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Abstract 

The fundamental premise behind the DASH project is that it is fea- 
sible to build large-scale shared-memory multiprocessors with 
hardware cache coherence. While paper studies and software sirn- 
ulators are useful for understanding many high-level design trade- 
offs, prototypes are essential to ensure that no critical details are 
overlooked. A prototype provides convincing evidence of the fea- 
sibility of the design allows one to accurately estimate both the 
hardware and the complexity cost of various features. and provides 
a platform for studying real workloads. A 16-processor prototype 
of the DASH multiprocessor has been operational for the last six 
months. In this paper, the hardware overhead of directory-based 
cache coherence in the prototype is examined. We also discuss the 
performance of the system. and the speedups obtained by parallel 
applications running on the prototype. Using a sophisticated harcl- 
were performance monitor, we characterize the effectiveness of 
coherent caches and the relationship between an application’s ref- 
erence behavior and its speedup. 

1.0 Introduction 

For parallel architectures to achieve widespread usage it is impor- 
tant that they efficiently run a wide variety of applications without 
excessive programming difficulty. To maximize both high perfor- 
mance and wide applicability, we believe a parallel architecture 
should provide (i) the ability to support hundreds to thousands of 
processors, (ii) high-perform.ance individual processors. and (iii) a 
single shared address space. 

One important question that arises in the &sign of such large-scale 
single-address-space machines is whether or not to allow caching 
of shared writeable data. The advantage, of course, is that caching 
allows higher performance to be achieved by reducing memory 
latency; the disadvantage is the problem of cache coherence. 
While solutions to the cache coherence problem are well under- 
stood for small-scale multiprocessors. they are unfortunately not 
so clear for large-scale machines. In fact, large-scale machines cur- 
rently do not suppon cache coherence. and it has not been clear 
what the benefits and costs will be. 

For the past several years, the DASH (Directory Architecture for 
SHared memory) project has been exploring the feasibility of 
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building large-scale single-address-space machines with coherent 
caches. The key ideas are to distribute the main memory among 
the processing nodes to provide scalable memory bandwidth, and 
to use a distributed directory-base-d protocol to support cache 
coherence. To evaluate these ideas. we have constructed a proto- 
type DASH machine. The full prototype will consist of sixty-four 
33MHz MIPS R3OOO/R3010 processors. delivering up to 1600 
MIPS and 600 scalar MFLOPS. An initial 16-processor prototype 
has been working for the past several months, and we are currently 
expanding this to the full 64-processor configuration. 

This paper examines the hardware cost and performance character- 
istics of the prototype DASH system. Cost is measured in terms of 
the logic gates and the bytes of dynamic and static memory in the 
base system and the added directory logic. Performance is mea- 
sured in terms of memory system bandwidth and latency, and in 
terms of parallel application speedups. For a represmtative set of 
the measured applications, we also present detailed reference sta- 
tistics and relate these statistics to the observed application speed- 
ups. Finally. we describe the StrucNre of the performance monitor 
logic which was used to take the detailed reference measurements. 

The paper is organized as follows. Section 2 gives an overview of 
the DASH architecture. Section 3 innoduces the DASH prototype 
and describes the logic used for the directory-based coherence pro- 
tocol. Section 4 details the hardware costs of the system. Section 5 
outlines the StNCNre and function of the performance monitor 
logic, and Section 6 presents the performance of the memory sys- 
tem. and the speedups obtained by parallel applications NtUthtg on 
the prototype. We conclude in Section 7 with a summary of our 
experience with the DASH prototype.. 

2.0 The DASH Architecture 

The DASH architecture has a two-level structure shown in 
Figure 1. At the top level. the architecture consists of a set of pro- 
cessing no&s (clusters) connected through a mesh interconnection 
network. In turn, each processing node is a bus-based multiproces- 
sor. Intra-cluster cache cohermce is implemented using a snoopy 
bus-based protocol, while inter-cluster coherence is maintained 
through a distributed directory-based protocol. 

The cluster functions as a high-performance processing no&. In 
addition the grouping of multiple processors on a bus within each 
cluster amortizes the cost of the directory logic and the network 
interface. This grouping also reduces the directory memory 
requirements by keeping track of cached lines at a cluster as 
opposed to processor level. (We will more concretely discuss the 
role of clustering in reducing overhead in Section 4). 



Figure 1. Block diagram of a 2x2 DASH prototype. 

The directory-based protocol implements an invalidation-based 
coherence scheme. A memory location may be in one of three 
states: rutcached. that is not cached by any processing node at all; 
shared. that is in an unmodified state in the caches of one or more 
nodes: or dirty, that is modified in the cache of some individual 
node. The directory keeps the summary information for each mem- 
ory line, specifying the clusters that are caching it. 

The DASH memory system can be logically broken into the four 
level hierarchy shown in Figure 2. The level closest to the proces- 
sor is the processor cache and is designed to match the speed of the 
processor. A request that cannot be serviced by the processor cache 
is sent to the second level in the hierarchy, the local cfrcsfer level. 
This level consists of other processors’ caches within the request- 
ing processor’s cluster. If the data is locally cached. the request can 
be serviced within the cluster, otherwise the request is sent to the 
directory home level. The home level consists of the cluster that 
contains the directory and physical memory for a given memory 
address. For some addresses, the local and home cluster are the 
same and the second and third level access occur simultaneously. 
In general, however. the request will travel through the intercon- 
nect to the home cluster. The home cluster can usually satisfy a 
request, but if the directory entry is in the dirty state, or in the 
shared state when the requesting processor requires exclusive 
access, the fourth. remote cluster level, must be accessed. The 
remote cluster level responds directly to the local cluster level 
while also updating the directory level. 

In addition to providing coherent caches to reduce memory 
latency, DASH supports several other techniques for hiding and 
tolerating memory latency. DASH supports the release consistency 
model, that helps hi& latency by allowing buffering and pipelin- 
ing among memory requests. DASH also supports sojw(ve-con- 
trolled non-binding prefetching to help hide latency of read 
operations. Finally. DASH supports efficient spin locks in hard- 
ware and fetch-and-incr/dccr primitives to help reduce the over- 
head of synchronization. Since we will primarily be focussing on 
the basic cache coherence protocol in this paper, we will not 

Figure 2. Logical memory hierarchy of DASH. 

describe the details of these optimization% For a more detailed dis- 
cussion of the protocol and the optimizations. see [7.8]. 

3.0 The DASH Prototype 

To focus our effort on the novel aspects of the design and speed 
completion of a usable system, the base cluster hardware of the 
prototype is a commercially available bus-based multiprocessor. 
While there are some constraints and compromises imposed by the 
given hardware. the prototype still makes an interesting research 
vehicle. 

The prototype system is based on a Silicon Graphics POWER Sta- 
tion 4D/340 as the base cluster [3]. The 4DL340 system umsists of 
four MIPS R3000 processors and R3010 floating-point coproces- 
sors running at 33 MHz. Each R3OOO/R3010 combination can 
achieve execution rates up to 25 VAX MIPS and 10 MFLOPS. 
Each CPU contains a 64 Kbyte instruction cache and a 64 Kbyte 
write-through data cache. The 64 Kbyte data cache interfaces to a 
256 Kbyte second-level write-back cache. The interface consists of 
a read buffer and a 4 word deep write-buffer. Both the first and sec- 
ond-level caches are direct-mapped and support 16 byte lines. The 
first-level caches run synchronously to their associated 33 MHz 
processors while the second-level caches run synchronous to an 
independent 16 MHz memory bus clock. 

The second-level processor caches are responsible for bus snoop- 
ing and maintaining coherence among the caches in the cluster. 
Since the first-level caches satisfy most memory requests. the sec- 
ond-level caches do not need duplicate snooping tags. Coherence 
is maintained with a MESI (Illinois) protocol[ 121, and inclusion of 
the first-level cache by the second-level. The main advantage of 
using the Illinois protocol in DASH is the cache-to-cache transfers 
specified in this protocol. While they do little to reduce the latency 
for misses serviced by local memory, local cache-to-cache tram- 
fers can greatly reduce the penalty for remote memory misses. The 
set of processor caches effectively act as a cluster cache for remote 
memory. 

The memory bus (MPBUS) of the 4D/340 is a synchronous bus 
and consists of separate 32-bit address and 64-bit data buses. The 
MPBUS is pipelined and supports memory-to-cache and cache-to- 
cache transfers of 16 bytes every 4 bus clocks with a latency of 6 
bus clocks. This results in a maximum bandwidth of 
64 Mbyteslsec. 
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RC Board DC Board 

Figure 3. Directory and Reply Controller boards. 

To use the 4D/340 in DASH, we have had to make minor modifi- 
cations to the existing system boards and design a pair of new 
boards to support the directory memory and inter-cluster interface. 
The main modification to the existing boards is to add a bus retry 
signal that is used when a request requires service from a remote 
cluster. The central bus arbiter has also been modified to accept a 
mask from the directory which holds off a processor’s retry until 
the remote request has been serviced. This effectively creates a 
split transaction bus protocol for requests requiring remote service. 
The new directory controller boards contain the directory memory. 
the intercluster coherence state machines and buffers, and a local 
section of the global interconnection network. 

While the prototype, with minor modifications, could scale to sup- 
port hundreds of processors, the current version is limited to a 
maximum configuration of 16 clusters and 64 processors. This 
limit was dictated primarily by the physical memory addressability 
of the 4D/340 system (256 Mbytes) which would severely limit the 
memory per processor in a larger system. 

The directory logic in DASH is responsible for implementing the 
directory-based coherence protocol and interconnecting the clus- 
ters within the system. Pictures of the directory boards are shown 
in Figure 3. The directory logic is split between the two boards 
along the lines of the logic used for outbound and inbound portions 
of inter-cluster transactions. 

The DC board contains three major subsections. The first section is 
the directory conrrolter (DC) itself, which includes the directory 
memory associated with the cachable main memory contained 
within the cluster. The DC logic initiates all out-bound network 
requests and replies. The second section is the performance moni- 
tor which can count and trace a variety of intra- and inter-cluster 

events. The third major section is the request and reply outbound 
network logic together with the X-dimension of the network itself. 

The second board is the RC board which also contains three major 
sections. The first section is the reply controller (RC) which tracks 
outstanding requests made by the local processors and receives 
and buffers replies from remote clusters using the remore uccess 
cache (RAC). The second section is the pseudo-CPU (PCPU). 
which is responsible for buffering incoming requests and issuing 
these requests onto the cluster bus. The PCPU mimics a CPU on 
this bus on behalf of remote processors except that responses from 
the bus are sent out by the directory controller. The final section is 
the inbound network logic and the Y-dimension of the mesh rout- 
ing networks. 

Directory memory is accessed on each bus transaction. The direc- 
tory information is combined with the tp of bus operation. the 
address. and the result of snooping on the caches to determine 
what network messages and bus controls the DC will generate. The 
directory memory organization is similar to the original directory 
scheme proposed by Censier and Feautrier [4]. Directory pointers 
are stored as a bit vector with 1 bit for each of the 16 clusters. 
While a full bit vector has limited scalability, it was chosen 
because it requires roughly the same amount of memory as a iim- 
ited-pointer directory [2. 6, 11. l] given the size of the prototype, 
and it allows for more direct measurements of the caching behav- 
ior of the machine. Each directory entry contains a single state bit 
that indicates whether the clusters have a shared or dirty copy of 
the data. The directory is implemented using DRAM technology, 
but performs all necessary actions within a single bus transaction. 

The reply controller stores the state of on-going requests in the 
remote access cache (RAC). The RAC’s primary role is the coordi- 
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nation of replies to inter-cluster transactions. This ranges from the 
simple buffering of reply data between the network and bus to the 
accumulation of invalidation acknowledgments and the enforce- 
ment of release consistency. The RAC is organized as a 128Kbyte 
direct-mapped snoopy cache with 16byte cache lines. One port of 
the RAC services the m-bound reply network while the other 
snoops on bus transactions. The RAC is lockup-free in that it can 
handle several outstanding remote requests from each of the local 
processors. RAC entries are allocated when a remote request is ini- 
tiated by a local processor and persist until all inter-cluster transac- 
tions relative to that request have completed. The snoopy nature of 
me RAC naturally lends itself to merging requests made to the 
same cache block by different processors within the cluster, and it 
takes advantage of the cache-to-cache transfer protocol supported 
between the local processors. The snoopy structure also allows the 
RAC to supplement the function of the processor caches. This 
includes support for a dirty-sharing state for a cluster (normally the 
Illinois protocol would force a write-back) and operations such as 
prefetch. 

As stated in the architecture section, the DASH coherence protocol 
does not rely on a particular interconnection network topology. 
The prototype system uses a pair of wormhofe routed meshes to 
implement the interconnection network. One mesh handles request 
messages while the other is dedicated to replies. The networks are 
based on variants of the mesh routing chips developed at Caltech 
where the datapaths have been extended from 8 to 16 bits[5]. 
Wormhole routing allows a cluster to forward a message after 
receiving only the first flit (flow unit) of the packet greatly reduc- 
ing the latency through each no& (= 5Ons per hop in our network). 
The bandwidth of each self-timed link is limited by the round trip 
delay of the request-acknowledge signals. In the prototype flits are 
transferred at approximately 30 MHL resulting in a peak band- 
width of 120 Mbytes/set in and out of each cluster. 

4.0 Gate Count Summary 

One important result of building the DASH prototype is that it pro- 
vi&s a realistic model of the cost of directory-based cache coher- 
ence. While some of these costs are tied to me specific prototype 
implementation (e.g., the full DRAM directory vector), they pro- 
vi& a complete picture of one system. 

At a high level, the cost of the directory logic can be estimated by 
the fact that a DASH cluster includes six logic cards. four of which 
represent the base processing node and two of which are used for 
directory and inter-cluster coherence. This is a very conservative 
estimate, however, because Silicon Graphics’ logic. in particular 
the MIPS processor chips and Silicon Graphics’ gate arrays, are 
more highly integrated than the MS1 PALS and LSI FPGAs used in 
the directory logic. 

Table 1 summarizes the logic for a DASH cluster at a more 
detailed level. The table gives the percent of logic for each section 
and the totals in terms of thousands of 2-input gates, kilobytes of 
static RAM, megabytes of dynamic RAM, and 16-pin IC equiva- 
lents. RAM bytes include all error detecting or correcting codes 
and cache tags. 16-pin IC equivalent is a measure of board area 
(0.36 sq. inch), assuming through-hole technology (i.e. DIPS and 
P(&s) was used throughout the design. (Actually about l/4 of the 
CPU logic is implemented in surface mount technology, but the IC 
Equivalent figures used here assume through-hole since all of the 
logic could have been designed in surface mount.) The number of 
2-input gates is an estimate based on the number of gate-array 2- 
input gates needed to implement each function. For each type of 

logic used in the prototype the equivalent gate complexity was cal- 
culated as: 

Custom VLSI Estimate based on part documentation. 

CMOS Gate Array Actual gate count or estimate based on 
master-slice size and complexity. 

PAL Translation of 2-level minimized logic 
into equivalent gates. 

PROM Espresso minimized PROM files trans- 
lated into 2-input gates. This includes the 
primary state machines in the DC and RC, 
but not the boot EPROMs for the CPUs. 

TTL Gates in equivalent gate array macros. 

Table 1. Percent of all logic in a DASH cluster. 

The numbers in Table 1 are somewhat distorted by the extra logic 
in the base Silicon Graphics’ hardware and the directory boards 
that is not needed for normal operations. This includes (i) the per- 
formance monitor logic on the directory board; (ii) the diagnostic 
UARTs and timers attached to each processor: (iii) the Ethernet 
and VME bus interfaces on the Silicon Graphics’ Vo board.’ 
Table 2 shows the percentage of this core logic assuming the items 
mentioned above are removed. 

As expected, only when measured in terms of IC equivalents (i.e. 
board arca), is the cost of the directory logic approximately33%. 
When measured in terms of logic gates the portion of the cluster 
dedicated to the directory is 20%. and the SRAM and DRAM 
overhead is 13.9% and 13.7% respectively. 

Note that in the above analysis. we do not account for the hard- 
ware cost of snooping on the local bus separately because these 
costs are very small. In particular, the processor’s two-level cache 
structure doesn’t require duplicate snooping tags. and the ps- 
sor’s bus interface accounts for only 3.2% of the gates in a cluster. 
Even if the second-level cache tags were duplicated. it would rep- 
resent only 4.0% of a cluster’s SRAM. In practice. we expect most 
fuNre systems will use microprocessors with integrated first-level 
caches (e.g., MIPS R4000, DEC Alpha etc.) and to incorporate an 
external second-level cache (witbout duplicafe tags) to improve 
unipmcessor performance. Thus, the extra SRAM cost for snoop 
ing (e.g., extra state bits) is expected to be negligible. 
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Table 2. Percent of core logic in a DASH cluster. 

Looking at the numbers in Table2 in more detail also shows addi- 
tional areas where the directory overhead might be improved. In 
particular, the prototype’s simple bit vector directory grows in pro- 
portion to the number of clusters in the system, and in inverse pro- 
portion to cache tine size. Thus, increasing cache line size from 16 
to 32 or 64 bytes would reduce the directory DRAM overhead to 
6.9% and 3.4% respectively, or it could allow the system to grow 
to 128 or 256 processors with the same 13.7% overhead. For larger 
systems, a more scalable directory structure [2, 6. 11, l] could be 
used to keep the directory overhead at or below the level in the 
prototype. The directory’s overhead in SRAM could also be 
impmved. The 128KB remote access cache (RAC) is the primary 
use of SRAM in the directory. The size of the RAC could be sig- 
nificantly reduced if the processor caches were lockup-free. With 
enhanced processor caches. the primary use of the RAC would be 
to collect invalidation acknowledgments and to receive granted 
locks. This would allow a reduction in size by at least a factor of 
four. and result in an SRAM overhead of less than 2%. Likewise, a 
closer coupling of the base cluster logic and bus protocol to the 
inter-cluster protocol might reduce the directory logic overhead by 
as much as 25%. Thus, the prototype represents a conservative 
estimate of directory overhead. A more ideal DASH system would 
have a logic overhead of 1825%. an SRAM overhead of 2-8% and 
a DRAM overhead 3-14%. This is still significant,2 but when 
amortized over the cluster the overhead is reasonable. 

The prototype logic distributions can also be extrapolated to con- 
sider other system organizations. For example, if the DASH clus- 
ter-based node was replaced by a uniprocessor node. the overhead 
for directory-based cache-coherence would be very high. Ignoring 
the potential growth in directory storage (that would need to track 
individual processor caches instead of clusters), the percent of 
directory logic in a uniprocessor node would grow to =44% (a 
78% overhead). Thus. a system based on uniprocessor nodes 
would lose almost a factor of two in cos@erformance relative to a 
uniprocessor or small-scale multiprocessor. 

Another possible system organization is one based on a general 
memory or messaging interconnect but without support for global 
hardware cache coherence (e.g., the BBN TC2000 or Intel Touch- 
stone). An optimistic assumption for such a system is that it would 
remove all of the directory DRAM and support. the RAC and its 
datapath. and 90% of the RC and DC control pipelines. Under 
these assumptions, the fraction of logic dedicated to the inter-clus- 
ter interface falls to 10% of a cluster, and the memory overhead 

becomes negligible. Thus, the cost of adding inter-cluster coher- 
ence to a huge-scale. non-cache coherent system is approximately 
10%. If more than a 10% performance gain is realized by this addi- 
tion. then the overall cost/performance of the system will improve. 
Our measurements on DASH indicate that caching improves per- 
formance by far more than 10%. and support for global cache 
coherence is well worth the extra cost. 

Finally, by examining the required gate, memory, and connectivity 
requirements, one can estimate how the prototype logic might be 
integrated into a small number of VLSI components. As examined 
in detail in [9]. such a system could consist of clusters based on the 
following: 

Four single-chip microprocessors with direct control of 
their second-level caches and a their interface to the clus- 
ter’s snoopy bus. 

A single memory control chip interfaced to local DRAM 
and the cluster bus. 

Art Uo interface chip connecting the cluster to a high-speed 
fiber optic IK) links (e.g.. fibre channel). 

A single directory controller chip interfacing to an external 

mixed SRAM-DRAM sparse directory, the cluster bus, and 
a network chip.3 

A single mesh routing chip supporting two logical 3-D 
meshes. 

This integrated system could maintain a similar directory logic and 
memory overhead as the prototype, while supporting cache coher- 
ence for 2K processors and 128 GBytes of memory. 

5.0 Performance Monitor 

One of the prime motivations for building the DASH prototype 
was to study real applications with large data sets fIIMhIg On a 

large ensemble of processors. To enable more insight into the 
behavior of these applications when running on the prototype. we 
have dedicated over 20% of the DC board to a hardware perfor- 
mance monitor. Integration of the performance monitor with the 
base directory logic allows non-invasive measurements of the 
complete system without any external hardware. The performance 
hardware is controlled by software. and it provides low-level 
information on software reference characteristics and hardware 
resource utilizations. The monitor hardware can trace and count a 
variety of bus. directory and network events. The monitor is con- 
trolled by a software programmable Xilinx gate array (FF’GA)[lS] 
allowing flexible event selection and sophisticated event prepro- 
cessing. 

A block diagram of performance logic is shown in Figure4. It con- 
sists of three major blocks. First, the FPGA which selects and p- 
processes events to be. measured and controls the rest of the 
performance logic. Second, two banks of 16Kx32 SRAMs and 
inuement logic that count event occurrences. Third. a 2M x 36 
trace DRAM which captures 36 or 72 bits of information on each 
bus transaction. 

The counting SRAMs together with the FPGA support a wide vari- 
ety of event counting. The two banks of SRAM are addressed by 
events selected by the FPGA. They can be used together to trace 
events that occur on cycle by cycle basis. or the banks can be used 

independently to monitor twice as many events. By summing over 
all addresses with a particular address bit high or low the number 
of occurrences of that event can be determined. Likewise, the con- 

3. A smd l rsociaive RAC wouid be kept on-chip. 
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6.1 Processor Issue Bandwidth and Latency 

Although the coherent caches in DASH signiticantly reduce the 
number of remote accesses made by a processor, it is still essential 
to minimize the latency when misses do occur. Table3 lists the 
processor bandwidth and latency for cache memory operations in 
DASH assuming no contention. (PClocb refer to processor clocks 
which are 30~ in the prototype.) The delays are based on mea- 

surements of the hardware, but extrapolated to a full 4x4 cluster 
configuration. ln the table, the best-case numbers assume stride- 
one access, with one cache miss every four references (cache lines 
are 16 bytes). The worst-case numbers assume stride-four accesses 
with no reuse of cache lines. 

The table presents data separately for reads and writes. For reads, 
the access latency is given by the last column of the table. The 
latency can vary by more than two orders of magnitude depending 
on where a read access is serviced in the memory hierarchy. The 
read bandwidth also varies considerably, from a high of 133 Mbyt- 
es/xc from the primary cache to a meager 4 Mbytes& if all of 
the data is dirty in a remote non-home cluster. While. beyond a 
point, not much can be done about reducing the latency in large- 
scale machines, the bandwidth can be increased via pipelining. and 
it is for this reason we have provided non-blocking prefetch opera- 
tions in DASH. The times given for store operations are the rate at 
which writes are retired fmm the write buffer into the second-level 
cache after acquiring ownership. Release consistency is assumed 
so that the processor need not wait for the write to retire, and inval- 

idations do not affect write latency. 

-ah 

Figure 4. Block dlagam of the performance monitor logic 

junction or disjunction of any set of events can be determined by 
summing over the appropriate address ranges. Another use of the 
count SRAM is as a histogram array. In this mode. certain events 
are used to start. stop and increment a counter inside the FPGA. 
The stop event also triggers the counter to be used as a SRAM 
address to increment. 

The current use of the counting SRAM in the prototype increments 
the two banks of SRAM independently on each bus transaction. 
The data in the first bank allows access type frequencies, bus utili- 
zation. access locality, RAC performance, remote caching statis- 
tics and network message frequency to be calculated. The second 
bank of SRAM is addressed with the local cache snoop results and 
histogram counters of remote latency. The snoop data allows one 
to determine the effectiveness of cache-to-cache sharing within the 
cluster. The remote latency histogram dedicates an internal FPCA 
counter to each CPU which is enabled whenever a processor is 
waiting for a remote access. This allows a complete distribution of 
remote access iatencies to be determined. Furthermore. when com- 
bined with the count of local bus cycles an estimate of processor 
utilization can be made. 

The other resource of the performance monitor is a 2 M x36 trace 
array. Again. what information is traced can vary based on pro- 
gramming of the FPGA. but the current use of the trace logic has 
two modes. In the first configuration, up to 2M memory addresses 
together with the issuing processor number and read/write staNs 
are captured. The second mode can capture only 1 M addresses, but 
adds additional bus and directory state, and a bus idle count to 
each trace entry. This trace information can be used to do detailed 
analysis of reference behavior or as input to a memory simulator. 
With software assistance the tracer can be used to capture much 
longer traces and trace all memory references. 

6.0 Prototype Performance 

This section examines the performance of the initial hardware pm- 
totype of DASH which includes 16 processors in four clusters. The 
first part summarizes the memory latencies measured on the proto- 
type hardware. The second part describes the speedups obtained by 
para11ei applications run on the aCNd machine. 

Table 3. Cache operation bandwidth and iatencies. 

Cache Beat Case 1 WorstCase 

Operation MB/ ) Clock/ ) MB/ 1 Cl& 
set word set word 

Read from Ist-level cache 133.3 1.0 133.3 1.0 

Fill from 2nd~lev. cache 29.6 I 4.5 1 8.9 1 15.0 

Fill from local bus 16.7 8.0 4.6 29.0 

Fill from remote 5.1 26.0 1.3 101.0 

Fill from dirtv-remote 4.0 33.8 1.0 132.0 
. 1 

Wrtte rettred in cache 32.0 4.2 32.0 4.2 

Write retired on local bus 18.3 7.3 8.0 16.7 

Write retired on remote 5.3 25.3 1.5 88.7 

Write retired on dirty-rem. 4.0 33.0 1.1 119.7 

A more detailed break-down of the latency for local and remote 
cache misses is given in Figure 5. The latency for a local miss that 
is serviced within the cluster is based entirely on the base SC1 
hardware (i.e., the hardware we have added to the SC1 clusters 
does not slow the system down). In the prototype, a simple remote 
miss (i.e., a miss that is serviced by a remote home cluster) takes 
53.5 times longer than a local miss. The linal case illustrated in 
Figure 5 represents the latency for fetching a location that is dirty 
in a cluster other than its home. In thii case, an extra 30 clocks (or 
lpsec) of delay is incurred in forwarding the request to the dirty 
cluster. The DASH protocol supports the direct transfer of the dirty 
data between the dirty and requesting cluster, reducing latency by 
20% over a simpler protocol that first causes a writeback to the 
home cluster and then replies to the requesting processor. 

While latencies in the DASH prototype (when measured in micro- 
seconds) are far from optimal. we believe that the delays when 
measured in processor clocks are quite indicative of what we 
expect to see in future large-scale machines. The reason is that 
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Figure 5. Cache fill latency in the DASH prototype. 

while state-of-the-art technology (with integration and optimiza- 
tion) would allow us to reduce the prototype’s latencies by a factor 
of about three [9], state-of-the-art processor clock rates are also 
about three times the 33 MHz used in the prototype. As a result. we 
expect that exploiting cache and memory locality will continue to 
be important in future huge-scale machines. as will mechanisms 
that help hide or tolerate latency. 

6.2 Parallel Application Performance 

This subsection outlines the performance actually achieved on the 
prototype for a number of parallel applications. We begin by 
describing the software environment available on the prototype 
and how the measurements were made. We then present the 
speedup for nine parallel programs representing a variety of appli- 
cation domains. Three of these applications are studied more in 
greater detail using data captured by the performance monitor. 

6.2.1 Application Runtlme Environment 

The operating system running on the prototype DASH is a modi- 
fied version of IRIX; a variant of UNIX System V.3 developed by 
Silicon Graphics. The applications for which we present results are 
coded in C that has been augmented with the Argonne National 
Labs (ANL) parallel macros( lo] to control a MLMD. shared-mem- 
ory programming model. 

Before giving the speedup results in the next subsection, we first 
state the assumptions used in measunng the speedups. The 
speedup were measured as the time for the uniprocessor to execute 
the parallel version of the application code (i.e. not all synchroni- 
zation code is removed) divided by the time for the parallel appli- 

cation to run on a given number of processors. The runs were 
averaged over a number of executions to eliminate any scheduling 
anomalies in UNIX. In some applications, the serial start-up time 
is ignored horn the measurement because the runs used shortened 
executions of the application (less time steps, etc.) to reduce mea- 
surement tune. In production runs the start-up time would be neg- 
ligible. 

For our measurements, each application process is attached to a 
processor for its lifetime. and we fully use one cluster before 
assigning processors to new clusters. Physical memory pages used 
by the application are allocated only from the clusters that are 
actively being used, as long as the physical memory in those clus- 
ters is enough. Thus, for an application running with 4 processes, 
all memory is allocated from the local cluster, and all misses cost 
about 30 clocks. However, with 8 processes. some misses may be 
to a remote cluster and cost over 100 clock cycles. Most of the pro- 
grams allocate shared data randomly or in a round-robin fashion 
from the clusters being actively used. but some include explicit 
system calls to control memory allocation4 Finally, all applica- 
tions were run under processor consistency mode, i.e., writes were 
not retired from the write-buffer until all invalidation acknowledg- 
ments had been received, and no prefetching has been added. 

6.22 Application Speedups 

Figure6 gives the speedup for nine parallel applications running 
on the hardware prototype using from 1 to 16 processors. The 
applications cover a variety of domains. There are some scientific 
applications (Barnes-Hut and Water), several engineering applica- 
tions (Radiosity, MP3D. PSIM4. Locusroute) and two kernels 
(Cholesky. Matrix Multiply and Mincut). Four of the programs 
(Water, LocusRoute, MP3D and Cholesky) are taken from the 
SPLASH parallel application suite[l4]. We begin with a quick 
overview of all nine applications and then present the detailed ref- 
erence behavior and performance of three of the applications (Bar- 
nes-Hut, Water, and LocusRoute). 

Starting with the applications with the best speedup. the Radiosity 
application is fmm the domain of computer graphics. It computes 
the global illumination in a room given a set of surface patches and 
light sources using a variation of hierarchical n-body techniques. 
l’he particular problem instance solved starts with 364 surface 
patches. and ends with over 10.000 patches. While the data struc- 
tures used are a complex act-tree and a binary-space partition tree, 
we see that caches work quite well and we get a speedup of over 
14 with 16 processors. The second application. Barnes-Hut is an 
N-body galactic simuiation solved using the Barnes-Hut algorithm 
(an O(MogiV) algorithm). Again we see that although the structure 
of the program is complex, good speedups are obtained 

The next application is Mincut It performs graph partitioning 
using parallel simulated annealing. We ran Mincut to find the min- 
imum bisection of a graph containing 500 nodes. Mincut achieves 
good speedups because there is extensive cache reuse as proces- 
sors traverse the graph and repeatedly consider moving nodes as 
the graph partition and annealing temperature change. 

The next application is a scaled matrix multiply. it uses 88x88 
square matrices on a single processor (obtaining 8.8 DP MFLOPS 
on a single processor) and 1408x 1408 matrices on 16 processors 
(obtaiiing 125 DP MFLOPS). The application below that is the 
Water code (the parallelized version of the MM? code from the 
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Figure 6. Speedup of applications on the DASH prototype. 

Perfect Club benchmarks), a molecular dynamics code. We mea- 
sured runs using 512 water molecuies. 

PSIM4 is an application from NASA-Ames, that is a particle- 
based simulator of a wind tunnel. PSIM4 is an enhanced version of 
the MP3D code (the application with the poorest speedup). both in 
terms of functionality (it models multiple types of gases and it 
models chemistry) and in terms of locality of memory accesses (it 
uses spatial decomposition of simulated space to distribute work 
among processors). The 16 processor run is done with over 
100,000 particles and it achieves a scaled speedup of over 12 in 
contrast to a speedup of about 4 achieved by the older MP3D code. 
While the changes in functionality make a direct comparison of 
absolute execution time for PSIM4 and MP3D impossible, the 
speedup improvements of PSfM4 over MP3D are very encourag- 
ing. 

The next application is Cholesky. It performs factorization of 
sparse positive-definite matrices using supemodal techniques (data 
blocking techniques that enhance the performance of caches both 
for uniprocessors and multiprocessors). Here it is used to solve a 
256x256 grid problem. We note that much of the fall off in 
speedup that we see is due to the trade-off between large data 
block sizes (which increase processor efficiency, but decrease 
available concurrency and cause load balancing problems) and 
small data block sizes. As we go to a large number of processors, 
we are forced to use smaller block sizes unless the problem size is 
scaled to unreasonably large sizes. The next application is Locus- 
Route which performs global routing of standard cells. It will be 
discussed later in this section. 

Finally. as stated before. MP3D is a particle-based wind-tunnel 
simulator. The measured runs simulated 40.000 particles. The 
spwiups for MP3D are poor because the particles are statically 
allocated to processors, but the space cells (representing physical 
space in the wind tunnel) are referenced in a relatively random 
manner depending on the location of the particie being moved. 
Since each move operation also updates the corresponding space 
cell. as the number of processors increases, it becomes more and 

more likely that the space ceil being referenced will be dirty in 
another processor’s cache. Thus, even with four processors. the 
speedup is poor. When a second cluster is added, speedup is flat 
because roughly half of the misses are now remote. MP3D’s 
speedups improve for 12 and 16 processors, but this does not com- 
pensate for the initial inefficiencies encountered with 4 and 8 pro- 
cessors. 

Overall, we see that many applications achieve good speedups. 
even though they have not been specially optimized on the DASH 
prototype. Almost all get over ten times improvement on sixteen 
processors, and some get above fourteen times speedup. 

6.23 Detailed Case Studies 

To get a better understanding of the detailed reference behavior of 

these applications, we now examine Barnes-Hut, Water, and 

LocusRoute in more detail. We also extend the results for these 
applications with preliminary results from the 32-processor DASH 
system (which has just been up for the last two weeks). As 
expected from Pigure6, Barnes-Hut and Water achieve good 
speedups on 32 processors (27.5 and 24.5 respectively), but the 
speedups for LocusRoute fall-off significantly (9.9 at 16. but only 
13.2 at 32). These applications were chosen because they achieved 
a range of speedups, and we were able to get results for them on 
the larger 32-processor system. We expect that once the 32-proces- 
sor kernel is better tuned the speedups will improve. 

6.2.3.1 Barnes-Hut 

The Barnes-Hut program[ 131 models the dynamic evolution of a 
system of galaxies under gravitational forces. Using the Barnes- 
Hut algorithm. the possible N2 interactions are reduced to MogN 
by a hierarchical decomposition of the galaxies and by approxi- 
mating groups of distant bodies by a single point at their center of 
mass. The input to the measured runs consisted of two interacting 
Plummer-model galaxies with 16384 bodies each. 

Table4 gives a detailed memory reference profile of Barnes-Hut 
running on DASH as measured by the hardware performance mon- 
itor.’ Table5 is broken into four sections: (i) overall perfo~~~ar’tce 
and processor utilization: (ii) memory request distribution: (iii) 
request locality and latency and (iv) bus and network utilization. 

The first section of the table gives the overall spcedup, efficiency 
relative to the uniprocessor, and processor utilization. Unfortu- 
nately, processor utilization cannot be measured directly from the 
bus. so the number in the table is an estimate that assumes the pm- 
cessor is doing active work whenever it is not waiting for a bus 
transaction to complete. This ignores internal stalls due to first- 
level cache misses satisfied by the second-level, TLB miss hart- 
dling. and floating-point interlocks.6 The number of busy clocks 
between stalls (third row) give an indication of cache hit rate and 
the application’s sensitivity to memory latency. 

As indicated by Table4. Barnes-Hut has a high and nearly constant 
cache-hit ratio, and a large fraction of its misses are local. Thus. 
processor efficiency and speedup are very good as the number of 
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processors increases. There is a small drop in efficiency as the first 
remote cluster is added, but the degradation beyond this is slight. 

The second section of Table4 gives a breakdown of the memory 
reference types. This breakdown indicates the rype of accesses that 
cause bus transactions and whether synchronization references are 
signiticant In Barnes-Hut. cache read misses dominate and there 
are few synchronizations. 

The third section of Table5 lists the fraction of local cache fills. 
the fraction of remote fills satisfied by a dirty-remote cluster (ratio 
of 3 cluster to 2 cluster fills), and the latency for local and remote 
cache fills. The locality figure counts any references satisfied in a 
single bus transaction as local, while any that must be repeated are 
considered remote. Thus. a remote reference that was satisfied by a 
local cache-tocache transfer between processors would be consid- 
ered local, and a local reference that was dirty-remote would be 
considered remote.‘l 

For Barnes-Hut, cluster locality is high and decreases only slightly 
as clusters are added. The actual locality of references (not given 
in the table) does decrease as clusters are ad&d, but most wmmu- 
nication is with nearby processors. Thus. even though the home for 
the data is remote, many remote accesses are satisfied by a local 
cache-to-cache transfer from another processor in the cluster. In 
addition, of the references that are remote, most misses are ser- 
viced by the home cluster. This results from the fact that most of 
these misses are to global data. and only the first processor needs 
to fetch this data from the producing (i.e. dirty) cluster. The others 
read the shared data from the home. 

The final section of Table4 indicates the load on the cluster bus 
and on the bisection of the mesh networks. Bus utilization is mea- 
sured directly by the performance monitor. while the network 
bisection utilizations are estimates assuming uniform network traf- 
fic. The bisection utilizations are calculated by knowing the total 
number of network messages sent. assuming half of the messages 
cross the bisection of the mesh, and dividing by the bandwidth 
provided across the bisections For Barnes-Hut. both the buses and 
networks are lightly loaded. 

In Barnes-Hut, as in the other applications studied, the bus loading 
is higher than the network bisection loading. This is due to the rel- 
atively slow cluster bus used in the prototype, and the retry mecha- 
nism used for the remote references which implies that each 
remote reference includes at least three bus accesses, but only one 
network request and one network reply. For the size of the proto- 
type, the individual cluster buses limit total memory bandwidth. In 
larger systems with more nodes and faster split-transaction cluster 
buses. we expect that the network bisection will limit aggregate 
memory bandwidth if accesses are uniformly distributed. 

6.23.2 Water 

Water is a molecular dynamics code from the field of ccmputa- 
tional chemistry. The application computes the interaction between 
a set of water molecules over a series of time steps. The algorithm 
is O(N’) in that each molecule interacts with all other molecules in 

8. llts factor of two incause when going ftcm 12 to 16 proceson uises boxurn tic 
32-pmcara DASH is amnged in l 4x2 grid. Cunuttiy, processon are numbe& 
md alloursd BRI in the X-dimmnon so that the 16 p-on run tn. 4x1 
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the system. As shown in Figure6, the Water application achieves 
good speedup on the DASH hardware. 

Table5 shows that cache-locality is high in Water, and the time 
between processor stalls indicates that it is not highly sensitive to 
memory latency. The table does show some reduction in the busy 
clocks between stalls, especially when going from 2 to 4 proces- 
sors, but the decrease is slight after this initial drop. In comparison 
with Barnes-Hut. Water achieves a slightly lower speedup due to 
lower cluster locality which increases the average miss penalty. As 
indicated by the fraction of dirty-remote cache reads. many more 
of the misses in Water are satisfied directly by the producing pro- 
cessor than in Barnes-Hut. 

Looking at the breakdown of memory reference types in Water. the 
percentage of synchronization references is fairly high. This is due 
in part to the high cache hit rates, and to the fact that every suc- 
cessful lock acquire or release references the bus in the prototype. 
Given the percentage of locks and unlocks are almost identical, 
this data aho indicates that lock contention is not a problem in 
Water. 

Finally. we see that like Barnes-Hut, Water does not put a heavy 
load on the memory system. While the table does indicate an 
increase in remote memory latency, this is due to the increasing 
fraction of remote misses that are dirty-remote as opposed to larger 
queuing &lays. 

6.2.3.3 LocusRoute 

LocusRoute is a standard-cell placement tool that uses actual 
routed area to evaluate the quality of a given placement. ?hus. the 
task that LocusRoute performs is the routing of a given cell place- 
ment. LocusRoute exploits parallelism at two levels. First. multi- 
ple wires are routed simultaneously. Second. different routes for 
the same wire are evaluated in parallel. The runs shown in Figure 6 
were for the route of a circuit consisting of 3817 wires and 20 rout- 
ing channels. 

LocusRoute achieves a respectable 9.9 times speedup on 16 pro- 
cessors, but speedup does not increase linearly when more than 16 
processors are used (only 13.2 times speedup on 32 processors). 
Comparing the reference behavior of LocusRoute shown in 
Table6 with that of Water, it is clear why LocusRoute does not 
achieve the same speedup. Fist, its cache hit rate (busy pclocks 
between stalls) is lower than Water. This makes it more sensitive to 
the increase in memory latency when going to multiple clusters. 
Second, as in Water, locality falls off with more processors and the 
fraction of dirty-remote references also increases. 

Considering the application data structures and algorithms. these 
effects are not surprising. In LocusRoute, most misses are due to 
the cost array which tracks the number of signals routed in a given 
section of a channel. The cost array is actively updated by each 
processor, and there is only limited reuse of the data structure as 
wires are routed. The result is a lower hit rate than Water and more 
sensitivity to locality. 

Looking at system loading, it is clear that LocusRoute puts more 
stress on the memory system than Barnes-Hut or Water. Bus utili- 
zation is moderate (3540%). The large latencies for remote mem- 
ory references when using 24 or 32 processors are due in part to 
hot spotting for the cost array. In the current implementation. this 

array is allocated only out of cluster O’s memory. For the 32-pro- 
cessor run, this cluster has over 65% bus utilization (as compared 
to the average of 37%). and we suspect there is substantial queuing 
at the PCPU. While removing this hot spot should improve perfor- 
mance, we expect that LocusRoute will achieve significantly better 
speedup on more than 16 processors only with larger problems. 
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Table 4. Barnes-Hut memory access characteristics 

Execuuon AttrIbute c. / 4 Proc. / 8 Proc. 1 12 Proc. 1 16 Proc. 1 24 Proc. 1 32 Proc. 
2.01 3.9 I 7.4 I 10.7 I 14.2 I 20.6 1 

1 Cache Kead Exclusive (%) 9.7 I 6.8 
C&he Lock (40) I 2.3 1.4, -.. , _._ , -.-, -.. , I 
Cache Unlock (%) 2.1 1.3 ( 0.7 ( 0.8 1 0.7 ( 0.8 1 0.6 ( 0.6 

Fractlon oi Keads Local (%) 97.8 99.0 I WAS I _ . .- x9.x I -_ ._ X6.8 I 84.9 I X2.6 I 825 

Fraction of Rem. Rds. Dirty-Rem (%) 21.8 21.0 21.2 9.1 6.4 5.7 5.5 5.1 
Avg hxl Cache Fill IPclksb 29.2 29.2 29.3 29.4 29.4 29.4 29.4 I 1 29.4 

Avg Rem L--.- _ .- ~_ _..-, Cxhe Fill (PcIks1 I , 106.6 ----- I 107.4 105.7 104.2 106.2 109.1 110.9 113.1 
I 
Bus Utiltzauon (%) 5.2 6.3, I 91 ___ , 9.X _._, 11.0 __._ , 10.2 1 10.9 I I 11.0 

Req. Net Bisection Util. (%) 0.6 n71 -. . n71 -. . nnl W.” n9I -._ 1.7 I -.. 1.9 I I 2.0{ 

Reolv Net Bisection Util. (%) 0.5 0.5 I 0.5 I 0.91 1.11 2.2 I 2.5 1 2.6 

Table 5. Water memory access characteristics 

te memory access characteristics Table 6. LocusRou _ 

I Execution Attribute 1 1 Proc. I 2 Roe. I 4 Prac. I 8 hoc. I 12Proc. 1 16 Prix. 1 24F’roc. 1 32Proc. 

8.4 I 1.01 2.0 I 3.8 I 6.3 I 
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6.2.4 Application Speedup Summary 

Overall. a number of conclusions can be drawn from the speedup 
and reference statistics presented in previous sections. First. it is 
possible to get near linear speedup on DASH for a number of real 
applications. Applications with the best speedup have good cache 
and cluster locality. Since most of the degradation in memory 
latency occurs when adding the first remote cluster, we expect 
most of the applications will perform well on 32 and 64 proces- 
sors. Speedup for many of the applications should be more than 24 
on 32 processors, and more than 45 on 64 processors, especially if 
problem size is increased. 

In absolute terms, the number of busy clocks between bus accesses 
indicates that caching of shared data improves performance sigrtif- 
icantly. For example, earlier simulation work with the SPLASH 
benchmarks [ 141 indicates that the reference rates for Water and 
LocusRoute to shared data (with 32 processors) is roughly one ref- 
erence every 20 and 11 instructions respectively. Given the num- 
ber of busy clocks between misses for Water and LocusRoute 
given in Table 5 and Table 6 (or even assuming that the number of 
processor instructions between stalls is optimistic by a factor of 
two due to internal stalls), caches are satisfying 92% of the shared 
references in Water (i.e. there are at least 506/2/20= 12 shared 
references for every miss), and 88% of the shared references in 
LocusRoute. Thus, processor utilization without caching would be 
only 26% in Water and only 13% in LocusRo~te.~ Overall. this 
implies that caching of shared data improves performance by a 
factor of 3.44.5 in these applications. but as shown earlier, only 
adds 10% to system cost.” 

Even with caches, however. locality is still important. If locality is 
very low and communication misses are frequent (as in MP3D). 
then speedup will be poor. However, for many applications, the 
natural locality of the applications is enough (e.g., Barnes-Huf 
Ratiiosity. Water) that good speedups can be achieved without 
algorithmic or programming contortions. Even in applications 
where natural locality is limited, DASH’s shared-address space 
model allows the programmer to focus on the few critical data 
structures that are causing loss in performance. rather than having 
to explicitly manage (replicate and place) all data objects in the 
program. 

7.0 Conclusions 

This paper has outlined our experience in building and starting to 
use the DASH prototype system. The first result from building the 
prototype is that such systems are feasible. While the coherence 
protocol and hardware are not trivial, such systems can be. built. 
Looking in more detail at the logic and memory costs exhibited by 
the prototype, we have shown that the logic overhead for support- 
ing distributed shared memory (without coherence) is about 10%. 
Supporting cache coherence adds another lO%-14% in logic and 
memory overhead if clustering is used. 

The second result of building the prototype has been an analysis of 
the memory system performance. At the lowest level. it is clear 
that remote memory latencies are significant. We believe this will 
remain true as processor speeds increase relative to the inherent 
delays of a large system. Thus. both cache and cluster locality are 
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important in this class of machines, and latency hiding techniques 
(e.g., prefetch) may be very useful. 

The prototype. system has also allowed us to measure applications 
with large data sets using the performance monitor hardware. A 
number of parallel applications have been run and most achieve 
good speedup. Many of these applications achieve better than 12 
times speedup on 16 ~ocessors. and the preliminary results with 
the 32processor machine indicate that many will also work well 
with 32 and 64 processors. 
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