
The DASH Prototype:

Implementation and Performance

Daniel Lenoski, James Laudon, Truman Joe, David Nakahira,

Luis Stevens, Anoop Gupta and John Hennessy

Computer Systems Laboratory
Stanford University, CA 94305

Abstract

The fundamental premise behind the DASH project is that it is fea-
sible to build large-scale shared-memory multiprocessors with
hardware cache coherence. While paper studies and software sirn-
ulators are useful for understanding many high-level design trade-
offs, prototypes are essential to ensure that no critical details are
overlooked. A prototype provides convincing evidence of the fea-
sibility of the design allows one to accurately estimate both the
hardware and the complexity cost of various features. and provides
a platform for studying real workloads. A 16-processor prototype
of the DASH multiprocessor has been operational for the last six
months. In this paper, the hardware overhead of directory-based
cache coherence in the prototype is examined. We also discuss the
performance of the system. and the speedups obtained by parallel
applications running on the prototype. Using a sophisticated harcl-
were performance monitor, we characterize the effectiveness of
coherent caches and the relationship between an application’s ref-
erence behavior and its speedup.

1.0 Introduction

For parallel architectures to achieve widespread usage it is impor-
tant that they efficiently run a wide variety of applications without
excessive programming difficulty. To maximize both high perfor-
mance and wide applicability, we believe a parallel architecture
should provide (i) the ability to support hundreds to thousands of
processors, (ii) high-perform.ance individual processors. and (iii) a
single shared address space.

One important question that arises in the &sign of such large-scale
single-address-space machines is whether or not to allow caching
of shared writeable data. The advantage, of course, is that caching
allows higher performance to be achieved by reducing memory
latency; the disadvantage is the problem of cache coherence.
While solutions to the cache coherence problem are well under-
stood for small-scale multiprocessors. they are unfortunately not
so clear for large-scale machines. In fact, large-scale machines cur-
rently do not suppon cache coherence. and it has not been clear
what the benefits and costs will be.

For the past several years, the DASH (Directory Architecture for
SHared memory) project has been exploring the feasibility of

Perm~ssmn IO copy wlthout fee all or pan of this material is granted

provided that the copies are not made or dlstrlbuted for direct commercial

advantage. the ACM copynpht nonce and the title of the publication and

IIS date appear, and notlce IS gwen that copymg IS by pernussion of the

Associanon for Compuunp Machmery. To copy otherwse. or IO republish.

requwes a fee and/or specific pemnsslon.

0 1992 ACM 0-89791.509-7/92/0005/0092 $1.50

building large-scale single-address-space machines with coherent
caches. The key ideas are to distribute the main memory among
the processing nodes to provide scalable memory bandwidth, and
to use a distributed directory-base-d protocol to support cache
coherence. To evaluate these ideas. we have constructed a proto-
type DASH machine. The full prototype will consist of sixty-four
33MHz MIPS R3OOO/R3010 processors. delivering up to 1600
MIPS and 600 scalar MFLOPS. An initial 16-processor prototype
has been working for the past several months, and we are currently
expanding this to the full 64-processor configuration.

This paper examines the hardware cost and performance character-
istics of the prototype DASH system. Cost is measured in terms of
the logic gates and the bytes of dynamic and static memory in the
base system and the added directory logic. Performance is mea-
sured in terms of memory system bandwidth and latency, and in
terms of parallel application speedups. For a represmtative set of
the measured applications, we also present detailed reference sta-
tistics and relate these statistics to the observed application speed-
ups. Finally. we describe the StrucNre of the performance monitor
logic which was used to take the detailed reference measurements.

The paper is organized as follows. Section 2 gives an overview of
the DASH architecture. Section 3 innoduces the DASH prototype
and describes the logic used for the directory-based coherence pro-
tocol. Section 4 details the hardware costs of the system. Section 5
outlines the StNCNre and function of the performance monitor
logic, and Section 6 presents the performance of the memory sys-
tem. and the speedups obtained by parallel applications NtUthtg on
the prototype. We conclude in Section 7 with a summary of our
experience with the DASH prototype..

2.0 The DASH Architecture

The DASH architecture has a two-level structure shown in
Figure 1. At the top level. the architecture consists of a set of pro-
cessing no&s (clusters) connected through a mesh interconnection
network. In turn, each processing node is a bus-based multiproces-
sor. Intra-cluster cache cohermce is implemented using a snoopy
bus-based protocol, while inter-cluster coherence is maintained
through a distributed directory-based protocol.

The cluster functions as a high-performance processing no&. In
addition the grouping of multiple processors on a bus within each
cluster amortizes the cost of the directory logic and the network
interface. This grouping also reduces the directory memory
requirements by keeping track of cached lines at a cluster as
opposed to processor level. (We will more concretely discuss the
role of clustering in reducing overhead in Section 4).

Figure 1. Block diagram of a 2x2 DASH prototype.

The directory-based protocol implements an invalidation-based
coherence scheme. A memory location may be in one of three
states: rutcached. that is not cached by any processing node at all;
shared. that is in an unmodified state in the caches of one or more
nodes: or dirty, that is modified in the cache of some individual
node. The directory keeps the summary information for each mem-
ory line, specifying the clusters that are caching it.

The DASH memory system can be logically broken into the four
level hierarchy shown in Figure 2. The level closest to the proces-
sor is the processor cache and is designed to match the speed of the
processor. A request that cannot be serviced by the processor cache
is sent to the second level in the hierarchy, the local cfrcsfer level.
This level consists of other processors’ caches within the request-
ing processor’s cluster. If the data is locally cached. the request can
be serviced within the cluster, otherwise the request is sent to the
directory home level. The home level consists of the cluster that
contains the directory and physical memory for a given memory
address. For some addresses, the local and home cluster are the
same and the second and third level access occur simultaneously.
In general, however. the request will travel through the intercon-
nect to the home cluster. The home cluster can usually satisfy a
request, but if the directory entry is in the dirty state, or in the
shared state when the requesting processor requires exclusive
access, the fourth. remote cluster level, must be accessed. The
remote cluster level responds directly to the local cluster level
while also updating the directory level.

In addition to providing coherent caches to reduce memory
latency, DASH supports several other techniques for hiding and
tolerating memory latency. DASH supports the release consistency
model, that helps hi& latency by allowing buffering and pipelin-
ing among memory requests. DASH also supports sojw(ve-con-
trolled non-binding prefetching to help hide latency of read
operations. Finally. DASH supports efficient spin locks in hard-
ware and fetch-and-incr/dccr primitives to help reduce the over-
head of synchronization. Since we will primarily be focussing on
the basic cache coherence protocol in this paper, we will not

Figure 2. Logical memory hierarchy of DASH.

describe the details of these optimization% For a more detailed dis-
cussion of the protocol and the optimizations. see [7.8].

3.0 The DASH Prototype

To focus our effort on the novel aspects of the design and speed
completion of a usable system, the base cluster hardware of the
prototype is a commercially available bus-based multiprocessor.
While there are some constraints and compromises imposed by the
given hardware. the prototype still makes an interesting research
vehicle.

The prototype system is based on a Silicon Graphics POWER Sta-
tion 4D/340 as the base cluster [3]. The 4DL340 system umsists of
four MIPS R3000 processors and R3010 floating-point coproces-
sors running at 33 MHz. Each R3OOO/R3010 combination can
achieve execution rates up to 25 VAX MIPS and 10 MFLOPS.
Each CPU contains a 64 Kbyte instruction cache and a 64 Kbyte
write-through data cache. The 64 Kbyte data cache interfaces to a
256 Kbyte second-level write-back cache. The interface consists of
a read buffer and a 4 word deep write-buffer. Both the first and sec-
ond-level caches are direct-mapped and support 16 byte lines. The
first-level caches run synchronously to their associated 33 MHz
processors while the second-level caches run synchronous to an
independent 16 MHz memory bus clock.

The second-level processor caches are responsible for bus snoop-
ing and maintaining coherence among the caches in the cluster.
Since the first-level caches satisfy most memory requests. the sec-
ond-level caches do not need duplicate snooping tags. Coherence
is maintained with a MESI (Illinois) protocol[121, and inclusion of
the first-level cache by the second-level. The main advantage of
using the Illinois protocol in DASH is the cache-to-cache transfers
specified in this protocol. While they do little to reduce the latency
for misses serviced by local memory, local cache-to-cache tram-
fers can greatly reduce the penalty for remote memory misses. The
set of processor caches effectively act as a cluster cache for remote
memory.

The memory bus (MPBUS) of the 4D/340 is a synchronous bus
and consists of separate 32-bit address and 64-bit data buses. The
MPBUS is pipelined and supports memory-to-cache and cache-to-
cache transfers of 16 bytes every 4 bus clocks with a latency of 6
bus clocks. This results in a maximum bandwidth of
64 Mbyteslsec.

419

RC Board DC Board

Figure 3. Directory and Reply Controller boards.

To use the 4D/340 in DASH, we have had to make minor modifi-
cations to the existing system boards and design a pair of new
boards to support the directory memory and inter-cluster interface.
The main modification to the existing boards is to add a bus retry
signal that is used when a request requires service from a remote
cluster. The central bus arbiter has also been modified to accept a
mask from the directory which holds off a processor’s retry until
the remote request has been serviced. This effectively creates a
split transaction bus protocol for requests requiring remote service.
The new directory controller boards contain the directory memory.
the intercluster coherence state machines and buffers, and a local
section of the global interconnection network.

While the prototype, with minor modifications, could scale to sup-
port hundreds of processors, the current version is limited to a
maximum configuration of 16 clusters and 64 processors. This
limit was dictated primarily by the physical memory addressability
of the 4D/340 system (256 Mbytes) which would severely limit the
memory per processor in a larger system.

The directory logic in DASH is responsible for implementing the
directory-based coherence protocol and interconnecting the clus-
ters within the system. Pictures of the directory boards are shown
in Figure 3. The directory logic is split between the two boards
along the lines of the logic used for outbound and inbound portions
of inter-cluster transactions.

The DC board contains three major subsections. The first section is
the directory conrrolter (DC) itself, which includes the directory
memory associated with the cachable main memory contained
within the cluster. The DC logic initiates all out-bound network
requests and replies. The second section is the performance moni-
tor which can count and trace a variety of intra- and inter-cluster

events. The third major section is the request and reply outbound
network logic together with the X-dimension of the network itself.

The second board is the RC board which also contains three major
sections. The first section is the reply controller (RC) which tracks
outstanding requests made by the local processors and receives
and buffers replies from remote clusters using the remore uccess
cache (RAC). The second section is the pseudo-CPU (PCPU).
which is responsible for buffering incoming requests and issuing
these requests onto the cluster bus. The PCPU mimics a CPU on
this bus on behalf of remote processors except that responses from
the bus are sent out by the directory controller. The final section is
the inbound network logic and the Y-dimension of the mesh rout-
ing networks.

Directory memory is accessed on each bus transaction. The direc-
tory information is combined with the tp of bus operation. the
address. and the result of snooping on the caches to determine
what network messages and bus controls the DC will generate. The
directory memory organization is similar to the original directory
scheme proposed by Censier and Feautrier [4]. Directory pointers
are stored as a bit vector with 1 bit for each of the 16 clusters.
While a full bit vector has limited scalability, it was chosen
because it requires roughly the same amount of memory as a iim-
ited-pointer directory [2. 6, 11. l] given the size of the prototype,
and it allows for more direct measurements of the caching behav-
ior of the machine. Each directory entry contains a single state bit
that indicates whether the clusters have a shared or dirty copy of
the data. The directory is implemented using DRAM technology,
but performs all necessary actions within a single bus transaction.

The reply controller stores the state of on-going requests in the
remote access cache (RAC). The RAC’s primary role is the coordi-

420

nation of replies to inter-cluster transactions. This ranges from the
simple buffering of reply data between the network and bus to the
accumulation of invalidation acknowledgments and the enforce-
ment of release consistency. The RAC is organized as a 128Kbyte
direct-mapped snoopy cache with 16byte cache lines. One port of
the RAC services the m-bound reply network while the other
snoops on bus transactions. The RAC is lockup-free in that it can
handle several outstanding remote requests from each of the local
processors. RAC entries are allocated when a remote request is ini-
tiated by a local processor and persist until all inter-cluster transac-
tions relative to that request have completed. The snoopy nature of
me RAC naturally lends itself to merging requests made to the
same cache block by different processors within the cluster, and it
takes advantage of the cache-to-cache transfer protocol supported
between the local processors. The snoopy structure also allows the
RAC to supplement the function of the processor caches. This
includes support for a dirty-sharing state for a cluster (normally the
Illinois protocol would force a write-back) and operations such as
prefetch.

As stated in the architecture section, the DASH coherence protocol
does not rely on a particular interconnection network topology.
The prototype system uses a pair of wormhofe routed meshes to
implement the interconnection network. One mesh handles request
messages while the other is dedicated to replies. The networks are
based on variants of the mesh routing chips developed at Caltech
where the datapaths have been extended from 8 to 16 bits[5].
Wormhole routing allows a cluster to forward a message after
receiving only the first flit (flow unit) of the packet greatly reduc-
ing the latency through each no& (= 5Ons per hop in our network).
The bandwidth of each self-timed link is limited by the round trip
delay of the request-acknowledge signals. In the prototype flits are
transferred at approximately 30 MHL resulting in a peak band-
width of 120 Mbytes/set in and out of each cluster.

4.0 Gate Count Summary

One important result of building the DASH prototype is that it pro-
vi&s a realistic model of the cost of directory-based cache coher-
ence. While some of these costs are tied to me specific prototype
implementation (e.g., the full DRAM directory vector), they pro-
vi& a complete picture of one system.

At a high level, the cost of the directory logic can be estimated by
the fact that a DASH cluster includes six logic cards. four of which
represent the base processing node and two of which are used for
directory and inter-cluster coherence. This is a very conservative
estimate, however, because Silicon Graphics’ logic. in particular
the MIPS processor chips and Silicon Graphics’ gate arrays, are
more highly integrated than the MS1 PALS and LSI FPGAs used in
the directory logic.

Table 1 summarizes the logic for a DASH cluster at a more
detailed level. The table gives the percent of logic for each section
and the totals in terms of thousands of 2-input gates, kilobytes of
static RAM, megabytes of dynamic RAM, and 16-pin IC equiva-
lents. RAM bytes include all error detecting or correcting codes
and cache tags. 16-pin IC equivalent is a measure of board area
(0.36 sq. inch), assuming through-hole technology (i.e. DIPS and
P(&s) was used throughout the design. (Actually about l/4 of the
CPU logic is implemented in surface mount technology, but the IC
Equivalent figures used here assume through-hole since all of the
logic could have been designed in surface mount.) The number of
2-input gates is an estimate based on the number of gate-array 2-
input gates needed to implement each function. For each type of

logic used in the prototype the equivalent gate complexity was cal-
culated as:

Custom VLSI Estimate based on part documentation.

CMOS Gate Array Actual gate count or estimate based on
master-slice size and complexity.

PAL Translation of 2-level minimized logic
into equivalent gates.

PROM Espresso minimized PROM files trans-
lated into 2-input gates. This includes the
primary state machines in the DC and RC,
but not the boot EPROMs for the CPUs.

TTL Gates in equivalent gate array macros.

Table 1. Percent of all logic in a DASH cluster.

The numbers in Table 1 are somewhat distorted by the extra logic
in the base Silicon Graphics’ hardware and the directory boards
that is not needed for normal operations. This includes (i) the per-
formance monitor logic on the directory board; (ii) the diagnostic
UARTs and timers attached to each processor: (iii) the Ethernet
and VME bus interfaces on the Silicon Graphics’ Vo board.’
Table 2 shows the percentage of this core logic assuming the items
mentioned above are removed.

As expected, only when measured in terms of IC equivalents (i.e.
board arca), is the cost of the directory logic approximately33%.
When measured in terms of logic gates the portion of the cluster
dedicated to the directory is 20%. and the SRAM and DRAM
overhead is 13.9% and 13.7% respectively.

Note that in the above analysis. we do not account for the hard-
ware cost of snooping on the local bus separately because these
costs are very small. In particular, the processor’s two-level cache
structure doesn’t require duplicate snooping tags. and the ps-
sor’s bus interface accounts for only 3.2% of the gates in a cluster.
Even if the second-level cache tags were duplicated. it would rep-
resent only 4.0% of a cluster’s SRAM. In practice. we expect most
fuNre systems will use microprocessors with integrated first-level
caches (e.g., MIPS R4000, DEC Alpha etc.) and to incorporate an
external second-level cache (witbout duplicafe tags) to improve
unipmcessor performance. Thus, the extra SRAM cost for snoop
ing (e.g., extra state bits) is expected to be negligible.

421

Table 2. Percent of core logic in a DASH cluster.

Looking at the numbers in Table2 in more detail also shows addi-
tional areas where the directory overhead might be improved. In
particular, the prototype’s simple bit vector directory grows in pro-
portion to the number of clusters in the system, and in inverse pro-
portion to cache tine size. Thus, increasing cache line size from 16
to 32 or 64 bytes would reduce the directory DRAM overhead to
6.9% and 3.4% respectively, or it could allow the system to grow
to 128 or 256 processors with the same 13.7% overhead. For larger
systems, a more scalable directory structure [2, 6. 11, l] could be
used to keep the directory overhead at or below the level in the
prototype. The directory’s overhead in SRAM could also be
impmved. The 128KB remote access cache (RAC) is the primary
use of SRAM in the directory. The size of the RAC could be sig-
nificantly reduced if the processor caches were lockup-free. With
enhanced processor caches. the primary use of the RAC would be
to collect invalidation acknowledgments and to receive granted
locks. This would allow a reduction in size by at least a factor of
four. and result in an SRAM overhead of less than 2%. Likewise, a
closer coupling of the base cluster logic and bus protocol to the
inter-cluster protocol might reduce the directory logic overhead by
as much as 25%. Thus, the prototype represents a conservative
estimate of directory overhead. A more ideal DASH system would
have a logic overhead of 1825%. an SRAM overhead of 2-8% and
a DRAM overhead 3-14%. This is still significant,2 but when
amortized over the cluster the overhead is reasonable.

The prototype logic distributions can also be extrapolated to con-
sider other system organizations. For example, if the DASH clus-
ter-based node was replaced by a uniprocessor node. the overhead
for directory-based cache-coherence would be very high. Ignoring
the potential growth in directory storage (that would need to track
individual processor caches instead of clusters), the percent of
directory logic in a uniprocessor node would grow to =44% (a
78% overhead). Thus. a system based on uniprocessor nodes
would lose almost a factor of two in cos@erformance relative to a
uniprocessor or small-scale multiprocessor.

Another possible system organization is one based on a general
memory or messaging interconnect but without support for global
hardware cache coherence (e.g., the BBN TC2000 or Intel Touch-
stone). An optimistic assumption for such a system is that it would
remove all of the directory DRAM and support. the RAC and its
datapath. and 90% of the RC and DC control pipelines. Under
these assumptions, the fraction of logic dedicated to the inter-clus-
ter interface falls to 10% of a cluster, and the memory overhead

becomes negligible. Thus, the cost of adding inter-cluster coher-
ence to a huge-scale. non-cache coherent system is approximately
10%. If more than a 10% performance gain is realized by this addi-
tion. then the overall cost/performance of the system will improve.
Our measurements on DASH indicate that caching improves per-
formance by far more than 10%. and support for global cache
coherence is well worth the extra cost.

Finally, by examining the required gate, memory, and connectivity
requirements, one can estimate how the prototype logic might be
integrated into a small number of VLSI components. As examined
in detail in [9]. such a system could consist of clusters based on the
following:

Four single-chip microprocessors with direct control of
their second-level caches and a their interface to the clus-
ter’s snoopy bus.

A single memory control chip interfaced to local DRAM
and the cluster bus.

Art Uo interface chip connecting the cluster to a high-speed
fiber optic IK) links (e.g.. fibre channel).

A single directory controller chip interfacing to an external

mixed SRAM-DRAM sparse directory, the cluster bus, and
a network chip.3

A single mesh routing chip supporting two logical 3-D
meshes.

This integrated system could maintain a similar directory logic and
memory overhead as the prototype, while supporting cache coher-
ence for 2K processors and 128 GBytes of memory.

5.0 Performance Monitor

One of the prime motivations for building the DASH prototype
was to study real applications with large data sets fIIMhIg On a

large ensemble of processors. To enable more insight into the
behavior of these applications when running on the prototype. we
have dedicated over 20% of the DC board to a hardware perfor-
mance monitor. Integration of the performance monitor with the
base directory logic allows non-invasive measurements of the
complete system without any external hardware. The performance
hardware is controlled by software. and it provides low-level
information on software reference characteristics and hardware
resource utilizations. The monitor hardware can trace and count a
variety of bus. directory and network events. The monitor is con-
trolled by a software programmable Xilinx gate array (FF’GA)[lS]
allowing flexible event selection and sophisticated event prepro-
cessing.

A block diagram of performance logic is shown in Figure4. It con-
sists of three major blocks. First, the FPGA which selects and p-
processes events to be. measured and controls the rest of the
performance logic. Second, two banks of 16Kx32 SRAMs and
inuement logic that count event occurrences. Third. a 2M x 36
trace DRAM which captures 36 or 72 bits of information on each
bus transaction.

The counting SRAMs together with the FPGA support a wide vari-
ety of event counting. The two banks of SRAM are addressed by
events selected by the FPGA. They can be used together to trace
events that occur on cycle by cycle basis. or the banks can be used

independently to monitor twice as many events. By summing over
all addresses with a particular address bit high or low the number
of occurrences of that event can be determined. Likewise, the con-

3. A smd l rsociaive RAC wouid be kept on-chip.

422

6.1 Processor Issue Bandwidth and Latency

Although the coherent caches in DASH signiticantly reduce the
number of remote accesses made by a processor, it is still essential
to minimize the latency when misses do occur. Table3 lists the
processor bandwidth and latency for cache memory operations in
DASH assuming no contention. (PClocb refer to processor clocks
which are 30~ in the prototype.) The delays are based on mea-

surements of the hardware, but extrapolated to a full 4x4 cluster
configuration. ln the table, the best-case numbers assume stride-
one access, with one cache miss every four references (cache lines
are 16 bytes). The worst-case numbers assume stride-four accesses
with no reuse of cache lines.

The table presents data separately for reads and writes. For reads,
the access latency is given by the last column of the table. The
latency can vary by more than two orders of magnitude depending
on where a read access is serviced in the memory hierarchy. The
read bandwidth also varies considerably, from a high of 133 Mbyt-
es/xc from the primary cache to a meager 4 Mbytes& if all of
the data is dirty in a remote non-home cluster. While. beyond a
point, not much can be done about reducing the latency in large-
scale machines, the bandwidth can be increased via pipelining. and
it is for this reason we have provided non-blocking prefetch opera-
tions in DASH. The times given for store operations are the rate at
which writes are retired fmm the write buffer into the second-level
cache after acquiring ownership. Release consistency is assumed
so that the processor need not wait for the write to retire, and inval-

idations do not affect write latency.

-ah

Figure 4. Block dlagam of the performance monitor logic

junction or disjunction of any set of events can be determined by
summing over the appropriate address ranges. Another use of the
count SRAM is as a histogram array. In this mode. certain events
are used to start. stop and increment a counter inside the FPGA.
The stop event also triggers the counter to be used as a SRAM
address to increment.

The current use of the counting SRAM in the prototype increments
the two banks of SRAM independently on each bus transaction.
The data in the first bank allows access type frequencies, bus utili-
zation. access locality, RAC performance, remote caching statis-
tics and network message frequency to be calculated. The second
bank of SRAM is addressed with the local cache snoop results and
histogram counters of remote latency. The snoop data allows one
to determine the effectiveness of cache-to-cache sharing within the
cluster. The remote latency histogram dedicates an internal FPCA
counter to each CPU which is enabled whenever a processor is
waiting for a remote access. This allows a complete distribution of
remote access iatencies to be determined. Furthermore. when com-
bined with the count of local bus cycles an estimate of processor
utilization can be made.

The other resource of the performance monitor is a 2 M x36 trace
array. Again. what information is traced can vary based on pro-
gramming of the FPGA. but the current use of the trace logic has
two modes. In the first configuration, up to 2M memory addresses
together with the issuing processor number and read/write staNs
are captured. The second mode can capture only 1 M addresses, but
adds additional bus and directory state, and a bus idle count to
each trace entry. This trace information can be used to do detailed
analysis of reference behavior or as input to a memory simulator.
With software assistance the tracer can be used to capture much
longer traces and trace all memory references.

6.0 Prototype Performance

This section examines the performance of the initial hardware pm-
totype of DASH which includes 16 processors in four clusters. The
first part summarizes the memory latencies measured on the proto-
type hardware. The second part describes the speedups obtained by
para11ei applications run on the aCNd machine.

Table 3. Cache operation bandwidth and iatencies.

Cache Beat Case 1 WorstCase

Operation MB/) Clock/) MB/ 1 Cl&
set word set word

Read from Ist-level cache 133.3 1.0 133.3 1.0

Fill from 2nd~lev. cache 29.6 I 4.5 1 8.9 1 15.0

Fill from local bus 16.7 8.0 4.6 29.0

Fill from remote 5.1 26.0 1.3 101.0

Fill from dirtv-remote 4.0 33.8 1.0 132.0
. 1

Wrtte rettred in cache 32.0 4.2 32.0 4.2

Write retired on local bus 18.3 7.3 8.0 16.7

Write retired on remote 5.3 25.3 1.5 88.7

Write retired on dirty-rem. 4.0 33.0 1.1 119.7

A more detailed break-down of the latency for local and remote
cache misses is given in Figure 5. The latency for a local miss that
is serviced within the cluster is based entirely on the base SC1
hardware (i.e., the hardware we have added to the SC1 clusters
does not slow the system down). In the prototype, a simple remote
miss (i.e., a miss that is serviced by a remote home cluster) takes
53.5 times longer than a local miss. The linal case illustrated in
Figure 5 represents the latency for fetching a location that is dirty
in a cluster other than its home. In thii case, an extra 30 clocks (or
lpsec) of delay is incurred in forwarding the request to the dirty
cluster. The DASH protocol supports the direct transfer of the dirty
data between the dirty and requesting cluster, reducing latency by
20% over a simpler protocol that first causes a writeback to the
home cluster and then replies to the requesting processor.

While latencies in the DASH prototype (when measured in micro-
seconds) are far from optimal. we believe that the delays when
measured in processor clocks are quite indicative of what we
expect to see in future large-scale machines. The reason is that

423

+ I I I I I

Figure 5. Cache fill latency in the DASH prototype.

while state-of-the-art technology (with integration and optimiza-
tion) would allow us to reduce the prototype’s latencies by a factor
of about three [9], state-of-the-art processor clock rates are also
about three times the 33 MHz used in the prototype. As a result. we
expect that exploiting cache and memory locality will continue to
be important in future huge-scale machines. as will mechanisms
that help hide or tolerate latency.

6.2 Parallel Application Performance

This subsection outlines the performance actually achieved on the
prototype for a number of parallel applications. We begin by
describing the software environment available on the prototype
and how the measurements were made. We then present the
speedup for nine parallel programs representing a variety of appli-
cation domains. Three of these applications are studied more in
greater detail using data captured by the performance monitor.

6.2.1 Application Runtlme Environment

The operating system running on the prototype DASH is a modi-
fied version of IRIX; a variant of UNIX System V.3 developed by
Silicon Graphics. The applications for which we present results are
coded in C that has been augmented with the Argonne National
Labs (ANL) parallel macros(lo] to control a MLMD. shared-mem-
ory programming model.

Before giving the speedup results in the next subsection, we first
state the assumptions used in measunng the speedups. The
speedup were measured as the time for the uniprocessor to execute
the parallel version of the application code (i.e. not all synchroni-
zation code is removed) divided by the time for the parallel appli-

cation to run on a given number of processors. The runs were
averaged over a number of executions to eliminate any scheduling
anomalies in UNIX. In some applications, the serial start-up time
is ignored horn the measurement because the runs used shortened
executions of the application (less time steps, etc.) to reduce mea-
surement tune. In production runs the start-up time would be neg-
ligible.

For our measurements, each application process is attached to a
processor for its lifetime. and we fully use one cluster before
assigning processors to new clusters. Physical memory pages used
by the application are allocated only from the clusters that are
actively being used, as long as the physical memory in those clus-
ters is enough. Thus, for an application running with 4 processes,
all memory is allocated from the local cluster, and all misses cost
about 30 clocks. However, with 8 processes. some misses may be
to a remote cluster and cost over 100 clock cycles. Most of the pro-
grams allocate shared data randomly or in a round-robin fashion
from the clusters being actively used. but some include explicit
system calls to control memory allocation4 Finally, all applica-
tions were run under processor consistency mode, i.e., writes were
not retired from the write-buffer until all invalidation acknowledg-
ments had been received, and no prefetching has been added.

6.22 Application Speedups

Figure6 gives the speedup for nine parallel applications running
on the hardware prototype using from 1 to 16 processors. The
applications cover a variety of domains. There are some scientific
applications (Barnes-Hut and Water), several engineering applica-
tions (Radiosity, MP3D. PSIM4. Locusroute) and two kernels
(Cholesky. Matrix Multiply and Mincut). Four of the programs
(Water, LocusRoute, MP3D and Cholesky) are taken from the
SPLASH parallel application suite[l4]. We begin with a quick
overview of all nine applications and then present the detailed ref-
erence behavior and performance of three of the applications (Bar-
nes-Hut, Water, and LocusRoute).

Starting with the applications with the best speedup. the Radiosity
application is fmm the domain of computer graphics. It computes
the global illumination in a room given a set of surface patches and
light sources using a variation of hierarchical n-body techniques.
l’he particular problem instance solved starts with 364 surface
patches. and ends with over 10.000 patches. While the data struc-
tures used are a complex act-tree and a binary-space partition tree,
we see that caches work quite well and we get a speedup of over
14 with 16 processors. The second application. Barnes-Hut is an
N-body galactic simuiation solved using the Barnes-Hut algorithm
(an O(MogiV) algorithm). Again we see that although the structure
of the program is complex, good speedups are obtained

The next application is Mincut It performs graph partitioning
using parallel simulated annealing. We ran Mincut to find the min-
imum bisection of a graph containing 500 nodes. Mincut achieves
good speedups because there is extensive cache reuse as proces-
sors traverse the graph and repeatedly consider moving nodes as
the graph partition and annealing temperature change.

The next application is a scaled matrix multiply. it uses 88x88
square matrices on a single processor (obtaining 8.8 DP MFLOPS
on a single processor) and 1408x 1408 matrices on 16 processors
(obtaiiing 125 DP MFLOPS). The application below that is the
Water code (the parallelized version of the MM? code from the

424

0 4 8 12 16
Number of Processors

Figure 6. Speedup of applications on the DASH prototype.

Perfect Club benchmarks), a molecular dynamics code. We mea-
sured runs using 512 water molecuies.

PSIM4 is an application from NASA-Ames, that is a particle-
based simulator of a wind tunnel. PSIM4 is an enhanced version of
the MP3D code (the application with the poorest speedup). both in
terms of functionality (it models multiple types of gases and it
models chemistry) and in terms of locality of memory accesses (it
uses spatial decomposition of simulated space to distribute work
among processors). The 16 processor run is done with over
100,000 particles and it achieves a scaled speedup of over 12 in
contrast to a speedup of about 4 achieved by the older MP3D code.
While the changes in functionality make a direct comparison of
absolute execution time for PSIM4 and MP3D impossible, the
speedup improvements of PSfM4 over MP3D are very encourag-
ing.

The next application is Cholesky. It performs factorization of
sparse positive-definite matrices using supemodal techniques (data
blocking techniques that enhance the performance of caches both
for uniprocessors and multiprocessors). Here it is used to solve a
256x256 grid problem. We note that much of the fall off in
speedup that we see is due to the trade-off between large data
block sizes (which increase processor efficiency, but decrease
available concurrency and cause load balancing problems) and
small data block sizes. As we go to a large number of processors,
we are forced to use smaller block sizes unless the problem size is
scaled to unreasonably large sizes. The next application is Locus-
Route which performs global routing of standard cells. It will be
discussed later in this section.

Finally. as stated before. MP3D is a particle-based wind-tunnel
simulator. The measured runs simulated 40.000 particles. The
spwiups for MP3D are poor because the particles are statically
allocated to processors, but the space cells (representing physical
space in the wind tunnel) are referenced in a relatively random
manner depending on the location of the particie being moved.
Since each move operation also updates the corresponding space
cell. as the number of processors increases, it becomes more and

more likely that the space ceil being referenced will be dirty in
another processor’s cache. Thus, even with four processors. the
speedup is poor. When a second cluster is added, speedup is flat
because roughly half of the misses are now remote. MP3D’s
speedups improve for 12 and 16 processors, but this does not com-
pensate for the initial inefficiencies encountered with 4 and 8 pro-
cessors.

Overall, we see that many applications achieve good speedups.
even though they have not been specially optimized on the DASH
prototype. Almost all get over ten times improvement on sixteen
processors, and some get above fourteen times speedup.

6.23 Detailed Case Studies

To get a better understanding of the detailed reference behavior of

these applications, we now examine Barnes-Hut, Water, and

LocusRoute in more detail. We also extend the results for these
applications with preliminary results from the 32-processor DASH
system (which has just been up for the last two weeks). As
expected from Pigure6, Barnes-Hut and Water achieve good
speedups on 32 processors (27.5 and 24.5 respectively), but the
speedups for LocusRoute fall-off significantly (9.9 at 16. but only
13.2 at 32). These applications were chosen because they achieved
a range of speedups, and we were able to get results for them on
the larger 32-processor system. We expect that once the 32-proces-
sor kernel is better tuned the speedups will improve.

6.2.3.1 Barnes-Hut

The Barnes-Hut program[131 models the dynamic evolution of a
system of galaxies under gravitational forces. Using the Barnes-
Hut algorithm. the possible N2 interactions are reduced to MogN
by a hierarchical decomposition of the galaxies and by approxi-
mating groups of distant bodies by a single point at their center of
mass. The input to the measured runs consisted of two interacting
Plummer-model galaxies with 16384 bodies each.

Table4 gives a detailed memory reference profile of Barnes-Hut
running on DASH as measured by the hardware performance mon-
itor.’ Table5 is broken into four sections: (i) overall perfo~~~ar’tce
and processor utilization: (ii) memory request distribution: (iii)
request locality and latency and (iv) bus and network utilization.

The first section of the table gives the overall spcedup, efficiency
relative to the uniprocessor, and processor utilization. Unfortu-
nately, processor utilization cannot be measured directly from the
bus. so the number in the table is an estimate that assumes the pm-
cessor is doing active work whenever it is not waiting for a bus
transaction to complete. This ignores internal stalls due to first-
level cache misses satisfied by the second-level, TLB miss hart-
dling. and floating-point interlocks.6 The number of busy clocks
between stalls (third row) give an indication of cache hit rate and
the application’s sensitivity to memory latency.

As indicated by Table4. Barnes-Hut has a high and nearly constant
cache-hit ratio, and a large fraction of its misses are local. Thus.
processor efficiency and speedup are very good as the number of

425

processors increases. There is a small drop in efficiency as the first
remote cluster is added, but the degradation beyond this is slight.

The second section of Table4 gives a breakdown of the memory
reference types. This breakdown indicates the rype of accesses that
cause bus transactions and whether synchronization references are
signiticant In Barnes-Hut. cache read misses dominate and there
are few synchronizations.

The third section of Table5 lists the fraction of local cache fills.
the fraction of remote fills satisfied by a dirty-remote cluster (ratio
of 3 cluster to 2 cluster fills), and the latency for local and remote
cache fills. The locality figure counts any references satisfied in a
single bus transaction as local, while any that must be repeated are
considered remote. Thus. a remote reference that was satisfied by a
local cache-tocache transfer between processors would be consid-
ered local, and a local reference that was dirty-remote would be
considered remote.‘l

For Barnes-Hut, cluster locality is high and decreases only slightly
as clusters are added. The actual locality of references (not given
in the table) does decrease as clusters are ad&d, but most wmmu-
nication is with nearby processors. Thus. even though the home for
the data is remote, many remote accesses are satisfied by a local
cache-to-cache transfer from another processor in the cluster. In
addition, of the references that are remote, most misses are ser-
viced by the home cluster. This results from the fact that most of
these misses are to global data. and only the first processor needs
to fetch this data from the producing (i.e. dirty) cluster. The others
read the shared data from the home.

The final section of Table4 indicates the load on the cluster bus
and on the bisection of the mesh networks. Bus utilization is mea-
sured directly by the performance monitor. while the network
bisection utilizations are estimates assuming uniform network traf-
fic. The bisection utilizations are calculated by knowing the total
number of network messages sent. assuming half of the messages
cross the bisection of the mesh, and dividing by the bandwidth
provided across the bisections For Barnes-Hut. both the buses and
networks are lightly loaded.

In Barnes-Hut, as in the other applications studied, the bus loading
is higher than the network bisection loading. This is due to the rel-
atively slow cluster bus used in the prototype, and the retry mecha-
nism used for the remote references which implies that each
remote reference includes at least three bus accesses, but only one
network request and one network reply. For the size of the proto-
type, the individual cluster buses limit total memory bandwidth. In
larger systems with more nodes and faster split-transaction cluster
buses. we expect that the network bisection will limit aggregate
memory bandwidth if accesses are uniformly distributed.

6.23.2 Water

Water is a molecular dynamics code from the field of ccmputa-
tional chemistry. The application computes the interaction between
a set of water molecules over a series of time steps. The algorithm
is O(N’) in that each molecule interacts with all other molecules in

8. llts factor of two incause when going ftcm 12 to 16 proceson uises boxurn tic
32-pmcara DASH is amnged in l 4x2 grid. Cunuttiy, processon are numbe&
md alloursd BRI in the X-dimmnon so that the 16 p-on run tn. 4x1
cnscmblc. Thu. L rmglc X-dimmston path scc(the lord of alI fcnw clusten.

the system. As shown in Figure6, the Water application achieves
good speedup on the DASH hardware.

Table5 shows that cache-locality is high in Water, and the time
between processor stalls indicates that it is not highly sensitive to
memory latency. The table does show some reduction in the busy
clocks between stalls, especially when going from 2 to 4 proces-
sors, but the decrease is slight after this initial drop. In comparison
with Barnes-Hut. Water achieves a slightly lower speedup due to
lower cluster locality which increases the average miss penalty. As
indicated by the fraction of dirty-remote cache reads. many more
of the misses in Water are satisfied directly by the producing pro-
cessor than in Barnes-Hut.

Looking at the breakdown of memory reference types in Water. the
percentage of synchronization references is fairly high. This is due
in part to the high cache hit rates, and to the fact that every suc-
cessful lock acquire or release references the bus in the prototype.
Given the percentage of locks and unlocks are almost identical,
this data aho indicates that lock contention is not a problem in
Water.

Finally. we see that like Barnes-Hut, Water does not put a heavy
load on the memory system. While the table does indicate an
increase in remote memory latency, this is due to the increasing
fraction of remote misses that are dirty-remote as opposed to larger
queuing &lays.

6.2.3.3 LocusRoute

LocusRoute is a standard-cell placement tool that uses actual
routed area to evaluate the quality of a given placement. ?hus. the
task that LocusRoute performs is the routing of a given cell place-
ment. LocusRoute exploits parallelism at two levels. First. multi-
ple wires are routed simultaneously. Second. different routes for
the same wire are evaluated in parallel. The runs shown in Figure 6
were for the route of a circuit consisting of 3817 wires and 20 rout-
ing channels.

LocusRoute achieves a respectable 9.9 times speedup on 16 pro-
cessors, but speedup does not increase linearly when more than 16
processors are used (only 13.2 times speedup on 32 processors).
Comparing the reference behavior of LocusRoute shown in
Table6 with that of Water, it is clear why LocusRoute does not
achieve the same speedup. Fist, its cache hit rate (busy pclocks
between stalls) is lower than Water. This makes it more sensitive to
the increase in memory latency when going to multiple clusters.
Second, as in Water, locality falls off with more processors and the
fraction of dirty-remote references also increases.

Considering the application data structures and algorithms. these
effects are not surprising. In LocusRoute, most misses are due to
the cost array which tracks the number of signals routed in a given
section of a channel. The cost array is actively updated by each
processor, and there is only limited reuse of the data structure as
wires are routed. The result is a lower hit rate than Water and more
sensitivity to locality.

Looking at system loading, it is clear that LocusRoute puts more
stress on the memory system than Barnes-Hut or Water. Bus utili-
zation is moderate (3540%). The large latencies for remote mem-
ory references when using 24 or 32 processors are due in part to
hot spotting for the cost array. In the current implementation. this

array is allocated only out of cluster O’s memory. For the 32-pro-
cessor run, this cluster has over 65% bus utilization (as compared
to the average of 37%). and we suspect there is substantial queuing
at the PCPU. While removing this hot spot should improve perfor-
mance, we expect that LocusRoute will achieve significantly better
speedup on more than 16 processors only with larger problems.

426

Table 4. Barnes-Hut memory access characteristics

Execuuon AttrIbute c. / 4 Proc. / 8 Proc. 1 12 Proc. 1 16 Proc. 1 24 Proc. 1 32 Proc.
2.01 3.9 I 7.4 I 10.7 I 14.2 I 20.6 1

1 Cache Kead Exclusive (%) 9.7 I 6.8
C&he Lock (40) I 2.3 1.4, -.. , _._ , -.-, -.. , I
Cache Unlock (%) 2.1 1.3 (0.7 (0.8 1 0.7 (0.8 1 0.6 (0.6

Fractlon oi Keads Local (%) 97.8 99.0 I WAS I _ . .- x9.x I -_ ._ X6.8 I 84.9 I X2.6 I 825

Fraction of Rem. Rds. Dirty-Rem (%) 21.8 21.0 21.2 9.1 6.4 5.7 5.5 5.1
Avg hxl Cache Fill IPclksb 29.2 29.2 29.3 29.4 29.4 29.4 29.4 I 1 29.4

Avg Rem L--.- _ .- ~_ _..-, Cxhe Fill (PcIks1 I , 106.6 ----- I 107.4 105.7 104.2 106.2 109.1 110.9 113.1
I
Bus Utiltzauon (%) 5.2 6.3, I 91 ___ , 9.X _._, 11.0 __._ , 10.2 1 10.9 I I 11.0

Req. Net Bisection Util. (%) 0.6 n71 -. . n71 -. . nnl W.” n9I -._ 1.7 I -.. 1.9 I I 2.0{

Reolv Net Bisection Util. (%) 0.5 0.5 I 0.5 I 0.91 1.11 2.2 I 2.5 1 2.6

Table 5. Water memory access characteristics

te memory access characteristics Table 6. LocusRou _

I Execution Attribute 1 1 Proc. I 2 Roe. I 4 Prac. I 8 hoc. I 12Proc. 1 16 Prix. 1 24F’roc. 1 32Proc.

8.4 I 1.01 2.0 I 3.8 I 6.3 I

427

6.2.4 Application Speedup Summary

Overall. a number of conclusions can be drawn from the speedup
and reference statistics presented in previous sections. First. it is
possible to get near linear speedup on DASH for a number of real
applications. Applications with the best speedup have good cache
and cluster locality. Since most of the degradation in memory
latency occurs when adding the first remote cluster, we expect
most of the applications will perform well on 32 and 64 proces-
sors. Speedup for many of the applications should be more than 24
on 32 processors, and more than 45 on 64 processors, especially if
problem size is increased.

In absolute terms, the number of busy clocks between bus accesses
indicates that caching of shared data improves performance sigrtif-
icantly. For example, earlier simulation work with the SPLASH
benchmarks [141 indicates that the reference rates for Water and
LocusRoute to shared data (with 32 processors) is roughly one ref-
erence every 20 and 11 instructions respectively. Given the num-
ber of busy clocks between misses for Water and LocusRoute
given in Table 5 and Table 6 (or even assuming that the number of
processor instructions between stalls is optimistic by a factor of
two due to internal stalls), caches are satisfying 92% of the shared
references in Water (i.e. there are at least 506/2/20= 12 shared
references for every miss), and 88% of the shared references in
LocusRoute. Thus, processor utilization without caching would be
only 26% in Water and only 13% in LocusRo~te.~ Overall. this
implies that caching of shared data improves performance by a
factor of 3.44.5 in these applications. but as shown earlier, only
adds 10% to system cost.”

Even with caches, however. locality is still important. If locality is
very low and communication misses are frequent (as in MP3D).
then speedup will be poor. However, for many applications, the
natural locality of the applications is enough (e.g., Barnes-Huf
Ratiiosity. Water) that good speedups can be achieved without
algorithmic or programming contortions. Even in applications
where natural locality is limited, DASH’s shared-address space
model allows the programmer to focus on the few critical data
structures that are causing loss in performance. rather than having
to explicitly manage (replicate and place) all data objects in the
program.

7.0 Conclusions

This paper has outlined our experience in building and starting to
use the DASH prototype system. The first result from building the
prototype is that such systems are feasible. While the coherence
protocol and hardware are not trivial, such systems can be. built.
Looking in more detail at the logic and memory costs exhibited by
the prototype, we have shown that the logic overhead for support-
ing distributed shared memory (without coherence) is about 10%.
Supporting cache coherence adds another lO%-14% in logic and
memory overhead if clustering is used.

The second result of building the prototype has been an analysis of
the memory system performance. At the lowest level. it is clear
that remote memory latencies are significant. We believe this will
remain true as processor speeds increase relative to the inherent
delays of a large system. Thus. both cache and cluster locality are

428

important in this class of machines, and latency hiding techniques
(e.g., prefetch) may be very useful.

The prototype. system has also allowed us to measure applications
with large data sets using the performance monitor hardware. A
number of parallel applications have been run and most achieve
good speedup. Many of these applications achieve better than 12
times speedup on 16 ~ocessors. and the preliminary results with
the 32processor machine indicate that many will also work well
with 32 and 64 processors.

Acknowledgments

This research has been supported by DARPA contract NOOO39-91-
C-0138. Dan Lenoski is supported by Tandem Computers Inc.
James Laudon is supported by IBM. Anoop Gupta is partly sup-
ported by a NSF Residential Young Investigator Award.

References

PI

VI

[31

[41

PI

161

[71

PI

I91

WY

Agarwal. A., B.-H. Lim, D. Kranz. and J. Kubiatowicz.
LimitLESS Directories: A Scalable Cache Coherence
Scheme. In Proc. Fourth Int. Conf. on Architectural Support
Programming Languages and Operating Systems. pp. 224-
234, 1991.

Agarwal, A., R. Simoni, J. Hesmessy. and M. Horowitz. An
Evaluation of Directory Schemes for Cache Coherence. In
Proc. 15th Int. Symp. on Computer Architecture. pp. 280-
289, 1988.

Baskett. F., T. Jetmoluk. and D. Solomon. The 4D-MP
Graphics Superworkstation: Computing + Graphics = 40
MIPS + 40 MFLOPS and 100,000 Lighted Polygons per
Second. In Proc. Compcon Spring 88. pp. 468471.1988.

Censier. L. and P. Feautrier. A New Solution to Coherence
Problems in Multicache Systems. IEEE Trans. on
Computers. C(27):1112-1118. 1978.

Flaig. C.M., VLSI Mesh Routing System. TechnicaI Report
5241:TR:87. California hstitute of Technology, May 1987.

Gupta, A.. W.-D. Weber. and T. Mowry. Reducing Memory
and Traffic Requirements for Scalable Directory-Based
Cache Coherence Schemes. In Proc. 1990 Ink Conf. on
Paratlel Processing. pp. I:312-321. 1990.

Lenoski. D., J. Laudon. K. Gharachorloo. A. Gupta. and J.
Hamessy. The Directory-Based Cache Coherence Protocol
for the DASH Multiprocessor. In Proc. 17th Int. Syw. on
Computer Architecture. pp. 148-159. 1990.

Lenoski. D.. J. Laudon. K. Gharachorloo. W.-D. Weber. A.
Gupta, J. Hetmessy. M. Horowitz and M. Lam. The Stanford
DASH Multiprocessor. Computer, 25(3), 1992.

L.enoski. D.E.. The Design and Analysis of DASH: A Scalable
Directory-Baccd Multiprocessor. Ph.D. Thesis. Stanford
University. 1991. Also available as Stanford University
Technical Report CSL-TR-92-507

Lusk E.. R. Overbeek. J. Boyle, R. Butler, T. Disz. B.
Glickfeld, J. Patterson, and R. Stevens, Portabfe Programs
for Parallel Processors. Holt, Rinehard and Winston.
Inc.1987.

[1 l] O’Krafka. B.W. and A.R. Newton. An Empirical Evaluation
of Two Memory-Efficient Directory Methods. In Proc. 17th
ht. Symp. on Computer Archtiecture. pp. 138-147, 1990.

[121 Papamarcos. M.S. and J.H. Patel. A Low Overhead
Coherence Solution for Multiprocessors with Private Cache
Memories. In Proc. 1 I th Int. Symp. on Computer
Architecture. pp. 348-354. 1984.

[131 Sin& J.P.. C. Holt. T. Totsuka. A. Gupta. and J.L. Hermessy.
L.oad Balancing and Data L.ocaiity in Parallel N-body
Techniques. Technical Report CSL-TR-92-505, Stanford
University, 1991.

[141 Singh. J.P.. W.-D. Weber, and A. Gupta, SPLASH: Stan/ord
Parallel Applications for Shared Memory. Technical Report
CSL-TR-9 1469. Stanford University, 199 1.

[IS] Xiliix, The Programnabie Gate Array Data Book. 1991.

429

