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Abstract

IPsec enables cryptographic protection of IP packets.

It is commonly used to build VPNs (Virtual Private Net-

works). For key establishment, the IKE (Internet Key

Exchange) protocol is used. IKE exists in two versions,

each with different modes, different phases, several au-

thentication methods, and configuration options.

In this paper, we show that reusing a key pair across

different versions and modes of IKE can lead to cross-

protocol authentication bypasses, enabling the imperson-

ation of a victim host or network by attackers. We exploit

a Bleichenbacher oracle in an IKEv1 mode, where RSA

encrypted nonces are used for authentication. Using this

exploit, we break these RSA encryption based modes,

and in addition break RSA signature based authentica-

tion in both IKEv1 and IKEv2. Additionally, we describe

an offline dictionary attack against the PSK (Pre-Shared

Key) based IKE modes, thus covering all available au-

thentication mechanisms of IKE.

We found Bleichenbacher oracles in the IKEv1 imple-

mentations of Cisco (CVE-2018-0131), Huawei (CVE-

2017-17305), Clavister (CVE-2018-8753), and ZyXEL

(CVE-2018-9129). All vendors published fixes or re-

moved the particular authentication method from their

devices’ firmwares in response to our reports.

1 Introduction

VPNs (Virtual Private Networks) allow employees to se-

curely access a corporate network while they are outside

the office. They also allow companies to connect their lo-

cal networks over the public Internet. Examples for large

industrial VPNs are the ANX (Automotive Network Ex-

change), ENX (European Network Exchange), and JNX

(Japanese Network Exchange) associations, which con-

nect vehicle manufacturers with their suppliers [1–3]. In

4G/LTE (Long Term Evolution) networks, wireless car-

riers use VPNs to secure the backhaul links between base
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Figure 1: The relationship between IKEv1 Phase 1,

Phase 2, and IPsec ESP. Multiple simultaneous Phase 2

connections can be established from a single Phase 1

connection. Grey parts are encrypted, either with IKE

derived keys (light grey) or with IPsec keys (dark grey).

The numbers at the curly brackets denote the number of

messages to be exchanged in the protocol.

stations and the core network [4, pp. 66–67]. Other appli-

cations of VPNs involve circumventing geo-restrictions

and censorship.

IPsec (Internet Protocol Security) is a protocol stack

that protects network packets at the IP layer. In contrast

to other widespread cryptographic protocols like TLS

(Transport Layer Security) or SSH (Secure Shell), which

operate at the application layer, IPsec allows to protect

every IP based communication. When transmitting pay-

load data, IPsec uses two different data formats to protect

IP packets: AH (Authentication Header) for integrity-

only setups and ESP (Encapsulating Security Payload)

for confidentiality with optional integrity.

IKE. To establish a shared secret for an IPsec connec-

tion, the IKE protocol has to be executed. There are

two different versions of IKE named IKEv1 (1998) and

IKEv2 (2005). Although IKEv2 officially obsoletes the
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Figure 2: The relationship between IKEv2 Phase 1,

Phase 2, and IPsec ESP. Multiple simultaneous Phase 2

connections can be established from a single Phase 1

connection. Furthermore, Phase 1 and Phase 2 are par-

tially interleaved. Grey parts are encrypted, either with

IKE derived keys (light grey) or with IPsec keys (dark

grey). The numbers at the curly brackets to the left de-

note the number of messages to be exchanged in the pro-

tocol.

previous version, both are still available in all implemen-

tations and both can be configured for actual use in all

major operating systems and network devices.

IKE consists of two phases, where Phase 1 is used to

establish initial authenticated keying material between

two peers. Phase 2 is used to negotiate further derived

keys for many different IP based connections between

the two.

IKE is one of the most complex protocols in use, and

the dependencies between Phase 1 and Phase 2 make it

hard to analyze. Figures 1 and 2 illustrate this complex-

ity: In IKEv1, both phases are clearly separated, but there

are two different modes for Phase 1. In IKEv2, Phase 1

has been simplified, but now Phase 1 interleaves with the

first execution of the Phase 2 protocol.

Authentication. In IKEv1, four authentication meth-

ods are available for Phase 1 (cf. subsection 2.2): Two

RSA encryption based methods, one signature based

method, and a PSK (Pre-Shared Key) based method.

All Phase 1 modes/methods contain a DHKE (Diffie-

Hellman Key Exchange), which guarantees PFS (Perfect

Forward Secrecy) for every connection. IKEv2 Phase 1

omits both encryption-based authentication methods, so

only signature and PSK based authentication remain.

Attacks. Our attacks only target Phase 1 in IKEv1 and

IKEv2, where we impersonate an IKE device. Once

attackers succeed with this attack on Phase 1, they

share a set of (falsely) authenticated symmetric keys

with the victim device, and can successfully complete

Phase 2 – this holds for both IKEv1 and IKEv2. The

attacks are based on Bleichenbacher oracles discovered

in implementations of the two RSA encryption based

IKEv1 variants (cf. sections 5–7). These Bleichenbacher

oracles can very efficiently be used to decrypt nonces,

which breaks these two variants (subsection 4.2). The or-

acles can also be used to forge digital signatures, which

breaks the signature based IKEv1 and IKEv2 variants

(subsection 4.4).

We additionally show that both PSK based modes can

be broken with an offline dictionary attack if the PSK has

low entropy (section 9). We thus provide attacks against

all authentication modes in both IKEv1 and IKEv2 under

reasonable assumptions.

Contribution. In this paper, we make the following

contributions:

• We identify and describe Bleichenbacher oracles in

the IKEv1 implementations of four large network

equipment manufacturers, Cisco, Huawei, Clavis-

ter, and ZyXEL.

• We show that the strength of these oracles is suffi-

cient to break all handshake variants in IKEv1 and

IKEv2 (except those based on PSKs) when given

access to powerful network equipment.

• We demonstrate that key reuse across protocols as

implemented in certain network equipment carries

high security risks.

• We complete the evaluation of all variants of IKEv1

and IKEv2 by showing that all PSK based variants

are vulnerable to offline dictionary attacks if low en-

tropy PSKs are used. Such attacks were previously

only documented for one out of the three PSK-based

variants of IKE.

Responsible Disclosure. We reported our findings to

Cisco, Huawei, Clavister, and ZyXEL. Cisco pub-

lished fixes with IOS XE versions 16.3.6, 16.6.3, and

16.7.1. They further informed us that the vulnera-

ble authentication method would be removed with the

next major release. Huawei published firmware version

V300R001C10SPH702 for the Secospace USG2000 se-

ries that removes the Bleichenbacher oracle and fixes

crash bugs we identified on our test device. Customers

who use other affected Huawei devices will be contacted

directly by their support team as part of a need-to-know

strategy. Clavister removed the vulnerable authentication

method with cOS version 12.00.09. ZyXEL responded

that our ZyWALL USG 100 test device is from a legacy

model series that is end-of-support. Therefore, these de-

vices will not receive a fix. For the successor models, the

patched firmware version ZLD 4.32 is available.
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2 IKE (Internet Key Exchange)

IKE is a family of AKE (Authenticated Key Exchange)

protocols. It is responsible for negotiating multiple sets

of cryptographic algorithms and keys, called SAs (Se-

curity Associations) in IPsec terminology. Each SA can

either be used to protect the integrity of IP packets with

the data format AH (Authentication Header) or to pro-

tect confidentiality with optional integrity using the data

format ESP (Encapsulating Security Payload). IKE mes-

sages are exchanged over UDP (User Datagram Proto-

col) and their destination port is 500.

IKE is standardized in two major versions: Version 1,

described in RFC 2409 [16] and accompanying docu-

ments, was published in 1998. It has been declared obso-

lete by the IETF (Internet Engineering Task Force), but it

is nevertheless included in all implementations and still

widely used. Version 2, first published in RFC 4306 in

2005 [22] was designed as a low-latency alternative to

Version 1, and therefore has a fundamentally different

design. It is subject of ongoing standardization, but only

minor clarifications are incorporated in the most recent

RFCs. IKEv1 uses a data format called ISAKMP (In-

ternet Security Association and Key Management Proto-

col), which has later been integrated with IKEv2.

2.1 IKEv1 Phases

IKEv1 consists of two phases (cf. Figure 1). In Phase 1,

a SA is established for IKEv1 itself, such that the subse-

quent Phase 2 messages can be encrypted. Additionally,

a shared symmetric key is established as basis of authen-

tication in Phase 2. In Phase 2, several SAs for IPsec AH

and ESP are negotiated.

IKEv1 Phase 1. For Phase 1 of the protocol, two

modes – main mode and aggressive mode – and four

authentication methods are available. A main mode

handshake consists of exactly six messages; an aggres-

sive mode handshake compresses the protocol flow into

only three messages. We do not cover the aggressive

mode explicitly in this paper. However, all results de-

scribed in this paper hold for the aggressive mode as

well. Throughout the rest of this paper, we assume read-

ers familiar with the TLS protocol, as we will sometimes

compare IKE with TLS.

Figure 3 gives a simplified overview of the IKE proto-

col structure of Phase 1. Since IKE uses UDP, the pro-

tocol itself has to keep track of the handshake session.

IKE uses random values called cookies (and denoted by

cI and cR) for this purpose; these cookies are present in

each IKE header.

The first two messages (m1 and m2) are used to ne-

gotiate on a proposal – a combination of different cryp-

Initiator
(IDI , skI)

Responder
(IDR, skR)

m1 := (proposals)

−

cI , 0,m1

−−−−−−−−−−−→

m2 := (proposal)

←−

cI , cR,m2

−−−−−−−−−−−

m3 := (gx, ancI)

−

cI , cR,m3

−−−−−−−−−−−→

m4 := (gy, ancR)

←−

cI , cR,m4

−−−−−−−−−−−

Derive k, kd, ka, ke Derive k, kd, ka, ke
Compute MACI using k

Generate authentication
proof m5 from MACI and skI

m5 is encrypted with ke

−

cI , cR,m5

−−−−−−−−−−−→

Compute MACR using k

Generate authentication
proof m6 from MACR and skR

m6 is encrypted with ke

←−

cI , cR,m6

−−−−−−−−−−−

Decrypt and verify m6 Decrypt and verify m5

Figure 3: Generic structure of IKEv1 Phase 1 in main

mode.

tographic algorithms, comparable to TLS ciphersuites.

In messages m3 and m4 a DHKE is performed, to-

gether with the exchange of additional parameters called

ancillary data (anc), depending on the chosen authenti-

cation method.

Based on these messages and the shared DH secret,

four symmetric keys (k, kd , ka, ke)1 are derived by both

parties (cf. Table 1). The formula to derive the interme-

diate key k varies between the different authentication

methods, which are explained in more detail in the fol-

lowing sections. From this intermediate key, the other

three keys are derived as the result of a pseudorandom

function. Inputs to this function are k, the most recent

generated key, the shared DH secret gxy, the cookies

(cI ,cR), and an index.

The last two messages (m5 and m6) are used for key

confirmation. For this, two MAC values2 are generated

using k. These MACs are either exchanged or digitally

signed. In main mode, messages m5 and m6 are en-

crypted under key ke.

Signature PKE & RPKE PSK

k PRFnI ,nR
(gxy) PRFh(nI ,nR)(cI ,cR) PRFPSK(nI ,nR)

kd PRFk(g
xy,cI ,cR,0)

ka PRFk(kd ,g
xy,cI ,cR,1)

ke PRFk(ka,g
xy,cI ,cR,2)

Table 1: The key derivation in the four different authen-

tication methods.

IKEv1 Phase 2. Phase 2 is also called quick mode. In

essence, quick mode is a three-message PSK based au-

thenticated key agreement protocol. Its security is based

on psk = (ka,kd) from Phase 1 while key ke is used to en-

crypt all messages. For each of the several executions of

Phase 2, fresh nonces are exchanged. If PFS is desired, a

DHKE can additionally be performed.
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2.2 IKEv1 Authentication Methods

In Phase 1 of IKEv1, four different modes of authentica-

tion are available: (a) Digital signatures, (b) PKE (Pub-

lic Key Encryption), (c) RPKE (Revised Public Key En-

cryption), and (d) PSKs (Pre-Shared Keys). While the

message exchange patterns in Phase 1 are fixed to main

or aggressive mode, the two communicating entities may

freely negotiate any of these four authentication modes.

Signature Based Authentication. This authentication

mode assumes that each party owns an asymmetric key

pair with valid certificates. After choosing this authenti-

cation mode, nonces nI and nR are exchanged as ancillary

information with the third and fourth message. These

nonces are then used as key input to the PRF function,

which is used to derive the shared key k from the shared

DH secret. As proof for identification and authentication,

both parties sign their MAC values and exchange these

signatures, optionally together with their certificates. An

exact protocol flow diagram for this mode is given in Fig-

ure 13 in Appendix A.

Public Key Encryption Based Authentication. This

mode requires that both parties exchanged their public

keys securely beforehand (e. g. with certificates during

an earlier handshake with signature based authentica-

tion). RFC 2409 advertises this mode of authentication

with a plausibly deniable exchange to raise the privacy

level.

In this mode, messages three and four exchange

nonces and identities as ancillary information (see Fig-

ure 4). In contrast to the signature based mode, they

are encrypted using the public key of the respective

other party. The encoding format for these ciphertexts

is PKCS #1 v1.5. For verification, both parties exchange

their MAC values.

Revised Public Key Encryption Based Authentica-

tion. The PKE based mode of authentication requires

both parties to perform two public- and two private-key

operations. To reduce this computational overhead, the

revised public key encryption based mode of authentica-

tion (RPKE) was invented (see Figure 8).

This mode still encrypts the nonces nI and nR with the

other party’s public key using PKCS #1 v1.5. However,

the identities are encrypted with ephemeral symmetric

keys keI and keR that must not be confused with ke, which

is derived later in the handshake. keI and keR are derived

from each party’s nonces and cookies. The rest of the

handshake is identical to the non-revised mode.

PSK Based Authentication. If initiator and responder

do not have asymmetric keys, symmetric PSKs can be

used for authentication. This can be implemented with a

(low or high entropy) password both parties know. The

PSK is used to derive k from the nonces nI and nR, which

are exchanged as ancillary information (Figure 12). The

rest of the handshake is identical to the public key en-

cryption based modes.

2.3 IKEv2

The structure of IKEv2 [24, 25] is fundamentally differ-

ent from IKEv1 (cf. Figure 2) – Phase 1 and Phase 2

are partially interleaved, and Phase 2 is reduced to a

two-message protocol. For our analysis it is only im-

portant that IKEv2 (cf. Figure 6) shares two authentica-

tion methods with IKEv1, and that we can directly apply

our attacks to impersonate an IPsec device in Phase 1 of

IKEv2.

3 Bleichenbacher Oracles

Bleichenbacher’s attack is a padding oracle attack

against RSA PKCS #1 v1.5 encryption padding, which

is explained in more detail in Appendix B. If an imple-

mentation allows an attacker to determine if the plain-

text of a chosen RSA ciphertext starts with the two bytes

0x00 0x02, then a Bleichenbacher attack is possible. In

his seminal work [9], Bleichenbacher demonstrated how

such an oracle could be exploited:

Basic Algorithm. In the most simple attack scenario,

attackers have eavesdropped a valid PKCS #1 v1.5 ci-

phertext c0. To get the plain message m0, the attackers

issue queries to the Bleichenbacher oracle O:

O(c) =

{

1 if m = cd mod N starts with 0x00 0x02

0 otherwise

If the oracle answers with 1, the attackers know that

2B≤ m≤ 3B−1, where B = 28(ℓm−2) where ℓm is the

byte-length of message m. The attackers can then take

advantage of the RSA malleability and generate new can-

didate ciphertexts by choosing a value s and computing

c = (c0 · s
e) mod N = (m0 · s)

e mod N.

The attackers query the oracle with c. If the or-

acle responds with 0, they increment s and repeat

the previous step. Otherwise, the attackers learn that

2B≤ m0 · s− rN < 3B for some r. This allows the at-

tackers to reduce the range of possible solutions to:

2B+ rN

s
≤ m0 <

3B+ rN

s
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The attackers proceed by refining guesses for s- and r-

values and successively decreasing the size of the inter-

val containing m0. At some point, the interval will con-

tain a single valid value, m0. Bleichenbacher’s original

paper [9] describes this process in further detail.

Signature Forgery Using Bleichenbacher’s Attack.

It is well known that in the case of RSA, performing a

decryption and creating a signature is mathematically the

same operation. Bleichenbacher’s original paper already

mentioned that the attack could also be used to forge

signatures over attacker-chosen data. In two papers by

Jager et al. [19, 20], this has been exploited for attacks

on XML-based Web Services, TLS 1.3, and Google’s

QUIC protocol. The ROBOT study [10] used this at-

tack to forge a signature from Facebook’s web servers as

proof of exploitability.

Optimized Bleichenbacher Attack In 2012, Bardou

et al. [7] presented an optimization of the standard Blei-

chenbacher attack by trimming the initial space for m0.

They divide a ciphertext by an integer t by multiplying it

with t−e mod N with e being the public exponent of the

oracle.

In case the original plaintext was divisible by t, then

the multiplication c0 · u
e · t−e is equal to m0

t
under the

assumption that m0 and m0 ·ut−1 are PKCS #1 v1.5 con-

forming. Note, that the value u and t must be coprime

integers with u < 2
3 t and t < 2N

9B
.

In order to find a suitable amount of trimmer values

that result in PKCS #1 v1.5 conforming messages, we

need to calculate a few thousand t and u values, satis-

fying the above requirements. After that, we get a set

of trimmer values shrinking the m0 search space into

smaller chunks of 2B · t
u
≤ m0 < 3B · t

u
.

4 Attack Outline

Bleichenbacher attacks [9] are adaptive chosen cipher-

text attacks against RSA-PKCS #1 v1.5. Though the at-

tack has been known for two decades, it is a common

pitfall for developers [10, 27]. The mandatory use of

PKCS #1 v1.5 in two ciphersuite families – the PKE

(Figure 4) and RPKE (Figure 8) authentication meth-

ods – raised suspicion of whether implementations resist

Bleichenbacher attacks.

4.1 Bleichenbacher Oracles in IKEv1

PKE authentication is available and fully functional

in Cisco’s IOS (Internetwork Operating System). In

Clavister’s cOS and ZyXEL’s ZyWALL USGs (Uni-

fied Security Gateways), PKE is not officially avail-

Initiator
(IDI , skI ,pkI)

Responder
(IDR, skR,pkR)

m1 := (proposals)

−

cI , 0,m1

−−−−−−−−−−−→

m2 := (proposal)

←−

cI , cR,m2

−−−−−−−−−−−

cnI
:= EncpkR

(nI)
cidI

:= EncpkR
(IDI)

m3 := (gx, cidI
, cnI

)

−

cI , cR,m3

−−−−−−−−−−−→

cnR
:= EncpkI

(nR)
cidR

:= EncpkI
(IDR)

m4 := (gy, cidR
, cnR

)

←−

cI , cR,m4

−−−−−−−−−−−

k := PRFh(nI ,nR)(cI , cR)
Derive kd, ka, ke from k

k := PRFh(nI ,nR)(cI , cR)
Derive kd, ka, ke from k

Compute MACI using k

m5 := Encke
(MACI)

−

cI , cR,m5

−−−−−−−−−−−→

Compute MACR using k

m6 := Encke
(MACR)

←−

cI , cR,m6

−−−−−−−−−−−

Compute MACR and
compare to m6

Compute MACI and
compare to m5

Figure 4: IKEv1 in Phase 1 using main mode with PKE

based authentication. Differences to Figure 3 are high-

lighted.

able. There is no documentation and no configuration

option for it; therefore, it is not fully functional. Never-

theless, these implementations processed messages us-

ing PKE authentication in our tests. RPKE is imple-

mented in certain Huawei devices including the Seco-

space USG2000 series. We were able to confirm the

existence of Bleichenbacher oracles in all these imple-

mentations (CVE-2018-0131, CVE-2017-17305, CVE-

2018-8753, and CVE-2018-9129), which are explained

in depth in sections 5 – 7.

On an abstract level, these oracles work as follows: If

we replace the ciphertext cnI
in message m3 (cf. Figure 4)

with our modified RSA ciphertext, the responder will

Case 0 indicate an error (Cisco, Clavister, and ZyXEL)

or silently abort (Huawei) if the ciphertext is not

PKCS #1 v1.5 compliant, or

Case 1 continue with message m4 (Cisco and Huawei)

or return an error notification with a different mes-

sage (Clavister and ZyXEL) if the ciphertext is

PKCS #1 v1.5 compliant.

Each time we get a Case 1 answer, we can advance the

Bleichenbacher attack one more step.

If a Bleichenbacher oracle is discovered in a TLS im-

plementation, then TLS-RSA is broken since one can

compute the Premaster Secret and the TLS session keys

without any time limit on the usage of the oracle. For

IKEv1, the situation is more difficult: Even if there is a

strong Bleichenbacher oracle in PKE and RPKE mode,

our attack must succeed within the lifetime of the IKEv1

Phase 1 session, since a DHKE during the handshake

provides an additional layer of security that is not present

in TLS-RSA. For example, for Cisco this time limit is
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m2

m3

m4=(cnR= Enc(pkB,nR), …)

keep A

waiting

decrypt nR

compute k, kd, ka, kem5

m6

Attacker impersonates B !

Responder A Responder BAttacker
m1

Figure 5: Bleichenbacher attack against IKEv1 PKE

based authentication.

currently fixed to 60 seconds for IKEv1 and 240 seconds

for IKEv2.

To phrase it differently: In TLS-RSA, a Bleichen-

bacher oracle allows to perform an ex post attack to break

the confidentiality of the TLS session later on, whereas

in IKEv1 a Bleichenbacher oracle only can be used to

perform an online attack to impersonate one of the two

parties in real time.

4.2 A Bleichenbacher Attack against PKE

and RPKE

Figure 5 depicts a direct attack on IKEv1 PKE:

1. The attackers initiate an IKEv1 PKE based key ex-

change with Responder A and adhere to the protocol

until receiving message m4. They extract cnR
from

this message, and record the public values cI ,cR.

They also record the nonce nI and the private DHKE

key x chosen by themselves.

2. The attackers keep the IKE handshake with Respon-

der A alive for a maximum period ttimeout . For Cisco

and ZyXEL, we know that ttimeout ≥ 60s, for Clav-

ister and Huawei ttimeout ≥ 30s.

3. The attackers initiate several parallel PKE based key

exchanges to Responder B.

• In each of these exchanges, they send and re-

ceive the first two messages according to the

protocol specification.
• In message m3, they include a modified ver-

sion of cnI
according to the Bleichenbacher at-

tack methodology.
• They wait until they receive an answer m4

(Case 1), or they can reliably determine that

this message will not be sent (timeout or re-

ception of a repeated message m2).

4. After receiving enough Case 1 answers from Re-

sponder B, the attackers compute nR. From the

DHKE share of Responder A and their private

DHKE share x they compute gxy.

5. The attackers now have all the information to com-

plete the key derivation described in Table 1. They

can compute MACI and encrypt message m5 to Re-

sponder A with key ke. They thus can impersonate

Responder B to Responder A.

It is important to note that this attack also can be used

to execute a man-in-the-middle attack against two par-

ties. For that, the connection is interrupted by the at-

tackers and on the following attempt to restart the IKEv1

session with a handshake, the attackers execute a Blei-

chenbacher decryption attack against each party. In case

of success, they can decrypt and manipulate the whole

traffic.

4.3 Key Reuse

Each theoretical description of some public key prim-

itive starts with something like (pk,sk)
$
← KeyGen(1κ)

to indicate that freshly generated keys should be used if

the security proof should remain valid. In practice, this

is difficult to achieve. TLS now has four versions (not

counting the completely broken SSL 2.0 and 3.0), three

major handshake families, both prime order and ellip-

tic curve groups, and many minor variants described in

the different ciphersuites. It is practically impossible to

maintain a separate key pair for each ciphersuite. Typi-

cally, a single RSA key pair together with an encryption

& signing certificate is used to configure a TLS server.

As a result, cross-ciphersuite [26] and cross-version [20]

attacks have been shown, despite security proofs for sin-

gle ciphersuite families.

For IKE, there is a similar situation: Maintaining in-

dividual key pairs for all “ciphersuite families” and ver-

sions of IKE is practically impossible and oftentimes not

supported. This is the case with the implementations by

Clavister and ZyXEL, for example. Thus, it is common

practice to have only one RSA key pair for the whole IKE

protocol family. The actual security of the protocol fam-

ily in this case crucially depends on its cross-ciphersuite

and cross-version security. In fact, our Huawei test de-

vice reuses its RSA key pair even for SSH host identifi-

cation, which further exposes this key pair.

4.4 A Bleichenbacher Attack Against Digi-

tal Signature Based Authentication

The attack against IKEv2 with signature based authenti-

cation proceeds as follows (cf. Figures 6 and 7). It can

easily be adapted to IKEv1.

1. The attackers initiate an IKEv2 signature based key

exchange with Responder A and adhere to the pro-
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Initiator
(IDI , skI , pkI)

Responder
(IDR, skR, pkR)

IKE SA INIT

m1 := (proposalI , g
x, nI)

−

cI , 0,m1
−−−−−−−−−−−→

m2 := (proposalR, g
y, nR)

←−

cI , cR,m2
−−−−−−−−−−−

s← PRFh(nI ,nR)(g
xy)

(kd, kaI , kaR, keI , keR, kpI , kpR)← PRFs(nI , nR, cI , cR)

IKE AUTH

Messages Encrypted-then-MACed with (keI , kaI), (keR, kaR)

MACI ← PRFkpI
(IDI)

σI ← SignskI
(cI , 0,m1, nR,MACi)

m3 := (IDI , σI , proposalR)

−

cI , cR,m3
−−−−−−−−−−−→

MACR ← PRFkpR
(IDR)

σR ← SignskR
(cI , cR,m2, nI ,MACR)

m4 := (IDR, σR, proposalR)

←−

cI , cR,m4
−−−−−−−−−−−

(k′eI , k
′

aI , k
′

eR, k
′

aR)← PRFkd
(nI , nR)

Figure 6: IKEv2 with interleaved Phase 1/Phase 2 with

signature based authentication.

tocol until they receive message m2. After this mes-

sage, they have enough data to complete the key

derivation described in Figure 6. From these keys

they need kpI to compute MACI = PRFkpI
(IDB),

which is part of the data to be signed with the pri-

vate key of Responder B.

2. They keep the IKE handshake with Responder A

alive for a maximum period ttimeout . For Cisco IOS,

we know that ttimeout ≥ 240s.

3. The attackers encode the hash h of

(cI ,0,m1,nR,MACI) with PKCS #1 v1.5 for dig-

ital signatures. We denote this encoded value as H.

They then compute c← (H · re) (mod N), which

is known as the blinding step in the Bleichenbacher

attack.

4. The attackers initiate several parallel PKE based

key exchanges with Responder B.

• In each of these exchanges, they send and re-

ceive the first two messages according to Fig-

ure 4.
• In message m3, they include a modified ver-

sion of c according to the Bleichenbacher at-

tack methodology.
• They wait until they receive an answer m4

(Case 1), or they can reliably determine that

this message will not be sent (timeout, or re-

ception of a repeated message m2).

5. After receiving enough Case 1 answers from Re-

sponder B, the attackers can compute the decryption

m← cd (mod N). Since m = cd = (H · re)d = Hd ·
red = Hd ·r (mod N), they can compute a valid sig-

nature σ of H by multiplying m with r−1 (mod N).

m2

keep A

waiting

m3=Enc(...,σB)

m4

Attacker impersonates B !

Responder A Responder BAttacker
m1

forge signature σB

compute kd, kaI, kaR, keI, keR, kpI, kpR,  

compute MACI = PRF(kpI, IDB)

encode h = hash(cI, 0, m1, nR, MACI)

Figure 7: Bleichenbacher attack against IKEv2 signature

based authentication.

6. The attackers complete the handshake by sending

message m3 including the valid signature σ to Re-

sponder A, thus impersonating Responder B.

4.5 Offline Dictionary Attack on Main

Mode IKEv1 with Pre-Shared Keys

It is common knowledge that the aggressive mode of

IKEv1 using PSKs is susceptible to offline dictionary at-

tacks, against passive attackers who only eavesdrop on

the IP connection. This has actually been exploited in

the past [5].

We show that an offline dictionary attack is also possi-

ble against the main mode of IKEv1 and against IKEv2

with PSKs, if the attackers are active and interfere with

DHKE. Additionally, the attackers have to act as a re-

sponder, thus waiting for a connection request by the

victim initiator. Once the attackers have actively in-

tercepted such an IKE session, they learn an encrypted

MACI value. This value is computed from public data

from the intercepted session, the shared DHKE value,

and the PSK. Since the attackers know all of these values

except the PSK, they can now perform an offline dictio-

nary attack against it. Details on this attack can be found

in section 9.

5 Bleichenbacher Oracle in Cisco IOS

Cisco includes the PKE authentication mode in IOS,

which is the operating system on the majority of Cisco

routers and current Cisco switches. The mode can also

be found in IOS XE, which combines a Linux kernel with

IOS as an application. IOS XE is used on Cisco’s carrier

routers and enterprise switches [13]. For our tests, we

used a Cisco ASR 1001-X router running IOS XE in ver-

sion 03.16.02.S with IOS version 15.5(3)S2.
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Based on the default configuration, we first generated

an RSA key pair on the device using the default options

(i. e., we created general-keys; cf. Appendix C). Second,

we created a peer entry with the RSA public key and IP

address of our test initiator. Third and last, we configured

a policy that only IKEv1 and only PKE authentication is

allowed. Our test initiator is based on Scapy [8], a Python

library for network packet manipulation. With it, we can

create any IKE message and fully control all fields like

cookies, proposals, nonces, ciphertexts, etc.

Ciphertext cnI
in Figure 4 is the target of our attack.

This ciphertext is sent with message m3 of an IKEv1

handshake. After sending an invalid ciphertext to our

Cisco router, no error message is sent back to the ini-

tiator. Instead, the router retransmits message m2 to the

initiator after one second has elapsed. If the router suc-

ceeds decrypting the message, m4 is sent immediately to

the initiator. This is clearly a Bleichenbacher oracle.

5.1 Testing the Oracle’s Strength

For testing PKCS #1 v1.5 compliance, after decrypting

cnI
, the responder should check if the first two bytes

of the plaintext are indeed 0x00 0x02, if the following

eight bytes are non-zero, and then search for the first zero

byte. All data following this zero byte are considered the

decrypted message.

Our test device performs all these checks after de-

crypting cnI
. As an edge case, Cisco’s implementation

also accepts a plaintext that entirely consists of padding,

i. e. where the zero byte separating padding and message

is the last byte of the plaintext. Furthermore, IOS ignores

cIDI
and determines the public key to use for its response

based on the IP address of the initiator. One can even

omit cIDI
when constructing m3; it does not have any ef-

fect on the Bleichenbacher oracle.

This makes the Cisco oracle a FFT oracle based on the

observations made by Bardou et al. [7]. The probability

to get a valid padded message for such an FFT oracle is

Pr(P|A) = 0.358 with Pr[A]≈ 2−16 being the probability

that the first two bytes are 0x0002 [7, 9]. For a 128-byte

RSA modulus, the probability Pr(P|A) can be computed

as follows:

Pr(P|A) = ( 255
256 )

8 ∗ (1− ( 255
256 )

118)≈ 0.358

Based on the assumption made by Bleichenbacher we

would need 371,843 requests for a 1024-bit modulus

(128 bytes):

(2∗216+16∗128)
Pr(P|A) = 371,843

However, Bleichenbacher made his heuristic approx-

imation based on the upper bound, not the mean value.

Furthermore, we implemented the optimized Bleichen-

bacher attack as proposed by Bardou et al. [7], thus, we

need fewer requests (247,283 on average) to mount the

decryption attack.

5.2 Performance Restrictions

Oracle Performance Restrictions. In order to investi-

gate the performance restriction we used the debug logs

of Cisco IOS. There one can see that IKE handshakes

are processed by a state machine. This state machine

enforces some non-cryptographic boundary conditions,

which have impact to the performance of a Bleichen-

bacher attack against Responder B. For example, IOS

has a limit for concurrent SAs under negotiation of 900.

Unfortunately, Cisco’s implementation is not opti-

mized for throughput. From our observations, we assume

that all cryptographic calculations for IKE are done by

the device’s CPU despite it having a hardware acceler-

ator for cryptography. One can easily overload the de-

vice’s CPU for several seconds with a standard PC burst-

ing handshake messages, even with the default limit for

concurrent handshakes. Moreover, even if the CPU load

is kept below 100 %, we nevertheless observed packet

loss. With 1024-bit RSA keys, our test device is capable

of handling only 850 Bleichenbacher requests per sec-

ond on average. We also saw significant CPU load after

around 64,000 Bleichenbacher oracle requests, possibly

caused by a memory limitation of our test device. For

other devices or more powerful ones, this is probably not

a limitation. Another possible reason is that hash colli-

sions occur when the device needs to store many cookie-

value pairs in its SA database due to the high amount of

IKE handshakes during the attack.

Attack Performance Restrictions. For an attack, Re-

sponder A has to be held waiting. Here, a limitation in

IKEv1 is the quick mode timer. It is started after re-

ceiving the first handshake message. If the quick mode

handshake (i. e. phase 2 of the IKE handshake) is not

completed after 75 seconds, this timer cancels the hand-

shake deleting all ephemeral values like the cookie cR,

the nonce nR, and the DH secret y.

Furthermore, the state machine maintains an error

counter with a fixed limit of five. Every time an er-

roneous message is received or the device retransmits

a message during Phase 1, the counter is incremented.

Retransmissions happen every ten seconds if no mes-

sage was received during that time, which we refer to as

SA timeouts. After a fifth retransmission of any Phase 1

packet, IOS waits one last time for ten seconds before

canceling the handshake. This translates to a maximum

of 60 seconds between two messages sent from the peer.
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For an attack, the attackers require the victim’s DHKE

share that is sent with message m3 or m4, depending on

the role the attackers play. If the attackers play the role of

an initiator, a Bleichenbacher attack has to be successful

within the maximum of 60 seconds between messages

m4 and m5. If the attackers play the role of a responder,

a few seconds can be gained by delaying message m4

slightly below ten seconds so that no retransmission is

triggered.

In Cisco’s IKEv2 implementation, timers are more re-

laxed. Here, an attack can take up to 240 seconds until a

timeout occurs.

6 Bleichenbacher Oracles in implementa-

tions by Clavister & ZyXEL

Clavister cOS and the firmware of ZyXEL ZyWALL

USGs do not officially support the PKE authentication

mode. It is not documented in their manuals and the web

and command line interfaces do not offer any configu-

ration option for it. Nevertheless, both implementations

responded to handshake proposals with PKE authentica-

tion in our tests. For these, we used a virtual Clavister

cOS Core in version 12.00.06 and a ZyXEL ZyWALL

USG 100 running firmware version 3.30 (AQQ.7).

For PKE authentication, both implementations use the

key pair that is configured for IKEv1 authentication with

signatures. Both implementations show the same behav-

ior regarding the handling of IKEv1 (e. g. both respond

with identical error messages).

PKE authentication with Clavister and ZyXEL is non-

functional since one cannot configure public keys for

peers. Therefore, we always expect an error notifica-

tion after sending message m3. When sending an in-

valid ciphertext cnI
with message m3, we receive an error

message containing only 16 seemingly random bytes. A

valid cnI
instead triggers an error message containing the

string “Data length too large for private key to decrypt”.

While the error message itself is misleading (the cipher-

text can in fact be decrypted by the private key), the dif-

ference in the error messages is clearly a Bleichenbacher

oracle.

Clavister and ZyXEL perform the same checks as

Cisco. Therefore, the strength of the oracle and the esti-

mated amount of messages is identical to the Cisco case.

We did not evaluate the performance of an attack against

these oracles.

7 Bleichenbacher Oracle in Huawei Seco-

space USG2000 series

We identified Huawei as another large network equip-

ment supplier who offers the RPKE mode with cer-

Initiator
(IDI , skI , pkI)

Responder
(IDR, skR, pkR)

m1 := (proposals)

−

cI , 0,m1
−−−−−−−−−−−→

m2 := (proposal)

←−

cI , cR,m2
−−−−−−−−−−−

cnI
:= EncpkR

(nI)
keI := PRFnI

(cI)
cidI

:= EnckeI
(IDI)

m3 := (gx, cidI
, cnI

)

−

cI , cR,m3
−−−−−−−−−−−→

cnR
:= EncpkI

(nR)
keR := PRFnR

(cR)
cidR

:= EnckeR
(IDR)

m4 := (gy, cidR
, cnR

)

←−

cI , cR,m4
−−−−−−−−−−−

k := PRFh(nI ,nR)(cI , cR)
Derive kd, ka, ke from k

k := PRFh(nI ,nR)(cI , cR)
Derive kd, ka, ke from k

Compute MACI using k

m5 := Encke
(MACI)

−

cI , cR,m5
−−−−−−−−−−−→

Compute MACR using k

m6 := Encke
(MACR)

←−

cI , cR,m6
−−−−−−−−−−−

Compute MACR and
compare to m6

Compute MACI and
compare to m5

Figure 8: IKEv1 in Phase 1 using main mode with RPKE

based authentication. Differences to Figure 4 are high-

lighted.

tain devices such as their Secospace USG2000 se-

ries [18]. For our tests, we used a Huawei Sec-

ospace USG2205 BSR firewall running firmware version

V300R001C10SPC700.

The steps for setting up an IPsec configuration are very

similar to Cisco. We started with the default configura-

tion and generated an RSA key pair. Importing the RSA

public key of our Scapy based test initiator turned out

to be a little more complicated since the required data

format is non-standard. Similar to Cisco, we configured

a proposal, a policy, and a policy-template so that only

IKEv1 with RPKE authentication is allowed.

Again, ciphertext cnI
(cf. Figure 8) is the target of our

attack. After sending an invalid ciphertext with m3 to the

device, the firewall does not send an error message back

to the initiator. In contrast to Cisco’s implementation,

there are no retransmissions. If the firewall succeeds in

processing the message, m4 is sent to the initiator. This

is also clearly a Bleichenbacher oracle.

7.1 Testing the Oracle’s Strength

Huawei’s firewall also performs all PKCS #1 v1.5 checks

mentioned in subsection 5.1 after decrypting cnI
. There-

fore, Huawei’s oracle is similar to the FFT oracle.

However, the constraints of the RPKE mode reduce

the strength of the oracle. If all PKCS #1 v1.5 checks

were successful, the ephemeral key keI is derived and

used to decrypt the identity payload cIDI
in order to de-

termine the public key to use for its response. Unfortu-

nately, during a Bleichenbacher attack the attackers do
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not know which keI is derived. There is no way for at-

tackers to distinguish a failed PKCS #1 v1.5 check from

a failed decryption of cIDI
. This reduces the probability

to get a Case 1 answer from Huawei by the factor 112
256 .

Thus, Huawei’s Bleichenbacher oracle has an additional

false negative rate of 56.64 %, which is explained in more

detail in the next section. Consequently, we estimate

that a successful attack requires 371,843/(1−0.5664) =
857,571 requests.

7.2 Oracle Performance Restrictions

RFC 2409 defines an unusual padding for messages en-

crypted using symmetric algorithms: The message is

padded with zero bytes. The last padding byte contains

the number of zero bytes inserted. Padding is mandatory

even if this requires an additional block containing only

padding. Figure 9 gives examples of this padding.

00message 0400 0000

00message 0600 00000000

Figure 9: The padding scheme for symmetric encryp-

tions defined by RFC 2409.

Huawei’s implementation of this padding is odd:

There are no checks whether the padding bytes are in fact

zero-bytes. The implementation only reads the last byte

and removes the given number of bytes together with the

padding length byte. It does not verify whether the value

of the padding length byte is larger than the block length

of the negotiated algorithm. It only cancels processing

if the value of the padding length byte is larger than the

decrypted ciphertext or if the padding length byte is zero.

In contrast to Cisco, we observed that the Huawei de-

vice as responder thoroughly checks the identity payload

cIDI
sent by the initiator. It has to be present, its length

has to be a multiple of the symmetric algorithm’s block

length, and the plaintext needs to be correctly padded

in terms of the checks described above. If the plaintext

identity IDI after removing the padding is 121 or less

bytes in length, the device however ignores the identity

value and continues the handshake using the initiator’s

configured public key based on its IP address. If IDI is

122 bytes long, the device crashes and reboots, which

takes several minutes. If IDI is 123 to 255 bytes long,

IDI is used to determine the public key of the initiator. If

IDI is more than 256 bytes long, the Huawei device also

crashes and reboots.

This complicates a Bleichenbacher attack scenario:

Even if the attackers hit a PKCS #1 v1.5 compliant mes-

sage, the decrypted value (i. e. what the device treats as

the nonce nI) is unknown to them. This value is then used

to derive the key keI , which in turn is used to decrypt

cIDI
supplied by the attackers. Since the attackers do not

have keI , they cannot construct any cIDI
that decrypts to a

meaningful IDI . During our tests, we sent random bytes

for cIDI
to our test device. However, even without influ-

ence on IDI , the attackers can adjust the length of cIDI
.

Here, the attackers have to deal with two contradicting

restrictions: On the one hand, it is necessary to keep the

length of IDI below 122 bytes to prevent both a crash and

the evaluation of the value of IDI . On the other hand,

no assumptions on the padding length byte can be made.

The longer the length of cIDI
, the higher the possibility

that the value of the padding length byte is below the

plaintext length so that no padding error occurs.

Regardless of the length of cIDI
, the padding length

byte can only decrypt to one of 256 possible values. Tak-

ing into account that the length of cIDI
has to be a mul-

tiple of 16 (the block length of AES), the attackers have

to choose between a cIDI
with a length of 128 bytes and

one with 112 bytes. For 128 bytes, all padding length

byte values above 121 and zero will make the device not

respond, either due to a padding error, an evaluation of

IDI , or a crash. This way, the Bleichenbacher oracle has

an additional false negative rate of 47.66 %.

For 112 bytes, the chance of getting a Case 1 answer is

slightly lower. Now, all padding length byte values above

111 and zero will make the device not respond due to

the padding error. With this choice, the Bleichenbacher

oracle has an additional false negative rate of 56.64 %.

However, this choice eliminates the chance of hitting the

crash condition with 122 bytes. Therefore, we recom-

mend a length of 112 bytes for cIDI
, which favors relia-

bility of the attack over speed.

8 Implementing Bleichenbacher Attacks

For our proof-of-concept attack, we focused on our Cisco

test device due to the high false negative rate of the

Huawei oracle. In order to keep the required time for

an attack below the limits, we built a highly parallelized

Bleichenbacher attacker using Java (cf. Figure 10). This

tool pipelines all steps of the attack through IN and OUT

queues and keeps track of used and unused SAs.

SA States. There is a global limit of 900 Phase 1 SAs

under negotiation per Cisco device in the default con-

figuration. If this number is exceeded, one is blocked.

Thus, one cannot start individual handshakes for each

Bleichenbacher request to issue. Instead, SAs have to

be reused as long as their error counter allows.

For that, we are pooling SAs and tracking their states.

This is necessary since for example receiving a message

m2 can have three meanings: (1.) The SA has been cre-
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ated as a response to a message m1, (2.) a Bleichenbacher

request was not successful and message m2 was a retrans-

mission after one second, or (3.) the SA was not recently

used for a request and message m2 was a retransmission

after ten seconds.

When preparing a Bleichenbacher request, an SA is

taken from the unused SA pool and put into the used SA

pool to ensure that SAs are not mixed up. In a parallel

attack, constant SA state checks at all processing steps

are required. After receiving a response to a Bleichen-

bacher request, we return the corresponding SA to the

unused SA pool.

In our Bleichenbacher attacker, an SA can only be in

one out of eight states. The life of an SA starts with

the generation of an initiator cookie cI . With it, the first

message m1 is send and the state of the SA is set to

PRESTART. When we receive a corresponding message

m2, we store the responder cookie value for that SA and

update its state to FRESH. From now on, every time we

receive a message m2 for that SA, we increment its state

from FIRST to FIFTH. After the FIFTH state is reached

and another timeout or Bleichenbacher response is re-

ceived, we set the state to EXHAUSTED and remove the

SA from the unused SA pool.

Packet and Network Pool. For a fast attack, we re-

quire an efficient packet builder and analyzer. The for-

mer only creates either first messages (m1) for SA gen-

eration or third messages (m3) for Bleichenbacher re-

quests. The latter analyzes the responses from the Blei-

chenbacher oracle. Our packet builder uses static bytes

sequences for the messages updating only the cookie val-

ues and encrypted nonce payloads. We omit the iden-

tity payload cIDI
from m3 in order to save an unnec-

essary public key decryption. The analyzer only needs

the length of a received message and the values of two

bytes at specific positions in order to distinguish Blei-

chenbacher responses from timeout packets.

For sending and receiving packets with multiple

threads, we use Java NIO DatagramChannels and NIO

Selectors.

Bleichenbacher Producer and Consumer. A spe-

cial producer thread executes the Bleichenbacher attack

against a target and distributes the computations to con-

sumers. We implemented two distribution mechanism

(multiple and single interval) in order to address the dif-

ferent steps in Bleichenbacher’s attack.

The consumers do the expensive computations for the

Bleichenbacher attack. In order to address the differ-

ent computations in the two attack variants (standard and

optimized), the consumers are provided with a task de-

scription of whether a multiplication or a division of the

ciphertext is required. Other consumers are used to ver-

ify the results from the packet analyzer and to notify the

producer in case a valid padding was found.

Cisco Oracle Simulator. In order to accelerate our

evaluation process, we first queried our test device with

different valid and invalid PKCS #1 v1.5 messages. Af-

ter that, we analyzed its responses and reimplemented

its behavior as a local multi-threaded simulator. Thus,

the speed of finding valid PKCS #1 v1.5 messages is

only limited by the hardware resources of the attackers’

systems.

8.1 Evaluation of the Bleichenbacher

IKEv1 Decryption Attack

For the decryption attack from subsection 4.2 on Cisco’s

IKEv1 responder, we need to finish the Bleichen-

bacher attack in 60 seconds. If the public key of our

ASR 1001-X router is 1024 bits long, we measured an

average of 850 responses to Bleichenbacher requests per

second. Therefore, an attack must succeed with at most

51,000 Bleichenbacher requests.

Based on this result, we used our Cisco oracle sim-

ulator to measure the percentage of attacks that would

succeed before the time runs out. These results can be

found in Figure 11.

Standard Bleichenbacher. In total, we executed 990

decryption attacks with a 1024-bit public key and differ-

ent encrypted nonces. On average, a decryption using

Bleichenbacher’s original algorithm requires 303,134 re-

quests. However, in 78 simulations, we needed less than

51,000 request to decrypt the nonce and thus could have

impersonated the router.

Optimized Bleichenbacher. For the optimized Blei-

chenbacher algorithm, we executed 200 attacks against

our Cisco oracle simulator with different nonces and a

1024-bit key. On average, we gained a reduction for

requests by approximately 18 % (247,283) using 3,000

trimmers for each attack. The amount of attacks that re-

quire less than 51,000 requests increases from 7.88 % to

26.20 %.

Real Cisco Hardware. For an attack against the real

hardware, the limitations of Cisco’s IKEv1 state machine

are significant. The main obstacle is the SA manage-

ment: Once the attackers negotiate several thousand SAs

with the router, its SA handling becomes very slow.

We managed to perform a successful decryption at-

tack against our ASR 1001-X router with approximately
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Figure 10: Design of our highly parallelized Bleichenbacher attacker.
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Figure 11: Statistics of 990 standard decryption, 439

optimized decryption, and 542 signature-forgery attacks

against our Cisco Bleichenbacher oracle simulator.

19,000 Bleichenbacher requests. However, due to the

necessary SA negotiations, the attack took 13 minutes.

Note that a too slow Bleichenbacher attack does not

permanently lock out attackers. If a timeout occurs, they

can just start over with a new attack using fresh values

hoping to require fewer requests. If the victim has de-

ployed multiple responders sharing one key pair (e. g. for

load balancing), this could also be leveraged to speed up

an attack.

8.2 Evaluation of the Bleichenbacher

IKEv2 Signature Forgery Attack

For our attack with forged signatures, we have 240 sec-

onds time. Therefore, we may issue 204,000 Bleichen-

bacher requests before the time runs out. The timeout

limits of IKEv1 are irrelevant for this attack; the IKEv1

handshake is only used to forge the signature we need for

message m5 in IKEv2 (cf. Figure 7).

Like with the decryption attack, we used our Cisco

oracle simulator in order to speed up the evaluation.

We simulated 542 attacks with a 1024-bit key and ran-

dom messages padded as PKCS #1 v1.5 for signatures.

From these attacks, 121 signatures needed less than

204,000 Bleichenbacher requests (on average 508,520).

Thus, 22 % of our attack simulations would have been

fast enough to allow attackers to impersonate a Cisco

router. Note that due to the increased time limit, attack-

ing IKEv2 with a forged signature has a higher success

rate than the same attack on IKEv1.

9 Offline Dictionary Attack against Weak

PSKs

PSKs as authentication method are often found in sce-

narios where users authenticate against services such as

websites and computer logins. Other applications in-

clude interconnecting devices like with Bluetooth, Wi-Fi,

or IKE. In the case of IKE, knowing the PSK allows

attackers to impersonate any of the peers of an IPsec

connection. We will show in the following section how

to mount offline dictionary attacks against IKEv1 and

IKEv2.

9.1 IKEv1 with Weak Pre-Shared Keys

It is well known that the PSK based mode of authen-

tication is vulnerable to an offline dictionary attack

when used together with the aggressive mode of IKEv1

Phase 1. This has actually been exploited in the past [5].

For the main mode however, only an online attack against

PSK authentication was thought to be feasible. This re-

quired attackers to initiate many handshake attempts to

try all different passwords making it likely to be detected.

We present an attack that only requires a single hand-

shake in which attackers simulate a responder. With it,

the attackers learn enough information to mount an of-

fline dictionary attack. Thus, they can learn the PSK and

can thus impersonate any party or act as a Man in the

Middle.

On the network, the attackers wait for the victim to

initiate a handshake with a responder. If victim and re-

sponder already have an active connection, the attackers
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Initiator
(IDI ,PSK)

Responder
(IDR,PSK)

m1 := (proposals)

−

cI , 0,m1

−−−−−−−−−−−→

m2 := (proposal)

←−

cI , cR,m2

−−−−−−−−−−−

m3 := (gx,nI)

−

cI , cR,m3

−−−−−−−−−−−→

m4 := (gy,nR)

←−

cI , cR,m4

−−−−−−−−−−−

k := PRFPSK(nI , nR)
Derive kd, ka, ke from k

k := PRFPSK(nI , nR)
Derive kd, ka, ke from k

Compute MACI using k

m5 := Encke
(IDI ,MACI)

−

cI , cR,m5

−−−−−−−−−−−→

Compute MACR using k

m6 := Encke
(IDR,MACR)

←−

cI , cR,m6

−−−−−−−−−−−

Compute MACR and
compare to m6

Compute MACI and
compare to m5

Figure 12: IKEv1 in Phase 1 using main mode with PSK

based authentication. Differences to Figure 3 are high-

lighted.

may enforce a new handshake by dropping all packets of

the already established connection, which will eventually

lead to a new handshake.

During this handshake, the attackers do not forward

the packets to the responder but rather simulate to be the

responder (e. g. by spoofing its IP address). The attackers

act as normal responder performing the Phase 1 proto-

col and record all messages exchanged until they receive

message m5.

With message m5, the attackers receive IDI and MACI ,

encrypted with ke (cf. Figure 12). Of all the values

that m5 is generated from, the attackers only lack knowl-

edge of IDI and the key k. IDI is easy to guess, as

often it is just the IP address of the initiator. The key

k = PRFPSK(nI ,nR) is directly derived from the PSK the

attackers want to learn.

This allows an offline dictionary attack against the

PSK. To check whether the guessed PSK is correct, the

attackers can derive k and the other three keys. If the

attackers’ candidate for ke is capable of decrypting mes-

sage m5, the attack is successful and the attackers learn

the PSK. This is possible since the plaintext of message

m5 has a known structure beginning with the known IDI .

Evaluation, Impact and Countermeasure. To verify

the attack, we implemented and tested it against the open

source IKE implementation strongSwan in version 5.5.1.

Since the attack solely relies on the protocol specification

and does not depend on any implementation error, we be-

lieve every RFC-compliant implementation of IKEv1 to

be vulnerable. Therefore, the main mode PSK authenti-

cation has to be considered as insecure as the aggressive

mode one. The only available countermeasure against

this attack is choosing a cryptographically strong PSK

that resists dictionary attacks.

9.2 IKEv2

In general, IKEv2 is perceived to be more secure than

IKEv1. However, the attack described above works simi-

larly against IKEv2. The current standard RFC 5996 [23]

mentions that it is generally not smart to rely only on

a user chosen password and recommends to use IKEv2

together with EAP (Extensible Authentication Protocol)

protocols. However, in practice IKEv2 is usually used

without EAP.

Instead of using IKEv2 together with some EAP-TLS

variant (like EAP-TTLS with EAP-MD5), one could

also switch to OpenVPN and thus reduce the overhead

from tunneling TLS in IKEv2. Moreover, the advice

from RFC 5996 is misleading since some EAP modes

like EAP-MD5 or EAP-MSCHAPv2 also do not pre-

vent offline dictionary attacks, they just require the at-

tackers to shift from IKE to attacking EAP. Ultimately,

our research indicates that implementations only support

IKEv2 with EAP for remote access of a user to a net-

work. Site-to-site scenarios are not covered by this con-

struction and therefore remain vulnerable to the attack.

10 Related Work

IPsec and IKE For some time, real-world crypto-

graphic research in the area of IPsec concentrated on the

encryption layer. Thus, the security of ESP is well un-

derstood today, thanks to major contributions from Pa-

terson et al. in 2006–2007. Their work shows vul-

nerabilities affecting encryption-only configurations of

ESP due to flaws in the standard and its implementa-

tions [14, 28]. These flaws can be resolved by integrity

protection. However, in 2010 they also showed that

a particular integrity protection – namely a MAC-then-

encrypt configuration – also leads to a plaintext-recovery

attack [15].

Research paid only little attention to IKE. The Log-

jam paper [5] discovered that some of the most used DH

groups standardized for IKE offer an attack surface if

the attackers are able to perform costly precomputations.

Another contribution by Checkoway et al. shows that the

random number generator used by VPN devices from Ju-

niper Networks was manipulated leading to a passive de-

cryption vulnerability [11]. However, both these findings

do not target IKE itself, but rather the parameters of un-

derlying cryptographic building blocks.

Bleichenbacher Attacks. Even though the seminal

work by Bleichenbacher dates back to 1998 [9],

Bleichenbacher vulnerabilities are discovered regularly.

Though the vulnerability is not protocol-related, the ma-

jority of vulnerabilities have been found in TLS imple-

mentations. A paper by Meyer et al. found Bleichen-
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bacher vulnerabilities in OpenSSL, JSSE (Java Secure

Socket Extension), and a TLS hardware accelerator chip

[27]. Somorovsky showed that MatrixSSL was also af-

fected [29]. Recently, the ROBOT survey showed that

thousands of domains on the Internet were running Blei-

chenbacher vulnerable servers, among them Facebook

and PayPal [10].

Cross Protocol Attacks. VPNs have already been tar-

get of cross protocol attacks. One has been found in

PPTP (Point-to-Point Tunneling Protocol) VPNs [17].

Another famous cross protocol attack is DROWN [6],

which exploits the broken SSL 2.0 to break the current

TLS 1.2. In 2012, Mavrogiannopoulos et al. described a

cross-protocol attack against all TLS versions using ex-

plicit elliptic curve Diffie-Hellman parameters [26]. A

paper by Jager et al. [20] shows how to attack TLS 1.3

and QUIC from a Bleichenbacher oracle in some imple-

mentation of previous TLS versions.

11 Conclusion

In this paper, we have shown that all versions and vari-

ants of the IPsec’s Internet Key Exchange (IKE) protocol

can be broken, given two entry points.

The first entry point is weak PSKs. Offline dictionary

attacks are possible against all three different variants,

with two different adversaries: IKEv1 PSK in aggressive

mode can be broken by a passive adversary, and both

IKEv1 PSK in main mode and IKEv2 PSK can be broken

by an active adversary who acts as a responder.

The second entry point is Bleichenbacher oracles in

the IKEv1 PKE and RPKE variants. We have shown

that such oracles exist in Cisco, Clavister, Huawei,

and ZyXEL devices, and have computed their strength.

Given an oracle of this strength, we were able to show

that under the attack restrictions imposed by Cisco’s de-

fault values, we could successfully attack all public key-

based variants of IKEv1 and IKEv2 with success proba-

bilities between 7 % and 26 % in a single attempt. There-

fore, by repeating the attacks, all implementations can

be broken. In this work, we focus on IKE implementa-

tions. However, if network devices reuse RSA key pairs

for other services like SSH, TLS, etc., further attack sur-

faces could arise.

To counter these attacks, both entry points must be

closed: Only high entropy PSKs should be used, and

both PKE and RPKE modes should be deactivated in all

IKE devices. It is not sufficient to configure key sep-

aration on the sender side. All receivers must also be

informed about this key separation – novel solutions are

required to achieve this task.

Acknowledgments

The authors wish to thank Juraj Somorovsky and Tibor

Jager with whom we had long conversations regarding

Bleichenbacher attacks. Thanks to Cisco who provided

us test hardware for our experiments. This paper is

based in part upon work in the research projects SyncEnc

and VERTRAG, which are funded by the German

Federal Ministry of Education and Research (BMBF,

FKZ: 16KIS0412K and 13N13097), as well as the

FutureTrust project funded by the European Commission

(grant 700542-Future-Trust-H2020-DS-2015-1).

Notes

1RFC 2409 calls these keys SKEYID, SKEYIDd , SKEYIDa, and

SKEYIDe. We shorten these names for brevity.
2RFC 2409 calls these values HASH. This is misleading, since in

practice the HMAC version of the negotiated hash algorithm is used as

PRF. Therefore, we use the name MAC.
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A IKEv1 with Signature Authentication

The IKEv1 and IKEv2 signature authentication modes

are similar and both target of our signature forgery at-

tack. Supplementary to the description of the IKEv2

variant (cf. Figure 6), here we present the IKEv1 sig-

nature authentication mode in detail. Figure 13 shows

the message flow for this mode.

First, the initiator creates a set of proposals consisting

of algorithms, key lengths, and additional parameters and

sends it with his initiator cookie to the responder. The re-

sponder selects a proposal based on his configured poli-

cies. After that, initiator and responder exchange DHKE

parameters and nonces.

Both peers are now able to derive all symmetric keys.

In order to confirm the keys and authenticate against each

other, a MAC is computed by each party using key k from

the key derivation. Subsequently, two signatures are gen-

erated by the peers: one over MACI and one over MACR.

After both peers exchanged their signatures and option-

ally the corresponding certificates, they validate the sig-

natures and continue with Phase 2 only if the signatures

are valid.

Initiator
(IDI , skI , certI)

Responder
(IDR, skR, certR)

m1 := (proposals)

−

cI , 0,m1

−−−−−−−−−−−→

m2 := (proposal)

←−

cI , cR,m2

−−−−−−−−−−−

m3 := (gx,nI)

−

cI , cR,m3

−−−−−−−−−−−→

m4 := (gy,nR)

←−

cI , cR,m4

−−−−−−−−−−−

k := PRFnI ,nR
(gxy)

Derive kd, ka, ke from k

k := PRFnI ,nR
(gxy)

Derive kd, ka, ke from k
Compute MACI using k

σI := Sign(skI ,MACI)
m5 := Encke

([certI ], σI)

−

cI , cR,m5

−−−−−−−−−−−→

Compute MACR using k

σR := Sign(skR,MACR)
m6 := Encke

([certR], σR)

←−

cI , cR,m6

−−−−−−−−−−−

Vfy(certR, σR) Vfy(certI , σI)

Figure 13: IKEv1 in Phase 1 using main mode with sig-

nature based authentication. Differences to Figure 3 are

highlighted.

B PKCS#1 Padding

In the following, a ||b denotes concatenation of strings

a and b. a[i] references the i-th byte in a. ℓa is the

00 02 00random non-zero nonce

length nonce

length of RSA modulus

Figure 14: PKCS #1 v1.5 padding for RSA public key

encryption

byte-length of string a. (N,e) denotes an RSA pub-

lic key, where N is the public modulus and e is the

public exponent. The corresponding secret exponent is

d = 1/e mod φ(N).
The PKCS #1 v1.5 encryption padding scheme [21]

randomizes encryptions by requiring the encoding shown

in Figure 14. To encrypt a plaintext message n (here, a

nonce), the following steps have to be performed:

1. The encrypter generates a random byte string P of

length ℓP = ℓN − ℓn− 3. P must not contain 0x00

bytes (i. e. P[i] 6= 0x00 ∀i ∈ [1...ℓP]). Furthermore,

P must be at least eight bytes long (ℓP ≥ 8).

2. The message with padding before encryption is

m = 0x00 ||0x02 ||P ||0x00 ||n.

3. The ciphertext is computed as c = me mod N.

To decrypt such a ciphertext, the naı̈ve decrypter per-

forms the following steps:

1. Compute m = cd mod N.

2. Check if m[1] ||m[2] = 0x00 ||0x02. Reject the

ciphertext otherwise.

3. Check if m[i] 6= 0x00 ∀i ∈ [3...10]. Reject the

ciphertext otherwise.

4. Search for the first i > 10 such that m[i] = 0x00.

Reject the ciphertext if no i is found.

5. Recover the message n = m[i+1] || ... ||m[ℓN ]

However, if the attackers learn whether the decrypter

rejects messages due to the checks performed in steps

2–4, the decrypter is susceptible to Bleichenbacher’s at-

tack.

C Key Types of Cisco IOS

Our key reuse attack assumes that the same RSA key

pairs are used for encryption and signatures. When gen-

erating RSA key pairs, Cisco IOS gives the administra-

tor a choice: The default is to create general-keys, which

generates a single key pair for all authentication methods

that is vulnerable to our attacks. The other option is to
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create usage-keys, through which two RSA special-usage

key pairs – one encryption pair and one signature pair –

are generated. In their documentation [12], Cisco states

the following:

If you plan to have both types of RSA authenti-

cation methods in your IKE policies, you may

prefer to generate special-usage keys. With

special-usage keys, each key is not unneces-

sarily exposed. (Without special-usage keys,

one key is used for both authentication meth-

ods, increasing the exposure of that key.)

We have not evaluated whether special usage keys are a

working countermeasure against our key reuse attack.
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