The Data Center as a Grid Load Stabilizer

Hao Chen^{*}, Michael C. Caramanis^{**} and Ayse K. Coskun^{*}

*Department of Electrical and Computer Engineering **Division of Systems Engineering Boston University

{haoc, mcaraman, acoskun}@bu.edu

Power Grid & Market

- Power supply = demand ? (=> blackouts)
- Renewable energy sources: intermittent

- Lack of reliable, large-scale, economical energy storage solutions
- Independent System Operator (ISO):
 - New power market features:
 - Demand side regulation service (RS)
 - Credits provided to the participant who modulates its power consumption <u>dynamically</u> so as to track the *RS signal*

Demand Side – Data Centers

- Electricity: 3% of the overall consumption in the US^[1]
- Power capping /management techniques
 - Enable flexibility in power consumption
- Workload flexibility

Data centers offer a unique opportunity for providing power regulation service (RS) reserves.

Benefits of Participation

- Help solve unstable renewable energy problem
- Provide additional reserves to accommodate other less flexible uses of electricity
- Achieve significant monetary savings

[1]: J. Koomey. Growth in Data Center Electricity Use 2005 to 2010. Oakland, CA: Analytics Press. August, 1, 2010.

Data Centers in Advanced Power Market

Contributions

- A dynamic control policy for solving *server commitment* problem, leveraging:
 - Server-level power capping techniques
 - Information on server power states and overheads
 - Job scheduling & allocation decisions
- RS provision bidding value estimation
- Data center level (compared to previous work on a single server)
- Our solution is able to accurately track the ISO signal, and:
 - We achieve 50%+ monetary savings
 - The proposed policy does not cause major QoS degradation
 - Policy is agnostic of the specific type of workloads running
 - Significant improvement in both monetary savings and QoS compared to prior results based on a single server (Chen et al. ICCAD 2013)

Outline

Background

- Data Center Power Management
- Power Market and Data Center Participation

h

- Regulation Service (RS)
- Data Center Model
- Dynamic Power Control Policy
- Regulation Reserves Bidding
- Results

Data Center Power Management

2 threads 1 thread

Data Center Server Farms:

Power and resource budgeting [Zhan DAC13][Gandhi SIGMETRICS09];

OS

Server Commitment: sleep and idle [Meisner • Sigplan Not09][Isci ISCA13][Gandhi IGCC12].

os

OS

OS

1.3

Single Server Level:

- DVFS [Li HPCA06]
- Power Capping: DVFS + multithread allocation/migration [Cochran et al. Micro11] [Rangan et al. ISCA09][Reda et al. Micro12]

Virtual Machine:

GHz GHz GHz

2.53

GHz

2.13

GHZ GHZ GHz

1.87 2.00

GHZ

1.73

.60 GHz

- Power allocation [Nathuji et al. HPDC08]
- Resource consolidation policy [Hwang et al. ISLPED12]

Power Market and Data Center Participation

Power Market:

- Dynamic pricing policy for RS bidding [Caramanis CDC12]
- Smart building RS provision [Paschalidis CDC-ECC11]

Data Center Participation:

- Analytical profit model of data center participation [Ghamkhari SmartGridComm12]
- Analysis of different advanced power market for data centers to participate [Aikema IGCC12]
- Workload allocation among geographically distributed data centers [Wang ICDCS13][Wang SIGMETRICS13]

🔄 Smart Grid

This work is the first to design policies for the data center for:

- Power budgeting and management
- Server commitment

to <u>enable the data center</u> to participate in the advanced power market programs.

Regulation Service (RS)

Outline

- Background
- Data Center Model
- Dynamic Power Control Policy
- Regulation Reserves Bidding
- Results

Data Center Model

- Server States:
 - Active: P_{server} = P_{dyn} + P_{static}
 - P_{dyn} can be modulated by DVFS or CPU resource limits
 - $P_{dyn} = k * RIPS$
 - Idle: P_{server}= P_{static}
 - Sleep: P_{server}= P_{sleep}
 - Constant low power, but resuming from sleep has time delay (t_{res}) and energy cost (E_{loss})
- Servicing Model:

Each server: 1 job at a time

Outline

- Background
- Data Center Model
- Dynamic Power Control Policy
 - Goals and Optimization Problem
 - Designed Rules and Policies
- Regulation Reserves Bidding
- Results

Dynamic Power Control Policy

- Goals:
 - Reduce the tracking error (t) =

$$\frac{\left|P_{real}(t) \quad P_{cap}(t)\right|}{R}$$

- Improve the energy efficiency, including:
 - reduce the energy waste during the server state transition period
 - reduce the static energy waste
- Reduce the workload QoS performance degradation
- **Optimization**:

 $\min_{u(t) \ U(x(t))} J(x(t), u(t)) = \frac{1}{|P_{real}(t) \ P_{cap}(t)|} + \frac{1}{2} N_{tran}(t) \frac{1}{3} N_{sleep}(t) \frac{1}{4} N_{peak}(t)$

Tracking Error Transition Energy Waste Static Energy Waste

- x(t): data center states at t (including server states and workload states);
- u(t): available control set at t;
- N_{tran}(t): # of servers that are suspending to or resuming from the sleep state at t;
- N_{sleep}(t): # of servers in sleep at t;
- N_{peak}(t): # of servers running at their peak capacities at t.

Dynamic Power Control Policy

Additional Designed Rules:

• For a server that is running a job:

=> keep active at a power rate at least P_{min} until job finished, to guarantee QoS;

• When no jobs are waiting in the queue:

=> no idle server is activated.

- Server State Transition Rules [Gandhi IGCC12]:
 - A server that has been in idle > t_{tout} (timeout threshold):
 - => goes to sleep;
 - When a new job arrives:

=> select the server with the smallest current t_{idle}(t) to activate;

• When we need to force servers to sleep:

=> select the servers with the largest current $t_{idle}(t)$ to put to sleep.

 $t_{idle}(t)$: the time that a server has been in the idle state at time t.

Dynamic Power Control Policy

Control Policy:

- Case 1: P_{real}(t-1) < P_{cap}(t)
 - 1. Active servers with $P_{server} < P_{peak}$: $P_{server} \rightarrow P_{peak}$;
 - 2. Existing waiting jobs and idle servers: activate idle servers $\rightarrow P_{peak}$;
 - 3. Sleeping servers: resume using *server state transition rules*. Do the above three steps in order until $P_{real}(t) = P_{cap}(t)$.
- **Case 2**: $P_{real}(t-1) > P_{cap}(t)$
 - 1. Active servers with $P_{server} < P_{peak}$: $P_{server} \rightarrow P_{min}$;
 - 2. Active servers with $P_{server} = P_{peak}$: $P_{server} \rightarrow P_{min}$;
 - 3. Idle servers: suspend using *server state transition rules*.

Do the above three steps in order until $P_{real}(t) = P_{cap}(t)$.

Outline

- Background
- Data Center Model
- Dynamic Power Control Policy

- Regulation Reserves Bidding
 - Estimate (P, R)
- Results

Regulation Reserves Bidding

Average Power Consumption: Avg. # of Servers in diff. states Transition power waste $\overline{P} = \frac{{}^{1h}(\overline{P} + Rz(t))dt}{1h} = \overline{N}_{active} * P_{active} + \overline{N}_{idle} * P_{idle} + \overline{N}_{sleep} * P_{sleep} + \frac{E_{loss,1h}}{1h}$ (1) Power of Servers in diff. states # of state transitions in 1h $E_{loss,1h} = E_{loss} * \dot{N}_{res} \quad (t_{res} * N_{tran}) \times (p_b * N_{dc}) \quad (2)$ Energy waste of each transition $N_{dc} = N_{active} + N_{idle} + N_{sleep} \quad (3)$ $\overline{N}_{active} = \frac{{}_{0}^{1h} N_{active}(t) dt}{1h} \quad \frac{E_{dyn}}{P_{\star} \quad *1h} \quad \frac{*kI}{P_{\star} \quad *1h} \quad (4)$ $\overline{N}_{idle} = \overline{N}_{sleep} | \mathsf{Slack}$ Min, Max power of servers **Regulation Reserve:** $R \min\{N_{dc}P_{peak} \ \overline{P}, \ \overline{P} \ N_{dc}P_{sleep}\}$ # of servers in the data center

Outline

- Background
- Data Center Model
- Dynamic Power Control Policy
- Regulation Reserves Bidding
- Results
 - Methodology
 - Single Server vs. Data Center
 - Fast Sleep vs. Deep Sleep
 - Impact of Cluster Utilization
 - Impact of Different Workloads

Methodology

VMware vSphere 5.1

Wattsup Power Meter

- 1-hour long HPC type workload (run 10 times)
- Applications from PARSEC 2.1 multi-threaded benchmark suite
- Job arrivals follow a Poisson process
- Generated by Monte Carlo method
- Data Center: 100 Servers

Synthetic workload can fill in the idle periods.

QoS & Monetary Savings (ICCAD'13)

160

140

120

100

20

\$ 80

Similar Performance...

29% Monetary Savings!!!

- 10,000 identical servers
- w/o Cap: E P(t)
- Fixed Cap: ${}^{E}\overline{P}$
- Regulation:

$${}^{E}\overline{P}$$
 (${}^{R}R$ ${}^{R}c[{}^{2}+({}^{-})^{2}]$) 40

Results - Single Server vs. Data Center

Regulation Reserves (R) /Avg. Power Consumption (\overline{P}):

- Single Server: 29.7%
- Data Center: 56.8%

Results - Fast Sleep vs. Deep Sleep

Deep Sleep (t_{res}=200s, P_{sleep}=5%*P_{peak}, P_{tran}=P_{peak}): 36.9%

Results - Impact of Cluster Utilization

• 75% Utilization: 21.8%

Results - Impact of Different Workloads

CLUSTER LEVEL POWER REGULATION ON DIFFERENT WORKLOADS

	Blackscholes	Canneal	Streamcluster	Facesim	
\bar{P}	$9.75*10^3$	$9.71*10^3$	$9.84*10^3$	$9.84*10^3$	
R	$5.54*10^3$	$4.98*10^3$	$5.46*10^3$	$5.11*10^3$	
\bar{D}	1.13	1.13	0.21	0.22	Qos
σ_D	1.54	0.69	0.26	0.27	Degradatio
$\overline{\epsilon}$	0.03	0.03	0.03	0.03	Tracking
σ_ϵ	0.10	0.09	0.09	0.09	Error
R/\bar{P}	56.8%	51.3%	55.5%	52.0%	

^{*a*}*D* and σ_D are mean and standard deviation of performance degradation; $\bar{\epsilon}$ and σ_{ϵ} are mean and standard deviation of tracking error.

Conclusion & Future Work

- A dynamic control policy for the data center RS provision
- An estimation method to calculate the RS provision bidding value
- Data centers are promising candidates for RS provisioning:
 - Accurately track the RS signal; With no major QoS degradation;
- Achieve 50%+ monetary savings; Regardless of types of workloads.

26

Significant improvement of data center vs. prior single server results, taking sleep states, utilization, etc. into account

