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Abstract

In addition to exerting several essential house-keeping activities in the cell, heat shock proteins (HSPs) are crucial players 

in a well-structured molecular program activated in response to stressful challenges. Among the different activities carried 

out by HSPs during emergency, they reach the extracellular milieu, from where they scout the surroundings, regulate extra-

cellular protein activity and send autocrine and paracrine signals. Cancer cells permanently experience stress conditions 

due to their altered equilibrium and behaviour, and constantly secrete heat shock proteins as a result. Other than supporting 

anti-tumour immunity, extracellular heat shock proteins (eHSPs), can also exacerbate cancer cell growth and malignancy 

by sustaining different cancer hallmarks. eHSPs are implicated in extracellular matrix remodelling, resistance to apoptosis, 

promotion of cell migration and invasion, induction of epithelial to mesenchymal transition, angiogenesis and activation of 

stromal cells, supporting ultimately, metastasis dissemination. A broader understanding of eHSP activity and contribution 

to tumour development and progression is leading to new opportunities in the diagnosis and treatment of cancer.
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Introduction

“It did not matter if this interpretation was true or 

false, it was a working link between imagination and 

reality, like love” [1].

This is how Ferruccio Ritossa described his discovery 

of the heat shock proteins, and at least 20 years later, this 

perception is still alive, considering the finding of new and 

unexpected roles played by these multifaceted proteins.

Heat shock proteins (HSPs) were originally identified as 

stress-responsive proteins required for cell survival during 

thermal stress, acting as molecular chaperones. Shortly after-

wards, it became clear that HSPs are induced in response to 

a wider variety of insults (of physical, chemical and bio-

logical origin), preventing cell death. However, despite the 

name, most HSPs are ubiquitously expressed even in physio-

logical conditions, since they are essential for housekeeping 

functions inside the cell [2]. Cells possess different families 

of chaperones with specific activities and functions, often 

working in cooperation to fold native proteins and assist 

the formation of supramolecular complexes, keep proteins 

in activation-competent conformations, and stabilize them 

during the conformational changes required for their activi-

ties. Chaperones are also required to re-fold denatured poly-

peptides, inhibit unfolded protein aggregation, and, when 

proteins are defective or irreversibly misfolded, direct them 

to degradation via proteasomal and autophagic pathways. 

To exert their functions on their substrate proteins, named 

clients, HSPs typically take part in complexes that contain 

other chaperones, co-chaperones, modulators of ATPase 

activity and various accessory proteins. A clear nomencla-

ture for the HSPs and related chaperone genes was proposed 

in 2009 [3]; HSPs are currently classified according to their 

size into six major and broadly conserved families HSP100s, 

HSP90s, HSP70s and HSP60s, that use ATP hydrolysis to 

carry out their activity, HSP40s and small heat shock pro-

teins (sHSPs), whose do not possess ATPase activity per se.
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Some HSPs are secreted 

into the extracellular milieu

The year was 1986 when Tytell [4] described for the first 

time the transfer of HSPs from glia to axon; almost at the 

same time, another article by Hightower and Guidon [5] 

showed the release of HSPs from cultured rat embryo cells 

underlying their uncanonical mechanism of secretion. For 

many years, these results did not convince the scientific 

community and were considered as potential artefacts 

caused by cell necrosis [6]. One of the issues questioning 

the active release of HSPs was the absence of a secretion 

leader signal in their sequence [7]. Finally, robust data 

demonstrating the active secretion of HSPs by living cells 

were provided and the scientific community fully accepted 

this evidence [8, 9]. However, passive release from dam-

aged or dead cells has been also observed in many cases 

[8, 9]. The lack of involvement of the canonical secretory 

pathway in HSP secretion was clearly demonstrated using 

inhibitors of endoplasmic reticulum (ER)-Golgi vesicu-

lar trafficking. Like interleukin (IL) 1 α/β and fibroblast 

growth factor (FGF), HSPs use alternative mechanisms 

for secretion [10, 11] including free release, vesicles or 

vesicular intermediates, derived from the autophagic mem-

branes, endosomes and possibly secretory lysosomes [9] 

(Fig. 1). Even if the molecular details at the basis of eHSP 

secretion are not completely elucidated, what is clear is 

that many mechanisms could subsist and coexist for the 

same HSP in the same cell. For example, HSP70 secretion 

as free molecule is mediated by transmembrane proteins 

like ATP-binding cassette (ABC) transporters but could 

also occur via translocation through plasma membrane, 

as described for FGF2 [7]. Moreover, HSP70 requires the 

ABC family transporter proteins also to enter the endoso-

mal or lysosomal vesicles, which in turn are secreted in the 

extracellular compartment [7, 12, 13]. Another mechanism 

is mediated by exosomes, where HSPs amount increases 

when cells are under heat-shock or other stress conditions. 

HSPs contained in exosomes are transferred to target cells 

modifying their behaviour [14]. eHSPs localized on the 

membrane of exosomes can also engage surface receptors 

and trigger intracellular signalling in an autocrine or par-

acrine fashion [15–20]. eHSPs localizes within the lipid 

bilayer of cellular plasma membranes by interacting with 

membrane lipids, possibly stabilizing membranes, regu-

lating their physical properties and organizing microdo-

main composition [21] (Fig. 2). For example, intracellu-

lar HSP70, recognizing phosphatidylserine (PS) moieties, 

phospholipids that are normally present in the cytosolic 

side of cellular membranes, undergoes an insertion into 

the lipid bilayer, exposing a small region of its C-terminus 

end to the extracellular environment. It has been proposed 

that, during the recovery condition after a stress stimulus, 

Fig. 1  Pathways of unconven-

tional Heat Shock Proteins 

(HSPs) secretion in the extra-

cellular space. Lysosomes or 

endosomes fusion with plasma 

membrane leads to the release 

of HSPs in the extracellular 

space. HSPs can be captured 

from the cytoplasm during the 

formation of endosomal internal 

vesicles, which leads to the 

biogenesis of multivesicular 

bodies. These internal vesicles 

are then released as exosomes. 

HSPs can directly translocate 

from the cytoplasm across the 

plasma membrane facilitated 

or not by ATP-binding cassette 

(ABC) transporters. Microvesi-

cle shedding from the cell sur-

face can also lead to the release 

of HSPs into the extracellular 

space
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HSP70 accumulates in respect to unfolded proteins, oli-

gomerizes and binds to PS moieties, being embedded 

in the plasma membrane. In addition, the increase in 

HSP70 plasma membrane localization is associated with 

the formation of ion conductance pathways, resulting in 

cell death. However, some reports suggest that HSP70 

interaction with lipid bilayer lies also on cholesterol-rich 

microdomains, regions within the plasma membrane that 

are enriched not only in cholesterol but also in glycosphin-

golipids, glycosylphosphatidylinositol-anchored and acet-

ylated proteins [21–24]. Experimental data indicate that 

HSP70 is exposed on the surface of tumour cells through 

the binding with the ceramide-derived glycosphingolipid 

globotriaoslyceramide (Gb3) that accumulates in lipid 

rafts [25].

Fig. 2  Extracellular Heat Shock Proteins (eHSPs) induce extracel-

lular matrix (ECM) remodelling, epithelial–mesenchymal transition 

(EMT), migration and invasion. eHSPs released by cancer cells can 

interact with extracellular client proteins favouring ECM remodelling 

and with surface receptors, triggering signal transduction inside the 

cells (HSPG heparan sulfate proteoglycans, FN fibronectin, PDPN 

podoplanin)
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Extracellular HSPs and cancer

HSPs levels have been found aberrantly high in human 

cancers compared to normal tissues and correlated with 

poor prognosis [26, 27]. HSPs overexpression in cancers is 

a response to the internal stress experienced by malignant 

cells, such as lack of proteostasis due to high levels of pro-

tein synthesis and to the presence of mutant proteins, and 

to stresses imposed by the hostile tumour microenviron-

ment (TME), like hypoxia, nutrient deprivation, and aci-

dosis [28]. Cancer growth is a complex, multistep process 

that requires cells to acquire some intrinsic characteris-

tics, as genomic instability, resistance to cell death, altered 

metabolism and motility and to modify the TME inducing 

angiogenesis, inflammation and immune evasion [29, 30]. 

The role of intracellular chaperones and co-chaperones in 

sustaining transformation and cancer progression is well 

known, as the attitude of cancer cells to become addicted 

to HSP overexpression [31]. It is now widely accepted 

that HSPs are released by different types of cancers and 

are associated with their plasma membranes [32]. Several 

studies describe the tumour-specific immunogenicity of 

these released or surface-localized HSPs, a function asso-

ciated with their ability to chaperone antigenic peptides 

and to activate anti-tumour innate immunity [33, 34]. The 

role of eHSPs in inhibiting inflammation and in promoting 

immune surveillance has been extensively investigated and 

recently reviewed [35–39], and therefore is not subject of 

debate in this review.

But, despite their tumour-alerting role, the surface and 

extracellular localization of HSPs may not be entirely ben-

eficial to the host and, on the contrary, can play key func-

tions in promoting tumour progression and metastasis for-

mation, modulating several cancer hallmarks [38, 40–42]. 

Different extracellular chaperones and co-chaperones have 

been reported to be secreted by cancer cells; however, the 

majority of data demonstrating an active role of eHSPs in 

cancer refers to HSP90, HSP70 and HSP27.

HSP90 is the most abundantly expressed protein 

accounting for the 2–3% of the total proteins in normal 

cells and up to 7% in tumour cells [43]. HSP90 comes 

in two isoforms: the inducible HSP90α and the constitu-

tive HSP90β. While HSP90β, but not HSP90α, is criti-

cal for the cell viability, HSP90α is mainly involved in 

cell responses to external stressors. Of note, cancer cells 

predominantly secrete the HSP90α isoform [44]. Indeed, 

analysing the sera of patients with cancer (including 

esophageal squamous cell carcinoma, melanoma, lung, 

breast, liver, pancreas and prostate cancer), eHSP90α 

level positively correlates with tumour progression [45, 

46] as well as with the metastatic lesions in distant organs 

[46–48], functioning as a useful diagnostic and prognostic 

biomarker. eHSP90α translocation in the plasma mem-

brane of different cancer cells and its subsequent release in 

the medium relies on different stimulus-activated cascades 

as the hypoxia-inducible factor (HIF) 1α and the epidermal 

growth factor (EGF)-induced phospholipase (PLC) γ1/pro-

tein kinase C (PKC) γ signalling [49]. Moreover, eHSP90α 

secretion in breast cancer cells depends also on protein 

modifications, including PKA-mediated phosphorylation 

[48] and acetylation [50]. The HSP70 family includes 

several slightly different proteins: among them, the con-

stitutively expressed HSC70 and the stress-inducible 

HSP72, the HSP70 located in the mitochondria (GRP75) 

and GRP78, resident in the endoplasmic reticulum. Cell 

membrane localization of eHSP70 has been found on 

different cancer cell lines and on patients’ tumours and 

metastases, but not on the normal tissues counterparts 

[51]. In particular, eHSP72 is described on the surface of 

sarcoma, lung carcinoma and pancreatic cancer cell lines 

[52–54]. eHSP70 has been found on the surface of cancer 

cells in metastatic lesions in melanoma patients, together 

with eHSP90 [45, 51]. Exosomes released by cancer cells 

expose HSP70 on their membranes, while exosomes 

derived by normal cells do not. This feature makes the 

presence of HSP70 on patients’ exosomes a promising bio-

marker for monitoring cancer growth, relapse and appear-

ance of metastasis, useful to guide therapeutic interven-

tions [52, 55–58]. eHSP27, a member of the small HSPs, 

has been found in the sera of patients with squamous cell 

carcinoma of the tongue, breast, liver and ovarian can-

cer [59–64] and its secretion is associated with enhanced 

tumour growth and metastasis.

After release in the extracellular compartment or inside 

vesicle membranes, HSPs can chaperone and activate spe-

cific extracellular client proteins or directly interact with 

surface receptors, unleashing specific intracellular signals 

in target cells. In both cases, eHSPs have been described 

to promote malignancy and enhance metastasis formation.

Extracellular client proteins in cancer

Extracellular matrix (ECM) is the non-cellular constituent 

of tissues that provides both biochemical and structural sup-

port for the cellular component, favouring cell–cell com-

munication, cell adhesion, and cell proliferation. In addition 

to water and minerals, it is composed of collagen, proteo-

glycans, laminin, and fibronectin secreted by resident cells. 

ECM is a highly dynamic structure, constantly undergoing 

a remodelling process, in which components are degraded 

and modified by different proteases. Of note, the majority 

of the eHSP client proteins are ECM or enzymes involved 

in ECM remodelling [65–69]. ECM remodelling is a hall-

mark of cancer progression, impacting on cell proliferation, 

migration, and apoptosis [70, 71]. Indeed, a common feature 
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of cancer malignancies is the excessive production of col-

lagens, which are the major components of the ECM. Colla-

gens can act as a scaffold, facilitating migration of invading 

cancer cells or stromal cells. In addition, increased collagen 

deposition and increased fibril cross-linking is associated 

with major changes in biomechanical properties of tissues, 

contributing to stiffness, which is crucial for a tumour to 

displace the host tissue and grow in size [72].

Fibronectin is secreted by cells as a soluble dimer and the 

subsequent binding to integrin receptors, exposed on the cell 

surface, induces a fibronectin conformational changes that 

expose self-association domains and promote the formation 

of an insoluble matrix in the extracellular space. Increased 

turnover of the extracellular fibronectin matrix has been cor-

related with enhanced metastatic capacity of tumour cells. 

As collagen assembly relies on fibronectin, fibronectin net-

work depends on collagen and together can favour migration 

and invasion of both cancer cells and activated fibroblasts 

[70, 71].

ECM modifying enzymes such as matrix metalloprotein-

ases (MMPs), heparanase, cathepsins, plasminogen activator 

(PA) and the lysyl oxidase (LOX) family are in charge of 

ECM structuring and turnover and their deregulated expres-

sion in tumours, significantly contribute to cancer progres-

sion and metastasis. Of note, a number of these enzymes 

depend on eHSPs for their activity and stability.

MMPs are structurally related zinc metalloproteinases, 

present on the cell surface or secreted in the extracellular 

compartment. At present, more than 21 mammalian MMPs 

have been identified and they are historically classified 

according to their substrate specificity and structural simi-

larity in collagenases, gelatinases, stromelysins and matri-

lysins [73]. Due to the increasing number of proteins identi-

fied, MMPs are now divided into eight groups according 

to their structure. The MMPs are synthesized as inactive 

zymogens (pro-MMPs) and their activation requires pro-

teolytic removal of the prodomain [73]. Most of the MMPs 

are activated outside the cell by other activated MMPs or 

serine proteinases. MMP2 and MMP9 are frequently overex-

pressed and highly secreted in human cancers. These soluble 

gelatinases, whose preferential substrates include type IV 

collagen, elastin, vitronectin, and aggrecan, possess also non 

proteolytic activities, regulating signalling pathways that 

control cell growth, inflammation, or angiogenesis [74, 75].

The plasminogen activator is a serine protease that 

cleaves the inactive proenzyme plasminogen into active plas-

min; a broad spectrum serine protease that is, in turn, able 

to degrade fibronectin, laminin, vitronectin, proteoglycans, 

as well as fibrin and activate latent collagenases, including 

MMPs. Plasminogen activation is catalysed by urokinase-

type (uPA) or tissue-type (tPA) plasminogen activators, 

which are subjected to time- and space-dependent regu-

lation. In particular, the role of PAs in tissue remodelling 

seems consistent with the finding of their overexpression 

in human tumours, as well as their elevated amount in the 

plasma of breast, prostate, head and colon cancer patients 

[70].

Lysyl oxidases (LOX) are secreted amine oxidases. The 

family includes five members (LOX and LOX-like 1–4), 

whose primary function is the covalent crosslinking of col-

lagens and/or elastin in the ECM. The aberrant expression, 

secretion and activity of these proteins have been reported in 

a range of human cancers. Indeed, some LOX members (in 

particular LOXL2) promote tumour cell survival, regulate 

cell adhesion, motility and invasion, and remodel the TME. 

LOX- and LOXL2-mediated tumour progression is due pri-

marily to ECM modifications but relies in part on intracel-

lular signalling. Upregulation of LOXL2 has been observed 

in a number of human cancers, and its expression has been 

associated with cancer aggressiveness [70, 76].

eHSP receptors in cancer

In addition, eHSPs can directly interact with several cell 

surface receptors influencing cell behaviour through both 

autocrine and paracrine signalling [77]. The main HSP-

activated receptors involved in cancer progression are Low 

density lipoprotein receptor-related protein 1 (LRP1), Toll 

Like Receptors (TLRs), the EGF receptor family (ERBB) 

and cluster of differentiation 40 (CD40) [78, 79].

LRP1 or CD91 protein consists of a large extracellu-

lar ligand-binding subunit non-covalently associated to a 

smaller subunit, containing a transmembrane domain and a 

short cytoplasmic tail. LRP1 is expressed in a large panel of 

cells, such as hepatocytes, fibroblasts, smooth muscle cells, 

neurons and astrocytes [80]. More than forty LRP1 ligands 

have been identified nowadays, including apolipoproteins, 

proteinases, proteinase-inhibitor complexes, bacterial tox-

ins, viruses, the blood coagulation factor VIII, and various 

extracellular matrix proteins such as MMPs and uPA [81]. 

LRP1 is internalized in vesicles to deliver bound ligands to 

the endosomal/lysosomal compartment and is then recycled 

on the plasma membrane [82]. Beyond its ability to internal-

ize extracellular components, LRP1 initiates and regulates 

many signalling pathways, as small Rho family GTPases, 

extracellular signal-regulated kinase (ERK), AKT and c-Jun 

N-terminal kinase (JNK) pathways [83–85]. Indeed, LRP1 

expression is often deregulated in human cancers. LRP1 also 

exerts a fundamental role in cytoskeleton organization, focal 

adhesion disassembly and integrin β1 maturation, regulat-

ing cell adhesion, spreading, migration and invasion. It was 

proposed for the first time as the receptor of several extracel-

lular chaperones by the group of Srivastava [86] and later 

many other studies confirmed its role as eHSP receptor in 

cancer cells.
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TLR family members are type I transmembrane gly-

coproteins structurally characterized by the presence of a 

leucine-rich repeat domain in their extracellular region and 

a Toll/IL-1 receptor (TIR) domain in their intracellular por-

tion, which activates common signalling pathways via TLR-

specific adaptor proteins. [87, 88]. To date, ten TLRs have 

been identified in humans, the expression of which has been 

demonstrated on various innate immune cells, such as mac-

rophages, neutrophils, and dendritic cells (DCs), as well as 

non-immune cells including epithelial and endothelial cells. 

While, TLRs 1, 2, 4, 5 and 6 are expressed on the cell sur-

face, TLRs 3, 7, 8 and 9 are found almost entirely within 

endosomes [89]. Although individual TLRs recognize dis-

tinct ligands, the mechanisms of TLR activation and signal 

transduction are highly conserved and involve MyD88-

dependent and -independent pathways that, in turn, activate 

multiple pro-inflammatory signalling cascades including 

nuclear factor kappa-light-chain-enhancer of activated B 

cells (NF-κB), JNK/activator protein 1 (AP1), ERK and p38 

[87, 88]. The most common ligands of TLRs are the bacte-

rial cell-surface lipopolysaccharides (LPS), lipoproteins and 

lipopeptides of bacterial origin, proteins such as flagellin 

from bacterial flagella, double-stranded RNA of viruses and 

the unmethylated CpG islands of bacterial and viral DNA. 

It was shown that TLRs (in particular TLR2 and 4) can be 

also activated by many endogenous molecules including 

fibrinogen, surfactant protein-A, heparin, β-defensin 2, High 

Mobility Group Box 1 (HMGB1) and HSPs. In particular, 

TLR2 and 4 have been extensively validated as eHSP recep-

tors and some indications exist also for TLR3 (when pre-

sent in plasma membrane [89]) and TLR5 [87]. TLRs may 

promote carcinogenesis by unleashing pro-inflammatory, 

anti-apopototic, proliferative and pro-fibrogenic signals on 

tumour cells and cells of the tumour microenvironment, as 

fibroblasts, immune and endothelial cells [88].

ERBB receptors are a subclass of the receptor tyrosine 

kinase superfamily and comprises four members: EGFR/

ERBB1, human epidermal growth factor receptor (HER)2/

ERBB2, HER3/ERBB3 and HER4/ERBB4. All members 

have an extracellular ligand-binding region, a single mem-

brane-spanning region and a cytoplasmic tyrosine-kinase-

containing domain. The ERBB receptors are expressed in 

various tissues of epithelial, mesenchymal and neuronal 

origin and their ligands are members of the EGF family of 

growth factors. Activated ERBBs stimulate many intracel-

lular signalling pathways including the mitogen-activated 

protein kinase (MAPK) and the phosphoinositide 3-kinase 

(PI3K)/AKT pathways. Despite extensive overlap in the 

molecules that are recruited to the different active receptors, 

different ERBBs preferentially modulate certain signalling 

pathways, owing to the ability of individual ERBBs to bind 

specific effector proteins. These receptors are implicated 

in the development of many types of tumours favouring 

proliferation, apoptosis inhibition and cancer progression 

[90].

CD40 is a member of the tumor necrosis factor (TNF) 

receptor superfamily, expressed by B cells, dendritic cells, 

monocytes, platelets and macrophages as well as by non-

hematopoietic cells such as myofibroblasts, fibroblasts, 

epithelial and endothelial cells. CD40 ligand (CD40L) is a 

member of the TNF superfamily that binds to CD40 promot-

ing the activation of signal transduction pathways thanks to 

several TRAF (TNF Receptor Associated Factor) proteins, 

including TRAF1, TRAF2, TRAF3, TRAF5, and TRAF6. 

CD40-mediated signalling pathways include the activa-

tion of NF-κB, MAPK and signal transducer and activator 

of transcription (STAT) 3, favouring the generation of an 

acquired immune response. In particular, in cancer, CD40 

can license DCs to promote anti-tumour T cell activation and 

re-educate macrophages, from M2 state to M1 state, leading 

to fibrosis degradation and tumour regression [91, 92].

eHSPs tune cancer hallmarks

Extracellular matrix remodelling

eHSPs regulate ECM remodelling and stiffness interact-

ing and regulating several extracellular client proteins. 

eHSP90α (and in some cases HSP70) has found to be cru-

cial for the invasiveness and metastasis formation of fibro-

sarcoma, esophageal squamous cell carcinoma and breast 

cancer cells. eHSP90α assists the proteolytic activation of 

MMP2 in conjunction with HSP70 and the co-chaperones 

Hop, HSP40, and p23 and protects MMP2 from inactiva-

tion, covering one of its autocatalytic cleavage site [46, 48, 

65, 68]. eHSP90α acetylation seems crucial to facilitate its 

association with MMP2 in the extracellular contest [50]. 

In addition, LOXL2 interacting with eHSP90α, reaches its 

functional conformation and induces migration in breast 

cancer cells [66]. Moreover, eHSP90α is found associated 

with the tPA in the medium of fibrosarcoma and breast can-

cer cells. This interaction is essential to convert and activate 

plasminogen to plasmin, favouring invasion [67]. eHSP90α 

and eHSP90β are found on the surface of invasive cancer 

cells, accumulated on the leading edge and then released in 

the extracellular space. Invadopodial protrusion formation 

is the first step in tumour invasion and eHSP localization 

and activity in this site probably depend on their ability to 

interact with specific ECM proteases that have found to be 

essential for the matrix degradation activity of invadopo-

dia [49, 68, 93–95]. eHSP90α and eHSP90β are found in a 

common complex with fibronectin on the surface of breast 

cancer cells. In particular, eHSP90β more than eHSP90α 

binds to fibronectin, favouring its stability and protecting 

it from degradation, thus participating in its assembly and 
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turnover. eHSP90 maintains the stability of fibronectin, and 

when the chaperone is inhibited, fibronectin is internalised 

and degraded in lysosomes in breast cancer cells. However, 

despite the observed interaction between eHSP90β and 

fibronectin, it is also possible that fibronectin assembly or 

turnover relies on the indirect activity of eHSP90 clients. 

In addition, fibronectin and eHSP90 have been found to 

co-localize in a common complex with LRP1 on the sur-

face of breast cancer cells. After the inhibition of HSP90, 

LRP1 is the putative receptor that mediates the clearance of 

fibronectin, but the exact mechanism remains to be eluci-

dated. Indeed, it has been previously reported that LRP1 is 

able to mediate fibronectin internalization and degradation 

following its accumulation on fibroblasts surface. It is also 

possible that fibronectin internalization mediated by LRP1 is 

the result of specific signalling activated by eHSP90. Indeed, 

AKT and NF-κB activation (eHSP-LRP1 mediated signal-

ling pathways) has been reported to be involved in fibronec-

tin turnover [69, 96, 97].

Epithelial‑mesenchymal transition

The epithelial-mesenchymal transition (EMT) process is 

a crucial cancer hallmark that involves the disruption of 

cell–cell adhesion and cellular polarity, remodelling of the 

cytoskeleton, and changes in cell–matrix adhesion, improv-

ing migratory and invasive properties. Cytokines, growth 

factors and eHSPs secreted in the TME, by interacting with 

cancer cell plasma membrane receptors, may induce intra-

cellular signalling pathways that favour EMT [98]. In pros-

tate cancer cells, eHSP90 binds to LRP1 and promotes ERK 

signalling, leading to the impairment of E-cadherin function, 

the loss of junctional integrity and the induction of EMT 

[99, 100]. eHSP90 is found to upregulate a cohort of stem-

associated markers in prostate cancer cells, promoting self-

renewal and stemness associated with metastatic propensity 

[101]. In colorectal cancer (CRC) cells, eHSP90α through 

LRP1, increases the levels of phosphorylated IκB kinase 

(IKK) α/β and NF-κB and induces the expression of TCF12, 

a class I member of the helix-loop-helix protein family 

preferentially overexpressed in CRC patients with cancer 

metastasis. TCF12 is responsible for eHSP90α-dependent 

fibronectin expression and the repression of E-cadherin, 

connexin-26, connexin-43, associated with the EMT pro-

gram [102]. In liver cancer cells, eHSP70, activating p38/

MAPK signalling pathway through an unknown receptor, 

causes E-cadherin reduction and alpha smooth muscle actin 

(αSMA) overexpression favouring EMT, migration and 

invasion [103]. An alternative mechanism by which eHSPs 

may induce EMT in breast cancer relies on the ability of the 

eHSP client proteins MMP2 and MMP9 to proteolytically 

cleave and activate latent transforming growth factor (TGF) 

β [104].

Resistance to apoptosis

In several pathological situations, including cancer, differ-

ent stimuli can induce eHSP secretion in the extracellular 

milieu, where these chaperones support the response to the 

stress insult protecting cells from apoptosis [6]. In particular, 

eHSP90 once secreted under hypoxia, induces the activation 

of AKT pathway, through the binding to LRP1 receptor, and 

seems essential to protect breast cancer cells from hypoxia-

triggered death [105]. In line with this, in glioblastoma 

(GBM) cells, hypoxia not only amplifies eHSP90α secre-

tion and its signalling, but also enhances LRP1 expression 

resulting in a positive loop that fuels cancer survival and 

progression [106]. Moreover, eHSP70 localization on the 

surface of colon carcinoma cells increases after radiotherapy 

and is associated with cell survival [107]. In a hepatocarci-

noma model, eHSP72 binding to TLR2 and TLR4, promotes 

apoptotic resistance to chemotherapy and induces prolifera-

tion. In this study eHSP72, inducing the release of HMGB1 

from cancer cells, favours also a long-lasting effect of TLR4 

signalling, supporting tumour growth [108]. eHSP27 is also 

able to induce resistance to apoptosis. Once released from 

tongue cancer cells following chemotherapy, eHSP27 binds 

to TLR5 and triggers NF-κB signalling to enhance chemore-

sistance and promote cancer progression both in vitro and 

in vivo. In addition, the treatment with neutralizing anti-

bodies against HSP27 and HSP70 sensitizes cancer cells, 

respectively to chemotherapy and radiotherapy [59, 107].

Migration and invasion

HSP90α, by binding to LRP1 and activating ERK and AKT 

pathways, induce migration and invasion in breast can-

cer cells [43]. In GBM, the eHSP90α/LRP1 signalling is 

required to sustain AKT activation and the AKT-dependent 

phosphorylation of EphA2 (S897), a tyrosine kinase recep-

tor that is overexpressed in the majority of GBM. EphA2 

functions as an LRP1 co-receptor and its phosphorylation 

on S897 is crucial for its interaction with LRP1. The signal-

ling facilitates lamellipodia formation, supporting GBM cell 

motility and invasion [106].

eHSP90, together with its co-chaperone CDC37, also 

interacts with the family of ERBB receptors, including 

EGFR or HER2, to promote cancer cell motility and inva-

sion. The binding of eHSP90 to HER2 induces its heterodi-

merization with HER3, which in turn activates the MAPK 

and PI3K-AKT pathways, leading to actin rearrangement 

necessary for cell motility. eHSP90-dependent cancer cell 

migration is impaired by a monoclonal antibody, mAb 

4C5, able to disrupt the interaction between CDC37 and 

HSP90 and CDC37 and ERBB [109, 110]. mAb 4C5 has 

been proved effective also in inhibiting invasion and metas-

tasis dissemination in a preclinical model of melanoma 
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[111]. eHSP90α has also been described to transactivate 

EGFR, another member of ERBB family, favouring GBM 

cell migration. More specifically, eHSP90α triggers TLR4, 

which in turn, leads to the phosphorylation and activa-

tion of EGFR in a PKCδ/proto-oncogene tyrosine-protein 

kinase (c-Src)-dependent manner, favouring calcium mobi-

lization and ATP release, events known to be associated 

with cell migration [112]. Aside from eHSP90α, there are 

also some reports that describe a pro-tumorigenic role of 

eHSP90β on primary colon adenocarcinoma cells and on 

their lymph node metastasis-derived counterpart. In this 

context, eHSP90β binds to TGFβ1 forming a complex that, 

instead of binding TGFβ1 canonical receptors to activate 

the Smad2/3 signalling pathway, engages the integrin αvβ6 

and promotes cancer cell invasion and metastasis through a 

pathway still undetermined [113].

In hepatocellular carcinoma and lung cancer cells, HSP70 

promotes cancer progression by binding to TLR2 and to the 

receptor for advanced glycation end products (RAGE) and 

inducing MyD88-dependent and -independent NF-κB acti-

vation and pro-inflammatory gene transcription [108, 114]. 

GRP75, the member of the HSP70 family predominantly 

localized in the mitochondria, is also secreted by cancer 

cells. In particular, GRP75 and podoplanin, a mucin-type 

transmembrane sialoglycoprotein, are able to regulate the 

activities of Rho, ezrin, and other proteins linked to the actin 

cytoskeleton, co-localize on the surface of cells derived from 

oral SCC patient specimens, and together regulate adhesion 

and matrix remodelling [115].

Angiogenesis

Angiogenesis, the process whereby new blood vessels 

develop from a pre-existing vascular network, is essential 

for normal organs, as well as for tumours, to establish a 

blood supply that satisfies their demand for oxygen and 

nutrients and accomplishes other metabolic functions. 

Hypoxia is a key driver of tumour angiogenesis and hypoxic 

cancer cells secrete vascular endothelial growth factor A 

(VEGFA), which initiates tumour angiogenesis binding to 

VEGF receptor 2 (VEGFR2) expressed on the endothelial 

cells of neighbouring blood vessels. In addition to VEGFA, 

others factors participate in this process including FGFα 

and β, platelet-derived growth factor (PDGF), TNFα, Angi-

opoietin1, MMPs, PA, TGFα and different interleukins as 

IL-1, IL-6 and IL-8. VEGFA, with the help of these pro-

angiogenic molecules, induces the motility of endothelial 

cells and the remodelling of surrounding extracellular matrix 

leading to a tumour vascular network that is actively grow-

ing and infiltrative [116]. Extracellular chaperones, secreted 

not only by cancer cells but also by endothelial cells, may 

modulate angiogenesis (Fig. 3). Indeed, eHSP90α, once 

secreted in the medium, stabilizes MMP2 and favours the 

transmigration and tube formation of endothelial cells 

in vitro and in vivo. In a melanoma mouse model, blocking 

with neutralizing antibodies HSP90α, but not HSP90β, leads 

to a dose-dependent decrease in MMP2 activity, blood vessel 

density and tumour growth [117]. GRP78, the ER member 

of the HSP70 family, has been found secreted by colorectal 

and prostate carcinoma cells resistant to the antineoplastic 

agent bortezomib, a proteasome inhibitor with antiangio-

genic activity. eGRP78 potently inhibits the pro-apoptotic 

activity of bortezomib on endothelial cells inducing the 

ERK/AKT pro-survival pathways and sustains angiogen-

esis [118]. eHSP27 was shown to promote angiogenesis 

through TLR3-dependent calcium entry and NF-κB acti-

vation in endothelial cells, which induce VEGF and IL-8 

secretion. These factors produce autocrine and paracrine 

VEGFR2 activation, causing cell migration and tubulogen-

esis. In vivo experiments demonstrated that the depletion of 

HSP27 decreases vascularization and growth of breast and 

colon cancer cells in mouse and rat animal models and that 

the treatment with eHSP27 completely reverse this effect 

[119], highlighting a crucial role for eHSP27 in angiogenesis 

and cancer cell survival.

Stromal cell activation

Fibroblasts, under normal condition, are devoted to tissue 

ECM maintenance. Once activated in the tumour microen-

vironment (mainly through TGFβ), fibroblasts change their 

structure and function, acquiring the phenotype of cancer-

associated fibroblasts (CAFs). CAFs can produce cytokines 

and factors that stimulate tumour cells proliferation, migra-

tion and invasion and tumour immunosuppression, facilitat-

ing the invasive potential of cancer cells. Different reports 

suggest that eHSPs released by both cancer and stroma cells 

can modulate and activate fibroblasts, favouring cancer pro-

gression (Fig. 3). eHSP90α is observed to promote prostate 

fibroblast cell motility and to upregulate markers associ-

ated with a CAF-like phenotype, such as vimentin, αSMA, 

fibroblast activation factor (FAP) and tenascin C. eHSP90α, 

likely through LRP1 and the activation of NF-κB, induces 

fibroblasts to secrete inflammatory mediators as IL-6 and 

IL-8 in prostate cancer [120]. It has also been observed that 

the eHSP90α located on the external surface of breast cancer 

cell exosomes, induces fibroblast invasion that can be inhib-

ited by treating cells with an eHSP90α blocking antibody 

[19].

Macrophages are important players in innate immunity 

and can polarize in M1 or M2 phenotypes depending on 

microenvironmental stimuli, such as cytokines, enzymes, 

and cell surface markers. M1 macrophages are involved in 

antitumor immunity and inflammatory responses character-

ized by the production of pro-inflammatory cytokines such 

as IL-6, IL-12, and TNFα. In contrast, the M2 phenotype is 
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anti-inflammatory and pro-tumorigenic, and is characterized 

by the production of other types of cytokines such as IL-10 

and TGFβ. Cancer cells recruit macrophages at the tumour 

site and activate them in tumour associated macrophages 

(TAM), that acquire a phenotype similar to M2 macrophages 

in the advanced stages of cancer progression. TAMs gener-

ate an immunosuppressive microenvironment and facilitate 

processes such as growth, angiogenesis and metastasis, pro-

ducing cytokines, chemokines, and proteases. In pancreatic 

cancer cells, TAM express and secrete eHSP90α that binds 

to LRP1 and activates the Janus kinase (JAK) 2-STAT3 

pathway, leading to cancer progression [121]. In lung cancer 

patients, a strong correlation was observed also between the 

serum concentration of eHSP70 and the percentage of M2 

polarized macrophages [122]. HSP110, which is HSP70-

related chaperone [3], activates stromal macrophages and is 

present in the serum of patients with colorectal cancer. Once 

secreted by colorectal cell lines, binding of HSP110 to TLR4 

induces macrophages to polarize toward an M2 phenotype, 

while HSP110 immunodepletion, reverts this effect [123]. 

eHSP27, released by cancer cells in the TME, induces 

monocytes to express different cytokines, as IL-10, IL-6, 

and proangiogenic factors, as prostaglandin E2, VEGFA, 

IL-8, IL-1β, and TNFα. eHSP27 also promotes the expres-

sion and release of monocyte chemotactic protein-1 (MCP-

1), a potent chemotactic signal for monocytes. eHSP27 may 

also mediate the differentiation of circulating monocytes 

into TAM-like macrophages with immunosuppressive and 

proangiogenic phenotypes [124]. eHSP90α exposed on the 

surface of tumour released autophagosomes can induce 

TLR2–MyD88–NF-κB signalling cascade and stimulate 

 CD4+ T cells to produce IL-6 that functions in an autocrine 

manner to promote the production of IL-10 and IL-21, which 

create a favourable environment to facilitate tumour growth 

and metastasis in a melanoma mouse model [125] (Fig. 3).

Myeloid-derived suppressor cells (MDSCs) are an imma-

ture myeloid cell population that expands in subjects affected 

by cancer and inhibits T cell-mediated anti-tumor immunity. 

Fig. 3  Extracellular Heat Shock Proteins (eHSPs) activity in the 

tumor microenvironment (TME). eHSPs can interact with different 

receptors on endothelial cells and induce angiogenesis, on fibroblasts 

and on macrophages and, activate them in cancer-associated fibro-

blasts (CAFs) and tumor-associated macrophages (TAMs)  respec-

tively. As a final result, eHSPs induce metastasis dissemination fuel-

ling cancer progression
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HSP72 exposed on tumor-derived exosomes binds to TLR2 

on MDSCs and triggers STAT3 signalling, promoting IL6 

expression and immunosuppressive activity [55]. Of note, a 

peptide aptamer able to interact with HSP72 [126] inhibits 

MDSC activation and tumor growth and robustly potentiates 

chemotherapy efficacy in cancer mouse models [57].

Even if it is not part of the topic covered by the review, 

it is worth mentioning that HSPs exposed on tumor-derived 

exosomes may also induce anti-tumor immunity, for instance 

by recruiting and activating natural killer cells [14, 17].

Conclusions and future directions

Intracellular chaperones are essential in eliciting the initia-

tion, the development, and the recurrence of cancer, mak-

ing their overexpression and cell addiction critical requisites 

in cancer evolution [127]. A number of experimental data 

point to an equally important role of extracellular HSPs in 

promoting and sustaining different hallmarks of cancer. 

eHSPs are actively secreted by cancer cells and by other cell 

populations in the tumour microenvironment in response to 

stressful conditions. Once released, eHSPs interact both with 

extracellular clients and with membrane receptors and tune 

the behaviour of cancer cells, endothelial cells, fibroblasts 

and macrophages, orchestrating a complex interaction net-

work, ultimately fuelling cancer growth, migration, invasion, 

angiogenesis and immune escape.

The targeting of HSPs may represent an attractive strat-

egy in cancer treatment. Unfortunately, HSPs inhibition 

may seriously impacts on normal cell homeostasis, causing 

important side effects. Indeed, despite the big effort in test-

ing HSPs inhibitors in cancer pre-clinical models, none of 

them have yet been approved by the FDA for the treatment 

of cancer patients. This is due to the severe toxicities and, 

except for HSP90 inhibitors, for the lack of convincing anti-

cancer activity because of compensatory changes in other 

HSPs [27]. Instead, the possibility to block extracellular 

chaperones may represent an attractive alternative. Treat-

ments with eHSP cell‐impermeable chemical inhibitors (like 

geldanamicyn beads, the geldanamicyn derivative DMAG-

N-oxide, the ganetespib derivative STA-12–7191) [66–68, 

128] or with monoclonal antibodies blocking eHSPs [44, 

48–50, 67, 111], were able to impair cancer cell invasion 

and metastasis dissemination in tumour pre-clinical models, 

without any effects of systemic toxicity.

Moreover, even if the eHSP pro-tumorigenic role has 

been widely demonstrated, some caution is needed; eHSPs 

have been first studied for their ability to facilitate antigen 

presentation, stimulating anti-cancer immunity and inducing 

tumour regression [41, 129, 130]. The ideal situation would 

be to uncouple pro- and anti-tumorigenic effects of extracel-

lular chaperones and selectively inhibit their pathological 

activity. The growing interest in the field and the increasing 

amount of data regarding extracellular chaperone function 

and behaviour is depicting a complex scenario in which spe-

cific extracellular co-chaperones may drive eHSP functions, 

allowing to hypothesize that a selective inhibition is feasible.
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