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Abstract 
 
 
This paper previews the imminent flood of scientific data expected from the next 
generation of experiments, simulations, sensors and satellites. In order to be exploited by 
search engines and data mining software tools, such experimental data needs to be 
annotated with relevant metadata giving information as to provenance, content, 
conditions and so on. The need to automate the process of going from raw data to 
information to knowledge is briefly discussed. The paper argues the case for creating new 
types of digital libraries for scientific data with the same sort of management services as 
conventional digital libraries in addition to other data-specific services. Some likely 
implications of both the Open Archives Initiative and e-Science data for the future role 
for university libraries are briefly mentioned. A substantial subset of this e-Science data 
needs to archived and curated for long-term preservation. Some of the issues involved in 
the digital preservation of both scientific data and of the programs needed to interpret the 
data are reviewed. Finally, the implications of this wealth of e-Science data for the Grid 
middleware infrastructure are highlighted. 
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1. Introduction 
 
There are many issues that should be considered in examining the implications of the 
imminent flood of data that will be generated by both the present and by the next 
generation of global ‘e-Science’ experiments. The term e-Science is used to represent the 
increasingly global collaborations – of people and of shared resources – that will be 
needed to solve the new problems of science and engineering [1]. These e-Science 
problems range from the simulation of whole engineering or biological systems, to 
research in bioinformatics, proteomics and pharmacogenetics. In all these instances we 
will need to be able to pool resources and to access expertise distributed across the globe. 
The IT infrastructure that will make such collaboration possible in a secure and 
transparent manner is referred to as the ‘Grid’ [2]. Thus in this paper the term ‘Grid’ is 
used as a shorthand for the middleware infrastructure that is currently being developed to 
support global e-Science collaborations. When mature, this Grid middleware will enable 
the sharing of computing resources, data resources and experimental facilities in a much 
more routine and secure fashion than is possible at present. Needless to say, present Grid 
middleware falls far short of these ambitious goals. Both e-Science and the Grid have 
fascinating sociological aspects as well as technical: we shall consider only technological 
issues in this paper. 
 
The two key technological drivers of the IT revolution are Moore’s Law – the 
exponential increase in computing power and solid-state memory  - and the dramatic 
increase in communication bandwidth made possible by optical fibre networks using 
optical amplifiers and wave division multiplexing. In a very real sense, the actual cost of 
any given amount of computation and/or sending a given amount of data is falling to 
zero. Needless to say, whilst this statement is true for any fixed amount of computation 
and for the transmission of any fixed amount of data, scientists are now attempting 
calculations requiring orders of magnitude more computing and communication than was 
possible only a few years ago. Moreover, in many currently planned and future 
experiments they are also planning to generate several orders of magnitude more data 
than has been collected in the whole of human history.  
 
The highest performance supercomputing systems of today consist of several thousands 
of processors interconnected by a special-purpose, high-speed, low latency network. On 
appropriate problems it is now possible to achieve sustained performance of several 
Teraflop/s – a million million floating-point operations per second. In addition, there are 
experimental systems under construction aiming to reach Petaflop/s speeds within the 
next few years [3,4]. However, these very high-end systems are, and will remain, scarce 
resources located in relatively few sites. The vast majority of computational problems do 
not require such expensive massively parallel processing but can be satisfied by the 
widespread deployment of cheap clusters of computers at university, department and 
research group level. 
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The situation for data is somewhat similar. There are a relatively small number of centres 
around the world that act as major repositories of a variety of scientific data. 
Bioinformatics, with its development of gene and protein archives, is an obvious 
example. The Sanger Centre at Hinxton near Cambridge [5] currently hosts 20 Terabytes 
of key genomic data and has a cumulative installed processing power (in clusters - not a 
single supercomputer) of around ½ Teraflop/s. Sanger estimate that genome sequence 
data is increasing at a rate of 4 times each year and that the associated computer power 
required to analyse this data will ‘only’ increase at a rate of 2 times per year – still 
significantly faster than Moore’s Law.  A different data/computing paradigm is apparent 
for the particle physics and astronomy communities. In the next decade we will see new 
experimental facilities coming online that will generate data sets ranging in size from 
100’s of Terabytes to 10’s of Petabytes per year. Such enormous volumes of data exceed 
the largest commercial databases currently available by one or two orders of magnitude 
[6]. Particle physicists are energetically assisting in building Grid middleware that will 
not only allow them to distribute this data amongst the 100 or so sites and 1000 or so 
physicists collaborating in each experiment, but also will allow them to perform 
sophisticated distributed analysis, computation and visualisation on all or subsets of the 
data [7-11]. Particle physicists envisage a data/computing model with a hierarchy of data 
centers with associated computing resources distributed around the global collaboration. 
 
The plan of this paper is as follows. The next section surveys the sources and magnitudes 
of the data deluge that will be imminently upon us. This survey is not intended to be 
exhaustive but rather to give numbers that will illustrate the likely volumes of scientific 
data that will be generated by scientists of all descriptions in the coming decade. Section 
3 discusses issues connected with the annotation of this data with metadata as well as the 
process of moving from data to information and knowledge. The need for metadata that 
adequately annotates distributed collections of scientific data has been emphasized by the 
Data Intensive Computing Environment (DICE) Group at the San Diego Supercomputer 
Center [12]. Their Storage Resource Broker data management middleware addresses 
many of the issues raised here. The next section on Data Grids and Digital Libraries 
argues the case for scientific data digital libraries alongside conventional literature digital 
libraries and archives. We also include a brief description of some currently funded UK 
e-Science experiments that are addressing some of the related technology issues.  In the 
next section we survey self-archiving initiatives for scholarly publications and look at a 
likely future role for university libraries in providing permanent repositories of the 
research output of their university.  Finally in section 6 we discuss the need for ‘curation’ 
of this wealth of expensively obtained scientific data. Such digital preservation requires 
the preservation not only of the data but also of the programs that are required to 
manipulate and visualize it. Our concluding remarks stress the urgent need for Grid 
middleware focused more on data than on computation.     
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2. The Imminent Scientific Data Deluge 
 
2.1 Introduction 
 
There are many examples that illustrate the spectacular growth forecast for scientific data 
generation. As an exemplar in the field of engineering, consider the problem of health 
monitoring of industrial equipment. The UK e-Science programme has funded the 
DAME project [13] - a consortium analyzing sensor data generated by Rolls Royce aero-
engines. It is estimated that there are around 100,000 Rolls Royce engines currently in 
service. Each trans-Atlantic flight made by each engine, for example, generates about a 
Gigabyte of data per engine – from pressure, temperature and vibration sensors. The goal 
of the project is to transmit a small subset of this primary data for analysis and 
comparison with engine data stored in three data centres around the world. By identifying 
the early onset of problems, Rolls Royce hope to be able to lengthen the period between 
scheduled maintenance periods thus increasing profitability. The engine sensors will 
generate many Petabytes of data per year and decisions need to be taken in real-time as to 
how much data to analyse, how much to transmit for further analysis and how much to 
archive. Similar (or larger) data volumes will be generated by other high-throughput 
sensor experiments in fields such as environmental and earth observation, and of course 
human health-care monitoring.  
 
A second example from the field of bioinformatics will serve to underline the point [14]. 
It is estimated that human genome DNA contains around 3.2 Gbases which translates to 
only about a Gigabyte of information. However, when we add to this gene sequence data, 
data on the 100,000 or so translated proteins and the 32,000,000 amino acids, the relevant 
data volume expands to the order of 200 Gigabytes. If, in addition, we include X-ray 
structure measurements of these proteins, the data volume required expands dramatically 
to several Petabytes, assuming only one structure per protein. This volume expands yet 
again when we include data about the possible drug targets for each protein – to possibly 
as many as 1000 data sets per protein. And there is still another dimension of data 
required when genetic variations of the human genome are explored. To illustrate this 
bioinformatic data problem in another way, let us look at just one of the technologies 
involved in generating such data generation. Consider the production of X-ray data by the 
present generation of electron synchroton accelerators. At 3 seconds per image and 1,200 
images per hour, each experimental station generates about 1 Terabyte of X-ray data per 
day. At the next generation ‘DIAMOND’ synchroton currently under construction [15], 
the planned ‘day 1’ beamlines will generate many Petabytes of data per year, most of 
which will need to shipped, analysed and curated.  
 
From these examples it is evident that e-Science data generated from sensors, satellites, 
high-performance computer simulations, high-throughput devices, scientific images and 
so on will soon dwarf all of the scientific data collected in the whole history of scientific 
exploration. Until very recently, commercial databases have been the largest data 
collections stored electronically for archiving and analysis. Such commercial data are 
usually stored in Relational Database Management Systems (RDBMS) such as Oracle, 
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DB2 or SQLServer. As of today, the largest commercial databases range from 10’s of 
Tbytes up to 100 Tbytes. In the coming years, we expect that this situation will change 
dramatically in that the volume of data in scientific data archives will vastly exceed that 
of commercial systems. Inevitably this watershed will bring with it both challenges and 
opportunities. It is for this reason that we believe that the data access, integration and 
federation capabilities of the next generation of Grid middleware will play a key role for 
both e-science and e-business.    
 
2.2 Normalization 
 
To provide some sort of normalization for the large numbers of bytes of data we will be 
talking about, the following rough correspondences [16] provide a useful guide: 
 
  A Large Novel     1 Mbyte 
  The Bible     5 Mbytes 
  A Mozart Symphony (compressed)  10 Mbytes 
  OED on CD     500 Mbytes 
  Digital Movie (compressed)   10 Gbytes 
  Annual production of refereed journal 

literature (~20k journals; ~2M articles) 1 Tbyte 
  Library of Congress    20 Tbytes 
  The Internet Archive (10B pages) 

(From 1996 to 2002) [17]   100 Tbytes 
  Annual production of information 
  (print, film, optical & magnetic media) [18] 1500 Pbytes 
 
Note that it is estimated that printed information constitutes only 0.003% of the total 
stored information content [18]. 
   
2.3 Astronomy 
 
The largest astronomy database at present is around 10 Terabytes. However, new 
telescopes soon to come online will radically change this picture. We list three types of 
new ‘e-Astronomy’ experiments now under way: 
 

1. Virtual Observatories 
 E-Science experiments to create ‘virtual observatories’ containing astronomical data 
at many different wavelengths are now being funded in the USA (NVO [19]), in 
Europe (AVO [20]) and the UK (AstroGrid [21]). It is estimated that the NVO project 
alone will store 500 Terabytes per year from 2004. 
 
2. Laser Interferometer Gravitational Observatory (LIGO) 
 LIGO is a gravitational wave observatory and it is estimated that it will generate 250 
Terabytes per year beginning in 2002 [22]. 
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3. VISTA 
 The VISTA visible and infrared survey telescope will be operational from 2004. This 
will generate 250 Gbytes of raw data per night and around 10 Terabytes of stored data 
per year [23]. By 2014 there will be several Petabytes of data in the VISTA archive. 

 
2.4 Bioinformatics 
 
There are many rapidly growing databases in the field of bioinformatics [5, 24]: 
 

1. Protein Data Bank (PDB) 
This is a database of 3D protein structures. At present there are around 20,000 
entries and around 2000 new structures are being added very 12 months. The total 
database is quite small, of the order of Gigabytes. 
 
2. SWISS-PROT 
This is a protein sequence database currently containing around 100,000 different 
sequences with knowledge abstracted from around a 100,000 different scientific 
articles. The present size is of the order of 10’s of Gigabytes with an 18% increase 
over the last 8 months. 
 
3. TrEMBL 
This is a computer-annotated supplement to SWISS-PROT. It was created to 
overcome the time lag between submission and appearance in the manually 
curated SWISS-PROT database. The entries in TrEMBL will eventually move to 
SWISS-PROT. The current release has over 600,000 entries and is updated 
weekly. The size is of the order of 100’s of Gigabytes. 
 
4. MEDLINE 
This is a database of medical and life sciences literature (Author, Title, Abstract, 
Keywords, Classification). It is produced by the National Library of Medicine in 
the USA and has 11.3M entries. The size is of the order of 100’s of Gigabytes. 
 
5. EMBL Nucleotide Sequence Database 
The EBI in the UK is one of three primary sites for the deposition of nucleotide 
sequence data. It contains around 14M entries of 15B bases. A new entry is 
received every 10 seconds and data at the 3 centres – in the USA, UK and Japan – 
is synchronized every 24 hours. The EMBL database has tripled in size in the last 
11 months. About 50% of the data is for human DNA, 15% for mouse and the rest 
a mixture of organisms. The total size of the database is of the order of Terabytes. 
 
6. GeneExpression Database  
This is extremely data intensive as it involves image data produced from DNA 
chips and microarrays. In the next few years we are likely to see 100’s of 
experiments in 1000’s of laboratories world-wide. Data storage requirements are 
predicted to be in the range of Petabytes per year. 
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These figures give an indication of the volume and variety of data that is currently being 
created in the area of bioinformatics. The data in these cases, unlike in some other 
scientific disciplines, is a complex mix of numeric, textual and image data. Hence 
mechanisms for curation and access are necessarily complicated. In addition, new 
technologies are emerging that will dramatically accelerate this growth of data. Using 
such new technologies it is estimated that the human genome could be sequenced in days 
rather than the years it actually took using older technologies [25]. 
 
2.5 Environmental Science 
 
The volume of data generated in environmental science is projected to increase 
dramatically over the next few years [26]. An example from the weather prediction 
community illustrates this point. 
 
The European Centre for Medium Range Weather Forecasting (ECMWF) in Reading UK 
currently have 560 active users and handle 40,000 retrieval requests daily involving over 
2,000,000 meteorological fields. About 4,000,000 new fields are added daily, amounting 
to about 0.5 Terabytes of new data. Their cumulative data store now contains 3 x 109 
meteorological fields and occupies about 330 Terabytes. To 1998, the increase in the 
volume of meteorological data was about 57% per year: since 1998, the increase has been 
82% per year. This increase in data volumes parallels the increase in computing 
capability of ECMWF supercomputers. 
 
This pattern is mirrored in the USA and elsewhere. Taking only one agency, NASA, we 
see predicted rises of data volumes of more than 10 fold in the 5 year period 2000 to 
2005. The Eros Data Center (EDC) predict that their data holdings will rise from 74 
Terabytes in 2000 to over 3 Petabytes by 2005. Similarly, the Goddard Space Flight 
Center (GSFC) predicts that its holdings will increase by around a factor of 10, from 154 
Terabytes in 2000 to about 1.5 Petabytes by 2005. Interestingly, this increase in data 
volumes at EDC and GSFC is matched by a doubling of their corresponding budgets 
during this period and steady-state staffing levels of around 100 at each site It is 
estimated that NASA will be producing 15 Petabytes by 2007. The NASA EOSDIS data 
holdings already total 1.4 Petabytes. 
 
In Europe, European Space Agency (ESA) satellites are currently generating around 100 
Gigabytes of data per day. With the launch of Envisat and the forthcoming launches of 
the Meteosat Second Generation satellite and the new MetOp satellites, the daily data 
volume generated by ESA is likely to increase at an even faster rate than that of the 
NASA agencies.   
 
2.6 Particle Physics 
 
The BaBar experiment has created what is currently the world’s largest database: this is 
350 Terabytes of scientific data stored in an Objectivity database [27]. In the next few 
years these numbers will be greatly exceeded when the Large Hadron Collider (LHC) at 
CERN in Geneva begins to generate collision data in late 2006 or early 2007 [28]. The 
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ATLAS and CMS experiments at the LHC each involve some 2000 physicists from 
around 200 institutions in Europe, North America and Asia. These experiments will need 
to store, access and process around 10 Petabytes per year which will require the use of 
some 200 Teraflop/s of processing power. By 2015, particle physicists will be using 
Exabytes of storage and Petaflop/s of (non-Supercomputer) computation. At least 
initially, it is likely that most of this data will be stored in a distributed file system with 
the associated metadata stored in some sort of database. 
 
2.7 Medicine and Health 
 
With the introduction of electronic patient records and improvements in medical imaging 
techniques, the quantity of medical and health information that will be stored in digital 
form will increase dramatically.  The development of sensor and monitoring techniques 
will also add significantly to the volume of digital patient information. Some examples 
will illustrate the scale of the problem. 
 
The company InSiteOne [29] is a US company engaged in the storage of medical images. 
It states that the annual total of radiological images for the US exceeds 420 million and is 
increasing by 12% per year.  Each image will typically constitute many Megabytes of 
digital data and is required to be archived for a minimum of 5 years.  
 
In the UK, the e-Science programme is currently considering funding a project to create a 
digital mammographic archive [30]. Each mammogram has 100 Mbytes of data and must 
be stored along with appropriate metadata (see below for a discussion of metadata). There 
are currently about 3M mammograms generated per year in the UK. In the USA the 
comparable figure is 26M mammograms per year, corresponding to many Petabytes of 
data. 
 
A critical issue for such medical images - and indeed digital health data as a whole - is 
that of data accuracy and integrity.  This means that in many cases compression 
techniques that could significantly reduce the volume of the stored digital images may 
not be used. Another key issue for such medical data is security - since privacy and 
confidentiality of patient data is clearly pivotal to public confidence in such technologies.  
 
2.8 Social Sciences 
 
In the UK, the total storage requirement for the social sciences has grown from around 
400 Gigabytes in 1995 to more than a Terabyte in 2001. Growth is predicted to grow in 
the next decade but the total volume is not thought likely to exceed 10 Terabytes by 2010 
[31]. There is experience in archive management for social science at the ESRC Data 
Archive in Essex, the MIMAS service in Manchester [32] and the EDINA service in 
Edinburgh [33]. The MIMAS and EDINA services provide access to UK Census 
statistics, continuous government surveys, macro-economic time series databanks, digital 
map datasets, bibliographical databases and electronic journals. In addition, the 
Humanities Research Board and  JISC organisations in the UK jointly fund the Arts and 
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Humanities Data Service [34]. Some large historical databases are now being created. A 
similar picture emerges in other countries. 
 
3. Scientific Metadata, Information and Knowledge 
 
Metadata is data about data. We are all familiar with metadata in the form of catalogues, 
indices and directories. Librarians work with books that have a metadata ‘schema’ 
containing information such as Title, Author, Publisher and Date of Publication at the 
minimum. On the World Wide Web, most web pages are coded in HTML. This 
‘HyperText Mark-up Language’ contains instructions as to the appearance of the page – 
size of headings and so on – as well as hyperlinks to other web pages. Recently the 
‘eXtensible Mark-up Language’ XML has been agreed by the W3C standards body. The 
mark-up language XML allows web pages and other documents to be tagged with 
computer-readable metadata. The XML tags give some information about the structure 
and type of data contained in the document rather than just instructions as to presentation. 
For example, XML tags could be used to give an electronic version of the book schema 
given above.  
 
More generally, information consists of semantic tags applied to data. Metadata consists 
of semantically tagged data that are used to describe data. Metadata can be organized in a 
schema and implemented as attributes in a database. Information within a digital data set 
can be annotated using a mark-up language. The semantically tagged data can then be 
extracted and a collection of metadata attributes assembled, organized by a schema and 
stored in a database. This could be a relational database or a native XML database such 
as Xindice [35]. Such native XML databases offer a potentially attractive alternative for 
storing XML-encoded scientific metadata.  
 
The quality of the metadata describing the data is important. We can construct search 
engines to extract meaningful information from the metadata that is annotated in 
documents stored in electronic form. Clearly, the quality of the search engine so-
constructed will only be as good as the metadata that it references. There is now a 
movement to standardize other, ‘higher-level’ mark-up languages – such as DAML and 
OIL [36] – that would allow computers to extract more than semantic tags and to be able 
to reason about the ‘meaning or semantic relationships’ contained in a document. This is 
the ambitious goal of Tim Berners-Lee’s ‘semantic web’ [37]. 
 
Although we have given a simple example of metadata in relation to textual information, 
metadata will also be vital for storing and preserving scientific data. Such scientific data 
metadata will not only contain information about the annotation of data by semantic tags, 
but will also provide information about its provenance and its associated user access 
controls. These issues have been extensively explored by Reagan Moore, Arcot Rajasekar 
and Mike Wan in the DICE group at the San Diego Supercomputer Center [38]. Their 
Storage Resource Broker (SRB) middleware [39] organizes distributed digital objects as 
logical ‘collections’ distinct from the particular form of physical storage or the particular 
storage representation. A vital component of the SRB system is the metadata catalog 
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(MCAT) that manages the attributes of the digital objects in a collection. Moore and his 
colleagues distinguish four types of metadata for collection attributes:  
 

• SRB metadata for storage and access operations 
• Provenance metadata based on the Dublin Core [40] 
• Resource metadata specifying user access arrangements 
• Discipline metadata defined by the particular user community. 

 
In order for an e-Science project such as the Virtual Observatory to be successful, there is 
a need for the astronomy community to work together to define agreed XML schemas 
and other standards. At a recent meeting, members of the NVO, AVO and AstroGrid 
projects agreed to work together to create common naming conventions for the physical 
quantities stored in astronomy catalogues. The semantic tags will be used to define 
equivalent catalogue entries across the multiple collections within the astronomy 
community. The existence of such standards for metadata will be vital for the 
interoperability and federation of astronomical data held in different formats in file 
systems, databases or other archival systems. In order to construct ‘intelligent’ search 
engines, each separate community and discipline needs to come together to define 
generally accepted metadata standards for their community data grids. Since some 
disciplines already support a variety of existing different metadata standards, we need to 
develop tools that can search and reason across these different standards. For reasons 
such as these, just as the web is attempting to move beyond information to knowledge, 
scientific communities will need to define relevant ‘ontologies’ – roughly speaking, 
relationships between the terms used in shared and well-defined vocabularies for their 
fields – that can allow the construction of genuine ‘semantic grids’ [41, 42]. 
 
With the imminent data deluge, the issue of how we handle this vast outpouring of 
scientific data becomes of paramount importance. Up to now, we have generally been 
able to manually manage the process of examining the experimental data to identify 
potentially interesting features and discover significant relationships between them. In the 
future, when we consider the massive amounts of data being created by simulations, 
experiments and sensors, it is clear that in many fields we will no longer have this luxury. 
We therefore need to automate the discovery process - from data to information to 
knowledge - as far as possible. At the lowest level, this requires automation of data 
management with the storage and organization of digital entities. At the next level we 
need to move towards automatic information management. This will require automatic 
annotation of scientific data with metadata that describes both interesting features of the 
data and of the storage and organization of the resulting information. Finally, we need to 
attempt to progress beyond structure information towards automated knowledge 
management of our scientific data. This will include the expression of relationships 
between information tags as well as information about the storage and organization of 
such relationships. 
   
In a small first step towards these ambitious goals, the UK GEODISE project [43] is 
attempting to construct a knowledge repository for engineering design problems. Besides 
traditional engineering design tools such as CAD systems,  CFD and FEM simulations on 
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high performance clusters, multi-dimensional optimization methods and interactive 
visualization techniques, the project is working with engineers at Rolls Royce and 
BAESystems to capture knowledge learnt in previous product design cycles. The 
combination of traditional engineering design methodologies together with advanced 
knowledge technologies makes for an exciting e-Science research project that has the 
potential to deliver significant industrial benefits. Several other UK e-Science projects - 
the myGrid project [44] and the Comb-e-Chem project [45] – are also concerned with 
automating some of the steps along the road from data to information to knowledge. 
 
 
4. Data Grids and Digital Libraries  
 
The DICE group propose the following hierarchical classification of scientific data 
management systems [46]: 
 

1. Distributed Data Collection. In this case the data is physically distributed but 
described by a single name space. 

2. Data Grid. This is the integration of multiple data collections each with a separate 
name space. 

3. Federated Digital Library. This is a distributed data collection or data grid with 
services for the manipulation, presentation and discovery of digital objects. 

4. Persistent archives. These are digital libraries that curate the data and manage the 
problem of the evolution of storage technologies. 

 
In this paper we shall not need to be as precise in our terminology but this classification 
does illustrate some of the issues we wish to highlight. Certainly, in the future, we 
envisage that scientific data, whether generated by direct experimental observation or by 
in silico simulations on supercomputers or clusters, will be stored in a variety of ‘data 
grids’. Such data grids will involve data repositories together with the necessary 
computational resources required for analysis, distributed around the global e-Science 
community. The scientific data – held in filestores, databases or archival systems – 
together with a metadata catalogue, probably held in an industry standard relational 
database, will become a new type of distributed and federated digital library. Up to now 
the digital library community has been primarily concerned with the storage of text, audio 
and video data. The scientific digital libraries that are being created by global, 
collaborative e-Science experiments will need the same sort of facilities as conventional 
digital libraries - a set of services for manipulation, management, discovery and 
presentation. In addition, these scientific digital libraries will require new types of tools 
for data transformation, visualization and data mining. We return to the problem of the 
long term curation of such data and its ancillary data manipulation programs below. 
 
The UK e-Science programme is funding a number of exciting e-Science pilot projects 
that will generate data for these new types of digital libraries. We have already described 
both the ‘AstroGrid’ Virtual Observatory project [21] and the GridPP project [10] that 
will be a part of a world-wide particle physics grid that will manage the flood of data to 
be generated by the CERN LHC accelerator under construction in Geneva. In other areas 
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of science and engineering besides the DAME [13] and e-Diamond [30] projects 
described above, there are three projects of particular interest for bioinformatics and drug 
discovery. These are the myGrid [44], Comb-e-Chem [47] and DiscoveryNet [48] 
projects. These projects emphasize data federation, integration and workflow and are 
concerned with the construction of middleware services that will automatically annotate 
the experimental data as it is produced. The new generation of hardware technology will 
generate data faster than humans can process it and it will be vital to develop software 
tools and middleware to support annotation and storage. A further project, RealityGrid 
[49], is concerned with supercomputer simulations of matter and emphasizes remote 
visualization and computational steering. Even in such a traditional HPC project, 
however, the issue of annotating and storing the vast quantities of simulation data will be 
an important aspect of the project.   
 
 
5. Open Archives and Scholarly Publishing 
 
In the UK, the Higher Education Funding Council, the organisation that provides core 
funding for UK universities, is looking at the implications of the flood of e-Science data 
for libraries on a ten year time scale. In such a ten year time frame e-Science data will 
routinely be automatically annotated and stored in a digital library offering the 'usual' 
digital library services for management, searching and so on, plus some more specialized 
'scientific data' oriented services such as visualisation, transformation, other types of 
search engines and so on. In addition, scientific research in many fields will require the 
linking of data, images and text so that there will be a convergence of scientific data 
archives and text archives. Scientific papers will also routinely have active links to such 
things as the original data, other papers and electronic theses. At the moment such links 
tend to be transitory and prone to breaking - perhaps the research group web address 
'~tony' stops working when Tony leaves, and so on. The Open Archive Initiative [49] – 
which provides software and tools for self-archiving of their research papers by scientists 
- addresses this issue to some extent, but this is clearly a large issue with profound 
implications for the whole future of university libraries. On the matter of standards and 
interworking of scientific digital archives and conventional repositories of electronic 
textual resources, the recent move of Grid middleware towards Web Services [50, 51] is 
likely to greatly facilitate the interoperability of these architectures. 
 
Scholarly publishing will presumably eventually make a transition from the present 
situation - in which the publishers own the copyright and are therefore able to restrict the 
group of people who can read your paper - to a model where publishers are funded not 
for the paper copy but for providing a refereeing service and a curated electronic journal 
archive with a permanent URL. The difference between this model (proposed by Stevan 
Harnad [52]) and Paul Ginsparg's ‘Eprint’ archive for physics papers [53] is that 
Ginsparg’s model is central and discipline based, whereas Harnad’s is distributed and 
institution based. Both models depend on publishers to implement the peer review for the 
papers. Peer review is essential in order to identify signal from noise in such public 
archives. In Harnad’s model, researchers’ institutions pay ‘publishers’ to organize the 
peer reviewing of their research output and to certify the outcome with their journal name 
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and its established quality standard. The institutions’ research output, both pre-peer 
review ‘preprints’ and post-peer review ‘postprints’ are archived in distributed, 
interoperable institutional Eprint archives. The Open Archives Initiative is providing a 
metadata harvesting protocol that could enable this interoperability. Using open source 
archiving software partly sponsored by the Budapest Open Access Initiative of the Soros 
Foundation, a growing number of universities in the US and elsewhere are setting up 
Eprint Archives to provide permanent open access to their research. In addition to 
archiving their own research output, users also want to be able to search these archives 
for related work of others. Using the metadata associated with the archived paper, the 
OAI Metadata Harvesting Protocol [54] provides one solution to the problem of 
constructing suitable search engines. Any search engine produced in this manner will 
only be only as good as the metadata associated with the papers [55], so strengthening 
and extending the metadata tagging and standards is a task of very high priority.  
 
It seems just a question of time before scholarly publishing makes the 'Harnad Switch' – 
the outcome that Harnad has for a decade been describing as both optimal and inevitable. 
Authors actually want to maximize the impact and uptake of their research findings by 
making them accessible to as many would-be users as possible, rather than having them 
restricted, as they were in the paper era, to the minority of wealthy research libraries that 
can afford the access tolls. The Web has changed publishing forever and such a transition 
is inevitable. A similar transformation is likely to affect university libraries. The logical 
role for a university library in ten years will surely be to be the responsible organisation 
that hosts and curates (digitally) all the research papers produced by the university. It will 
be the university library that is responsible for maintaining the digital archive so that the 
'~tony' link continues to work for posterity. The Caltech Library System Digital 
Collections project [56] and the MIT DSpace project with HP [57] are two interesting 
exemplars of such an approach. There is also the interesting issue of how much 
responsibility individual universities would undertake for hosting and curating the 
scientific data produced by their researchers. Presumably, some universities would act as 
repositories for the scientific data for a number of university e-Science ‘collaboratories’, 
as well as acting as mirror sites for other organisations in the collaboration. Of course, 
particular communities will support specialised data archives - such as those of the 
European Bioinformatics Institute [24] and some national research organizations – and no 
doubt there will be commercial archives as well. An important issue not considered is the 
question of ownership of data. Since much of the research in universities is funded by 
public bodies there is clearly room for debate as to the ownership – and the curation 
costs! 
 
6. Digital Preservation and Data Curation 
 
Generating the data is one thing, preserving it in a form so that it can be used by scientists 
other than the creators is entirely another issue. This is the process of ‘curation’. For 
example, the SWISS-PROT database is generally regarded as the ‘gold standard’ for 
protein structure information [58]. Curation is done by a team of 25 full-time curators 
split between the Swiss Bioinformatics Institute and the EBI. This shows how expensive 
the curation process is and why it will be necessary to address this support issue – 
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involving extreme levels of automated, semi-automated and manual annotation and data 
cleansing . In addition, preservation of the data will be a crucial aspect of the work of a 
data repository. A recent EU/US study [59] recommended the establishment of a ‘Data 
Rescue Centre’ that would be concerned with research into the longevity of electronic 
data archives. The report envisaged that such a centre would examine the issues 
concerned with the refreshment, replication, repackaging and transformation of data and 
become a center of much-needed expertise in these technologies. 
 
There are many technical challenges to be solved to ensure that the information generated 
today can survive long term changes in storage media, devices and digital formats. An 
introduction to the issues surrounding this problem has been given by Rothenberg [60]. 
To illustrate these issues we shall briefly summarize a novel approach to long term 
preservation recently suggested by Lorie [61].  Lorie distinguishes between the archiving 
of data files and the archiving of programs. The archiving of programs is necessary in 
order that their original behaviour with the original data set can be reproduced in the 
future. For example, it is likely that a significant percentage of the scientific digital data 
to be preserved will be generated directly via some program P. A simple example is a 
spreadsheet program. In order to make sense of the data in the future we need to save the 
original program P that was used to create and manipulate the data along with the data 
itself. Of course, in one sense the program P is just a bit stream like the data it produces - 
but the important difference is that the machine and operating system required to run P 
may no longer exist. Lorie discusses the pros and cons of two proposed solutions to this 
problem: ‘conversion’ – copying files and programs to each new system as new systems 
are introduced – and ‘emulation’ – saving the data and the program as a bit stream along 
with a detailed description of the original machine architecture and a textual description 
of what the original program P should do to the data. Lorie then proposes a third 
approach based on specifying the program P in terms of instructions for a ‘Universal 
Virtual Computer’ (UVC). When archiving data, the UVC would be used to archive the 
methods that are required interpret the stored data stream. For archiving a program, the 
UVC would be used to specify the functioning of the original computer. It is not clear 
which of these three approaches will turn out to be most feasible or reliable. Needless to 
say, a solution to these problems is much more than just a technical challenge: all parts of 
the community from digital librarians and scientists to computer scientists and IT 
companies need to be involved. 

 
7. Concluding Remarks 
 
From the above discussion, it can be seen that the coming digital data deluge will have 
profound effects on much of current scientific infrastructure. Data from a wide variety of 
new sources will need to be annotated with metadata, archived and curated so that both 
the data and the programs used to transform can be reproduced in the future. E-scientists 
will want to search distributed sources of diverse types of data and co-schedule 
computation time on the nearest appropriate resource to analyse or visualize their results. 
This vision of Grid middleware will require the present functionality of both SRB [39] 
and Globus [62] middleware systems and much more. The present move towards Grid 
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Services and Open Grid Services Architecture represents a unique opportunity to exploit 
synergies with commercial IT suppliers and make such a Grid vision a reality. 
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