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Abstract. The n-fold Darboux transformation (DT) is a 22 matrix for the Kaup-Newell (KN)
system. In this paper, each element of this matrix is expressed by a ratio of (n+ 1)× (n+ 1)
determinant and n×n determinant of eigenfunctions. Using these formulae, the expressions of
the q[n] and r[n] in KN system are generated by n-fold DT. Further, under the reduction condi-
tion, the rogue wave,rational traveling solution, dark soliton, bright soliton, breather solution,
periodic solution of the derivative nonlinear Schrödinger(DNLS) equation are given explicitly
by different seed solutions. In particular, the rogue wave and rational traveling solution are
two kinds of new solutions. The complete classification of these solutions generated by one-fold
DT is given in the table on page.
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1. Introduction

The derivative nonlinear Schrödinger equation,

iqt − qxx + i(q2q∗)x = 0, (1)

one of the most important integrable systems in the mathematics and physics, is usually called
DNLS(or DNLSI) equation. Here“*” denotes the complex conjugation, and subscript of x (or t)
denotes the partial derivative with respect to x (or t). This equation is originated from two fields
of applied physics. The first is plasma physics in which the DNLS governs the evolution of small
but finite amplitude Alfvén waves that propagates quasi-parallel to the magnetic field [1, 2].
Recently, this equation is also used to describe large-amplitude magnetohydrodynamic (MHD)
waves in plasmas [3, 4]. Further, it is natural to improve DNLS equation in more practical
plasmas. For example, DNLS truncation model [5] and the DNLS with nonlinear Landau
damping [6]. In the second area, nonlinear optics, the sub-picosecond or femtosecond pulses in
single-mode optical fiber is modeled by the DNLS [7–9].

However, the crucial feature of the DNLS is that the integrability such as the dynamical
evolution of the associated physical system can be given analytically by using its exact solution.
Under the vanishing boundary condition(VBC), Kaup and Newell(KN) [10] firstly proposed an
inverse scattering transform (IST) with a revision in their pioneer works, and got a one-soliton
solution. Later, Kawata [11] further solved DNLS under VBC and non-vanishing boundary
condition (NVBC) to get two soliton solution, and introduced ”paired soliton” which is now
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regarded as one kind of breather solution. N-soliton formula [12] of the DNLS with VBC is
expressed by determinants with the help of pole-expansion. Further, the IST of the DNLS with
VBC is re-considered by Huang’s group [13–16] and then the explicit form of the N-soliton is
obtained by some algebraic techniques. Now we turn to the DNLS under NVBC, and some
special solutions are obtained and the existence of the algebraic soliton is also given [17]. This
is followed by paired-soliton of the DNLS from the IST [18]. Wadati etal. [19] have given the
stationary solutions of the DNLS under the plane wave boundary and the contributions of the
derivative term in the DNLS equation. Recently, to avoid the multi-value problem, Chen and
Lam [20] revised the IST for the DNLS under NVBC by introducing an affine parameter, and
then got single breather solution, which can be reduced to the dark soltion and bright soliton.
Further applications on this method can be found in reference [21]. Cai and Huang [22] found
the action-angle variables of the DNLS explicitly by constructing its Hamiltonian formalism.

Similar to many usual soliton equations, the DNLS is also solved by the Hirota method [23]
and Darboux transformation(DT) [24, 25] besides IST. By comparing with the correspond-
ing results [26–28] of nonlinear Schrödinger(NLS) equation, the DT [24, 25] of the DNLS has
following essential distinctness:

• the kernel of one-fold DT is one-dimensional and it can be defined by one eigenfunction
of linear system defined by spectral problem,

• the DNLS will be invariant under one-fold DT associated with a pure imaginary eigen-
value(see the last paragraph of the section 2).

Some solutions [24] including multi-soliton and quasi-periodic solutions are obtained by this
DT from a trivial seed: zero solution(or vacuum). Steudel [25] has obtained a general formula
of solutions q[N ] and r[N ] of KN system in terms of Vandermonde-like determinants by N-fold
DTs, and then given n-soliton and N-phase solutions from zero seed, N-breather solutions from
non-zero seed: monochromatic wave. Unlike the usual DT, Steduel used solutions of Riccati
equations, which are transformed from the linear partial differential equations of the spectral
problem for the DNLS, to construct the solutions of the DNLS. So the first difficulty of his
method is to solve nonlinear Riccati, which is not solvable in general. To overcome this difficulty,
Steudel have made an Ansatz(see eq.(51) in reference [25]) and introduced his favorite Seahorse
functions. Moreover, the classification of the solutions(see Figure 1 in reference [25]) generated
by DT is very interesting and useful. But the conditions of parameters to generate dark soliton
and bright soliton of the DNLS are not clear. Therefore, it is natural to question whether the
difficult Riccati equations are indeed unavoidable for the DT from non-zero seeds and whether
the classification of solutions generated by one-fold DT can be fixed thoroughly or not.

It is interesting that the Ablowitz-Kaup-Newell-Segur(AKNS)system [29] can be mapped
to the KN system by a gauge transformation [30]. Moreover, there exists other two kinds of
derivative nonlinear Schrödinger equation, i.e,. the DNLSII [31]

iqt + qxx + iqq∗qx = 0, (2)

and the DNLSIII [32]

iqt + qxx − iq2q∗x +
1

2
q3q∗2 = 0, (3)

and a chain of gauge transformations between them: DNLSII
a)
=⇒ DNLSI

b)
=⇒ DNLSIII. Here

a) denotes eq.(2.12) in ref. [30], and b) denotes: eq.(4)→ eq.(3) →eq.(6) with γ = 0 in ref. [23].
But these transformations can not preserve the reduction conditions in spectral problem of
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the KN system and involve complicated integrations. So each of them deserves investigating
separately.

There are two aims of this paper. First aim is to present a detailed derivation of the DT
for the DNLS and its determinant representation. Using this representation, the solutions
of DNLS can be expressed by the solutions(eigenfunctions) of the linear partial differential
equations of the spectral problem of the KN system instead of the solutions of the nonlinear
Riccati equations, which shows that the nonlinear Riccati equation and Seahorse functions
are indeed avoidable for the DT from nonzero seeds. A second aim is to present a complete
classification of the solutions generated by one-fold DT from zero seed, non-zero seeds: constant
solution and periodic solution with a constant amplitude.

The organization of this paper is as follows. In section 2, it provides a relatively simple
approach to DT for the KN system, and then the determinant representation of the n-fold DT
and formulae of q[n] and r[n] expressed by eigenfunctions of spectral problem are given. The
reduction of DT of the KN system to the DNLS equation is also discussed by choosing paired
eigenvalues and eigenfunctions. In section 3, under specific reduction conditions, several types
of particular solutions are given from zero seed, non-zero seeds: constant solution and periodic
solution with a constant amplitude. The complete classification of dark soliton, bright soliton,
periodic solution are given in a table for one-fold DT of the DNLS equation. In particular, two
kinds of new solutions: rational traveling solution and rogue wave are given. The conclusion
will be given in section 4.

2. Darboux transformation

Let us start from the first non-trivial flow of the KN system [10],

rt − irxx − (r2q)x = 0, (4)

qt + iqxx − (rq2)x = 0, (5)

which are exactly reduced to the DNLS eq.(1) for r = −q∗ while the choice r = q∗ would lead
to eq.(1) with the sign of the nonlinear term changed. The Lax pairs corresponding to coupled
DNLS equations(4) and (5) can be given by the KaupCNewell spectral problem [10]

∂xψ = (Jλ2 +Qλ)ψ = Uψ, (6)

∂tψ = (2Jλ4 + V3λ
3 + V2λ

2 + V1λ)ψ = V ψ, (7)

with

ψ =

(
φ

ϕ

)
, J =

(
i 0
0 −i

)
, Q =

(
0 q

r 0

)
,

V3 = 2Q, V2 = Jqr, V1 =

(
0 −iqx + q2r

irx + r2q 0

)
.

Here λ, an arbitrary complex number, is called the eigenvalue(or spectral parameter), and
ψ is called the eigenfunction associated with λ of the KN system. Equations(4) and (5) are
equivalent to the integrability condition Ut − Vx + [U, V ] = 0 of (6) and (7).

The main task of this section is to present a detailed derivation of the Darboux transforation
of the DNLS and the determinant representation of the n-fold transformation. Based on the
DT for the NLS [26–28] and the DNLS [24,25], the main steps are : 1) to find a 2× 2 matrix T
so that the KN spectral problem eq.(6) and eq.(7) is covariant, then get new solution (q[1], r[1])
expressed by elements of T and seed solution (q, r); 2) to find expressions of elements of T in
terms of eigenfunctions of KN spectral problem corresponding to the seed solution (q, r); 3)
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to get the determinant representation of n-fold DT Tn and new solutions (q[n], r[n]) by n-times
iteration of the DT; 4) to consider the reduction condition: q[n] = −(r[n])∗ by choosing special
eigenvalue λk and its eigenfunction ψk, and then get q[n] of the DNLS equation expressed by its
seed solution q and its associated eigenfunctions {ψk, k = 1, 2, · · · , n}. However, we shall use
the kernel of n-fold DT(Tn) to fix it in the third step instead of iteration.

It is easy to see that the spectral problem (6) and (7) are transformed to

ψ[1]
x = U [1] ψ[1], U [1] = (Tx + T U)T−1. (8)

ψ[1]
t = V [1] ψ[1], V [1] = (Tt + T V )T−1. (9)

under a gauge transformation

ψ[1] = T ψ. (10)

By cross differentiating (8) and (9), we obtain

U [1]
t − V [1]

x + [U [1], V [1]] = T (Ut − Vx + [U, V ])T−1. (11)

This implies that, in order to make eqs.(4) and eq.(5) invariant under the transformation (10),
it is crucial to search a matrix T so that U [1], V [1]have the same forms as U , V . At the same
time the old potential(or seed solution)(q, r) in spectral matrixes U , V are mapped into new
potentials (or new solution)(q[1], r[1]) in transformed spectral matrixes U [1], V [1].

2.1 One-fold Darboux transformation of the KN system
Considering the universality of DT, suppose that the trial Darboux matrix T in eq.(10) is of

form

T = T (λ) =

(
a1 b1
c1 d1

)
λ+

(
a0 b0
c0 d0

)
, (12)

where a0, b0, c0, d0, a1, b1, c1, d1 are functions of x, t to need be determined. From

Tx + T U = U [1] T, (13)

comparing the coefficients of λj, j = 3, 2, 1, 0, it yields

λ3 : b1 = 0, c1 = 0,

λ2 : q a1 − 2 i b0 − q[1]d1 = 0, −r[1] a1 + r d1 + 2 i c0 = 0,

λ1 : a1x + r b0 − q[1]c0 = 0, d1x + qc0 − r[1]b0 = 0, qa0 − q[1]d0 = 0,−r[1]a0 + rd0 = 0,

λ0 : a0x = b0x = c0x = d0x = 0. (14)

The last equation shows a0, b0, c0, d0 are functions of t only. Similarly, from

Tt + T V = V [1] T, (15)

comparing the coefficients of λj, j = 4, 3, 2, 1, 0,it implies

λ4 : −2ib0 − q[1]d1 + qa1 = 0, 2ic0 − 2r[1]a1 + rd1 = 0,

λ3 : −r[1]q[1]a1i− 2q[1]c0 + a1rqi+ 2rb0 = 0, qa0 − q[1]d0 = 0,

rd0 − r[1]a0 = 0,−d1rqi+ r[1]q[1]d1i+ 2qc0 − 2r[1]b0 = 0,

λ2 : a0rq − a0r
[1]q[1] = 0, a1rq

2 − r[1]q[1]
2
d1 − b0rqi+ q[1]x d1i− a1qxi− r[1]q[1]b0i = 0,

c0rqi− r[1]
2
q[1]a1 + d1r

2q + r[1]q[1]c0i+ d1rxi− r[1]xa1i = 0, r[1]q[1]d0 − rqd0 = 0,

λ1 : a1t + q[1]xc0i+ b0r
2q − r[1]q[1]

2
c0 + b0rxi = 0, −r[1]q[1]2d0 + a0rq

2 + q[1]xd0i− a0qxi = 0,
4



d0rxi+ d0r
2q − r[1]

2
q[1]a0 − r[1]xa0i = 0, d1t − c0qxi+ c0rq

2 − r[1]
2
q[1]b0 − r[1]xb0i = 0,

λ0 : a0t = b0t = c0t = d0t = 0. (16)

The last equation shows a0, b0, c0, d0 are functions of x only. So a0, b0, c0, d0 are constants.
In order to get the non-trivial solutions, we present a Darboux transformation under the

condition a0 = 0, d0 = 0. Based on eq.(14) and eq.(16) and without losing any generality, let
Darboux matrix T be the form of

T1 = T1(λ;λ1) =

(
a1 0
0 d1

)
λ+

(
0 b0
c0 0

)
. (17)

Here a1, d1 are undetermined function of (x, t), which will be expressed by the eigenfunction
associated with λ1 in the KN spectral problem. First of all, we introduce n eigenfunctions ψj

as

ψj =

(
φj

ϕj

)
, j = 1, 2, ....n, φj = φj(x, t, λj), ϕj = ϕj(x, t, λj). (18)

Theorem 1.The elements of one-fold DT are parameterized by the eigenfunction ψ1 associated

with λ1 as

d1 =
1

a1
, a1 = −ϕ1

φ1
, b0 = c0 = λ1, (19)

⇔ T1(λ;λ1) =




−λϕ1

φ1
λ1

λ1 −λφ1

ϕ1


 , (20)

and then the new solutions q[1] and r[1] are given by

q[1] = (
ϕ1

φ1
)2q + 2i

ϕ1

φ1
λ1, r

[1] = (
φ1

ϕ1
)2r − 2i

φ1

ϕ1
λ1, (21)

and the new eigenfunction ψ
[1]
j corresponding to λj is

ψ
[1]
j =




1

φ1

∣∣∣∣
−λjφj ϕj

−λ1φ1 ϕ1

∣∣∣∣

1

ϕ1

∣∣∣∣
−λjϕj φj

−λ1ϕ1 φ1

∣∣∣∣



. (22)

Proof. Note that (a1d1)x = 0 is derived from the eq.(14), and then take a1 =
1

d1
in the

followings. By transformation eq.(17) and eq.(14), new solutions are given by

q[1] =
a1

d1
q − 2 i

b0

d1
, r[1] =

d1

a1
q + 2 i

c0

a1
. (23)

By using a general fact of the DT, i.e., T1(λ;λ1)|λ=λ1
ψ1 = 0, then eq.(19) is obtained. Next,

substituting (a1, d1, b0, c0) given in eq.(19) back into eq.(23), then new solutions are given as

eq. (21). Further, by using the explicit matrix representation eq.(20) of T1, then ψ
[1]
j is given
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by

ψ
[1]
j = T1(λ;λ1)|λ=λj

ψj =




−λϕ1

φ1

λ1

λ1 −λφ1

ϕ1




∣∣∣∣∣∣∣
λ=λj

(
φj

ϕj

)
=




1

φ1

∣∣∣∣
−λjφj ϕj

−λ1φ1 ϕ1

∣∣∣∣

1

ϕ1

∣∣∣∣
−λjϕj φj

−λ1ϕ1 φ1

∣∣∣∣



. (24)

Last, a tedious calculation shows that T1 in eq.(20) and new solutions indeed satisfy eq.(15) or
(equivalently eq.(16)). So KN spectral problem is covariant under transformation T1 in eq.(20)
and eq.(21), and thus it is the DT of eq.(4) and eq.(5). �

It is easy to find that T1 is equivalent to the Imai’s result(see eq.(7) of ref. [24]) and to the
Steudel’s result(see eq.(21) of ref. [25]). Our derivation is more transparent, and new solutions
q[1] and r[1] can be constructed by the eigenfunction ψ1, which is a solution of linear partial
different equations eq.(4) and eq.(5). This is simpler than Steudel’s method to solve nonlinear
Riccati equations. The remaining problem is how to guarantee the validity of the reduction
condition, i.e., q[1] = −(r[1])∗. We shall solve it at the end of this section by choosing special
eigenfunctions and eigenvalues.

2.2 N-fold Darboux transformation for KN system
The key task is to establish the determinant representation of the n-fold DT for KN system

in this subsection. To this purpose, set

D =

{(
a 0
0 d

)∣∣∣∣ a, d are complex functions of x and t

}
,

A =

{(
0 b

c 0

)∣∣∣∣ b, c are complex functions of x and t

}
,

as ref. [24].
According to the form of T1 in eq.(17), the n-fold DT should be the form of [24]

Tn = Tn(λ;λ1, λ2, · · · , λn) =
n∑

l=0

Plλ
l, (25)

with

Pn =

(
an 0
0 dn

)
∈ D, Pn−1 =

(
0 bn−1

cn−1 0

)
∈ A, Pl ∈ D (if l − n is even), Pl ∈ A (if l − n is odd).(26)

Here P0 is a constant matrix, Pi(1 ≤ i ≤ n) is the function of x and t. In particular, P0 ∈ D
if n is even and P0 ∈ A if n is odd, which leads to the separate discussion on the determi-
nant representation of Tn in the following by means of its kernel. Specifically, from algebraic
equations,

ψ
[n]
k = Tn(λ;λ1, · · · , λn)|λ=λk

ψk =

n∑

l=0

Plλ
l
kψk = 0, k = 1, 2, · · · , n, (27)

coefficients Pi is solved by Cramer’s rule. Thus we get determinant representation of the Tn.
6



Theorem2. (1)For n = 2k(k = 1, 2, 3, · · · ), the n-fold DT of the KN system can be expressed
by

Tn = Tn(λ;λ1, λ2, · · · , λn) =




(̃Tn)11
Wn

(̃Tn)12
Wn

(̃Tn)21

W̃n

(̃Tn)22

W̃n



, (28)

with

Wn =

∣∣∣∣∣∣∣∣

λn1φ1 λn−1
1 ϕ1 λn−2

1 φ1 λn−3
1 ϕ1 . . . λ21φ1 λ1ϕ1

λn2φ2 λn−1
2 ϕ2 λn−2

2 φ2 λn−3
2 ϕ2 . . . λ22φ2 λ2ϕ2

...
...

...
...

...
...

...
λnnφn λn−1

n ϕn λn−2
n φn λn−3

n ϕn . . . λ2nφn λnϕn

∣∣∣∣∣∣∣∣
,

(̃Tn)11 =

∣∣∣∣∣∣∣∣∣∣

λn 0 λn−2 0 . . . λ2 0 λ1λ2 . . . λn
λn1φ1 λn−2

1 ϕ1 λn−2
1 φ1 λn−3

1 ϕ1 . . . λ21φ1 λ1ϕ1 λ1λ2 . . . λnφ1

λn2φ2 λn−1
2 ϕ2 λn−2

2 φ2 λn−3
2 ϕ2 . . . λ22φ2 λ2ϕ2 λ1λ2 . . . λnφ2

...
...

...
...

...
...

...
...

λnnφn λn−1
n ϕn λn−2

n φn λn−3
n ϕn . . . λ2nφn λnϕn λ1λ2 . . . λnφ1

∣∣∣∣∣∣∣∣∣∣

,

(̃Tn)12 =

∣∣∣∣∣∣∣∣∣∣

0 λn−1 0 λn−3 . . . 0 λ 0
λn1φ1 λn−1

1 ϕ1 λn−2
1 φ1 λn−3

1 ϕ1 . . . λ21φ1 λ1ϕ1 λ1λ2 . . . λnφ1

λn2φ2 λn−1
2 ϕ2 λn−2

2 φ2 λn−3
2 ϕ2 . . . λ22φ2 λ2ϕ2 λ1λ2 . . . λnφ2

...
...

...
...

...
...

...
...

λnnφn λn−1
n ϕn λn−2

n φn λn−3
n ϕn . . . λ2nφn λnϕn λ1λ2 . . . λnφ1

∣∣∣∣∣∣∣∣∣∣

,

W̃n =

∣∣∣∣∣∣∣∣

λn1ϕ1 λn−1
1 φ1 λn−2

1 ϕ1 λn−3
1 φ1 . . . λ21ϕ1 λ1φ1

λn2ϕ2 λn−1
2 φ2 λn−2

2 ϕ2 λn−3
2 φ2 . . . λ22ϕ2 λ2φ2

...
...

...
...

...
...

...
λnnϕn λn−1

n φn λn−2
n ϕn λn−3

n φn . . . λ2nϕn λnφn

∣∣∣∣∣∣∣∣
,

(̃Tn)21 =

∣∣∣∣∣∣∣∣∣∣

0 λn−1 0 λn−3 . . . 0 λ 0
λn1ϕ1 λn−1

1 φ1 λn−2
1 ϕ1 λn−3

1 φ1 . . . λ21ϕ1 λ1φ1 λ1λ2 . . . λnϕ1

λn2ϕ2 λn−1
2 φ2 λn−2

2 ϕ2 λn−3
2 φ2 . . . λ22ϕ2 λ2φ2 λ1λ2 . . . λnϕ2

...
...

...
...

...
...

...
...

λnnϕn λn−1
n φn λn−2

n ϕn λn−3
n φn . . . λ2nϕn λnφn λ1λ2 . . . λnϕ1

∣∣∣∣∣∣∣∣∣∣

,

(̃Tn)22 =

∣∣∣∣∣∣∣∣∣∣

λn 0 λn−2 0 . . . λ2 0 λ1λ2 . . . λn
λn1ϕ1 λn−2

1 φ1 λn−2
1 ϕ1 λn−3

1 φ1 . . . λ21ϕ1 λ1φ1 λ1λ2 . . . λnϕ1

λn2ϕ2 λn−1
2 φ2 λn−2

2 ϕ2 λn−3
2 φ2 . . . λ22ϕ2 λ2φ2 λ1λ2 . . . λnϕ2

...
...

...
...

...
...

...
...

λnnϕn λn−1
n φn λn−2

n ϕn λn−3
n φn . . . λ2nϕn λnφn λ1λ2 . . . λnϕ1

∣∣∣∣∣∣∣∣∣∣

.
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(2)For n = 2k + 1(k = 1, 2, 3, · · · ), then

Tn = Tn(λ;λ1, λ2, · · · , λn) =




(̂Tn)11
Qn

(̂Tn)12
Qn

(̂Tn)21

Q̂n

(̂Tn)22

Q̂n



, (29)

with

Qn =

∣∣∣∣∣∣∣∣

λn1φ1 λn−1
1 ϕ1 λn−2

1 φ1 λn−3
1 ϕ1 . . . λ31φ1 λ21ϕ1 λ1φ1

λn2φ2 λn−1
2 ϕ2 λn−2

2 φ2 λn−3
2 ϕ2 . . . λ32φ2 λ22ϕ2 λ2φ2

...
...

...
...

...
...

...
...

λnnφn λn−1
n ϕn λn−2

n φn λn−3
n ϕn . . . λ3nφn λ2nϕn λnφn

∣∣∣∣∣∣∣∣
,

(̂Tn)11 =

∣∣∣∣∣∣∣∣∣∣

λn 0 λn−2 0 . . . λ3 0 λ 0
λn1φ1 λn−1

1 ϕ1 λn−2
1 φ1 λn−3

1 ϕ1 . . . λ31φ1 λ21ϕ1 λ1φ1 −λ1λ2 . . . λnϕ1

λn2φ2 λn−1
2 ϕ2 λn−2

2 φ2 λn−3
2 ϕ2 . . . λ32φ2 λ22ϕ2 λ2φ2 −λ1λ2 . . . λnϕ2

...
...

...
...

...
...

...
...

...
λnnφn λn−1

n ϕn λn−2
n φn λn−3

n ϕn . . . λ3nφn λ2nϕn λnφn −λ1λ2 . . . λnϕn

∣∣∣∣∣∣∣∣∣∣

,

(̂Tn)12 =

∣∣∣∣∣∣∣∣∣∣

0 λn−1 0 λn−3 ... 0 λ2 0 −λ1λ2 . . . λn
λn1φ1 λn−1

1 ϕ1 λn−2
1 φ1 λn−3

1 ϕ1 . . . λ31φ1 λ21ϕ1 λ1φ1 −λ1λ2 . . . λnϕ1

λn2φ2 λn−1
2 ϕ2 λn−2

2 φ2 λn−3
2 ϕ2 . . . λ32φ2 λ22ϕ2 λ2φ2 −λ1λ2 . . . λnϕ2

...
...

...
...

...
...

...
...

...
λnnφn λn−1

n ϕn λn−2
n φn λn−3

n ϕn . . . λ3nφn λ2nϕn λnφn −λ1λ2 . . . λnϕn

∣∣∣∣∣∣∣∣∣∣

,

Q̂n =

∣∣∣∣∣∣∣∣

λn1ϕ1 λn−1
1 φ1 λn−2

1 ϕ1 λn−3
1 φ1 . . . λ31ϕ1 λ21φ1 λ1ϕ1

λn2ϕ2 λn−1
2 φ2 λn−2

2 ϕ2 λn−3
2 φ2 . . . λ32ϕ2 λ22φ2 λ2ϕ2

...
...

...
...

...
...

...
...

λnnϕn λn−1
n φn λn−2

n ϕn λn−3
n φn . . . λ3nϕn λ2nφn λnϕn

∣∣∣∣∣∣∣∣
,

(̂Tn)21 =

∣∣∣∣∣∣∣∣∣∣

0 λn−1 0 λn−3 ... 0 λ2 0 −λ1λ2 . . . λn
λn1ϕ1 λn−1

1 φ1 λn−2
1 ϕ1 λn−3

1 φ1 . . . λ31ϕ1 λ21φ1 λ1ϕ1 −λ1λ2 . . . λnφ1

λn2ϕ2 λn−1
2 φ2 λn−2

2 ϕ2 λn−3
2 φ2 . . . λ32ϕ2 λ22φ2 λ2ϕ2 −λ1λ2 . . . λnφ2

...
...

...
...

...
...

...
...

...
λnnϕn λn−1

n φn λn−2
n ϕn λn−3

n φn . . . λ3nϕn λ2nφn λnϕn −λ1λ2 . . . λnφn

∣∣∣∣∣∣∣∣∣∣

,

(̂Tn)22 =

∣∣∣∣∣∣∣∣∣∣

λn 0 λn−2 0 . . . λ3 0 λ 0
λn1ϕ1 λn−1

1 φ1 λn−2
1 ϕ1 λn−3

1 φ1 . . . λ31ϕ1 λ21φ1 λ1ϕ1 −λ1λ2 . . . λnφ1

λn2ϕ2 λn−1
2 φ2 λn−2

2 ϕ2 λn−3
2 φ2 . . . λ32ϕ2 λ22φ2 λ2ϕ2 −λ1λ2 . . . λnφ2

...
...

...
...

...
...

...
...

...
λnnϕn λn−1

n φn λn−2
n ϕn λn−3

n φn . . . λ3nϕn λ2nφn λnϕn −λ1λ2 . . . λnφn

∣∣∣∣∣∣∣∣∣∣

. (30)

Next, we consider the transformed new solutions (q[n], r[n])of KN system corresponding to the
n-fold DT. Under covariant requirement of spectral problem of the KN system, the transformed
form should be

∂xψ
[n] = (Jλ2 +Q[n]λ)ψ = U [n]ψ, (31)
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with

ψ =

(
φ

ϕ

)
, J =

(
i 0
0 −i

)
, Q[n] =

(
0 q[n]

r[n] 0

)
, (32)

and then

Tnx + Tn U = U [n] Tn. (33)

Substituting Tn given by eq.(25) into eq.(33),and then comparing the coefficients of λn+1, it
yields

q[n] =
an

dn
q − 2i

bn−1

dn
, r[n] =

dn

an
r + 2i

cn−1

an
. (34)

Furthermore, taking an, dn, bn−1, cn−1 which are obtained from eq.(28) for n = 2k and from
eq.(29) for n = 2k + 1, into (34), then new solutions (q[n], r[n]) are given by

q[n] =
Ω2

11

Ω2
21

q + 2i
Ω11Ω12

Ω2
21

, r[n] =
Ω2

21

Ω2
11

r − 2i
Ω21Ω22

Ω2
11

. (35)

Here, (1)for n = 2k,

Ω11 =

∣∣∣∣∣∣∣∣

λn−1
1 ϕ1 λn−2

1 φ1 λn−3
1 ϕ1 . . . λ1ϕ1 φ1

λn−1
2 ϕ2 λn−2

2 φ2 λn−3
2 ϕ2 . . . λ2ϕ2 φ2

...
...

...
...

...
...

λn−1
n ϕn λn−2

n φn λn−3
n ϕn . . . λnϕn φn

∣∣∣∣∣∣∣∣
, (36)

Ω12 =

∣∣∣∣∣∣∣∣

λn1φ1 λn−2
1 φ1 λn−3

1 ϕ1 . . . λ1ϕ1 φ1

λn2φ2 λn−2
2 φ2 λn−3

2 ϕ2 . . . λ2ϕ2 φ2
...

...
...

...
...

...
λnnφn λn−2

n φn λn−3
n ϕn . . . λnϕn φn

∣∣∣∣∣∣∣∣
,

Ω21 =

∣∣∣∣∣∣∣∣

λn−1
1 φ1 λn−2

1 ϕ1 λn−3
1 φ1 . . . λ1φ1 ϕ1

λn−1
2 φ2 λn−2

2 ϕ2 λn−3
2 φ2 . . . λ2φ2 ϕ2

...
...

...
...

...
...

λn−1
n φn λn−2

n ϕn λn−3
n φn . . . λnφn ϕn

∣∣∣∣∣∣∣∣
,

Ω22 =

∣∣∣∣∣∣∣∣

λn1ϕ1 λn−2
1 ϕ1 λn−3

1 φ1 . . . λ1φ1 ϕ1

λn1ϕ1 λn−2
2 ϕ2 λn−3

2 φ2 . . . λ2φ2 ϕ2
...

...
...

...
...

...
λnnϕn λn−2

n ϕn λn−3
n φn . . . λnφn ϕn

∣∣∣∣∣∣∣∣
;

(2) for n = 2k + 1,

Ω11 =

∣∣∣∣∣∣∣∣

λn−1
1 ϕ1 λn−2

1 φ1 λn−3
1 ϕ1 . . . λ1φ1 ϕ1

λn−1
2 ϕ2 λn−2

2 φ2 λn−3
2 ϕ2 . . . λ2φ2 ϕ2

...
...

...
...

...
...

λn−1
n ϕn λn−2

n φn λn−3
n ϕn . . . λnφn ϕn

∣∣∣∣∣∣∣∣
, (37)

Ω12 =

∣∣∣∣∣∣∣∣

λn1φ1 λn−2
1 φ1 λn−3

1 ϕ1 . . . λ1φ1 ϕ1

λn2φ2 λn−2
2 φ2 λn−3

2 ϕ2 . . . λ2φ2 ϕ2
...

...
...

...
...

...
λnnφn λn−2

n φn λn−3
n ϕn . . . λnφn ϕn

∣∣∣∣∣∣∣∣
,
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Ω21 =

∣∣∣∣∣∣∣∣

λn−1
1 φ1 λn−2

1 ϕ1 λn−3
1 φ1 . . . λ1ϕ1 φ1

λn−1
2 φ2 λn−2

2 ϕ2 λn−3
2 φ2 . . . λ2ϕ2 φ2

...
...

...
...

...
...

λn−1
n φn λn−2

n ϕn λn−3
n φn . . . λnϕn φn

∣∣∣∣∣∣∣∣
,

Ω22 =

∣∣∣∣∣∣∣∣

λn1ϕ1 λn−2
1 ϕ1 λn−3

1 φ1 . . . λ1ϕ1 φ1

λn1ϕ1 λn−2
2 ϕ2 λn−3

2 φ2 . . . λ2ϕ2 φ2
...

...
...

...
...

...
λnnϕn λn−2

n ϕn λn−3
n φn . . . λnϕn φn

∣∣∣∣∣∣∣∣
.

We are now in a position to consider the reduction of the DT of the KN system so that
q[n] = −(r[n])∗, then the DT of the DNLS is given. Under the reduction condition q = −r∗, the
eigenfunction ψk =

(
φk

ϕk

)
associated with eigenvalue λk has following properties [24],

(i): φ∗
k = ϕk, λk = −λk∗;

(ii): φk
∗ = ϕl, ϕk

∗ = φl, λk
∗ = −λl, where k 6= l.

Notice that the denominator Wn of q[n] is a modulus of a non-zero complex function under
reduction condition, so the new solution q[n] is non-singular. For the one-fold DT T1, set

λ1 = iβ1(a pure imaginary constant), and its eigenfunction ψ1 =

(
φ1

φ∗
1

)
, (38)

then T1 in theorem 1 is the DT of the DNLS. We note that q[1] = −(r[1])∗ holds with the
help of eq.(21), q = −r∗ and this special choice of ψ1. This is an essential distinctness of
DT between DNLS and NLS, because one-fold transformation of AKNS can not preserve the
reduction condition to the NLS. Furthermore, for the two-fold DT, according to above property
(ii), set

λ2 = −λ∗1 and its eigenfunction ψ2 =

(
ϕ∗
1

φ∗
1

)
, ψ1 =

(
φ1

ϕ1

)
associated with eigenvalue λ1,

(39)
then q[2] = −(r[2])∗ can be verified from eq. (35) and T2 given by eq.(28) is the DT of the
DNLS. Of course, in order to get q[2] = −(r[2])∗ so that T2 becomes also the DT of the DNLS,
we can also set

λl = iβl(pure imaginary) and its eigenfunction ψl =

(
ϕ∗
l

φ∗
l

)
, l = 1, 2. (40)

There are many choices to guarantee q[n] = −(r[n])∗ for the n-fold DTs when n > 2. For
example, setting n = 2k and l = 1, 3, . . . , 2k − 1,then choosing following k distinct eigenvalues
and eigenfunctions in n-fold DTs:

λl ↔ ψl =

(
φl

ϕl

)
, andλ2l = −λ∗2l−1,↔ ψ2l =

(
ϕ∗
2l−1

φ∗
2l−1

)
(41)

so that q[2k] = −(r[2k])∗ in eq.(35). Then T2k with these paired-eigenvalue λi and paired-
eigenfunctions ψi(i = 1, 3, . . . , 2k − 1) is reduced to the (2k)-fold DT of the DNLS. Similarly,
T2k+1 in eq.(29) can also be reduced to the (2k+1)-fold DT of the DNLS by choosing one
pure imaginary λ2k+1 = iβ2k+1(pure imaginary) and k paired-eigenvalues λ2l = −λ∗2l−1(l =
1, 2, · · · , k) with corresponding eigenfunctions according to properties (i) and (ii).
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3. Particular solutions

3.1. Darboux transformations applied to zero seed
For q = r = 0 the equations (6) and (7) are solved by

ψk =

(
φk

ϕk

)
, φk = exp(i(λk

2x+ 2λk
4t)), ϕk = exp(−i(λk2x+ 2λk

4t)). (42)

Case 1(N = 1). Under the choice eq.(38), taking ψ1 in eq.(42) back into eq.(21) with λ1 = iβ1,
then one solution of the DNLS is

q[1] = −2β1 exp(−2i(−β12x+ 2β1
4t)), (43)

which is not a soliton but a periodic solution with a constant amplitude.
Case 2(N=2). Considering the choice in eq.(40) with λ1 = i(l+m), λ2 = i(l−m), and taking

eigenfunctions in eq. (42) back into T2,the result of the DT of the DNLS is then simply found
from (35),

q[2] = −4lm
(m cos(2G)− il sin(2G))3

((m2 − l2) cos(2G)2 + l2)2
exp(2iF ), (44)

which is a quasi-periodic solution,and here F = −l2x + 2l4t + 12l2m2t − m2x + 2m4t, G =
8l3mt − 2lmx + 8lm3t. Furthermore, considering the choice in eq.(39) with λ1 = α1 + iβ1,
λ2 = −α1 + iβ1, and using eigenfunctions in eq. (42), then the solution of the DNLS generated
by two-fold DT is simply found from (35),

q[2] = 4iαβ
(−iα1 cosh(2Γ) + β1 sinh(2Γ))

3

((−α1
2 − β1

2) cosh(2Γ)2 + β1
2)2

exp(2ih), (45)

with h = −β12x + 2β1
4t − 12α1

2β1
2t + α1

2x + 2α1
4t, Γ = −8α1β1

3t + 2α1β1x + 8α1
3β1t. By

letting α1 → 0 in(45), it becomes a rational solution

q[2] = 4β1 exp (2iβ1
2(−x+ 2β1

2t))
(4iβ1

2(4β1
2t− x)− 1)3

(16β1
4(4β1

2t− x)2 + 1)2
, (46)

with an arbitrary real constant β1. Obviously, the rational solution is a linar soliton, and its
trajectory is defined explicitly by

x = 4β1
2t, (47)

on (x− t) plane. The solutions q[1] and q[2] of the DNLS equation are consistent with the results
of ref. [24,25] except the rational solution. So the rational solution q[2] in eq.(46) of the DNLS
equation is first found in this paper, which is plotted in Figure 1.

Figure 1. Rational solution |q[2]|2 of the DNLS with β1 = 0.5.
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3.2. Darboux transformations applied to non-zero seeds: constant solution and periodic
solution.

Set a and c be two complex constants, and take c > 0 without loss of generality, then
q = c exp (i(ax+ (−c2 + a)at)) is a periodic solution of the DNLS equation, which will be used
as a seed solution of the DT. Substituting q = c exp (i(ax+ (−c2 + a)at)) into the spectral
problem eq.(6) and eq.(7), and using the method of separation of variables and the superposition
principle, the eigenfunction ψk associated with λk is given by
(
φk(x, t, λk)
ϕk(x, t, λk)

)
=

(
̟1(x, t, λk)[1, k] +̟2(x, t, λk)[1, k] +̟1∗(x, t,−λ∗k)[2, k] +̟2∗(x, t,−λ∗k)[2, k]
̟1(x, t, λk)[2, k] +̟2(x, t, λk)[2, k] +̟1∗(x, t,−λ∗k)[1, k] +̟2∗(x, t,−λ∗k)[1, k]

)
.(48)

Here

(
̟1(x, t, λk)[1, k]
̟1(x, t, λk)[2, k]

)
=




exp(

√
s(x+ 2λk

2t + (−c2 + a)t)

2
+

1

2
(i(ax+ (−c2 + a)at)))

ia− 2iλk
2 +

√
s

2λkc
exp(

√
s(x+ 2λk

2t+ (−c2 + a)t)

2
− 1

2
(i(ax+ (−c2 + a)at)))


 ,

(
̟2(x, t, λk)[1, k]
̟2(x, t, λk)[2, k]

)
=




exp(−
√
s(x+ 2λk

2t + (−c2 + a)t)

2
+

1

2
(i(ax+ (−c2 + a)at)))

ia− 2iλk
2 −√

s

2λkc
exp(−

√
s(x+ 2λk

2t+ (−c2 + a)t)

2
− 1

2
(i(ax+ (−c2 + a)at)))


,

̟1(x, t, λk) =

(
̟1(x, t, λk)[1, k]
̟1(x, t, λk)[2, k]

)
, ̟2(x, t, λk) =

(
̟2(x, t, λk)[1, k]
̟2(x, t, λk)[2, k]

)
,

s = −a2 − 4λk
4 − 4λk

2(c2 − a).

Note that ̟1(x, t, λk) and ̟2(x, t, λk) are two different solutions of the spectral problem eq.(6)
and eq.(7), but we can only get the trivial solutions through DT of the DNLS by setting
eigenfunction ψk be one of them.

What is more ,we can get richer solutions by using (48).
Case 3(N = 1). Under choice in eq. (38) with ψ1 given by eq.(48) and λ1 = iβ1, the one-fold
DT of the DNLS generates

|q[1]|2 = c2 − 2a+
2(2β1

2 + a)2 − 8c2β1
2

a+ 2β1
2 + 2cβ1 cosh(K(x− 2β1

2t+ at− c2t))
, (49)

with K =
√
4c2β1

2 − (2β1
2 + a)2, according to eq.(21). By letting x→ ∞, t→ ∞, so |q[1]|2 →

c2 − 2a. The trajectory is defined implicitly by

x− 2β1
2t+ at− c2t = 0. (50)

The q[1] in eq.(49) gives a soliton solutions if 4c2β1
2 − (2β1

2 + a)2 > 0, and gives a periodic
solution if 4c2β1

2−(2β1
2+a)2 < 0. This classification is consistent with Steudel( see Figure 1 of

ref. [25]). Further, we find that q[1] in eq.(49) can generate a dark soliton if c2−2a > (c−2β1)
2

and a bright solitons if c2 − 2a < (c− 2β1)
2. Here

|q[1]|2extreme = (c2 − 2a) +
2((2β2

1 + a)2 − 4c2β2
1)

a+ 2β1c+ β2
1

= (2β1 − c)2.
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Note, δ = K2 has four roots of β1 and δ0 = (2β1 − c)2 − (c2 − 2a) has two roots of β1
in general. Combining the conditions of the bright/dark soliton and periodic solutions, a
complete classification of the different solutions generated by one-fold DT is obtained in Table
1. The depth of the dark soliton is 2(−a + 2β1c− 2β1

2) and the height of the bright soliton is
2(a− 2β1c + 2β1

2). Particularly, for a = 0, the seed solution q = c is a positive constant, and
then the one fold DT of the DNLS generates a dark soliton under the condition 0 < β1 < c,
the bright soliton under −c < β1 < 0, a periodic solution under β1 < −c and β1 > c. To
illustrate the table, Figure 2 is plotted for the case of c > 0 and a < 0. Set y1 = (c − 2β1)

2,
y2 = 4c2β1

2 − (2β1
2 + a)2 = δ, y3 = c2 − 2a with specific parameters a = −1.5 c = 0.8. There

are four roots of y2, which are (β1)1 > (β1)2 > (β1)3 > (β1)4. Note the (β1)2 and (β1)3 are also
the roots of y1 − y3 = δ0. We can see from Figure 2 that, q[1] in eq.(49) gives the bright soliton
when β1 ∈ ((β1)4, (β1)3) because y2 > 0 and y1 > y3, dark soliton when β1 ∈ ((β1)2, (β1)1)
because y2 > 0 and y1 < y3,periodic solutions for others three cases of β1 because y2 < 0.

Table 1. Classification of the solutions q[1] generated by one-fold DT in case 3 ac-

cording to the intervals of the eigenvalue λ1 = iβ1.

Classification of the solutions generated by one-fold DT

zero seed c = 0 ∀β1 ∈ R periodic solution

constant seed a = 0, c > 0 0 < β1 < c dark solitons

−c < β1 < 0 bright solitons

β1 belongs to other two intervals periodic solutions

c2

2
>a

periodic seed a > 0, c > 0
1

2
c− 1

2

√
c2 − 2a < β1 <

1

2
c+

1

2

√
c2 − 2a dark solitons

−1

2
c− 1

2

√
c2 − 2a < β1 < −1

2
c+

1

2

√
c2 − 2a bright solitons

β1 belongs to other three intervals periodic solutions

a < 0, c > 0 −1

2
c+

1

2

√
c2 − 2a < β1 <

1

2
c+

1

2

√
c2 − 2a dark solitons

−1

2
c− 1

2

√
c2 − 2a < β1 <

1

2
c− 1

2

√
c2 − 2a bright solitons

β1 belongs to other three intervals periodic solutions

c2

2
≤a

periodic seed a > 0, c > 0 ∀β1 ∈ R periodic solutions
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Figure 2. Intervals of β1 in one-fold DT generate different solutions q[1] (dark soliton, bright

soliton and periodic solution) under specific parameters a = −1.5, c = 0.8. Here y1 = (c−2β1)
2,

y2 = 4c2β1
2 − (2β1

2 + a)2, y3 = c2− 2a. There are five intervals of β1 divided by the four roots

of y2. From the left to the right, the second interval and the fourth interval correspond to the

bright soliton, dark soliton respectively. The other three intervals correspond to the periodic

solutions.

Case 4.(N = 2). Under the choice in eq.(40) with λ1 = iβ1, λ2 = iβ2, β1 6= β2, the solution of
the DNLS equation is generated by two-fold DT from(35) as

q[2] =
(β1φ

∗
1φ2 − β2φ1φ

∗
2)

2

(β1φ1φ
∗
2 − β2φ

∗
1φ2)2

q − 2
(β1

2 − β2
2)φ1φ2(β1φ

∗
1φ2 − β2φ1φ

∗
2)

(β1φ1φ
∗
2 − β2φ

∗
1φ2)2

, (51)

where φ1 and φ2 are given by eq.(48). Similarly, under the choice in eq.(39) with one paired
eigenvalue λ1 = α1 + iβ1 and λ2 = −α1 + iβ1, the two-fold DT eq.(35) of the DNLS equation
implies a solution

q[2] =
(λ1ϕ1ϕ1

∗ − λ2φ1φ1
∗)2

(−λ2ϕ1ϕ1
∗ + λ1φ1φ1

∗)2
q + 2i

(λ1
2 − λ2

2)φ1ϕ1
∗(λ1ϕ1ϕ1

∗ − λ2φ1φ1
∗)

(−λ2ϕ1ϕ1
∗ + λ1φ1φ1

∗)2
, (52)

with φ1 and ϕ1 given by eq.(48). Two concrete examples of eq.(52) are given below.
(a)For simplicity, let a = 2α1

2 − 2β1
2 + c2 so that Im(−a2 − 4λ1

4 − 4λ1
2(c2 − a)) = 0, then

|q[2]|2 = −16α1β1
w1 cosh(f1) cos(f2) + w2sinh(f1) sin(f2) + w3

w4 cosh(f1) cos(f2) + w5sinh(f1) sin(f2) + w6 cos(2f2) + w7 cosh(2f1) + w8
+ c2,(53)

w1 = cα1(c
2 − 4β1

2)(c2 + 4α1
2),

w2 = −cβ1(c2 + 4α1
2)(c2 − 4β1

2),

w3 = 2α1β1(c
2 − 4β1

2)(4α1
2 + c2),

w4 = 8cα1
2β1(c

2 + 4α1
2),

w5 = −8cα1β1
2(c2 − 4β1

2),

w6 = c2α1
2(c2 + 4α1

2) + c2β1
2(c2 − 4β1

2),

w7 = 16α1
2β1

2(α1
2 + β1

2),

w8 = c4(α1
2 − β1

2) + 16α1
2β1

2(α1
2 − β1

2) + 4c2(α1
2 + β1

2)2,

f1 = K1(4α1
2t− 4β1

2t+ x),

f2 = 4K1α1β1t,

K1 =

√
16α1

2β1
2 − 4c2α1

2 + 4c2β1
2 − c4.
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By letting x → ∞, t → ∞, so |q[2]|2 → c2, the trajectory of this solution is defined explicitly
by

x = −4α1
2t + 4β1

2t, (54)

from f1 = 0 if K12 > 0, and by
t = 0 (55)

from f2 = 0 if (K1)2 < 0. According to eq.(53), we can get the Ma breathers [33](time periodic
breather solution) and the Akhmediev breathers [34] (space periodic breather solution) solution.
In general, the solution in eq.(53) evolves periodically along the straight line with a certain
angle of x axis and t axis. The dynamical evolution of |q[2]|2 in eq.(53) for different parameters
are plotted in Figure 3, Figure 4 and Figure 5, which give a visual verification of the three
cases of trajectories. Inspired by the extensive research of rogue wave [4, 34] for the nonlinear
Schrodinger equation, a limit procedure [34] is used to construct rogue wave of the DNLS
equation in the following. By letting c→ −2β1 in (52) with Im(−a2−4λ1

4−4λ1
2(c2−a)) = 0,

it becomes rogue wave

q[2]rogue wave =
r1r2r3

r4r5
(56)

r1 = 2exp(2i(α2
1 + β2

1)(2tα
2
1 + x− 2tβ2

1))

r2 = β1(16β
2
1α

2
1(4tα

2
1 + x)2 + 16β4

1(4tβ
2
1 − x)2 + 8iβ2

1(x+ 4tα2
1 − 8tβ2

1) + 1)

r3 = 2(16β2
1α

2
1(4tα

2
1 + x)2 + 16β4

1(4tβ
2
1 − x)2 − 8α1β1(x+ 4tα2

1 − 8tβ2
1) + 1)

× (−α1 + 16β1(β
4
1 − α4

1)t− 4β1(α
2
1 + β2

1)x+ 16iα1β
2
1(α

2
1 + β2

1)t− iβ1)

− (16β2
1α

2
1(4tα

2
1 + x)2 + 16β4

1(4tβ
2
1 − x)2 + 8iβ2

1(x+ 4tα2
1 − 8tβ2

1) + 1)

× (α1 + 16β1(β
4
1 − α4

1)t− 4β1(α
2
1 + β2

1)x+ 16iα1β
2
1(α

2
1 + β2

1)t + β1i)

r4 = α1 + 16β1(β
4
1 − α4

1)t− 4β1(α
2
1 + β2

1)x+ 16iα1β
2
1(α

2
1 + β2

1)t + β1i

r5 = (−16β2
1α

2
1(4tα

2
1 + x)2 − 16β4

1(4tβ
2
1 − x)2 + 8iβ2

1(x+ 4tα2
1 − 8tβ2

1)− 1)2

By letting x → ∞, t → ∞, so |q[2]rogue wave|2 → 4β2
1 , the maximum amplitude of |q[2]rogue wave|2

occurs at t = 0 and x = 0 and is equal to 36β2
1 ,and the minimum amplitude of |q[2]rogue wave|2

occurs at t = ± 3

16
√
3(4α2

1 + β2
1)β1(α

2
1 + β2

1)
and x = ∓ 9α2

1

4
√

3(4α2
1 + β2

1)β1(α
2
1 + β2

1)
and is equal

to 0. Through Figure 9 and Figure 10 of |q[2]rogue wave|2, the main features(such as large amplitude
and local property on (x-t) plane) of the rogue wave are shown. We have found that |q[2]|2 in

eq.(53) gives the same result of |q[2]rogue wave|2 by taking limit of c→ −2β1.

(b)When a =
c2

2
, from eq.(48), it is not difficult to find that there are two sets of collinear

eigenfunctions, (
̟1(x, t, λk)[1, k]
̟1(x, t, λk)[2, k]

)
and

(
̟2∗(x, t,−λ∗k)[2, k]
̟2∗(x, t,−λ∗k)[1, k]

)
, (57)

(
̟2(x, t, λk)[1, k]
̟2(x, t, λk)[2, k]

)
and

(
̟1∗(x, t,−λ∗k)[2, k]
̟1∗(x, t,−λ∗k)[1, k]

)
. (58)

Therefore, the eigenfunction ψk associated with λk for this case is given by
(
φk(x, t, λk)
ϕk(x, t, λk)

)
=

(
̟1(x, t, λk)[1, k] +̟1∗(x, t,−λ∗k)[2, k]
̟1(x, t, λk)[2, k] +̟1∗(x, t,−λ∗k)[1, k]

)
. (59)

15



Here

(
̟1(x, t, λk)[1, k]
̟1(x, t, λk)[2, k]

)
=



exp(i(λk

2x+ 2λk
4t+

1

2
c2x− 1

4
c4t))

ic

2λk
exp(i(λk

2x+ 2λk
4t))


 .

Under the choice in eq.(39) with λ1 = α1 + iβ1, λ2 = −α1 + iβ1, and the ψ1 given by eq.(59),
the solution q[2] is given simply from eq. (35). Figure 6 is plotted for |q[2]|2, which shows the
periodical evolution along a straight line on (x− t) plane.
Case 5.(N = 4). According to the choice in eq.(41) with two distinct eigenvalues λ1 = α1 +
iβ1, λ3 = α3 + iβ3, substituting ψ1 and ψ3 defined by eq. (48) into eq.(35), then the new
solution q[4] generated by 4-fold DT is given. Its analytical expression is omitted because it is
very complicated. But |q[4]|2 are plotted in Figure 7 and 8 to show the dynamical evolution on
(x−t) plane: (a) Let a = 2αi

2−2βi
2+c2, i = 1, 3, so that Im(−a2−4λi

4−4λi
2(c2−a)) = 0, then

Figure 7 shows intuitively that two breathers may have parallel trajectories;(b) Two breathers
have an elastic collision so that they can preserve their profiles after interaction, which is verified
in Figure 8.

4. Conclusions

In this paper, a detailed derivation of the DT from the KN system and then the determinant
representation of the n-fold case are given in Theorem 1 and Theorem 2. Each element of n-
fold DT matrix Tn is expressed by the determinant of eigenfunctions of the spectral problem in
eq.(6) and eq.(7). The determinant representations of the new solution q[n] and r[n] of the KN
system are also given in eq.(35). Further more, by the special choice of the eigenvalue λk and
its eigenfunction ψk to construct Tn so that q[n] = −(r[n])∗, then the Tn is also reduced to the
n-fold DT of the DNLS equation and q[n] is a solution of the DNLS. To illustrate our method,
solutions of five specific cases are discussed by analytical formulae and figures. In particular,
a complete classification of the solutions of the DNLS equation generated by one-fold DT is
given in Table 1.

By comparing with known results [24, 25] of the DT for the DNLS equation, our results
provide following improvements:

• A detailed derivation of the DT and the determinant representation of Tn. This repre-
sentation is useful to compute the soliton surfaces of the DNLS equation in the future
as we have done for the NLS equation [28]. The rogue wave and rational traveling wave
are firstly given about the DNLS equation. The rational solution has been used by
us in a separate preprint to construct the rouge wave of the variable coefficient DNLS
equation [35].

• A complete and thorough classification of the solution generated by the one-fold DT.
The bright soliton and dark soliton is also classified, which is not published before.
At the same time, our results show the nonlinear and difficult Riccati equations in
ref. [25],which are transformed from the linear equations of the spectral problem, and
Seahorse functions are indeed avoidable. Of course, these do not disaffirm the merits of
method in ref. [25].

• The general solution eq.(48) of the linear partial differential equations in spectral prob-
lem is crucial to get non-trivial solution of the DNLS equation.

• The solution in eq.(53) is a relatively general form of the breather solution of the DNLS,
which can evolve periodically along any straight line on (x−t) plane by choosing different
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values of parameters α1, β1, c. It has two well-known reductions: Ma breather going
periodically along t-axis, and Akhmediev breather going periodically along x-axis.

At last, we would like to mention the DT [36] of the DNLSIII. Unlike the DNLS equation,
Fan’s results show that the kernel of the one-fold DT of the DNLSIII is two dimensional,and
then support again the necessity of the separate study of the three kinds of derivative nonlinear
Schrödinger equation. So we shall consider the determinant representation of the DT for DNL-
SII and DNLSIII in the near future. Moreover, we are also interested in the periodic solutions
with a variable amplitude of the DNLS equation.
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Figure 3. The dynamical evolution of |q[2]|2(time periodic breather) in
eq.(53) on (x − t) plane with specific parameters α1 = β1, β1 = 0.5, c = 0.8.
The trajectory is a line x = 0.
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Figure 4. The dynamical evolution of |q[2]|2(space periodic breather) in
eq.(53) on (x − t) plane with specific parameters α1 = β1, β1 = 0.5, c = 1.5.
The trajectory is a line t = 0.

Figure 5. The dynamical evolution of solution |q[2]|2 in eq.(53) for case 4(a).
It evolves periodically along a straight line with certain angle of x axis and t axis
under specific parameters α1 = 0.65, β1 = 0.5, c = 0.95.

Figure 6. The dynamical evolution of |q[2]|2 in case 4(b) on (x− t) plane with
specific parameters α1 = 0.5, β1 = 0.35, c = 0.85. It evolves periodically along a
straight line on (x− t) plane.
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Figure 7. The dynamical evolution of periodic breather solution given by case
5(a) on (x − t) plane with specific parameters α1 = 0.5, β1 = 0.6, c = 0.5, α3 =

0.6, β3 =
1

10

√
47. This picture shows two breathers may parallelly propagate on

(x− t) plane.

Figure 8. The dynamical evolution of periodic breather solution given by case

5(b) on (x − t) plane with specific parameters a =
c2

2
, α1 = −0.5, β1 = 0.5, α3 =

0.6, β3 = 0.5, c = 0.95. This picture shows the elastic interaction of the two
breathers.

Figure 9. The dynamical evolution of |q[2]rogue wave|2 given by eq.(56) on (x− t)

plane with specific parameters α1 =
1

2
, β1 =

1

2
.By letting x → ∞, t → ∞, so

|q[2]rogue wave|2 → 1, the maximum amplitude of |q[2]rogue wave|2 occurs at t = 0 and

x = 0 and is equal to 9,and the minimum amplitude of |q[2]rogue wave|2 occurs at

t = ±
√
15

10
and x = ∓3

√
15

10
and is equal to 0.
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Figure 10. Contour plot of the wave amplitudes of |q[2]rogue wave|2 in the (x− t)

plane is given by eq.(56) for α1 =
1

2
, β1 =

1

2
.
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