

THE DARK SIDE OF

SOFTWARE

ENGINEERING

Press Operating Committee

Chair
Linda Shafer

former Director, Software Quality Institute

The University of Texas at Austin

Editor-in-Chief
Alan Clements

Professor

University of Teesside

Board Members

Mark J. Christensen, Independent Consultant

James W. Cortada, IBM Institute for Business Value

Richard E. (Dick) Fairley, Founder and Principal Associate, Software Engineering

Management Associates (SEMA)

Phillip Laplante, Professor of Software Engineering, Penn State University

Evan Butterfi eld, Director of Products and Services

Kate Guillemette, Product Development Editor, CS Press

IEEE Computer Society Publications
The world-renowned IEEE Computer Society publishes, promotes, and distributes a

wide variety of authoritative computer science and engineering texts. These books are

available from most retail outlets. Visit the CS Store at http://computer.org/store for a

list of products.

IEEE Computer Society / Wiley Partnership
The IEEE Computer Society and Wiley partnership allows the CS Press authored book

program to produce a number of exciting new titles in areas of computer science,

computing and networking with a special focus on software engineering. IEEE

Computer Society members continue to receive a 15% discount on these titles when

purchased through Wiley or at wiley.com/ieeecs

To submit questions about the program or send proposals please e-mail kguillemette@

computer.org or write to Books, IEEE Computer Society, 10662 Los Vaqueros Circle,

Los Alamitos, CA 90720-1314. Telephone +1-714-816-2169.

Additional information regarding the Computer Society authored book program

can also be accessed from our web site at http://computer.org/cspress.

THE DARK SIDE OF

SOFTWARE

ENGINEERING

Evil on Computing Projects

JOHANN ROST and ROBERT L. GLASS

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2011 by IEEE Computer Society. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form

or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as

permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior

written permission of the Publisher, or authorization through payment of the appropriate per-copy fee

to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400, fax

978-646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should

be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ

07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts

in preparing this book, they make no representations or warranties with respect to the accuracy or

completeness of the contents of this book and specifi cally disclaim any implied warranties of

merchantability or fi tness for a particular purpose. No warranty may be created or extended by sales

representatives or written sales materials. The advice and strategies contained herein may not be

suitable for your situation. You should consult with a professional where appropriate. Neither the

publisher nor author shall be liable for any loss of profi t or any other commercial damages, including

but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care

Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,

however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data is available.

ISBN 978-0470-59717-0

Printed in the Singapore

ePDF: 978-0-470-90994-2

oBook: 978-0-470-90995-9

ePub: 978-0-470-92287-2

10 9 8 7 6 5 4 3 2 1

v

CONTENTS

FOREWORD ix

Linda Rising

INTRODUCTION 1

I.1 What’s the Dark Side? 1

I.1.1 Why the Dark Side? 2

I.1.2 Who Cares About the Dark Side? 3

I.1.3 How Dark is the Dark Side? 5

I.1.4 What Else is on the Dark Side? 7

I.1.5 Ethics and the Dark Side 8

I.1.6 Personal Anecdotes About the Dark Side 11

Reference 14

PART 1

DARK SIDE ISSUES 15

CHAPTER 1 SUBVERSION 17

1.1 Introductory Case Studies and Anecdotes 17

1.1.1 A Faculty Feedback System 18

1.1.2 An Unusual Cooperative Effort 21

1.1.3 Lack of Cooperation due to Self Interest 22

1.1.4 An Evil Teammate 22

1.1.5 Thwarting the Evil Union 24

1.2 The Survey: Impact of Subversive Stakeholders On Software Projects 24

1.2.1 Introduction 25

1.2.2 The Survey 26

1.2.3 The Survey Findings 27

1.2.4 Conclusions 34

1.2.5 Impact on Practice 35

1.2.6 Impact on Research 35

1.2.7 Limitations 35

1.2.8 Challenges 36

1.2.9 Acknowledgments 37

1.3 Selected Responses 37

1.3.1 Sample Answers to the Question: “What Were the Motivations and Goals of

the Subversive Stakeholders?” 37

1.3.2 Sample Answers to the Question “How Were the Subversive

Attacks Discovered?” 45

1.3.3 Sample Answers to the Question “How Can Projects be Defended Against

Subversive Stakeholders?” 49

vi CONTENTS

1.4 A Follow-Up to the Survey: Some Hypotheses and Related Survey Findings 56

References 80

CHAPTER 2 LYING 81

2.1 Introductory Case Studies and Anecdotes 81

2.2 Incidents of Lying: The Survey 86

2.2.1 The Survey Results 87

2.2.2 General Scope 87

2.2.3 An Overview of the Problem 88

2.2.4 Clarifi cation of Terms 89

2.2.5 Discussion 93

2.2.6 Conclusions 93

2.2.7 Limitations 94

2.3 Qualitative Survey Responses on Lying 95

2.4 What Can Be Done About Lying? 96

2.5 The Questionnaire Used in the Survey 107

References 112

CHAPTER 3 HACKING 113

3.1 Case Studies of Attacks and Biographies of Hackers 113

3.2 Cyber Terrorism and Government-Sponsored Hacking 118

3.3 The Hacker Subculture 121

3.3.1 Why They Are Called “Hackers” 121

3.3.2 Motivation of Hackers 121

3.3.3 Hacker Slang 122

3.3.4 Hacker Ethics 123

3.3.5 Public Opinion about Hackers 130

3.4 How a Hacker Is Identifi ed 132

3.5 Time Line of a Typical Malware Attack 135

3.6 Hacker Economy: How Does a Hacker Make Money? 136

3.7 Social Engineering 142

3.7.1 Social Engineering Examples and Case Studies 143

3.7.2 Tactics of Social Engineering 151

3.8 A Lingering Question 153

3.9 Late-Breaking News 154

CHAPTER 4 THEFT OF INFORMATION 157

4.1 Introduction 157

4.2 Case Studies 158

4.2.1 Data Theft 158

4.2.2 Source Code Theft 161

4.3 How Do the Victims Find Out That Their Secrets Are Stolen? 164

4.4 Intellectual Property Protection 166

4.4.1 Trade Secret Protection 167

4.4.2 Copyright Protection 169

4.4.3 Patent Protection 169

4.4.4 Steganography 170

4.5 Open Versus Closed Source 170

CONTENTS vii

CHAPTER 5 ESPIONAGE 175

5.1 Introduction 175

5.2 What Is Espionage? 176

5.3 Case Studies 177

5.3.1 Sweden Versus Russia 178

5.3.2 Shekhar Verma 178

5.3.3 Lineage III 179

5.3.4 GM versus VW: Jose Ignacio Lopez 179

5.3.5 British Midland Tools 179

5.3.6 Solid Oak Software 180

5.3.7 Proctor & Gamble versus Unilever 181

5.3.8 News Corp Versus Vivendi 181

5.3.9 Spying: Was A TI Chip Really Stolen by a French Spy? 181

5.3.10 Confi cker 183

5.4 Cyber Warfare 185

Reference 187

CHAPTER 6 DISGRUNTLED EMPLOYEES AND SABOTAGE 189

6.1 Introduction and Background 189

6.2 Disgruntled Employee Data Issues 192

6.2.1 Data Tampering 192

6.2.2 Data Destruction 194

6.2.3 Data Made Public 196

6.2.4 Theft Via Data 199

6.3 Disgruntled Employee Software Issues 199

6.3.1 Software Destruction 199

6.4 Disgruntled Employee System Issues 200

6.5 What to Do About Disgruntled Employee Acts 203

6.6 Sabotage 206

References 212

CHAPTER 7 WHISTLE-BLOWING 213

7.1 A Hypothetical Scenario 215

7.2 Whistle-Blowing and Software Engineering 217

7.3 More Case Studies and Anecdotes 220

7.3.1 Jeffrey Wigand and Brown and Williamson Tobacco 220

7.3.2 A Longitudinal Study of Whistle-Blowing 221

7.3.3 An Even More Pessimistic View 222

7.3.4 Academic Whistle-Blowing 223

7.3.5 The Sum Total of Whistle-Blowing 224

References 225

APPENDIX TO CHAPTER 7 PRACTICAL IMPLICATIONS OF THE RESEARCH INTO

WHISTLE-BLOWING 227

References 240

viii CONTENTS

PART 2

VIEWPOINTS ON DARK SIDE ISSUES 243

Introduction 243

CHAPTER 8 OPINIONS, PREDICTIONS, AND BELIEFS 245

8.1 Automated Crime 246

Donn B. Parker

 Information Sources 257

8.2 Let’s Play Make Believe 258

Karl E. Wiegers

 Reference 260

8.3 Dark, Light, or Just Another Shade of Grey? 261

Les Hatton

8.4 Rational Software Developers as Pathological Code Hackers 264

Norman Fenton

CHAPTER 9 PERSONAL ANECDOTES 269

9.1 An Offi cer and a Gentleman Confronts the Dark Side 270

Grady Booch

9.2 Less Carrot and More Stick 273

June Verner

 References 275

9.3 “Them and Us”: Dispatches from the Virtual Software Team Trenches 276

Valentine Casey

9.4 What is it to Lie on a Software Project? 281

Robert N. Britcher

9.5 “Merciless Control Instrument” and the Mysterious Missing Fax 284

A. H. (anonymous)

9.6 Forest of Arden 289

David Alan Grier

9.7 Hard-Headed Hardware Hit Man 292

Will Tracz

9.8 A Lighthearted Anecdote 294

Eugene Farmer

CONCLUSIONS 299

INDEX 303

ix

 FOREWORD
 Dr. Linda Rising

 Robert Glass has always been one who “ boldly goes ” where the more cautious fear

to tread. I have been a fan of his writing for, well, let ’ s just say, a long time. I

remember when he started telling the truth as he saw it about software development

and was forced to change the names of the companies and products that he was

discussing — he even changed his own name to conceal authorship of published

accounts. I remember teaching a course on structured design (using the green book

by Yourdon and Constantine — that ’ s how long ago that was!) and if I fi nished a class

early, I would say to my students, “ You can go now or I can read another story by

Robert Glass. ” No one ever left before the story was fi nished. “ Cornbelt Shakedown ”

(from Glass and DeNim [1980]) was a favorite. Many of these stories are the kind

of humor that leads you to wonder, “ Why am I laughing? To keep from crying? ”

 Later, as I was working in the industry, I led a study group on Software

Runaways (Glass 1997) and experienced the serious side of Robert Glass. Very little

of the wry and witty here, but, instead, a lot of lessons for serious consideration.

 Robert Glass, joined in this book with Johann Rost, is still at it. He continues

to be (I can ’ t resist) fearless! (The reference is to my own book, Manns and Rising

 [2005]). I don ’ t know Johann except through his work on this book, which is excel-

lent, and from what I ’ ve been told — that he ’ s a German former IT consultant now

living in beautiful Romania, the land of Transylvania, Dracula, and Ceau ș escu …

it ’ s no wonder the book has a “dark side” theme! This book is also full of stories

about real projects at real companies. Names are named. The result is a compelling

look at the dark side of computer programming. We are all hardwired to learn from

stories, especially when we can identify with the protagonists.

 Hacking, espionage, sabotage, theft, whistle - blowing, subversion, disgruntled

employees who want to get even — and, of course, the dance of deception. We ’ ve all

seen it — where we know and they know , in fact, everyone knows — but we all smile

and keep dancing as long as we can. The authors cut in on this charade and force

us to wake up and take stock.

 Robert and Johann also include the results of their serious research. They have

certainly done their homework. There ’ s an abundance of citations to back up their

observations. The survey data on sabotage is fascinating!

 This reporting is way out of the box; in fact, these authors are standing on the

box and they share with us a good look at the terrain — something most of us just

don ’ t take the time to do; we prefer to rush ahead and ignore the lessons of the past.

 So, take a moment. We need a breather now and then. We need to step back

and retrospect on the history of our industry and think about a better way of working

x FOREWORD

within it. Robert Glass and Johann Rost are offering us a chance to do just that.

Stop. Listen. Think. Is this the road that will serve us best for the next part of our

journey?

 REFERENCES

 Glass , Robert and DeNim , Sue. “ The Second Coming: More Computing Projects Which Failed , ”

 Computing Trends , 1980 .

 Glass , Robert. Software Runaways: Monumental Software Disasters . Prentice - Hall , 1997 .

 Manns , Mary Lynn and Rising , Linda . Fearless Change . Addison Wesley, 2005 .

1

 INTRODUCTION

 I.1 WHAT ’ S THE DARK SIDE?

 The dictionary doesn ’ t give a defi nition for “ dark side. ” Not even my heavyweight

dictionary that I can barely lift. Oh, it defi nes words such as “ dark ” (“ secret, mysteri-

ous, evil, ” among other things), “ darken ” (“ perplex, make foul, sully, cast a gloom

upon ”) and “ darksome ” (“ dark, dismal ”). So you get the idea — things that are on

the dark side tend to be evil, gloomy, dismal.

 That ’ s not a surprise to most of our readers, we suspect. The “ dark side ” has

a sort of intuitive meaning that we all grasp and is (pretty much) in synch with those

related dictionary defi nitions. Things that are on the dark side of the computing

profession would be things that we wouldn ’ t necessarily want to be a part of or

approve of.

 I, Robert, remember an incident from my days of child - raising, when one of

my sons played on a little league baseball team. There was a pitcher on that team

whose father, like me, attended nearly all of the games. When his son was pitching,

the father would shout to his son, from time to time, “ Throw the dark one. ” I never

knew exactly what he meant by that cry. But I always assumed that it wasn ’ t so

much about a particular pitch his son could throw but about intimidating the oppos-

ing batter, who might become convinced that the pitch to come was somehow evil

and be less likely to make contact with it because of that.

 In any case, even on the baseball diamond, the words “ dark ” and therefore

 “ dark side ” have an intuitively universal meaning.

 It ’ s interesting that, if you know the software literature — be it the popular

computing press, the academic journals, or even the general popular press — you

would be aware that it doesn ’ t say very much about dark side issues. Oh, it says a

lot about project success and project failure but that ’ s a different kettle of fi sh.

Projects that fail may be in a sense “ dark ” but not in the sense of “ evil. ” We tend

to assume, without ever saying so, that even projects that fail, do so largely because

of some kind of ineptitude, not because of some kind of evil.

 Let me be perfectly clear about what we are doing here. This is NOT a book

about software project failure, or about prescriptive thinking about how to build

software better. This is a book about the EVIL THINGS that happen on computing

and software projects — what the kinds of evil are, how they manifest themselves,

and what we good guys can do about them. I emphasize this point because a lot of

folks we ’ ve asked to review the book ’ s material keep thinking that this is “ Yet

The Dark Side of Software Engineering, by Johann Rost and Robert L. Glass
Copyright © 2011 IEEE Computer Society

2 INTRODUCTION

Another Book About Project Failure ” (YABAPF) or “ Yet Another Book About

Doing Software Engineering Right ” (YABADSER)!

 Where might we fi nd discussions of dark side matters in the traditional soft-

ware engineering literature? Look at the topics that literature on computing and

software tend to be divided into. They are usually organized into these topics:

 Problem - solving

 Computer hardware

 Systems/software

 Data/information

 Application problem domains

 Systems/software management

 Organizations

 Society

 Disciplinary issues

 This list is derived from the computing research topics explored in the series of

papers culminating in Glass, Ramesh, and Vessey (2004) .

 Where in that list of topics would you look to fi nd “ dark side ” topics? Perhaps

in “ systems/software management. ” Perhaps in “ disciplinary issues. ” It doesn ’ t fi t

comfortably into either of those topics, but it could be forced to fi t — inconve-

niently — into them. But the fact of the matter is, any taxonomy of computing topics

you choose is unlikely to provide a convenient home for this issue of the dark side.

It is, in other words, a topic that people writing about computing have not only

avoided over time; they have avoided it because it doesn ’ t fi t nicely into any list of

topics that describe the fi eld.

 And that brings us to the topic of the next section.

 I.1.1 Why the Dark Side?

 Both authors of this book have been intrigued by the lack of discussion of dark

side issues in computing literature. We were both aware, from personal experience,

that dark side things happened in the fi eld. But hardly anyone seemed to be talking

about them. Perhaps more importantly, hardly anyone was researching them.

For example, how often did dark side matters affect computing and software

projects?

 I, Johann, had initially thought about exploring this issue. I knew from per-

sonal experience the effect of dark side behavior: For example, subversion on soft-

ware projects, while it does not occur often, has serious repercussions when it does.

Because of that, and because of the lack of any appearance whatsoever of “ subver-

sion ” in computing literature, I conducted a study to determine its prevalence, its

effects, and ways of overcoming it. That survey is presented as a chapter later in

this book. It is a pioneering study in the software fi eld; to this date, no one else has

explored this topic.

I.1 WHAT’S THE DARK SIDE? 3

 My co - author, Robert, came at the subject from a different direction. He was

surprised while presenting a topic at a software seminar; the seminar attendees

hijacked the session and diverted it to talking about lying as a problem in the soft-

ware project world. The attendees were vehement — lying was a big - time problem

in the projects on which they had been involved. Because of that, and because — once

again — of the lack of any signifi cant appearance of the topic of “ lying ” in the com-

puting literature — he began to explore that topic in more depth.

 It was about then that we met one another. (It is interesting to note, in this day

of electronic communication, that we have only met on the Web, never in person!)

I was having trouble fi nding a leading journal willing to publish my subversion

paper, that is, the one that resulted from his survey. I asked Robert for help, and — to

make a long story shorter — the result became a co - authored paper that eventually

was published in a leading journal.

 Intrigued by the subversion study, Robert suggested that we conduct a similar

study about lying. As we have said, neither topic was discussed much in any of the

literatures surrounding the fi eld. So the two of us, together with another contributor

named Matthias Matook, performed a study in the form of a survey about the preva-

lence of lying, its effects, and ways of overcoming it. Eventually, to make this long

story also shorter, that too was published. Variations and enhancements of the two

published papers are presented later in this book.

 By then, we had become thoroughly intrigued by these topics, and we began

to see them as part of a broader issue: “ dark side ” issues on computing projects. We

expanded the topic into more and more sub - topics, eventually identifying seven dark

side matters that affected these projects: subversion, lying, hacking, theft of informa-

tion, espionage, disgruntled employees and sabotage, and whistle - blowing. There is

a chapter of this book devoted to each of those topics.

 We considered doing thorough research into the latter fi ve topics, but decided

that there was suffi cient material in the literature of those more - often covered topics;

so we relied on already published case studies, not the survey research that we

conducted about subversion and lying, to cover them. (To be honest, that research

was extremely laborious and time - consuming, and we were reluctant to engage in

it beyond what we had already done!)

 And then there is another fi nal fact that brought the interest in dark side matters

to a head: Robert has published a number of books and articles on the subject of

failed computing projects. (As we said earlier, there is not a direct link between

failure and dark side matters, but the two are similar enough to draw the same kind

of interest.) He had been intrigued by failure and became equally intrigued by dark

side matters!

 I.1.2 Who Cares About the Dark Side?

 The short answer to this question, of course, is that we hope YOU do! We chose to

write about the dark side because we were interested in the subject and because we

felt we had some contributions to make on the subject. Our fervent hope is that you,

our intended reader, will also be interested in what we have to say.

4 INTRODUCTION

 But that raises the question, “ Exactly who is our intended reader ” ? Usually,

both of us have a preferred reading audience, namely experienced software practi-

tioners who have an interest in broadening their knowledge on the topic. And — we

can ’ t help it — that ’ s who we ’ ve been thinking about as we did the research and the

initial writing of this book.

 But it would be disadvantageous and perhaps even disingenuous of us to leave

it at that. There aren ’ t that many experienced software practitioners in the broader

world, and if we restrict our readership to those folks we won ’ t sell very many copies

of this book! So, as we developed our material, we increasingly began to think about

others who might like to know about dark side matters in computing and software

engineering.

 For example:

 • Software managers. When we started thinking about broadening our reader-

ship, we began by expanding the material to appeal to a management - focused

audience. Certainly, if the problems of dark side matters in software engineer-

ing are ever to be addressed (and perhaps even solved!), managers will have

to be involved. We have many reasons to wish that software managers become

interested in reading this book. And the same goes for managers of those

managers. And so on, on up the hierarchy!

 • Academics. We believe that the same spirit of intellectual inquiry that

prompted us to look into this topic in the fi rst place will also engage academ-

ics. And we believe that, given the absence of this topic from the textbooks

on computing and software subjects, there are some unique pieces of academic

insight to be had in our book.

 • Researchers. To be honest, we have some self - interest here. We discuss the

absence of relevant research fi ndings on matters dark side. We hope that this

book will stimulate other computing researchers into delving more into this

topic. We believe the fi eld will be the richer for it.

 • Novice software practitioners. The people most likely to be stunned by dark

side matters are the fi eld ’ s “ greenies, ” those who have no reason to believe —

 going in — that dealing with dark side matters is going to become part of their

job description. So welcome, novices, to the word involving more evil than

you might ever have considered being a part of!

 • Software engineering students. If those greenies we discuss above need to

be warned about dark side matters, so do students, who typically are greener

than green. Both of us were students once, both of us have taught tons of

students, and both of us realize that “ dealing with the dark side ” doesn ’ t occur

anywhere in an academic curriculum. We don ’ t intend to scare you off,

student — we both believe that software engineering is a career with its own

many faceted rewards. But beware: You will run into evil, and evil folk, even

in the otherwise wonderful world of computing and software.

 • The general public. Now this one is tricky. When you ’ re a professional in

some subject matter, there ’ s a tendency to write for readers who understand

your lingo, and in the process of doing that you make your material inacces-

I.1 WHAT’S THE DARK SIDE? 5

sible to a broader, non - computing, professional audience. And to overcome

this limitation, you need to think carefully every time you put fi nger to key-

board. It ’ s not at all a matter of “ dumbing down ” your material (that ’ s a term

I ’ ve always found to be particularly offensive); it ’ s a matter of writing in such

a way that you can be understood. And, to be honest, you the reader get to

cast the fi nal vote on how successful this particular quest has been. I believe

that the general public will fi nd our thoughts and research about the dark side

in computing and software engineering interesting, but I don ’ t know whether

we have succeeded in working that particular problem successfully. We ’ d be

interested in hearing from you on this: rlglass@acm.org .

 So there you have it. We ’ ve defi ned “ dark side, ” we ’ ve explained why we chose to

write about it, and we ’ ve tried to introduce not only ourselves to you, our intended

audience, but you to us. It ’ s time to get specifi c about what all this dark side stuff

is really about. For example, how often does it really happen?

 I.1.3 How Dark i s the Dark Side?

 It would be nice if there were a clear - cut, straightforward answer to the question we

just asked as we concluded the previous section of our book — how often do dark

side matters arise? But the fact of the matter is this: The truthful answer is “ it

depends. ”

 “ It depends ” is not a very satisfactory answer, especially to academics. For

decades now the software engineering fi eld has been hoping for a universal solution

to the problems of building software. Each new methodology, invented by an aca-

demic, a guru, or a practitioner, is touted as the new be - all end - all for software. And,

as we slowly begin to realize through the experience of using these methodologies,

each of them has its own “ sweet spot ” of applicability and its own areas where

applying it is an exercise in frustration. Structured programming was the “ solution ”

for all applications in the 1980s; object - orientation in the 1990s; and Agile approaches

more recently. There are those who still believe in the claims of universality for

methodologies; most of us by now can see that each approach is wonderful in its

proper context, but not so wonderful in others. We have arrived at the point where

one software engineering expert says “ anyone who believes in one - size - fi ts - all

belongs in a pantyhose commercial. ” In other words, “ it depends ” is becoming the

watch - phrase for such methodologies.

 In order to talk about how often the dark side issues arise, we need to break

the dark side topic down into its constituent elements. We have some fairly crisp

and clear answers for each of the dark side topics that emerge as chapters later in

this book — but as we will see in what follows, those answers don ’ t spread well over

the “ dark side topic ” as a whole.

 So let ’ s look at each dark side issue one at a time.

 • Subversion. Here, our survey produced some nicely defi nitive numbers.

Slightly over 50% of our survey responders had seen episodes of subversion,

whereas 35% had not. Asked to estimate how often such subversion occurs,

6 INTRODUCTION

the predominant answer was “ on 20% of projects. ” In other words, subversion

is an occasional, not a frequent, problem on software projects.

 • Lying. Again, we have some survey results that allow us to speak with some

confi dence on this matter. The results showed that 86% of survey responders

said they had seen lying on software projects, on perhaps 50% of such projects.

The majority of lying is about either cost/schedule estimation, status reporting,

or is for political maneuvering (these causes of lying were nearly equivalent

in their frequency; nearly all other causes lagged those numbers considerably).

Based on these numbers, we feel we can say that lying is a common problem

on software projects.

 • Hacking. Here we enter into the dark side issues where we do not have any

data on the frequency of occurrence. If you believe this fi gure can be judged

by incidents reported in the popular press, then hacking is a very common

problem. But if you ask questions of this kind to experts who specialize in

studying hackers and hacking, you get a fairly strong “ I have no idea. ” Such

experts go on to say they have no idea, either, about what percentage of com-

puter systems are hacked and what percentage of hacks go undetected, except

for educated guesses such as “ less than 50% of hacks go undetected (which

tends to be immediately followed by its own kind of “ it depends ” — it depends

on what kind of hack we ’ re talking about).

 • Theft of information. Like hacking, information theft is discussed somewhat

often in the popular press, but we are not aware of any data on its frequency.

There is a suspicion that most corporate employees who leave an enterprise,

either under duress or otherwise, may take information (data or software code)

with them, but again there is little data to support this belief. But see the dis-

cussion below about disgruntled employees and the frequency with which they

take things. In any case, we suspect that there is a problem with theft of infor-

mation, but it is not a very common one.

 • Espionage. Stories on espionage in the computing fi eld tend to splash in big

headlines in the popular press. But it is important to remember that the press

goes in for “ exception reporting ” — if something is common, it is covered with

much less emphasis than if it seldom happens. That ’ s why it is important to

avoid an attempt to translate splashy headlines into frequency information.

Here again, we have no data on the frequency of occurrence of espionage on

computing projects, but we suspect it is uncommon.

 • Disgruntled employees and sabotage. Although we have no survey data to

rely on in this matter, the popular press has done a nice job of studying the

frequency of this particular problem. For example, 60 – 70% of data theft is

conducted by disgruntled employees, according to a recent study, and to make

matters worse responders in that study believed that 82% of companies who

had had such data stolen would not even realize it. Another study said that

perhaps only 1 in 400 such data thefts get reported. Based on that data, we

feel safe in saying that disgruntled employees cause mischief quite frequently.

Sabotage, sometimes engaged in by disgruntled employees along with other

dark side acts, is by contrast infrequent.

I.1 WHAT’S THE DARK SIDE? 7

 • Whistle - blowing. Whistle - blowing is an interesting topic in the context of

this book. For one thing, it is not at all clear that whistle - blowing is a dark

side activity. But it is certainly a reaction to a dark side activity, and that is

why we include it. For another thing, there has been little research into whistle -

 blowing in the broader literature and none whatsoever in the software engi-

neering fi eld. We are happy to report that we include one of the few research

surveys of whistle - blowing in general later in this book, but we have to admit

that it doesn ’ t help us in judging how often whistle - blowing occurs on software

projects. For reasons that we will explain in the chapter on whistle - blowing,

we suspect that it seldom if ever occurs on software projects.

 There you have it. How often do dark side issues arise on software projects?

Anywhere from “ seldom if ever ” to “ quite frequently. ” If ever there was a case where

 “ it depends ” was the correct answer to the question, this is it!

 It is interesting to compare this discussion of dark side matters with a compa-

rable discussion of software project failures. Dark side discussions tend to occur,

but only in a particular context (as we have seen, based on our chapter topics above).

But with software project failure, it is common to see cries of “ software crisis ” as

whoever is writing about the matter bemoans that software is always “ behind sched-

ule, over budget, and unreliable. ” The general belief is that software is a fi eld with

a big - time problem) at least based on such discussions of project failure). Robert

believes that cries of “ crisis ” are bogus, and that the software fi eld, which is the

basis for the obvious success of the “ computing age, ” is a fi eld with far more spec-

tacular successes than spectacular failures.

 In any case, whereas software project failure gets enormous attention from the

press, dark side matters slide under the press radar for the most part. What that means

in practice is that there are few biases to overcome among you readers regarding

how often dark side matters arise.

 I.1.4 What Else i s on the Dark Side?

 When we fi rst conceived of this section for our introductory chapter, we envisioned

a small section with a discussion of those few other books and articles that pertained

to dark side issues. Big hah!

 If you Google “ dark side, ” you are returned 620,000,000 results. With a

number that big, we quickly gave up on even trying to categorize the uses of the

term “ dark side. ”

 Note that when we fi rst introduced the topic of the dark side, we noted that

the dictionary didn ’ t defi ne the term per se. But we guessed that most people already

had an idea of what it meant. Little did we know! You don ’ t get 620,000,000 Google

results for a term that people don ’ t understand.

 If you look up “ dark side ” on Amazon, you get another big number. Not as

big as the one you get from Google. Still, 94,500 books with dark side or something

related to it in the title?! (And that ’ s not even counting ours, which Google doesn ’ t

know about as of this writing). Books on the dark side deal with topics ranging from

8 INTRODUCTION

religion to psychology to politics to dating to leadership (this one, interestingly, links

the subject of failure to matters of the dark side, an issue we presented rather tenu-

ously above!). Based on books people have written, you ’ d guess there is a dark side

to nearly any subject you can think of — and someone has likely written a book about

it!

 Closer to home, in the software engineering and computing literature, the topic

comes up far less often, as we have already mentioned. It does arise, of course,

disguised under different terms. For example, consider the subject of “ ethics. ”

 I.1.5 Ethics and the Dark Side

 Ethics is a topic that is explicitly addressed by almost all professional societies. For

example, the IEEE, the ACM, and the German computing society all have codes of

ethics, that is, relatively brief statements of how their members should behave. These

codes tend to focus more on professionalism than outright misbehavior and overlap

to a large extent. Here is an overview of those codes

 • Contribute to society and human well - being. Avoid injuring others, their

property, reputation, or employment by false or malicious action. Make deci-

sions consistent with the safety, health and welfare of the public. Disclose

factors that might endanger the public or the environment.

 • Be honest and trustworthy. Give unbiased estimations, reject bribery.

Undertake technological tasks for others only if qualifi ed by training or experi-

ence. Seek out, accept, and offer honest criticism of technical work and

acknowledge and correct errors. Honor confi dentiality. Honor contracts, agree-

ments, and assigned responsibilities.

 • Acquire and maintain professional competence. This includes technologi-

cal skills, legal skills, and communication skills.

 • Improve the IT understanding of others. Train students to assist colleagues

and coworkers in their professional development. Promote and strive for excel-

lence. Improve public understanding of computing and its consequences.

Accept and provide appropriate professional review.

 • Honor property rights including copyrights and patents, and credit prop-

erly the contributions of others.

 • Be fair and take action not to discriminate. Treat fairly all persons regard-

less of such factors as race, religion, gender, disability, age, or national origin.

 • Respect the privacy of others. This includes the refusal to support the imple-

mentation of control and surveillance technology without informing the

affected persons.

 • Access computing and communication resources only when authorized to

do so.

 It is interesting to compare these codes with our dark side topics. There is barely

any intersection between these codes and subversion and espionage, for example.

I.1 WHAT’S THE DARK SIDE? 9

There is more of a link between lying, hacking, theft of information, and disgruntled

employees and sabotage. For example, the material on injuring property, public

welfare, honoring property rights, respecting privacy, and access authorization has

a more or less direct relationship to our topics. Whistle - blowing, interestingly

enough, has almost no linkage to these codes. Once again, although we see a deep

societal concern for ethical behavior, we see an odd sort of mismatch between our

topics — behaviors seen on actual computing projects — and the professional and

philosophical content of these codes. Clearly, not only has research tended to ignore

these topics, but so have the more ethical foci of our fi eld.

 Curiously, twice in the six months preceding the writing of this material, the

societal journal IEEE Computer has done something on the subject of software

engineering ethics. In the fi rst such article (“ Professional and Ethical Dilemmas in

Software Engineering, ” by Brian Berenbach and Manfred Broy, published in the

January 2009 issue) the key word from the title is “ dilemmas. ” The article describes

nine specifi c ethical and professional dilemmas for software engineers:

 1. Mission impossible: accepting a schedule that is obviously impossible

 2. Mea culpa: delivering a product that lacks key functionality

 3. Rush job: being more concerned about product delivery than product quality

 4. Not my Problem: showing no inclination to improve productivity or quality

 5. Red lies:making statements about a project/product known to be untrue

 6. Fictionware versus Vaporware: “ fi ctionware ” is signing up for features known

to be infeasible; vaporware is announcing a product that does not exist

 7. Nondiligence: failing to review key documentation

 8. Canceled vacation: management overly pressuring employees to meet short -

 term deadlines

 9. Swept under the rug: ignoring key issues in the hope that they will go away

 Interestingly, and as we saw above in analyzing ethical codes, these ethical dilemmas

do not overlap well with our dark side issues. Several of them are about lying, but

most of our other dark side categories simply do not appear on this list. This serves

to reinforce our belief that dark side matters appear all too seldom in the computing

literature. There is little doubt in our minds that dark side issues are strongly related

to ethical matters, and therefore should somehow appear in any discussions of ethical

dilemmas in our fi eld.

 The second recent IEEE Computer coverage of software engineering ethics

was actually a special issue devoted to the topic (“ Software Engineering Ethics, ”

edited by Awais Rashid, John Weckert, and Richard Lucas, published in the June

2009 issue). There were four articles and a point/counterpoint debate in the special

issue. The articles dealt with items such as these:

 • Addressing certain values in software applications, such as trust, privacy,

identity, user content control, green technology, and public welfare

10 INTRODUCTION

 • Ways of discouraging harmful uses and encouraging benefi cial uses of a soft-

ware product

 • The social impact of information systems failures (note that here, again, the

topic of failure is coupled with the topic of ethics)

 • How a code of ethics, such as that of the IEEE, can be used to aid decision

making

 • The point/counterpoint debate: whether and how software engineering and

ethics can mix

 Again, there is not much overlap with dark side topics.

 The subject of ethics is one way that the software fi eld explores matters of

this kind. But often, humorous treatments of related subjects can be, in effect, dis-

cussions of ethical matters in disguise.

 For example, years ago some philosophical readers of the humor publication

 Mad magazine noted that most of the material in Mad , although funny, was also

moralistic. There were lessons to be learned and morals to be grasped in the madcap

world of the pages of Mad.

 But the Back Page section of Computerworld (June 27, 2005) contained some-

thing in the same vein but more specifi c to the computing fi eld. While noting that

lots of publications discussed the best places to work in the IT fi eld, no one was

talking about the worst places! To alleviate that problem, the Back Page article

offered 10 ways to make the “ worst places to work in IT list. ” The list, for all its

humorous intentions, becomes a nice list of things not to do, a sort of ethical viola-

tions recap:

 1. Hide information. Don ’ t give employees the information they need to do their

work.

 2. Blame. Name and shame employees publicly when they do something wrong.

 3. Go slow. Postpone anything that ’ s postponeable.

 4. Distrust. Make it clear that you don ’ t trust your employees.

 5. Reduce visibility. Don ’ t share broader corporate information with IT

employees.

 6. Block opportunities. Don ’ t reward successful employees.

 7. Stifl e arguments. Put a lid on discussions of relevant but controversial matters.

 8. Outlaw play. Maintain discipline at all costs.

 9. Discourage experiments. Don ’ t allow failure of any form, even under carefully

controlled circumstances.

 10. Don ’ t listen. If it ’ s worth hearing, your boss will have said it to you.

 Once again, there would seem to be little overlap between these discussions of

software engineering ethics and our dark side issues. For whatever reason, the issues

we raise are simply not yet on the radar of most authors of software engineering

materials.

I.1 WHAT’S THE DARK SIDE? 11

 I.1.6 Personal Anecdotes About the Dark Side

 We thought it would be relevant to share with you at this point in our book some

incidents of dark side issues that have occurred to us authors personally. For one

thing, the dark side — up to this point in our book — has been a sort of distant concept,

not well fl eshed out with actual anecdotal material to make it come alive. For

another, as we describe our personal experiences with dark side matters, it may help

you envision times when you, too, have been involved in such matters. So here we

go. (Note: For certain purposes, the “ I ” in what follows refers (indiscriminately and

ambiguously) to either of us authors!)

 • Subversion. I don ’ t really have a totally relevant subversion story to share.

But I had a couple of episodes in my career where it felt like my work was

being subverted.

 In the fi rst, a manager for whom I worked but with whom I felt terribly

uneasy because I couldn ’ t fi gure out where I stood with him, eventually told

me that he never gave me suffi cient direction to do my work properly because

he was afraid that if I performed well I might go after his job! I guess he was

worried that I would subvert him, but in responding to that he actually sub-

verted both me and the work I was supposed to be doing.

 In the second episode, I was given the task at a major research facility

of writing a particular document, one for which I had a good background

because what I was asked to write about was very similar to a book I had

already written.

 When I had my fi rst meeting with my colleagues on the project, it gradu-

ally emerged that they were totally opposed to what I proposed to do (or at

least how I proposed to do it). Somehow I staggered to a completion of that

work, in spite of the subversive road blocks they kept throwing up in my path.

But when I left the facility, the fi rst thing they did was throw out my work

and redo as they had wanted it done all along.

 • Lying. The subject of lying on software projects kind of snuck up on me. I

was conducting a seminar on something or other (it doesn ’ t matter much what

it was, after all these years). I gave my seminar attendees a task to do: one

with a deliberately impossible schedule. My intent at the time was to see what

they would do if they could not fi nish their project by the scheduled comple-

tion time, Would they override the schedule and take whatever time it took,

or would they short - circuit the project goals and try to fi nish on time?

 I think it is signifi cant that those seminar attendees took the schedule as

a requirement and downplayed quality in their rush to fi nish “ on time. ” I think

much of the evidence since then supports the notion that that ’ s just the way it

is on software projects, at least at this point in time. Schedule trumps quality,

even if it shouldn ’ t.

 But as the attendees and I discussed what had happened, they also

quickly swung the conversation around to “ lying on software projects. ” (My

schedule requirement had been, in a very real sense, a lie). They said things

such as “ I have to lie 30 – 50% of the time to get my work done ” ; “ I had to

12 INTRODUCTION

check my ethics at the door when I went to work here ” ; “ I make wildly opti-

mistic promises to get my management off my back ” ; and “ managers who

don ’ t tolerate failure I especially lie to. ” Lying, as these seminar attendees saw

it, was a confl agration destroying the profession of software engineering.

 I have chosen to talk about the subject of lying rather than to cite per-

sonal examples of my lying on software projects. You didn ’ t really think I

would talk about lies I personally have told, did you?!

 • Hacking. I have an account with a leading investment fi rm, one where I

keep my retirement funds. It is, as you might imagine, ID and password

protected.

 But, a couple of years ago, a hacker managed to steal my identity and

begin performing transactions in my account. I noticed the sale of a big bundle

of corporate stock and queried it to the investment company. They immediately

froze my account; the stock had been sold, but the money had not yet been

transferred out of my account.

 As we pursued this matter further, we could see that the hacker had

provided an overriding address for the delivery of the check for his sale of my

stock and a contact phone number. Fortunately, that was as far as he had gotten.

 There were two things to be done. The fi rst was to change my ID and

password, and I did that (even that kind of change is not simple when you are

under attack). Then I needed to decide what legal steps to take.

 In the end, I notifi ed the police department in the city whose address

had been provided. The last I heard, the police were going to contact whoever

lived at that address. But it is a characteristic of our legal system that there is

no follow up; for a variety of reasons, you are never told what came of the

matter. So although I would like to end my anecdote by talking about how the

rotten character who did this to me got his comeuppance, I will never in fact

know if that was the case(!).

 • Theft of information. There was a time in my life when I supplemented my

full - time income by doing legal consulting on the side regarding theft of soft-

ware. In one case that I remember quite clearly, the situation was that one

company had produced a software product and another had put a similar

product on the air not long after hiring a former employee of the fi rst company.

 In such cases, the legal system provides for the lawyers involved to get

access to the listings of both products, and I in turn was given those listings

to examine and analyze. I found that in some parts of both versions of the

software product, the code was noticeably different but the design structure

(as refl ected in the product ’ s call trees) was nearly the same. And, to make

matters more interesting, there were a few places where marginally relevant

comments included in the fi rst company ’ s product code showed up in the

second company ’ s version as well!

 Now at this point, I ’ d like to say that the second company was appro-

priately punished for taking the fi rst company ’ s code. But what actually hap-

pened was that the companies at that point settled out of court, with a provision

I.1 WHAT’S THE DARK SIDE? 13

in the settlement that the result could not be disclosed. As a result, I never

knew what actually happened!

 • Espionage. I have never really encountered espionage as such on any

software projects I have been involved with. Or perhaps what is really true

is that I never recognized any espionage that may have been going on

around me!

 • Disgruntled employees and sabotage. Probably the most disgruntled

employee I ever worked with was a pacifi st I ’ ll call Harley Dove who for some

reason I have never fathomed found himself working on military projects at

an aerospace company.

 I was the project lead; Dove was one of my workers. And, as time

passed, it became next to impossible to get any useful work out of Dove,

whatsoever. Project due dates came and went, and Dove continued to do

almost nothing, and nothing I could do would motivate him to do any work.

If not contributing to a project is a special form of sabotage, then Dove was

a (pacifi st!) saboteur as well as a disgruntled employee!

 My own personnel review, at the end of that unfortunate period in my

career, refl ected my total failure to be able to get any work out of Dove. It ’ s

no wonder that this is a pretty memorable episode to me!

 I ’ d like to say that the company converted Dove into a disgruntled ex -

 employee, but to the best of my knowledge they never fi red him. I sometimes

wonder what he is doing today, and whom he is doing it to or for!

 • Whistle - blowing. I once had a consulting contract with a leading banking

company. I was invited to do the job by one of the bank ’ s top technical people,

whom I will call Top Tech, and at the end I was to present a report on my

fi ndings to the top manager, whom I will call Senior Manager. The problem

that caused the bank to call me in was that they were falling badly behind on

a key project.

 During the course of my information gathering, Top Tech told me that

one of the problems they had was that they were paying bonuses for the fi xing

of key bugs, that their best programmers were hoarding those key bugs in

order to achieve those bonuses, and that therefore the backlog of bugs to fi x

was huge and growing. And then, having told me that, Top Tech went on to

ask me to keep that fi nding confi dential!

 Time passed, and it came time for me to present my fi ndings to Senior

Manager. Top Tech attended that briefi ng with me. I had wrestled all along

with the dilemma of reporting that key bug fi nding or suppressing it to keep

my commitment to Top Tech. Going in to the meeting, I still wasn ’ t sure what

I was going to do. In the end, what I did was this: I hinted at the problem in

my presentation, and Senior Manager picked up on the hint and asked me

about it. I hesitated to see if Top Tech would speak up, and when he didn ’ t, I

glossed over the whole thing.

 Here is my conclusion from a whistle - blowing point of view: I had a

golden opportunity to blow the whistle at a point that would have counted,

14 INTRODUCTION

and I failed to do it. Whistle - blowing, I have to conclude based on my own

failings, is not an activity for the faint of heart!

 REFERENCE

 Glass , Ramesh , and Vessey . “ An Analysis of Research in Computing Disciplines , ” Communications of

the ACM , June 2004 .

 PART 1

DARK SIDE ISSUES

 You have just fi nished reading our introduction to our dark side book. We have told

you what we mean by the dark side, why we chose to write about it, how prevalent

it is, and who else is talking about it. And we shared with you some personal anec-

dotes about our own experiences with dark side matters.

 We also pointed out that, although we ’ d like to say some generic things about

these dark side issues, in fact it is nearly impossible to do so. All these dark side

issues have some things in common — they are all evil manifestations of computing

behavior — but on the other hand, they differ enormously in how often they occur

and what they are about.

 It ’ s high time, at this point in our book, that we stop waving our hands about

these dark side issues, and get down to brass tacks about them. In the seven chapters

that follow this introduction to Part 1 of our book we get very specifi c about each

of these matters. Welcome to the many - faceted worlds of subversion, lying, hacking,

theft of information, espionage, disgruntled employees and sabotage, and whistle -

 blowing. We hope you will fi nd it as fascinating to learn about those issues as we

did.

15

The Dark Side of Software Engineering, by Johann Rost and Robert L. Glass
Copyright © 2011 IEEE Computer Society

17

 CHAPTER 1

SUBVERSION

 We use several approaches to explore subversion. The fi rst section covers case

studies and examples of subversion on software projects; the background informa-

tion for the material is drawn from the computing and popular press. In the second,

and longest, section of this chapter, we present the fi ndings of our unique research

survey, one in which we surveyed practitioners to determine how often subversion

happened in the software world, and in what ways. We are particularly proud of

this section, in that we present the results of exploring a major topic in the fi eld of

computing and software that no one else has explored. (An abbreviated version

of this material was published earlier in a leading computing journal). Finally, in

the third major section of the chapter, we present the hitherto unpublished results

of a follow - up survey, one in which we asked responders to the fi rst survey for

additional input.

 Now, on to the case studies.

 1.1 INTRODUCTORY CASE STUDIES
AND ANECDOTES

 Some Motivational Examples. A sprinter is preparing to break a one -

 hundred - meter record. During the race someone on the edge of the track disturbs

him by throwing pebbles at him and holding up funny pictures. The sprinter ’ s

chances of breaking the record are diminished because of the distractions. If the

person who is causing the disturbances is an experienced sprinter himself, he might

do it in a more sophisticated way — for example, tens of seconds before the offi cial

start he might imitate the sound of the starting signal. The sprinter is thus likely to

fail in breaking the record and, what is more, he may even fail before the start of

the race. The analysis of the failure of the project concludes the following: “ Study

after study reveals that sprinters have the most problems in the fractions of a second

around the start, that is, at the very beginning of the race ” (also known as the

 “ requirements phase ” !).

 Such a situation in sports verges on the ridiculous. However, it happens quite

frequently in software projects. A great number of software projects involve people

who wish the project to fail. How is this possible?

The Dark Side of Software Engineering, by Johann Rost and Robert L. Glass
Copyright © 2011 IEEE Computer Society

18 CHAPTER 1 SUBVERSION

 1.1.1 A Faculty Feedback System

 A college wanted to introduce an online system that allowed students to give anony-

mous feedback to their teachers. The feedback system was intended to provide an

outlet for the evaluation of the quality of lectures and even reveal possible problems.

It was hoped that, in the long run, the system would help to identify ways to improve

the average quality of lectures.

 A superfi cial analysis revealed three stakeholder groups: the students, the

professors, and the college management. The students and the management sup-

ported the planned system for obvious reasons: The quality of the lectures and thus

the reputation of the college were expected to improve through this project. In theory,

both the students and the management would benefi t from increased infl uence; the

management would have gained access to additional ways of control. The students

were concerned, however, that the anonymity could be broken one way or another,

resulting in potential disadvantages for students who had given negative feedback.

 A broad consensus of opinion indicated a concern that the feedback needed to

be secured against potential manipulation. To prevent the possibility of results tam-

pering by the students, each student was provided with only one opportunity to vote

for each lecture. The chances for a very angry student to submit the same negative

feedback more than once (thus dramatically lowering the average evaluation feed-

back for that particular lecture) were reduced. To prevent the possibility of a pro-

fessor illicitly tampering with the system (for example, giving excellent feedback to

his own lecture by pretending that he was a student), other safety measures were

introduced. The system had to prevent all these kinds of potential manipulations of

information. However, the aspect of protection against falsifi cation required

some authentication, which could be a conceptual confl ict to the prerequisite of

anonymity.

 The professors ’ responses were multifaceted and therefore required further

analysis. Some professors who were well known for their outstanding lectures wel-

comed the plans for the feedback system enthusiastically for quite obvious reasons:

They expected excellent feedback for their lectures. Offi cially, there was no connec-

tion between the students ’ feedback and the career opportunities of the professors.

It was obvious, however, that continuous good feedback would be taken into con-

sideration if a higher position in the college management became vacant.

 Other professors were more reluctant about the feedback system. Some teach-

ers bore the responsibility of teaching diffi cult (and mandatory) lectures such as

math. Since these lectures were known to be unpopular with many students, the

teachers expected negative feedback: Even an excellent lecture of this type (for

example, in statistics) would never get feedback as good as a “ special interest group ”

lecture in which only students who are fascinated with the topic participate.

 Additionally, some teachers, who were running a small consulting business in

addition to their teaching duties, were concerned that the feedback system might

force them to spend more time preparing the lectures, something that could eat into

their time for professional engineering consulting. This college allowed additional

consulting income as long as the teaching duties were not affected. However, this

type of sideline was only tolerated but not fully accepted.

