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DART, developed and maintained at the National Center for Atmospheric Research, provides 

well-documented software tools for data assimilation education, research, and development.

D
 ata assimilation combines observations with  

 model forecasts to estimate the state of a physi- 

 cal system. Developed in the 1960s (Daley 

1991; Kalnay 2003) to provide initial conditions for 

numerical weather prediction (NWP; Lynch 2006), 

data assimilation can do much more than initialize 

forecasts. Repeating the NWP process after the fact 

using all available observations and state-of-the-

art data assimilation produces reanalyses, the best 

available estimate of the atmospheric state (Kistler 

et al. 2001; Uppala et al. 2005; Compo et al. 2006). 

Data assimilation can estimate the value of existing 

or hypothetical observations (Khare and Anderson 

2006a; Zhang et al. 2004). Applications include 

predicting efficient f light paths for planes that re-

lease dropsondes (Bishop et al. 2001) and assessing 

the potential impact of a new satellite instrument 

before it is built or launched (Mourre et al. 2006). 

Data assimilation tools can also be used to evalu-

ate forecast models, identifying quantities that are 

poorly predicted and comparing models to assess 

relative strengths and weaknesses. Data assimilation 

can guide model development by estimating values 

for model parameters that are most consistent with 

observations (Houtekamer et al. 1996; Aksoy et al. 

2006). Assimilation is now used also for the ocean 

(Keppene and Rienecker 2002; Zhang et al. 2005), 

land surface (Reichle et al. 2002), cryosphere (Stark 

et al. 2008), biosphere (Williams et al. 2004), and 

chemical constituents (Constantinescu et al. 2007). 

Assimilation tools under different names are used 

in other areas of geophysics, engineering, economics, 

and social sciences.

The Data Assimilation Research Testbed (DART) 

is an open-source community facility that pro-

vides software tools for data assimilation research, 
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development, and education. Using DART’s carefully 

engineered ensemble data assimilation algorithms 

and diagnostic tools, atmospheric scientists, oceanog-

raphers, hydrologists, chemists, and other geophysi-

cists can construct state-of-the-art data assimilation 

systems with unprecedented ease. A basic data 

assimilation system for a large model can be built in 

person-weeks, and comprehensive systems have been 

built in a few months. Incorporating new observation 

types only requires creating a forward operator that 

computes the expected value of an observation given 

a model’s state.

DART includes interfaces to a number of large 

community atmospheric and oceanic models. For 

global NWP, DART produces ensemble mean analy-

ses comparable to analyses from major centers along 

with initial conditions for ensemble predictions. 

Forward operators for standard, in situ observations 

and novel types, like GPS radio occultation sound-

ings, are available. Tools to support applications like 

parameter estimation, sensitivity analysis, observing 

system design, and smoothing are also part of DART. 

The DART algorithms scale well on parallel comput-

ers, allowing large data assimilation problems to be 

studied. DART also includes many low-order models 

and an ensemble assimilation tutorial appropriate for 

undergraduate and graduate instruction.

Most operational NWP assimilation systems 

are based on variational calculus (Talagrand and 

Courtier 1987) and require enormous software de-

velopment efforts with large amounts of computer 

code specific to a particular prediction model and ob-

serving system (Mahfouf and Rabier 2000; Okamoto 

and Derber 2006). For now, these costs preclude the 

development of variational assimilation systems by 

small research groups.

Ensemble filters like those provided by DART are 

an alternative assimilation methodology. An ensem-

ble of forecasts is used every time data are assimilated. 

The forecasts are treated as a random draw from the 

probability distribution of the model’s state given all 

previously used observations. The sample covari-

ance between different state components determines 

how additional observations improve the ensemble 

estimate. Basic ensemble filters require only a predic-

tion model and a forward operator to compute the 

expected value of an observation given a model state. 

By way of contrast, the most advanced variational 

assimilation methods also require linearized models 

and forward operators, their adjoints, and additional 

prior knowledge about the covariance between differ-

ent model components (Kalnay et al. 2007).

DART takes advantage of the simplicity of ensem-

ble methods to facilitate the use of data assimilation 

with new models and novel observation types. A 

small, well-defined set of interface routines is needed 

for a new model to be used with DART. Several 

comprehensive atmosphere and ocean general cir-

culation models (GCMs) have been added to DART 

by modelers from outside the National Center for 

Atmospheric Research (NCAR; Table 1). Forward 

operators for new observation types also require a 

TABLE 1. A list of large geophysical models that have been used with the DART system.

Model Description Lead institution

Simple advection Tracer source/sink; low-order NCAR/Institute for Mathematics Applied to Geosciences (IMAGe)

Two-layer primitive equation Idealized GCM NOAA/Earth System Research Laboratory (ESRL)

Bgrid dynamical core Dynamical core of GCM NOAA/Geophysical Fluid Dynamics Laboratory (GFDL)

MIT GCM annulus Flow on rotating annulus MIT

WRF Regional/global prediction NCAR/Mesoscale and Microscale Meteorology Division (MMM)

WRF-Mars Martian GCM Caltech

WRF 1D column Column version of WRF NCAR/Research and Applications Lab (RAL)

GFDL AM2 Climate prediction GCM NOAA/GFDL NOAA/ESRL

CAM Climate prediction GCM NCAR/Climate and Global Dynamics (CGD)

CAM/Chem Climate chemistry GCM NCAR/Atmospheric Chemistry Division (ACD)

COAMPS Short-range NWP NRL Monterey

CMAQ Regional air quality University of Chicago

NCEP GFS (earlier version) Global NWP model NOAA/ESRL NOAA/NCEP

Rose Middle-atmosphere GCM NCAR/High Altitude Observatory (HAO)

MIT ocean GCM Ocean prediction model Scripps

1284 SEPTEMBER 2009|



small set of interface routines and can be created 

nearly independently of the forecast model.

DART provides a framework for developing, 

testing, and widely distributing advances in en-

semble data assimilation. The DART software and 

documentation have been downloaded by more than 

200 users during the last 2 yr from www.image.ucar.

edu/DAReS/DART/. DART runs “out of the box” on 

a variety of compilers and hardware, including those 

listed in Table 2. In addition, DART can be custom-

ized for real-time applications that require efficient 

use of large computers.

Some capabilities of the DART tools are described 

here using a series of examples ranging from assimila-

tion in toy models to global NWP, observing system 

design, and model improvement. Although the large 

model examples are for atmospheric applications, 

DART is also being used with models of the ocean 

and land surface, and for applications as diverse as 

economics and target tracking. The examples are 

followed by a description of the DART ensemble 

filter algorithms.

SAMPLE DART APPLICA-

TIONS. Low-order models. DART 

includes a dozen low-order dy-

namical systems that are used in 

the tutorial as educational tools 

and by data assimilation scientists 

for testing novel assimilation tech-

niques. Figure 1, from the DART 

tutorial, illustrates the operation 

of an ensemble filter in the Lorenz 

(1963, hereafter LOR) three-variable 

dynamical systems with its familiar 

butterfly attractor.

Ensemble analyses and uncertainty. 

DART algorithms and code identical 

to those used in LOR are applied to 

enormous models like atmosphere 

or ocean GCMs. Figure 2 shows 

a “spaghetti” plot produced by an 

80-member ensemble filter using 

NCAR’s Community Atmosphere 

Model (CAM) version 3.5 (Collins 

et al. 2006) and assimilating wind 

components and temperatures from 

radiosondes and aircraft and sat-

ellite cloud motion vectors every 

6 h. Operational NWP centers like 

the National Centers for Environ-

mental Prediction (NCEP) and 

the European Centre for Medium-Range Weather 

Forecasts (ECMWF) solve similar data assimilation 

problems with higher-resolution models, variational 

assimilation tools, and additional observations like 

satellite radiances. The figure shows the major winter 

storm that affected the 2007 American Meteorological 

TABLE 2. DART runs on the compilers and hardware 

shown here. Linux indicates single processor or 

clusters.

Compiler Hardware

Intel ifort Linux, Mac Intel, SGI Altix

Absoft f90 Mac PowerPC/Intel

PGI pgf90 Linux, Mac PowerPC/Intel

gfortran Linux, Mac PowerPC/Intel, cygwin

g95 Linux, Mac PowerPC

IBM x1f IBM Power 5/6

Pathscale pathf90 Linux

Lahey lf95 Linux

FIG. 1. The evolution of an ensemble Kalman filter assimilation system 

in the LOR model from the DART tutorial. Synthetic observations 

(black stars) are created by “observing” a long integration of the 

model and adding random noise to simulate observational error. 

The forecasts from an 80-member ensemble assimilation valid at 

four consecutive observing times are shown by colored dots; the 

background attractor is depicted by the thin gray curve resulting from 

the long integration. At time 1, the prior estimate is fairly compact. 

At time 2 the ensemble is passing through the bifurcating region, and 

the prior at time 3 is stretched out with members heading into each 

attractor lobe. The observation at time 3 is enough to compel all 

ensemble members into the correct lobe at time 4, but uncertainty 

is greater at this time.

1285SEPTEMBER 2009AMERICAN METEOROLOGICAL SOCIETY |



Society annual meeting in San Antonio, Texas. The 

ensemble mean height contours (not shown) fit the 

observations as well as the NCEP Global Forecast 

System (GFS), but the ensemble system provides in-

formation about the forecast uncertainty. Variability 

is smallest along contours with parcels that have been 

in well-observed regions for a long time. Contours 

over the western United States and adjacent Pacific 

have more variability than 

those over the northeast 

United States. The position 

and tilt of the deep trough 

over the Rocky Mountains 

are uncertain. Quantifying 

uncertainty in analyses 

and forecasts is a distinct 

advantage of ensemble data 

assimilation over varia-

tional methods.

Global NWP. The most ad-

vanced variational assimi-

lation systems are used for 

global NWP. Ensemble 

assimilation methods are 

competitive with three-

dimensional variational 

assimilation algorithms 

(Houtekamer et al. 2005; 

Whitaker et al. 2008), while 

the relative capabilities of ensemble 

filters and four-dimensional varia-

tional methods are a topic of ongoing 

research (Kalnay et al. 2007). The 

DART algorithms out of the box 

compare favorably with opera-

tional systems for the global NWP 

problem.

Figure 3 shows the monthly-

mean root-mean-square (RMS) 

error and bias of the ensemble mean 

for DART/CAM assimilations and 

6-h forecasts for January 2007. The 

data are generated by applying 

forward operators to the ensemble 

members to compute estimated 

values of radiosonde temperature 

observations and comparing the 

ensemble mean to the observations. 

The 6-h forecast metrics are the most 

informative, since the analysis fits 

are compared to observations that 

have already been assimilated and 

overfitting is a possibility (in any data assimilation 

system). These results depend on the assimilation 

system, the model, and the observations. Despite a 

lower-resolution model and fewer observations, the 

DART results for January 2007 compare favorably 

with the operational GFS system at NCEP for this 

month (see http://wwwt.emc.ncep.noaa.gov/gmb/

ssaha/ for comparison).

FIG. 2. A spaghetti plot of 6-h forecast 500-hPa height showing con-

tours from 20 of 80 ensemble members in a DART assimilation using 

the CAM GCM. The forecasts are valid at 1800 UTC 14 Jan 2007. 

Forecasts are more certain where the contours are more similar 

and less certain where spread is greater.

FIG. 3. Jan 2007 monthly mean bias (dashed) and RMSE (solid) for analyses 

(blue) and 6-h forecasts (green) of observed radiosonde temperatures aver-

aged over different vertical bands indicated by shading. The forecasts are 

produced by an 80-member ensemble filter using the CAM model and as-

similating radiosonde, ACARS, and cloud drift wind observations.
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Assimilating novel observation types. DART enables research-

ers to quantify the potential impact of new observation types 

on predictions of high-impact weather like tropical storms. 

Figures 4 and 5 show ensemble forecasts for Typhoon 

Shanshan in 2006 with initial conditions from DART 

with the Weather Research and 

Forecasting (WRF) regional 

prediction model (Skamarock 

et al. 2005). (DART has inter-

faces to all recent versions of the 

Advanced Research WRF model 

and works with both regional 

and global domains with nested 

higher-resolution subdomains.) 

Differences between the two 

ensembles of forecasts reflect the 

impact of assimilating GPS radio 

occultation measurements from 

the Constellation Observing Sys-

tem for Meteorology, Ionosphere 

and Climate (COSMIC) satellites 

(Rocken et al. 2000; Anthes et al. 

2008). A local refractivity for-

ward operator (Kuo et al. 2000) 

was used to map from the WRF 

state vector to the expected value 

of the observation. About 100 

COSMIC soundings per day are 

available in the region covered 

by the model.

The initial minimum surface pressure of the 

typhoon is significantly too weak (Fig. 4), in part 

because of the coarse 45-km WRF used in the 

assimilation. A quantitative assessment of sig-

nificance can be made by comparing the ensemble 

FIG. 4. The minimum sea level pressure of Typhoon Shanshan (2006) from an ensemble of 16 forecasts (black), 

the ensemble mean (green), and the best estimate of the observed (red). The forecasts are made with a 15-km 

grid WRF model while the initial conditions are 16 randomly chosen members of a 32-member ensemble 

analysis performed with a coarser 45-km WRF configuration. The assimilation uses (a) radiosondes, ACARS, 

cloud drift winds, QuikSCAT surface winds, and satellite thickness, and (b) all of the above as well as COSMIC 

radio occultation observations (Liu et al. 2008). About 100 COSMIC soundings per day are available in the 

region covered by the model.

FIG. 5. Forecasts of the estimated probability that rainfall will exceed 60 mm 

during the period from 1200 UTC 14 Sep to 1200 UTC 15 Sep 2007 initiated 

36 h before the start of the period. The probability at each grid point is com-

puted by dividing the number of forecast members that predicted excessive 

precipitation by 16, the total number of forecasts. As in Fig. 4, the assimilations 

producing the forecasts were made both (b) with and (a) without COSMIC 

radio occultation observations.
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samples for the two cases. As the 15-km forecasts ad-

vance, the predicted storms intensify but the forecasts 

from the analyses with COSMIC are significantly 

stronger. Even the forecasts with COSMIC are too 

weak in general, suggesting that further model im-

provements and additional observations are needed 

for better predictions.

Figure 5 demonstrates another ensemble capabil-

ity, estimating the probability of occurrence of an 

event. Ensemble forecasts starting from analyses 

using COSMIC observations indicate larger prob-

abilities of excessive precipitation and are more 

consistent with observations of heavy rainfall over 

northern Taiwan.

Adding the ability to assimilate a new type of ob-

servation like GPS radio occultation to DART only 

requires coding the forward operator function that 

maps from the model state to the expected observed 

value. No adjoints, linear tangents, or prior estimates 

of error covariances between the observation and 

state components are required. The same forward 

operator can be used with many models. For in-

stance, the COSMIC forward operator is also used 

with CAM, the AM2 atmospheric GCM from the 

National Oceanic and Atmospheric Administration’s 

(NOAA’s) Geophysical Fluid Dynamics Laboratory, 

and versions of NCEP’s GFS global model. DART 

has two radio occultation forward operators, one 

using local and another using nonlocal refractivity 

(Sokolovskiy et al. 2005).

Data assimilation support for field experiments. DART 

assimilations with NCAR’s Community Atmosphere 

Model with Chemistry (CAM-Chem) model provided 

real-time predictions for the 2008 Arctic Research of 

the Composition of the Troposphere from Aircraft 

and Satellites (ARCTAS) field experiment. This re-

quired incorporating an extended version of CAM 

and new observations into DART and running the 

system in real time. Ensemble-mean analyses of 

carbon monoxide (CO) concentration for a case used 

to prototype the real-time data assimilation system 

are shown in Fig. 6. Assimilations of the standard 

observations used in the CAM NWP experiments 

(Fig. 6a) are compared to a case that also assimilates 

observations from the Measurements of Pollution 

in the Troposphere (MOPITT) instrument on the 

National Aeronautics and Space Administration’s 

(NASA’s) Earth Observing System (EOS) Terra satel-

lite (Fig. 6b). The MOPITT observations modify the 

CO analysis to be more consistent with independent 

aircraft observations (Arellano et al. 2007). Because 

ensemble data assimilation provides estimates of the 

prior covariance between any model state component 

and any observation, incorporating additional state 

variables like  chemical tracers into existing DART-

compliant models is straightforward and can lead to 

improved estimates of all model variables.

Observing system design. As part of the ARCTAS cam-

paign, forecasts from several models and assimilation 

systems were used to make flight plans for aircraft 

taking special observations. Ensemble assimilations 

and forecasts provide estimates of the sensitiv-

ity of analyzed and predicted state components to 

additional observations. Questions like where an 

additional observation of CO concentration must be 

taken 6 h from the present to give the best possible 

FIG. 6. Ensemble-mean concentration of carbon monoxide at 700 hPa at 1800 UTC 17 Apr 2006 produced by 

20-member ensemble assimilations with the CAM/CHEM model. (a) Radiosondes, ACARS, and satellite cloud 

drift winds were assimilated; (b) same as (a), but augmented by observations of CO retrieved from MOPITT.
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forecast of concentrations at a given point 24 h further 

in the future can be answered quantitatively. Related 

experiments called Observation System Simulation 

Experiments (OSSEs) can assess the value of existing 

or planned observations. In an OSSE, a long time 

series from a model integration is treated as a proxy 

for the physical system. This model time series is 

referred to as the “truth” or a “nature run.” Synthetic 

observations are generated by computing the value of 

the observed quantities given the model’s state and 

adding random draws from the prescribed observa-

tional error distribution. The synthetic observations 

are then assimilated to investigate how they reduce 

differences between an analysis and the “true” model 

state. DART provides tools to do a variety of evalua-

tions of planned observations or enhanced observing 

system (Khare and Anderson 2006b).

Sensitivity analysis. Sensitivity analysis evaluates how a 

forecast is affected by changes to its initial conditions. 

DART ensemble analyses and forecasts can be used 

for sensitivity analysis to learn more about the impact 

of observations and the data assimilation system on 

forecasts and to increase understanding of model 

dynamics (Ancell and Hakim 2007; Torn and Hakim 

2008). Ensemble sensitivity is similar to adjoint and 

singular vector sensitivity (Baker and Daley 2000; 

Langley et al. 2002) from variational assimilation sys-

tems but requires little additional computation given 

the ensemble analyses and forecasts. Figure 7 displays 

the sensitivity of a 48-h forecast of 

Hurricane Katrina’s longitude to the 

initial conditions for the deep layer 

mean (850–250 hPa) zonal wind. 

The longitude forecast is sensitive to 

Katrina’s initial position and to the 

wind in the Gulf of Mexico. When 

a storm is farther east or easterly 

winds in the Gulf are weaker, the 

forecast storm is farther east.

Improving prediction models. Ensemble 

data assimilation is a powerful tool 

for improving prediction mod-

els, particularly climate models 

that are not normally confronted 

by high-frequency observations. 

Investigating the source of distinc-

tive gridpoint noise along 67°N in an 

ensemble mean analysis of 266-hPa 

meridional wind (Fig. 8a) revealed 

an incorrect implementation of the 

polar filter in an earlier version of 

the finite-volume CAM dynamical core. Figure 8b 

shows results from a reanalysis with a corrected polar 

filter. Subsequent examination revealed this noise in 

climate integrations of CAM. More subtle problems 

FIG. 7. The shading shows the sensitivity of a 48-h 

forecast of Hurricane Katrina’s longitude to the value 

of the analyzed 850–250-hPa-layer mean zonal wind. 

Units for the sensitivity are degrees of change per each 

standard deviation change in the analysis value. The 

contours are the analyzed ensemble-mean, layer-mean 

zonal wind (m s−1). The results are produced using fore-

casts initialized from a 96-member DART assimilation 

with a 27-km grid WRF model.

FIG. 8. The ensemble-mean 266-hPa meridional wind for 0000 UTC 

25 Sep 2006 from an 80-member DART assimilation with (a) an early 

version of CAM 3.5 and (b) a later version in which problems with 

the polar filter have been corrected.

1289SEPTEMBER 2009AMERICAN METEOROLOGICAL SOCIETY |



with the CAM dynamics were also detected with 

DART/CAM, catalyzing an on-going effort to im-

prove the numerical diffusion in the model.

Ensemble data assimilation can also tune model 

parameters directly to make predictions that are as 

consistent with observations as possible. Model pa-

rameters are recast as additional state variables so that 

each ensemble has its own estimate of each parameter. 

Parameter estimates are updated by observations just 

like the regular state variables (Aksoy et al. 2006). 

For instance, parameters from the gravity wave drag 

scheme in CAM were added to the state vector, and 

the resulting predictions fit observations better than 

the baseline DART/CAM. Parameter tuning remains 

a challenging statistical and numerical research prob-

lem that can be attacked with tools in DART.

Support for education. Many universities use the DART 

tutorial to introduce undergraduate and graduate 

students to ensemble data assimilation. DART can 

also be adapted to provide examples and exercises 

for particular applications. For instance, conveners 

of a workshop on carbon data assimilation at NCAR 

in July 2007 developed a low-order model of tracer 

production, transport, and destruction to investigate 

the relative value of observations of meteorological 

quantities and tracer concentration. The DART en-

semble smoother (Evensen and van Leeuwen 2000) 

estimated tracer sources using only observations in 

the free “atmosphere.” This low-order model was 

incorporated into DART in less than a day.

SEQUENTIAL ENSEMBLE DATA ASSIMI-

LATION. Figure 9 illustrates the assimilation algo-

rithms used in DART starting with a three-member 

(20 or more are needed for real applications) ensemble 

of model state vectors at time t
k
. A model produces 

ensemble forecasts for time t
k+1

 when the next obser-

vation is taken. Assuming that observational error 

distributions for all pairs of observations are inde-

pendent (which can be relaxed using more advanced 

algorithms), means observations can be assimilated 

sequentially (Anderson 2003). Therefore, the as-

similation algorithm can be described for a single 

observation without loss of generality.

A forward observation operator h is applied to each 

state vector to give prior estimates of the observation 

y. The observed value comes from the instrument 

while the observation likelihood depends on the 

instrument’s error characteristics. The likelihood 

is the probability that the instrument would have 

observed what it did if y were the true value of the 

observed quantity.

An ensemble filter combines the prior ensemble, 

the observation, and the likelihood to compute 

an updated ensemble estimate and corresponding 

increments to the prior ensemble. Most differences 

between ensemble filter algorithms in the geophysi-

cal literature (Evensen 2003; Pham 2001; Whitaker 

and Hamill 2002; Ott et al. 2004) are associated with 

computing the updated ensemble for the observed 

quantity.

DART includes a variety of algorithms for com-

puting the updated observation ensemble including 

the perturbed observation ensemble Kalman filter 

(EnKF; Burgers et al. 1998) and the ensemble ad-

justment Kalman filter (EAKF; Anderson 2001). 

The EnKF is a true Monte Carlo algorithm with a 

random number generator producing draws from 

the observation likelihood distribution, whereas the 

EAKF is a deterministic ensemble square root filter 

(Tippett et al. 2003).

The EAKF computes the updated ensemble for the 

observation as illustrated in Fig. 10. A normal distribu-

tion with the sample mean and standard deviation of a 

five-member prior is plotted. The observed likelihood 

FIG. 9. Idealized operation of an ensemble Kalman filter 

with major error sources indicated for each step. A 

three-member estimate of the model state at time t
k
 

(blue asterisks) is advanced to time t
k+1

 by a forecast 

model (green vectors). A forward observation opera-

tor, h, is applied to each state vector to obtain three 

estimates of an observation (green ticks on upper 

axes). The observed value (red tick) and the observa-

tion likelihood (red curve) are combined with the prior 

ensemble estimate to obtain an updated ensemble 

estimate (blue ticks) and increments (blue vector be-

low top right axis). The increments to the observation 

ensemble are regressed onto each state vector com-

ponent independently to generate increments (blue 

vectors on end of green vectors). The model is then 

used to advance the updated state estimates to time 

t
k+2

 when the next observation becomes available.
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is assumed to be normal; the mean of the likelihood, 

1.0 in this case, is the observed value from the instru-

ment. The Bayes theorem, the foundation of all data 

assimilation algorithms, indicates that the posterior 

distribution is the product of the prior distribution and 

the likelihood. The product of the prior normal and 

the normal likelihood is itself normal (after having its 

amplitude modified so that it is a probability distribu-

tion), with a standard deviation smaller than that of 

either the prior or the likelihood. The EAKF creates 

an updated ensemble by shifting the prior ensemble to 

have the same mean as the continuous posterior and 

then linearly contracting around the posterior mean 

so that the ensemble standard deviation is the same 

as that of the continuous posterior (Fig. 10b). For a 

simple problem with the linear forecast model, linear 

observation operators, normal observational errors, 

and an ensemble bigger than the model state vector, 

the EAKF is simply an algorithm for computing the 

Kalman filter (Kalman and Bucy 1961). Nevertheless, 

the EAKF does retain some nonnormal characteristics 

of the prior ensemble sample in the posterior sample. 

This can affect assimilations for applications like the 

LOR example shown in Fig. 1, where the apparent 

bimodality in the prior ensemble is maintained in the 

posterior ensemble.

Finally, increments for each component of the 

prior state vector are computed from the observation 

increments by linear regression. Figure 11 illustrates 

the joint prior distribution of an observed quantity 

and a state vector component (they have a positive 

correlation of about 0.6), the corresponding marginal 

distribution for the observation prior ensemble, and 

the updated ensemble computed as described in the 

previous paragraph. For the regression, the observa-

tion increments are projected onto the least squares 

line in the joint distribution. The increments from the 

joint distribution are projected onto the marginal dis-

tribution for the state vector component. The updated 

mean of the state component is larger than the prior, 

as one would intuitively expect given the positive 

correlation with the observed quantity.

FIG. 10 (TOP). A five-member ensemble of prior esti-

mates of an observed variable (green asterisks) has 

been obtained by applying a forward operator, h, to 

each ensemble state vector. It is illustrated (a) how the 

ensemble adjustment Kalman filter takes the product 

of a normal with the sample mean and variance of the 

ensemble (green curve) and a normal observation 

likelihood (red curve), resulting in a normal continuous 

posterior distribution (blue curve) and (b) how the pos-

terior ensemble is generated by first shifting the prior 

ensemble to have the same mean as the continuous 

posterior (blue curve) and then linearly contracting 

the ensemble so that it has the same variance as the 

continuous posterior.

FIG. 11 (BOTTOM). The large plot is the joint prior dis-

tribution of a five-member ensemble for an observed 

quantity and a state vector component (green aster-

isks) with a least-square fit shown in red. The lower 

plot shows the marginal distributions for the observed 

variable; the ensemble prior (green asterisks), the en-

semble posterior obtained by an ensemble adjustment 

Kalman filter (blue asterisks), and the increments 

(blue segments). These increments are projected 

onto the joint distribution using the least-squares line 

(blue segments in central panel) and these are in turn 

projected onto the marginal distribution for the state 

variable to give the state increments (left panel, blue 

segments).
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ADVANCED ASSIMILATION TOOLS. The 

simplicity of the basic ensemble filter algorithm has 

encouraged geophysicists to code their own imple-

mentations, but challenges to using ensemble data 

assimilation for geophysical applications remain. 

Figure 9 identifies potential error sources in each step 

of the assimilation process.

The computational expense of large geophysical 

prediction models compels the use of small ensembles 

that lead to large sampling error. DART provides tools 

to reduce sampling error in the regression step (step 

5, Fig. 9) using localization of observation impact 

(Houtekamer and Mitchell 2001; Hamill et al. 2001). 

The expected error in the regression is larger when 

the absolute value of the correlation between an 

observed quantity and a state variable component is 

small. When the two are uncorrelated, the observa-

tion should not impact the state variable, but a small 

ensemble can have spurious large correlations due to 

sampling error. This leads to an erroneous increase 

in ensemble confidence and random errors in the 

mean. Regression sampling error can be limited by 

reducing the impact of an observation on weakly 

correlated state vector components. The regression 

coefficient is multiplied by a localization factor that 

decreases from 1 to 0 as the physical distance be-

tween an observation and a state vector component 

increases. Defining effective localization factors for 

a given ensemble size, forecast model, and observa-

tional network requires extensive expert knowledge. 

To circumvent this requirement, DART includes a 

group filter that computes appropriate localizations 

automatically (Anderson 2007a). This tool uses a 

small “group” of ensembles during a training period 

to estimate localization factors that minimize ex-

pected sampling error.

Model error (unavoidable and often dominant in 

geophysics applications) and the other error sources 

noted in Fig. 9 also lead to ensemble estimates that are 

too confident (Baek et al. 2006). In the worst case, the 

prior estimates become so confident that observations 

are mostly ignored, resulting in filter divergence. 

Inflation (Anderson and Anderson 1999) increases 

uncertainty in the ensemble estimate by linearly ex-

panding the distance between each ensemble member 

and the ensemble mean. Whereas localization tries to 

eliminate the loss of variance due to sampling error, 

inflation treats the insufficient variance symptom 

caused by all error sources.

For some applications, a single value of inf la-

tion for each state vector component is effective 

in reducing the ensemble mean RMS error and 

increasing ensemble variance to appropriate values. 

However, a single inflation value can be problem-

atic for large geophysical applications (Hamill and 

Whitaker 2005). For instance, a fixed inflation of 1.5 

in an 80-member CAM assimilation with the obser-

vations used in earlier sections leads to significantly 

better ensemble-mean fits to observations over North 

America during the first week of an assimilation than 

a case with no inflation. However, ensemble variance 

in the Southern Hemisphere gradually increases 

until some model forecasts fail in the second week 

due to unrealistically strong winds. In the Southern 

Hemisphere, observations are sparse, and the fixed 

inflation required to ameliorate sampling error over 

densely observed North America leads to uncon-

strained growth of ensemble variance.

Inflation values must vary spatially to produce 

improved analyses and forecasts globally. Inflation 

that varies temporally as weather patterns or ob-

servation density vary in time is also useful. DART 

includes tools that allow ensemble data assimilation 

to automatically compute a temporally and spatially 

varying inflation (Anderson 2007b, 2009) as part of 

the assimilation. For each observation, the expected 

difference between the observed value and the prior 

ensemble mean estimate is computed from the prior 

ensemble, the observation, and the observation likeli-

hood. If the observation is farther from the ensemble 

mean than expected, more inflation is indicated; if it 

is closer, less is needed. Bayes’s theorem is used as in 

the basic ensemble assimilation to update the value of 

inflation for each component of the state vector.

We performed CAM assimilations for August 

2006 with no inflation and with DART’s most ad-

vanced damped adaptive inflation algorithm. The 

assimilations start from identical climatological 

ensembles. In 6-h forecasts of 500-hPa radiosonde 

temperature observations for these two assimilations, 

the spread (standard deviation) of the inflation case 

is larger and the RMS error is smaller. Monthly-mean 

RMS error is 0.99 for no inflation and 0.75 with infla-

tion (Fig. 12, bottom). Like operational assimilation 

systems, DART includes quality control algorithms to 

automatically detect and discard observations that are 

too far away from the prior ensemble. Observations 

that are many standard deviations farther away from 

the prior ensemble mean than would be expected 

given the prior variance and the observational error 

are discarded.

As the assimilation without inflation proceeds, the 

reduced ensemble variance and increased error leads 

to a gradual increase in the number of observations 

that are discarded, further degrading the assimilation 

(Fig. 12, top).
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The adaptive inflation fields that result in high-

quality assimilations can have complex structures 

in space and time. Figure 13 shows the inf lation 

pattern for 266-hPa zonal winds at the end of August. 

Inflation values vary from 1.0 (no inflation) to nearly 

14. The largest values are associated with areas with 

the highest density of Aircraft Communication 

Addressing and Reporting System (ACARS) obser-

vations from commercial aircraft. Large inflation is 

needed to account for model error in regions where 

dense observations reduce ensemble spread the most. 

Adaptive inflation facilitates the use 

of ensemble data assimilation in the 

presence of errors without the need 

for extensive tuning and assimila-

tion expertise.

DART includes a parallel version 

of the sequential ensemble filter 

using the message passing interface 

(MPI) programming model. The 

scaling characteristics of the algo-

rithm are designed to be indepen-

dent of the model and observations 

being assimilated (Anderson and 

Collins 2007). For sufficiently large 

models, the algorithm scales to an 

arbitrary number of processors. 

DART algorithms developed using 

low-order models can be applied to 

the largest geophysical models on 

large scalable computers.

The low-order model examples 

provided with DART can be run 

in seconds on a modern laptop. 

However, data assimilation with 

large models requires significant 

computational resources. For ex-

ample, a 20-member assimilation 

for a 1-month period uses a total 

of 20 months of model forecasts. 

At least 20 ensemble members are 

needed for good results in atmo-

spheric applications.

The chemical assimilation shown 

in Figure 6 uses 20 members, the 

typhoon results shown in Fig. 5 use 

32 members, and the global NWP in 

Fig. 2 uses 80 members. In all three 

cases, the cost of assimilating the 

available observations is approxi-

mately equal to the cost of advancing 

the model. Details of the cost depend 

on the density of observations and 

the localization used, but a rough estimate of cost is 

twice that of advancing the ensemble forecasts over 

the assimilation period. Large model runs are typi-

cally configured on a supercomputer or Linux cluster 

with one MPI task for each ensemble member. As 

an example, the CAM NWP case requires approxi-

mately one wall-clock day on 80 processors of an IBM 

POWER6 system to assimilate a month of data with 

roughly half a million observations per model day. 

More details of the expected computational costs can 

be found in Anderson and Collins (2007).

FIG. 13. The inflation field at 1800 UTC 31 Aug 2006 from the 

80-member ensemble Kalman filter using CAM and the DART 

damped adaptive inflation. Large values of inflation are needed to 

compensate for model error in areas where dense ACARS observa-

tions from aircraft lead to small ensemble spread.

FIG. 12. (bottom) The RMSE of the ensemble mean (solid) and the 

ensemble spread (dashed) for 6-h forecasts of observed 500-hPa ra-

diosonde temperatures for Aug 2006 over the Northern Hemisphere. 

The forecasts are generated by 80-member ensemble filters using the 

CAM model without any inflation (blue) and using the DART damped 

adaptive inflation (red). (top) The number of observations used by 

the two assimilations at each assimilation time; the lower points are 

for 0600 and 1800 UTC assimilations while the upper points are for 

0000 and 1200 UTC when radiosondes are more plentiful.
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The basic DART algorithms are coded in Fortran 

90 and controlled by namelist interfaces. Diagnostic 

output files describing model variables are in Network 

Common Data Form (NetCDF) whereas observa-

tion input and diagnostic files are in a special DART 

format. DART includes tools to convert common 

observational datasets, for instance NCEP PREPBUFR 

files, into this format. A suite of MATLAB scripts is 

included to produce plots from the diagnostic files. All 

figures shown here were produced by these scripts.

The Data Assimilation Research Section (DAReS) 

at NCAR provides limited support to users of DART. 

Comprehensive support is provided for the incorpo-

ration of new models, observations, or assimilation 

algorithms that are of broad community interest. For 

instance, DAReS has actively supported the incorpo-

ration of new models like the Community Multiscale 

Air Quality (CMAQ) model, the Massachusetts 

Institute of Technology (MIT) Ocean Model, and the 

Coupled Ocean–Atmosphere Mesoscale Prediction 

System (COAMPS). Scientists with interesting new 

data assimilation challenges are encouraged to seek 

collaborations with the DAReS staff.

SUMMARY. The DART community ensemble data 

assimilation facility provides students, educators, 

and scientists with unprecedented access to free, 

state-of-the-art assimilation tools. DART’s compre-

hensive tutorial, low-order models, and examples can 

introduce students to ensemble data assimilation on 

their laptops. The same tools can produce analyses 

using 10-million-variable climate system models, 

novel remote sensing observations, and the newest 

supercomputers. This enables students to advance 

quickly from basic understanding to meaningful 

research projects. DART can also accelerate scientific 

progress by modelers and observational research-

ers who do not have resources to develop their own 

assimilation systems.

Future DART releases will include enhanced par-

allel methods that scale for thousands of processors, 

novel algorithms to deal with nonlinearity and 

non-Gaussianity in ensembles, and carefully docu-

mented MATLAB versions of the core DART algo-

rithms for students. DART users are also contributing 

new models, observation types, and algorithms. By 

providing a nexus for a growing community of data 

assimilation users and experts, DART can provide 

an increasingly powerful and flexible set of tools for 

ensemble data assimilation.
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