mode l when kg D l. The critical epoch for
this process is horizon crossing, kg D 1, after which lZ 1
modes can be populated. When the free electron density is
nonnegligible, the Compton scattering terms terms)(q5
become important. Modes with l º 2 are exponentially
damped, sealing o† the hierarchy and providing a barrier
o† which the wave pulse reÑects. The monopole term is not
damped at all and the dipole term is driven toward so thev

b
,

distribution is isotropic in the electron rest frame.
Thus, before recombination, and the photon dis-q5 /k ? 1

tribution possesses only the l \ 0 (density) and l\ 1
(velocity) modes, which represent a Ñuid that oscillates
acoustically as a result of photon pressure (see Only° 2.2).
for very high k will power leak into the higher l-modes,
where it will be exponentially damped. This is responsible
for the damping tail at small angular scales. An increase in q5
at late times due to reionization also possesses a character-
istic signature. For scales inside the horizon at reionization,
the power has already propagated to high l, where it su†ers
exponential damping ; for larger scales no such damping
occurs. Thus reionization damps small-scale anisotropies
while preserving large-scale anisotropies. We shall discuss
these behaviors more quantitatively in the next section.

2.2. Analytic Estimates
Before turning to the numerical calibration of e†ects in

the damping tail, it is useful to describe them analytically to
see how they enter into and a†ect the Boltzmann evolution
given above. The two main damping processes at work in
the CMB are photon di†usion before recombination and
rescattering during an epoch of late reionization.

2.2.1. Di†usion Damping before Recombination

For wavelengths much larger than the mean free path to
Compton scattering the Boltzmann hierarchy of(k/q5 > 1),

can be described by the relativistic Ñuidequation (1)
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dynamics of a combined photon-baryon Ñuid. Rapid scat-
tering ensures that any anisotropy of the photons in the
electron rest frame is vanishingly small, so that the hier-
archy can be truncated at l \ 1 with Even in this#1 B v

b
.

tightly coupled regime, the random walk of the photons
through the electrons eventually mixes photons across a
wavelength of the Ñuctuation Thus we expect(Silk 1968).
temperature perturbations to be destroyed by this di†usive
process before the mean free path grows long enough to
invalidate the central approximation. This statement is only
approximately true during the recombination epoch, when
the mean free path grows so rapidly that it approaches the
horizon scale and coincides with the di†usion scale. For this
reason, we calibrate the process numerically in ° 2.3.

Formally, we can approximate these e†ects by expanding
the Boltzmann temperature and polarization equations
(eqs. and in powers of & Yu To[1] [2]) k/q5 (Peebles 1970).
lowest order, one obtains the oscillator equation

d
dg

(1] R)#0 0] k2
3

#0\ [ k2
3

(1 ] R)( [ d
dg

(1 ] R)'0

(5)

Gravity drives the oscillator by potential infall into(HSa).
( and density dilution as the curvature Ñuctuation '
changes. The baryon inertia in the Ñuid is described by the
relative baryon-photon momentum density ratio R and
increases the e†ective mass of the oscillator. Together, these
e†ects imply oscillations at the sound speed,

c
s
\ 1

J3(1 ] R)
, (6)

around a zero point displaced by gravity to (1] R)( for
slowly varying ' & White(HSa, HSc ; Hu 1996b).

To treat the e†ects of di†usion, one must include higher
order terms. An examination of the l \ 1 photon Euler
equation shows that there are two di†usive e†ects :(eq. [1])
viscous damping from the quadrupole and heat conduc-#2tion from the relative photon-baryon velocity #1[ v

bp. 568). From the expansion of the polar-(Weinberg 1972,
ization hierarchy equation which sets the coeffi-(eq. [2]),
cient of the to zero to lowest order, andq5 Q2\ Q0\ 14#2the quadrupole evolution equation with(eq. [1]) #1? #3,we obtain the tight-coupling prediction for the quadrupole,

#2\ (k/q5 )89#1 . (7)

Heat conduction may be described by expanding the
baryon Euler equation to second order. Let us(eq. [3])
assume a solution of the form #1\ v

b
[1 ] O(k/q5 )]P exp i

/ u dg and ignore variations on the expansion timescale a5 /a
in comparison with those at the oscillation frequency u.
Likewise we ignore terms such as and We return(0 /( '0 /'.
to consider this approximation in The heat conduc-° 3.1.
tion equation becomes

#1[ v
b
\ q5~1R(iu#1[ k()] u2q5~2R2#1 , (8)

allowing us to rewrite the photon Euler equation as(eq. [1])

iu(1 ] R)#1\ k[#0] (1 ] R)(][ u2q5~1R2#1
[ 1645k2q5 ~1#1 , (9)

where we have assumed that for scales relevant for damping
k/( oK o )1@2 ? 1, so that The presence of (1 ] R)(i2B 1.
again reÑects the gravitational zero-point displacement of

the oscillator. It is thus appropriate to try a solution of the
form With this assumption,#0] (1] R)( P exp i / u dg.
one obtains from the continuity equation the dis-(eq. [1])
persion relation for acoustic oscillations :

u\ ^kc
s
] i

1
6

k2q5 ~1
C R2
(1 ] R)2 ] 16

15
1

1 ] R
D

, (10)

again assuming that R, ', and ( are slowly varying. From
the form of the solution, exp i / u dg, this gives the damping
scale k

D
,

k
D
~2 \ 1

6
P

dg
1
q5

R2] 16(1 ] R)/15
(1 ] R)2 (11)

by which acoustic oscillations are damped(Kaiser 1983),
exponentially as Note that the di†usionexp [[(k/k

D
)2].

length is roughly the geometric mean of the mean free path
and horizon length g, as one would expect of a randomq5 ~1

walk k
D

D (q5 /g)1@2.

2.2.2. Di†usion Damping during Recombination

As the universe recombines, the mean free path and hence
the di†usion length of the photons increase. As long as the
di†usion length is much greater than the mean free path,
damping can be described by the tight-coupling approx-
imation of the previous section. This is because the mean
free path only surpasses the wavelength after di†usion has
already destroyed the perturbations, resulting in no contri-
butions outside the tight-coupling regime. The approx-
imation thus remains approximately true until quite near
the end of recombination, when the mean free path becomes
comparable to the horizon and so the di†usion length (HSa,

This fact explains the reasonable level of agreementHSc).
between the numerical results we present in and the° 2.3
tight-coupling approximation.

The remaining subtlety is that, because of the Ðnite dura-
tion of recombination, last scattering takes place at a slight-
ly di†erent epoch, with a slightly di†erent di†usion length,
for each photon. The net e†ect has been approximated

by weighting the damping by the visibility function(HSa)
the probability of last scattering within dg of g,q5 e~q,

D(k) \
P
0

g0
dg(q5 e~q) exp M[[k/k

D
(g)]2N . (12)

This ““ smearing ÏÏ of the surface of last scattering and the
evolution of tend to soften the damping, meaning that itk

Dis not quite the simple exponential one would naively
predict. It is however often convenient to deÐne the last-
scattering epoch as q(g

*
)\ 1.

Note that the net result depends only on the cosmological
parameters of the background. The e†ect of is simple.)0 h2
Increasing decreases the horizon at last scattering,)0 h2
thus monotonically decreasing the di†usion length. The
dependence on is more complicated. Increasing)

b
h2 )

b
h2

1. Decreases the mean free path ;
2. Delays recombination ;
3. Shortens its duration ;
4. Speeds di†usion scale growth at recombination.

The Ðrst e†ect tends to decrease the damping length and
dominates for low The second e†ect extends the)

b
h2.

amount of time the photons can di†use and hence increases
the damping length ; it dominates at high In the limit)

b
h2.

of instantaneous recombination, the damping function D(k)
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attains its sharpest form, of For theexp M[[k/k
D
(g

*
)]2N.

realistic case, in which recombination takes place over an
extended period, D(k) becomes less steep. Both the width of
the visibility function and the evolution of through itk

Da†ect this drop. Again the baryon dependence of these two
e†ects are in opposition, leading to a steepening of the slope
at both the high- and limits.low-)

b
h2

2.2.3. Free-Streaming

After recombination, photons enter the free-streaming
regime. The observer views a temperature Ñuctuation at
wavenumber k on the surface of last scattering as an anisot-
ropy at multipole moment where the constantl B f krh(g*),
of proportionality f B 0.98 from numerical Ðtting (see ° 2.3)
and where the comoving angular-size distance to the epoch
g is

rh(g) \ oK o~1@2 sinh [oK o1@2(g0 [ g)] , (13)

for K \ 0. For positively curved universes, replace sinh with
sin. The fact that angular size depends sensitively on the
curvature allows its precise measurement from acoustic fea-
tures Zeldovich, & Sunyaev(Doroshkevich, 1978 ;

& Gouda Spergel, &Sugiyama 1992 ; Kamionkowski,
Sugiyama & White These e†ects are rep-1994 ; Hu 1996b).
resented formally in the Boltzmann equation by the(eq. [1])
transfer of power down the l-hierarchy with distance g [ g

*from the last scattering event and the geodesic deviation
factors Note that the latter become important when thei

l
.

distance is long enough that the subtended angle h D l~1\
K1@2/k, i.e., smaller than that of a wavelength at the curva-
ture distance.

The angular-size distance relation may be used to map
k-space inhomogeneities onto l-space anisotropies. For
example, the damping function in multipole space is

D
l
BD[k \ l/frh(g*

)] . (14)

There are instances in which this mapping fails to accu-
rately describe the streaming process. The projection of
k-mode inhomogeneities onto l-mode anisotropies depends
on the viewing angle and is thus not one-to-one. In particu-
lar, it can take power to larger angles for wavelengths that
happen to be viewed with wavevector parallel to the line of
sight. In this case, the angular separation between the inter-
sections of the Ñat wave front with the spherical shell at isg

*much larger than Sharp features in k-space will thus(krh)~1.
be blurred in l-space, and excess power at small physical
scales can be aliased into large angular scales. Formally,
this is reÑected by the decomposition of the k-mode on
the sphere and the fact that the solution to the sourceless
Boltzmann or Liouville equation is just its radial com-
ponent, a spherical Bessel function in Ñat space (see, e.g.,

& Efstathiou For the cases we consider, whereBond 1987).
the k-space features are broad with no strong deviations
from scale invariance, the simple approximation of

suffices.equation (13)

2.2.4. Reionization Damping

From the null detection of the Gunn-Peterson e†ect
& Peterson in hydrogen, we know that the(Gunn 1965)

universe was reionized at least as early as redshift zB 5,
barring essentially complete evacuation of the baryons from
the intergalactic medium. Partial clumping of the baryons
can have interesting but probably small e†ects on the CMB,
as we brieÑy mention in The main e†ect arises because° 3.5.

reionization recouples the photons to the electron-baryon
plasma. The same process that is responsible for di†usion
damping acts to destroy anisotropies during this epoch as
well.

During the free-streaming epoch, the e†ective ““ di†usion
length ÏÏ is simply the horizon scale. Photon trajectories
from di†erent temperature regions on the surface of last
scattering intersect, forming the anisotropy that is rep-
resented by the l º 2 photon modes. When the universe
reionizes, the photons that rescatter lose their anisotropy.
Note that the isotropic temperature Ñuctuation that exists
above the horizon, where trajectories have not yet crossed,
does not damp by rescattering. This is reÑected in the lack
of a coupling term in the l \ 0 mode of the Boltzmannq5
equation The l \ 1 mode damps in such a way as(eq. [1]).
to drive toward so that the distribution is isotropic in#1 v

bthe electron rest frame.
Even in a reionized universe, photons eventually last

scatter as the electron density drops as a result of the expan-
sion and the mean free path to scattering exceeds the
horizon length. Thus only the fraction e~q of the photons
that did not rescatter contribute to the anisotropy below
the horizon at last scattering, Above this scale allg

r
.

photons contribute. Thus the rough form of the reionization
damping function becomes

R
l
\
G1,
e~q

if l > rh/gr ,
if l ? rh/gr ,

(15)

where again the e†ect of the Ðnite duration of last scattering
on can be accounted for by the visibility function (seeg

r
° 2.4).

2.3. Numerical Calibration
The expressions of the previous section are only approx-

imations, though useful ones. We now turn to numerical
calibration by solving the Boltzmann equations of ° 2.1.

Extracting the damping e†ects from realistic models of
structure formation is complicated because of the manner in
which gravity generates perturbations through the metric
Ñuctuations ' and ( in the model. Since the e†ects dis-
cussed above are essentially model independent, we choose
instead to calculate a toy model in which no gravitational
e†ects, beyond the background expansion, are included.
SpeciÐcally, we solve the Boltzmann equations for the
photons and baryons with '\ 0 \ (. This includes
neglecting the self-gravity of the photon-baryon Ñuid.

Before recombination, we are left with a pure acoustic
oscillation whose behavior is completely determined by the
initial conditions. For simplicity, we take them to be adia-
batic and scale invariant. The evolution equations of ° 2.1
are then solved in the usual way (see, e.g., & Efsta-Bond
thiou & Bertschinger & Zaldarriaga1984 ; Ma 1995 ; Seljak

through recombination to the present. This properly1996)
includes the e†ects of di†usion through the surface of last
scattering and the projection of the Ñuctuations at last scat-
tering onto the sky today. We show an example in Figure 1
(long-dashed line).

To extract the di†usion damping behavior, we compare
this to a calculation of the same model with di†usion
damping ““ turned o†.ÏÏ SpeciÐcally, we solve the tightly
coupled photon-baryon equation up to the point at(eq. [5])
which the optical depth to the present (ignoring
reionization) becomes unity. We then free-stream the
photons to the present by solution of the sourceless Boltz-
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FIG. 1.ÈDi†usion damping calibration. In the absence of both di†u-
sion damping and gravitational sources, the rms temperature Ñuctuation at
recombination (short-dashed line) exhibits simple acoustic oscillations.
These are mapped onto anisotropies on the sky in a nearly one-to-one
fashion (solid line). The inclusion of di†usion terms in the Boltzmann equa-
tion (long-dashed line) allows for a simple numerical calibration of its
e†ects.

mann equation in eqs. and to(( \'\ q5 \ 0 [1] [2])
determine the anisotropy (see solid line). The ratio ofFig. 1,
the angular power spectrum of the damped calculation to
that of the undamped calculation yields the form of the
damping function (see also below). This alsoD

l
2 Fig. 7

serves to calibrate the angular-size distance relation of
through comparison with the mean squaredequation (13)

Ñuctuations in Fourier space, at opticalo#0 o2] o#1 o2/3,
depth unity (see short-dashed line). By aligning theFig. 1,
peaks, one extracts the proportionality factor f B 0.98. As
discussed in free-streaming smears features in the° 2.2,
k-space rms spectrum somewhat, which explains the slightly
smoother actual anisotropy.

To extract the reionization damping behavior, we
compare the no-reionization case to one with some arbi-
trary reionization history. In order to isolate damping
e†ects from the Doppler e†ect due to the relative motion of
the baryons with respect to the CMB, we set duringv

b
\#1this epoch. For simplicity, we often parameterize the reioni-

zation as instantaneous at some epoch to some constantz
rfractional level of hydrogen reionization though none ofxH,

our results depend on this simpliÐcation. The ratio of the
two power spectra yields We show examples inR

l
2. Figure 2

(solid lines).

2.4. Fitting Formulae
It is convenient to Ðt the numerical calculations of ° 2.3

for the di†usion damping and reionization damping
envelopes. Aside from providing a compact summary of the
results, this exposes the sensitivity of the spectrum to
cosmological parameters, which will be useful in ° 3.

2.4.1. Di†usion Damping Envelope

Since the e†ect of di†usion damping is determined solely
through the Compton mean free path and horizon scale, it
is dependent on very few cosmological parameters. The
Compton mean free path of a photon is governed by the
baryon density If the present energy density ino

b
P)

b
h2.

the radiation is Ðxed, then the horizon only depends on the
matter content before contributions from curvature)0 h2
and the cosmological constant become signiÐcant. We
assume here that the radiation energy density is Ðxed by the
observed CMB temperature, K et al.Tc \ 2.728 (Fixsen

FIG. 2.ÈReionization damping calibration. By removing the relative
Doppler e†ect from a reionized Boltzmann calculation and comparing the
result to the same model (here standard CDM, h \ 0.5,)0\ 1, )

b
h2\

0.0125) with no reionization, the e†ects of rescattering damping are iso-
lated. The reionization damping envelope is Ðtted by two parameters, the
optical depth during reionization and the horizon scale at last scattering
(see eq. [24]).

and that there exist three families of massless neu-1996),
trinos with (we ignore the small correctionTl \ (4/11)1@3Tcof & Turner Thus, aside from the projec-Dodelson 1992).
tion e†ects from which are sensitive to the curvature andrh,cosmological constant, the damping behavior depends only
on and We have computed as described in)0 h2 )

b
h2. D

lfor 150 models in the range and° 2.3 0.02\)0 h2\ 0.75
0.005\)

b
h2\ 0.75.

From the tight-coupling expansion, we expect the
damping tail to scale as Including the e†ectexp [[(l/l

D
)2].

of a Ðnite surface of last scattering and the conversion from
k to l makes the damping function less steep. We Ðnd that,
through the Ðrst 2 decades of damping in power, the func-
tion calculated in the last section can be approximated asD

l
D

l
\ exp [[(l/l

D
)m] . (16)

The quantities and m are functions of andk
D

f\ l
D
/rh )0 h2

which are power laws at the extreme ends of param-)
b
h2,

eter space (see Recall that fB 0.98 is obtained byFig. 3).
numerical calibration of the projection relation (see ° 2.3).

FIG. 3.ÈDi†usion scale calibration. Analytic estimates of k
D
()0 h2,

based on the tight-coupling approximation trace the results to rea-)
b
h2)

sonable accuracy and explain their general behavior eq. [E4]). The(HSc,
Ðtting function of tracks the numerical calibration to better thaneq. (17)
the 1% level.
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We chose Ðrst to Ðt the dependence. A simple twoÈ)
b
h2

power-law Ðt,

l
D
/rh \ a1()b

h2)0.291[1] a2()b
h2)1.80]~1@5 Mpc~1 ,

m\ a3()b
h2)a4[1 ] ()

b
h2)1.80]1@5 , (17)

provides a good description of the numerically determined
behavior. The coefficients of this Ðt are then functions of

We Ðnd that they Ðt single or double power-law)0 h2.
forms,

a1\ 0.0396()0 h2)~0.248[1 ] 13.6()0 h2)0.638] ,

a2\ 1480()0 h2)~0.0606[1] 10.2()0 h2)0.553]~1 ,

a3\ 1.03()0 h2)0.0335 ,

a4\ [0.0473()0 h2)~0.0639 . (18)

Together these Ðtting functions work to the percent level for
and and improve0.02\)0 h2\ 0.75 0.005\)

b
h2\ 0.75

upon the approximate results of and (eq. [E4]).° 2.2 HSc
To complete the description of the damping, we need to

express explicitly the conversion of physical- to angular-
space variables through the angular-size distance Therh.missing ingredient of is the comoving distanceequation (13)
to the surface of last scattering, The horizon scaleg0[ g

*
.

today can be expressed as an integral over the Hubble
parameter, For this has theg0 \ /01 (a2H)~1 da. )" \ 0,
exact solutions

1
H0(1[ )0)1@2

] ln
C2 [ )0] 2(1 [ )0)1@2(1 ] aeq)0)

)0] 2(1 [ )0)1@2(aeq )0)1@2
D

,

if K \ 0 ,

1
H0()0 [ 1)1@2

C
tan~1 )01@2()0[ 1)~1@2

2aeq1@2(1 ] aeq)1@2

[tan~1 2 ] 2aeq[ )0[ 2aeq)0
2(1 ] aeq)()0 [ 1)1@2

D
,

if K [ 0 , (19)

q

t

t

t

t

t

g0\ r

t

t

t

t

t

s

while for K \ 0 the form

g0\ 2()0H02)~1@2[(1] aeq)1@2 [ aeq1@2](1 [ 0.0841 ln)0)
(20)

Ðts the integral over the region and to0.1[)0 ¹ 1 0.3[ h
better than 1% accuracy. Here

aeq\ 4.17] 10~5()0 h2)~1[Tc/(2.728 K)]4 (21)

is the scale factor at matter-radiation equality. Finally, the
horizon at last scattering, where takes the formq(g

*
) \ 1,

g
*

\ 2()0H02)~1@2[(a
*

] aeq)1@2 [ aeq1@2] , (22)

where

z
*

4 a
*
~1[1 \ 1048[1] 0.00124()

b
h2)~0.738]

] [1] b1()0 h2)b2] ,

b1\ 0.0783()
b
h2)~0.238

] [1 ] 39.5()
b
h2)0.763]~1 ,

b2\ 0.560[1] 21.1()
b
h2)1.81]~1 (23)

eq. [E1]) is a Ðt to the redshift of recombination.(HSc,

2.4.2. Reionization Damping Envelope

Reionization damping depends on two parameters, the
total optical depth q and the angular scale subtended by the
horizon at last scattering during the reionization epoch,

The asymptotic values given in areh
r
D l

r
~1. equation (15)

highly accurate, and thus we need only search for an inter-
polating function around The following form Ðts thel

r
.

behavior in to better than 1% for late reionization :R
l
2

R
l
2 \ 1 [ e~2q

1 ] c1 x ] c2 x2] c3 x3] c4 x4] e~2q , (24)

with andx \ l/(l
r
] 1) c1\ [0.276, c2\ 0.581, c3\

[0.172, and Even the more extreme case ofc4\ 0.0312.
early reionization to a low ionization level is described well
at the couple-of-percent level (see High precision inFig. 2).
the large optical depth limit is unnecessary since secondary
anisotropies dominate in this limit.

The parameter involves the visibility-l
r
\ rh(gr

)/g
rweighted horizon at reionization,

g
r
\ / dg g(q5 e~q)

/ dg(q5 e~q)
, (25)

where the optical depth functions can be obtained by noting
that

q5 4 n
e
pT a \ (2.304] 10~5 Mpc~1)

] (1 [ Y
p
))

b
h2(1 ] z)2xH . (26)

Here is the primordial helium mass fraction ;Y
p
B 0.23

recall that is the hydrogen ionization fraction and thatxHwe assume that helium is not ionized. It is useful to note
that for low redshifts, and constant ionizationz

r
> 100,

fraction, the optical depth may be integrated analytically to
yield

q\ 4.61] 10~2(1 [ Y
p
)xH

)
b
h

)02
] [2[ 3)0] (1 ] )0 z

r
)1@2()0 z

r
] 3)0 [ 2)] (27)

when "\ 0 and

q\ 4.61] 10~2(1 [ Y
p
)xH

]
)

b
h

)0
M[1 [ )0] )0(1 ] z

r
)3]1@2 [ 1N (28)

when K \ 0. For higher redshifts, the contribution of the
radiation to the expansion rate can make a few percent or
greater correction.

3. COSMOLOGICAL INFORMATION

Armed with the calibration of the e†ects of di†usion and
reionization damping, we can now examine the informa-
tion, on both cosmological parameters and models for
structure formation, embedded in the small-scale anisot-
ropy spectrum. We begin with a discussion of the assump-
tions that render di†usion and reionization damping
model-independent for most models of structure formation

By removing the e†ects of damping in such models,(° 3.1).
one uncovers striking signatures that contain essential
information on the nature of Ñuctuations in the early uni-
verse (see also & White For illustrativeHu 1996b).
purposes, we often employ variants of the standard
CDM model, scale-invariant initial adiabatic Ñuctuations
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k3 o((0, k) o2\ const in an h \ 0.5,)0\ 1, )
b
h2\ 0.0125

universe.
Baryon drag, which enhances alternate acoustic peaks

can help separate adiabatic from isocurvature Ñuc-(° 3.2),
tuations, an important step in distinguishing inÑationary
models from cosmological-defect models (see & WhiteHu

et al. It also probes the gravitational1996b ; Hu 1996a).
potential at last scattering. The underlying amplitude of the
oscillations extracts information about the evolution of the
gravitational potentials at horizon crossing through the
potential envelope (° 3.3).

The di†usion damping and reionization damping
envelopes are themselves interesting because they provide
essentially model-independent information about cosmo-
logical parameters, mainly the curvature of the universe

and the epoch and extent of reionization In(° 3.4) (° 3.5).
this section, we systematically treat these applications of the
results from the damping calibration in ° 2.

3.1. Model Assumptions
We begin by examining the conditions under which the

di†usion damping and reionization damping envelopes are
model independent, to expose general guidelines for their
use.

Only acoustic oscillations are damped by di†usion. This
leaves untouched, e.g., o†sets in the zero point of the oscil-
lations or anisotropies generated between the surface of last
scattering and the observer. In the former case, the [(
o†set provided by the potential is not damped, because it
represents gravitational redshifts that are picked up by the
photons even as they di†use in and out of potential wells.
The baryons provide an inertia to the photon-baryon Ñuid,
which further o†sets the oscillation. The Compton drag of
the baryons on the photons increases the photon tem-
perature inside gravitational potential wells by [R(,
leading to a zero-point shift that is not damped by di†usion,
for similar reasons. Together the redshift and drag e†ects
explain why, in the estimates of it is° 2.2, #0] (1 ] R)(
that su†ers damping and not#0.

The time evolution of the potentials causes a shift of
order (see & White eq. [25]). If R?(� /k2 Hu 1996b,

it is negligible in comparison with baryon drag.o(� /k2( o,
Generally, ( varies on the order of an expansion time such
that for scales well inside theo(� /k2( o\O[(kg)~2]> 1
horizon at last scattering : kg ? 1. Mixed terms of order

also exist but are again generally smaller than the R(R(0 /k
term. Since the intrinsic acoustic amplitude is of the order of
the gravitational potential at sound-horizon crossing,
((k, the di†usion damping signature dominates overr

s
~1),

the undamped term if

o((k
D
, r

s
~1)/((k

D
, g

*
) oZ R , (29)

k2 o((k
D
, r

s
~1)/(� (k

D
, g

*
) oZ 1 , (30)

which are generally satisÐed by models whose potentials do
not grow signiÐcantly well within the sound horizon. Note
that no assumption of coherence in the oscillation is neces-
sary et al.(Magueijo 1996).

In principle, there is also a model-dependent e†ect since
in the discussion above we have implicitly assumed a two-
step process : Ðrst the acoustic oscillations are formed and
then they are damped. This is generally called in the liter-
ature a ““ passive ÏÏ approximation et al. If(Albrecht 1996).
the model possesses a strongly time-varying potential inside

the horizon, the underlying acoustic oscillations could still
be forming as the di†usion length overtakes the wavelength.
Usually this is a small e†ect since most of the damping
occurs at the instant of recombination, so that the Ñuctua-
tions generated during this short time are small.

Finally, anisotropies generated between recombination
and the present could be larger than the intrinsic acoustic
signal, especially in the damping tail. This could occur as a
result of the linear and nonlinear &(Kaiser 1984) (Sunyaev
Zeldovich Doppler e†ects in a reion-1970 ; Vishniac 1987)
ized universe or time variations in the potential along the
line of sight & Wolfe & Sciama(Sachs 1967 ; Rees 1968 ;

& Stebbins In models such as CDM, with aKaiser 1984).
nearly scale-invariant spectrum of adiabatic initial Ñuctua-
tions, this is not a worry. The lack of excessive small-scale
power in the model makes early reionization and/or small-
scale nonlinearities that are responsible for such e†ects
unlikely & Barcons &(Ceballos 1994 ; Seljak 1996 ; Hu
White 1996a).

These types of considerations also apply to the reioniza-
tion damping function calculated in By construc-R

l
° 2.3.

tion, this function isolates the rescattering damping e†ect
during reionization and ignores any secondary e†ects that
may regenerate Ñuctuations. Again, the Doppler e†ect due
to the relative velocity of the electrons with respect to the
CMB can regenerate Ñuctuations signiÐcantly if both the
peculiar velocities and the optical depth are large. We
examine this e†ect more closely in ° 3.5.

In summary, the damping function accuratelyD
ldescribes the model-independent damping of acoustic oscil-

lations, and the reionization damping function does theR
lsame for the rescattering damping of primary anisotropies.

In models such as CDM, with no excess small-scale power
and hence relatively late reionization and small secondary
e†ects, their behavior will be clearly manifest in the observ-
able spectrum. In models in which this is not true, it merely
describes the behavior of a component of the total anisot-
ropy, and other e†ects must be taken into account to
extract the information embedded in the observed anisot-
ropy.

3.2. Uncovering the Baryon Signature
Baryons create a distinct acoustic signature due to the

drag e†ect discussed in By providing inertia to the° 3.1.
Ñuid, they enhance compressions over rarefactions inside
potential wells. Aside from providing a means to measure
the baryon content, it also distinguishes between the two
phases through the di†erence in peak amplitudes between
successive peaks. In turn this distinction provides one of the
most striking and robust ways to distinguish adiabatic
inÑationary Ñuctuations from their isocurvature counter-
parts, generated perhaps by cosmological defects &(Hu
White et al. Unfortunately, damping and1996b ; Hu 1996a).
projection e†ects serve to obscure this signal. By deconvol-
ving these e†ects with the results and methods of °° 2.3È2.4,
one can uncover this important signature.

Let us Ðrst examine the intrinsic e†ect. In weFigure 4,
show an example from a solution of the tight-coupling oscil-
lator equation under the metric Ñuctuations of an(eq. [5])

h \ 1, CDM model. Displayed is the)0\ 1, )
b
h2 \ 0.025

e†ective temperature Ñuctuation of the peaks (triangles),
connected by the full function to guide the eye. To demon-
strate that the alternating-height e†ect is due to baryon
drag, we add k) to each peak (squares), whereR

*
((g

*
,
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FIG. 4.ÈBaryon drag and its potential dependence. Baryon inertia in
the Ñuid displaces the zero point of the temperature oscillations, leading to
alternating peak heights as a function of scale at last scattering. The magni-
tude of the displacement is and by removing it the monotonicR

*
((g

*
),

variation of heights due to the potential envelope is uncovered (top). The
fractional e†ect is of order k)/((0, k) and can be adequatelyR

*
((g

*
,

described by the matter transfer function T (k) (bottom). The model here is
CDM with h \ 1, and)0\ 1, )

b
h2\ 0.025.

Note that this eliminates the alternation,R
*

\ R(g
*
).

leaving the peak heights to smoothly vary in a manner
described by the ““ potential envelope ÏÏ discussed in the next
section. Since the intrinsic amplitude of the oscillations is of
the order of the potential before sound-horizon crossing,
the fractional e†ect is of order k)/((0, k).R

*
((g

*
,

Since the e†ect depends on the potential at last scattering,
k), it also provides a probe of the matter Ñuctuations((g

*
,

at that epoch. Under the CDM scenario, the potential
does not evolve signiÐcantly between recombination
and the present, so the baryon drag e†ect also reÑects the
matter Ñuctuations today. The fractional e†ect becomes

k)/((0, k)/((0, whereR
*

((g
*
, k) BR

*
((g0, k) \R

*
T (k),

T (k) is the matter transfer function,

T (q)\ ln (1] 2.34q)
2.34q

[1 ] 3.89q ] (16.1q)2

] (5.46q)3] (6.71q)4]~1@4 (31)

et al. with q \ [k/(1(Bardeen 1987), Mpc~1)][Tc/(2.7 In (bottom), we show that RT (k)K)]2()0 h2)~1. Figure 4
accurately tracks the e†ect and provides a potential consis-
tency check with large-scale structure today. As we shall see
in the next section, the fall of the fractional baryon drag
e†ect and the rise of the potential envelope are intimately
related through the matter-radiation equality epoch.

The magnitude of the baryon drag e†ect in the observ-
able anisotropy spectrum is reduced by inclusion of the
dipole term and smoothing by projection, but mainly by
di†usion damping. If the baryon content is low, the intrinsic
magnitude of the e†ect is small and di†usion damping may
cause the peak heights to monotonically decrease rather
than to alternate (see Given the calibration of theFig. 5).
di†usion damping behavior in we can invert this Ðlter.° 2.3,
In we show that multiplying the spectrum byFigure 5, D

l
~2

FIG. 5.ÈUncovering baryon drag in a low-baryon universe. Di†usion
damping obscures the baryon drag signal, especially in a low-baryon uni-
verse (here in an otherwise standard CDM model).)

b
h2\ 0.0075

Employing the numerical calibration of the damping tail, we recover the
alternations. Even though uncertainties in the assumed baryon content
translate into inversion uncertainties (dotted lines, 0.01), this)

b
h2\ 0.005,

distinct signature is difficult to mask.

uncovers the alternating peaks even for signiÐcantly)
b
h2

lower than the standard big bang nucleosynthesis predic-
tion. In practice, removing the damping behavior precisely
will require knowledge of and either from exter-)0 h2 )

b
h2,

nal measurements or consistency checks (see & WhiteHu
as well as measurement of the curvature from the1996b),

CMB. In (dotted lines), we show that a factor of 2Figure 5
uncertainty in does not destroy our ability to see)

b
h2

peak-height alternations in CDM models.

3.3. Determining the Potential Envelope
Gravitational potential perturbations drive acoustic

oscillations, a†ecting their amplitude and phase. The e†ect
on the phase can be used to uncover information about the
origin of Ñuctuations in an inÑationary epoch or phase tran-
sition & Turok & White(HSb; Crittenden 1995 ; Hu 1996b).
Here we treat their e†ects on the amplitude of the intrinsic
oscillations, unobscured by the presence of di†usion
damping. This can be obtained from an observed spectrum
by the techniques of and is also useful for constraining° 2
the curvature (see ° 3.4)

As an example of the driving process, let us consider the
case of adiabatic Ñuctuations. The self-gravity of the
photon-baryon Ñuid drives its own oscillations through a
feedback mechanism at sound-horizon crossing. Photon
pressure prevents gravitational collapse inside the sound
horizon, leading to a decay in the self-generated gravita-
tional potential. This decay is timed such that it leaves the
oscillator in a highly compressed state, leading to corre-
spondingly large-amplitude acoustic oscillations (see &Hu
White for further description). If the self-gravity of1996b
the photons and baryons dominates, the amplitude of the
oscillation is enhanced from gravitational redshifts by
[2(, which, combined with the Sachs-Wolfe e†ect (Sachs
& Wolfe of (/3, yields a net result of [5(/3, i.e., the1967)
amplitude of the oscillation should be 5 times the large-
angle Sachs-Wolfe plateau. Inclusion of neutrinos and the
matter-radiation transition modify this result to 5[1 ]
(4/15)]~1, where the neutrino density fraction is fl \

eq. [B9]). This driving e†ect only oper-ol/(ol] oc) (HSc,
ates if the self-gravity of the photon-baryon Ñuid dominates
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at sound-horizon crossing. Large scales cross the sound
horizon in the matter-dominated epoch and do not su†er
this e†ect. Thus the scale that crosses the horizon at matter-
radiation equality, marks the transition between thekeq,two asymptotic regimes.

The critical scale provideskeq\ (2)0H02/aeq)1@2 P)0 h2
the CMB with sensitivity to the parameter This is)0 h2.
similar to the more familiar e†ect of equality on the matter
power spectrum (see but note that Ñuctuationseq. [31]),
increase rather than decrease upon crossing keq. Figure 6
shows that the potential envelope that governs the ampli-
tude is indeed a function of Potentially, thisk/keq P k/)0 h2.
e†ect can also probe the neutrino mass through its e†ect on

(see & Bertschinger & Bertschingerkeq Seljak 1994 ; Ma
Gates, & Stebbins1995 ; Dodelson, 1996).

The remaining subtlety is that the presence of baryons
makes acoustic oscillations decay adiabatically. Note that
the tight-coupling equation describes an acoustic(eq. [5])
oscillator with e†ective mass of 1] R. The adiabatic invari-
ant for such an oscillator is the energy/frequency. This
requires that temperature Ñuctuations decay as (1] R)~1@4
and dipole or Doppler contributions decay as (1] R)~3@4.
The amplitude of the potential envelope thus gains a
baryon dependence set by the value of R at recombination
(HSc).

The full potential envelope in power can be roughly
described by

P
l
\ 1 ] A exp ([1.4leq/l) (32)

for a scale-invariant spectrum. Here and theleq \ keq rh,amplitude A is Ðxed by the asymptotic expression

A\ 25
A
1 ] 4

15
fl
B~2 (1 ] R

*
)~1@2 ] (1 ] R

*
)~3@2

2
[ 1 ,

(33)

where we have combined the temperature and Doppler
e†ects in quadrature. Tilting the primordial spectrum pro-
duces an analogous tilt in The integrated Sachs-WolfeP

l
.

e†ect & Wolfe in open and " models, also(Sachs 1967),
gives large-angle contributions (see also et al.P

l
Hu 1996b).

We show an example in The upper curves showFigure 7.
a calculation with the e†ects of di†usion damping removed

FIG. 6.ÈPotential envelope. Decay of the potential due to the self-
gravity of the photon-baryon Ñuid drives the oscillator. Comparing two
CDM models with di†ering matter-to-radiation ratios we see that)0 h2,
the oscillations are multiplied by an envelope that depends on the equality
scale, keq P)0 h2.

FIG. 7.ÈUncovering the potential envelope. The potential envelope is
obscured by di†usion damping. By numerically removing the damping,
one sees that the intrinsic Ñuctuations follow the analytic estimates of P

lreasonably well. By multiplying by the numerically calibrated damping
function one recovers the form of the full calculation even at very smallD

l
2,

angles. The model here is standard CDM.

compared with the potential envelope of equation (33).
Note that the form of the envelope roughly traces power in
the Ñuctuations. The bottom curves show how di†usion
damping obscures the signature and tests the damping cali-
bration of in a realistic context. By multiplying the° 2.3
undamped calculation by one regains, to reasonableD

l
2,

accuracy, the result of a full CDM calculation incorporating
di†usion damping.

Thus the obscuring e†ects of di†usion damping can be
removed to extract the potential envelope of acoustic oscil-
lations. This provides information on the evolution of the
metric Ñuctuations as they cross the sound horizon, which
may help unravel information about the nature of such
Ñuctuations in the general case and the scale of matter-
radiation equality in the adiabatic case. Of course the same
caveats that accompany the uncovering of the baryon sig-
nature through inverting the damping apply here as well.

3.4. Constraining the Curvature
The angular scale of di†usion damping, provides al

D
,

clear feature by which a classical angular-size distance test
of the curvature can be made by comparison with the corre-
sponding physical scale & White In modelsk

D
(Hu 1996a).

with simple acoustic peak features, which can also be used
for this test et al. this provides a consis-(Jungman 1996a),
tency check on the curvature, important if the baryon
content or thermal history of the universe is unknown or
anomalous & White In models in which the(Hu 1996b).
peak signature is more complicated or nonexistent

et al. it may serve as the primary means of(Albrecht 1996),
measuring the curvature.

In principle, the curvature is constrained by the simple
absence or presence of small-scale power. In an open uni-
verse, geodesic deviation moves the di†usion tail in angular
space to smaller angles, leading to more power on small
scales. In practice, its application is complicated by second-
ary e†ects in the foreground and lack of a priori knowledge
about the intrinsic amplitude of Ñuctuations before
damping. The former is unlikely to be an obstacle in models
with no strong nonlinearities at small scales, in which the
acoustic signal from recombination is the dominant contri-
bution to the anisotropy.
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Lack of knowledge of the intrinsic amplitude of oscil-
lations limits the precision by which the curvature can be
measured from the damping tail. The intrinsic amplitude is
given by the potential envelope discussed in the pre-P

l
,

vious section. Given that di†usion damping is exponential
in l, it takes only a rough estimate of to yield interestingP

lconstraints on the curvature. Furthermore, if is a slowlyP
lvarying function compared with measurement of theD

l
,

power on several scales in the damping tail can remove the
ambiguity.

We show an example in Here we assume thatFigure 8.
the underlying spectrum is that of standard CDM, which
sets By comparing the power at some scale l in the)0\ 1.
damping tail to some reference scale, here l \ 2,

l(l] 1)C
l

6C2
\D

l
2

D22
P

l
P2

, (34)

and by using the Ðtting formula for of oneD
l

equation (17),
can determine the intrinsic ratio of power as a func-P

l
/P2tion of needed to reproduce the measurement. We have)0ignored the suppression of power from as it is generallyR

lnegligible for our purposes here. Because the damping
multipole is a strong function of the amount of intrin-l

D
)0,sic power required increases steeply with Thus even the)0.crude estimate of the CDM potential envelope of equation

is more than sufficient to distinguish between inter-(32)
esting values of (see square). As the slopes of the)0 Fig. 8,
curves reÑect, the further into the damping tail one can
measure, the more powerful the test becomes. Of course, for

the signal also drops exponentially and hence is diffi-l? l
D
,

cult both to measure and to separate from secondary e†ects.
By measuring more than one scale in the damping tail,

one obtains a consistency check on the curvature con-
straint. If the l-dependence of is weak, as is the case forP

lCDM-like scenarios (see then the predictions for theFig. 7),
intrinsic power must intersect near the actual value of )0.

FIG. 8.ÈConstraining with the damping tail. By measuring the)0anisotropy power in at some scale l in the damping tail (here averaged over
10% in l) and comparing it to a reference scale (here l \ 2), one determines
the ratio of intrinsic powers before damping necessary to reproduceP

l
/P2the observation (here in standard CDM). Since this is a strong)0\ 1

function of the assumed only order-of-magnitude knowledge of the)0,model-dependent intrinsic power is needed (e.g., square, estimated from eq.
to reject values of Multiple measurements in the damping tail[32]) )0.largely remove this ambiguity (curve intersection). For simplicity, we have

Ðxed h \ 0.5, and If were substantially mis-)
b
h2\ 0.0125, )" \ 0. )

b
h2

estimated in the inversion, the inferred would change :)0 )
b
h2\

and0.0063] )0B 0.75, )
b
h2\ 0.025] )0B 1.45.

This implements the damping-tail shape test proposed in
& White to remove the model dependence of theHu (1996b)

curvature constraint.
If uncertain, the baryon content translates into an)

b
h2

uncertainty in the curvature measurement. Even ignoring
big bang nucleosynthesis constraints, it is possible to estab-
lish its value reasonably well through consistency tests in
the anisotropy spectrum & White Furthermore,(Hu 1996b).
as shows, the dependence of the damping scaleequation (17)

on is signiÐcantly weaker than on the curvature. Inl
D

)
b
h2
we show that even a factor of 4 uncertainty in theFigure 7,

baryon content will not prevent exclusion of in)0[ 0.75
an standard CDM universe.)0\ 1

Finally, even if only upper limits exist from CMB mea-
surements at small scales, lower limits on can be)0obtained with reasonable assumptions on the baryon
content and the amount of intrinsic power in small-scale
Ñuctuations.

3.5. Examining Reionization
Even late reionization produces potentially observable

consequences for precise measurements of the CMB. In a
standard CDM model, the optical depth ranges from 1% to
3% between and leading to a 2%È6% e†ectz

r
\ 5 z

r
\ 10,

in the anisotropy power spectrum. For these low optical
depths, it is likely that the main e†ect of reionization is the
rescattering damping calculated in In this case, two° 2.3.
cosmological quantities are potentially extractable from the
spectrum, the total optical depth and the horizon size at last
scattering during the reionized epoch. In practice, extract-
ing accurate results will be hampered by cosmic variance at
large angles and by the close degeneracy between changes in
the spectrum due to the normalization and late reionization
at small angles.

In we show how well the numerical calibrationFigure 9,
of and the Ðtting formula of reproduce° 2.3 ° 2.4 (eq. [24])
the full e†ect of late reionization. The accuracy achieved is

FIG. 9.ÈReionization damping in standard CDM. Damping described
by the envelope is the main e†ect of late reionization in CDM-typeR

lmodels. Hence employing either the numerical calibration of and the ÐtR
lto it from to Ðlter the results of a standard recombination (SR, noeq. (24)

reionization) calculation approximate the full calculation to better than
1% in power. The scatter at low l is a numerical artifact from Ðnite sam-
pling of the in k-space (seeC

l
-integral eq. [4]).
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FIG. 10.ÈReionization and the Doppler e†ect. For early ionization, the
Doppler e†ect due to the relative electron-photon velocity can regenerate
Ñuctuations around the horizon scale at the last-scattering epoch. By com-
paring the standard recombination (SR) result Ðltered by reionization
damping to the full calculation, we can uncover such e†ects.R

l
2

always better than a percent in power and increases toward
small scales, where the reionization signal is the largest.
With the high precision achievable by the next-generation
satellite experiments, it is conceivable that the CMB spec-
trum can probe even such relatively late reionization.

If reionization occurs earlier, such that the optical depth
is higher and/or nonlinear e†ects dominate, then its e†ect
on the CMB can be even more signiÐcant. Fluctuations are
not only erased but also regenerated. As an example, con-
sider the Doppler e†ect from the relative velocity of the
electrons with respect to the CMB generated as the baryons
fall into dark matter potential wells. Its e†ect peaks near the
horizon at last scattering because of competing e†ects.
Velocity Ñows are only generated inside the horizon. Yet, on
small scales, photons last scatter against many crests and
troughs of the velocity perturbation, leading to a strong
cancellation damping of the Doppler e†ect (Kaiser 1984).
By employing the rescattering damping function fromR

lwe isolate this e†ect in For the higher° 2.3, Figure 10.
optical depth cases, the Doppler e†ect is clearly apparent as
an excess of Ñuctuations over that predicted by OnR

l
.

scales much smaller than the horizon at the last-scattering
epoch, simple analytic approximations exist for this e†ect

& White In a CDM model, where(Kaiser 1984 ; Hu 1996a).
the optical depth is likely to be such small-scaleq[ 1,

e†ects are masked by larger primary anisotropies until well
into the damping tail.

More complicated rescattering damping can occur if the
reionization is patchy. Although one cannot directly apply
the results of our damping calibration to this case, basic
elements uncovered, such as the dependence of damping on
the horizon scale, can be applied to this case as well. Non-
linear e†ects can also create Ñuctuations through the
Doppler e†ect, but these are generally small in a model like
CDM without excessive small-scale power (but see

et al.Aghanim 1996).

4. CONCLUSIONS

Prospects for measuring the small-scale CMB anisotropy
spectrum are bright, especially in light of the approval of
two new satellite missions, the Microwave Anisotropy Probe
from NASA and COBRAS/SAMBA from ESA, and the
funding of ground-based interferometers. If foregrounds
and systematic and secondary e†ects are small or can be
removed and the inÑationary CDM model is correct, much
cosmological information can be extracted from the
damping tail of CMB anisotropies (see, e.g., et al.Bersanelli

Despite the enormous success of this model, however,1996).
it is quite possible that what is found there will come as a
surprise to the current orthodoxy in cosmological model-
ing. In preparation for this possibility, we have here, and in

& White attempted to construct the spectrumHu (1996b),
out of fundamental physical e†ects that are likely to be the
elements in any future model that successfully explains the
observations.

The basic elements uncovered here represent a series of
numerically calibrated transfer functions that describe the
linear processing of Ñuctuations : the di†usion damping
envelope, the reionization damping envelope, the potential
envelope, and the baryon drag modulation. The anisotropy
spectrum is not merely a snapshot of conditions on the
surface of last scattering. Rather, it is a dynamic entity that
bears the mark of Ñuctuations before horizon crossing
through the acoustic phase & White at horizon(Hu 1996b),
crossing through the potential envelope, at last scattering
through baryon drag, and after last scattering through the
large-angle potential envelope & Wolfe as well(Sachs 1967),
as the e†ects of reionization. Within the present framework
of model possibilities, this view of its structure also creates a
system of consistency checks by which we can verify model
assumptions, such as the inÑationary or cosmological-
defect origin of Ñuctuations, before proceeding to measure
cosmological parameters and details of the model.

W. H. was supported by a grant from the W. M. Keck
Foundation.
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