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The DAVID gene functional classification tool<p>The DAVID gene functional classification tool uses a novel fuzzy clustering algorithm to condense a list of genes or associated biological terms into organized classes of related genes or biology, called biological modules.</p>

Abstract

The DAVID Gene Functional Classification Tool http://david.abcc.ncifcrf.gov uses a novel

agglomeration algorithm to condense a list of genes or associated biological terms into organized

classes of related genes or biology, called biological modules. This organization is accomplished by

mining the complex biological co-occurrences found in multiple sources of functional annotation.

It is a powerful method to group functionally related genes and terms into a manageable number

of biological modules for efficient interpretation of gene lists in a network context.

Rationale
Biological interpretation of large gene lists derived from high-

throughput genomic or proteomic studies can be a challeng-

ing and daunting process. Some of the difficulties include:

acquiring large amounts of functional annotation for every

gene; the distributed nature of annotation across numerous

sources, that is, not centralized; summarizing which genes

are associated with specific biological processes and ranking

these processes by over-representation analysis; condensing

repetitive or redundant annotation data; identifying func-

tional biological modules consisting of related genes and

terms; and viewing inter-relationships between groups of

genes and groups of biological terms. A number of publicly

available bioinformatics tools have addressed the first three

points above, including, but not limited to, GoMiner, DAVID,

EASE, GOstat, Onto-express, GoToolBox, FatiGO, GOSSIP,

GFINDer, GOBar, and so on [1-25]. The power of many of

these applications is to systematically highlight the most

over-represented biological terms, out of a list of hundreds or

thousands of terms, to increase the likelihood of investigators

identifying biological processes most pertinent to the biolog-

ical phenomena under study [17]. While these tools are

extremely useful, they are still weak in mining the many-to-

many gene-to-term relationships found in functional annota-

tion databases, as well as in condensing redundant contents.

Published: 4 September 2007

Genome Biology 2007, 8:R183 (doi:10.1186/gb-2007-8-9-r183)

Received: 5 February 2007
Revised: 20 April 2007
Accepted: 4 September 2007

The electronic version of this article is the complete one and can be 
found online at http://genomebiology.com/2007/8/9/R183

http://genomebiology.com/2007/8/9/R183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17784955
http://creativecommons.org/licenses/by/2.0
http://david.abcc.ncifcrf.gov
http://www.biomedcentral.com/info/about/charter/


R183.2 Genome Biology 2007,     Volume 8, Issue 9, Article R183       Huang et al. http://genomebiology.com/2007/8/9/R183

Genome Biology 2007, 8:R183

Individual genes can clearly be associated with multiple bio-

logical terms and, conversely, individual biological terms can

be associated with multiple genes. These associations form a

complex relationship network of 'many-genes-to-many-

terms' that represents the true complex nature of biological

processes. Data-mining tools that can extract these complex

and redundant relationships should be able to identify func-

tional gene-term biological modules. This identification can

be accomplished by using exploratory statistical methods that

identify groups of genes sharing similar biological terms or,

alternatively, identifying groups of biological terms sharing

similar genes. For example, if a subset of genes in a list is

sodium transporters, then one can expect that they will have

major functional annotations in common. A method that can

group these genes based on the strength of overlap of the

functional annotation should identify modules of related

genes and terms. Similarly, terms that have many genes in

common can also be grouped into a module of related terms

and genes; for example, the terms 'apoptosis', 'cell death',

'death', and 'regulation of cell death' will be grouped together

because these terms share a large number of common genes.

The advantages of this method of classifying groups of genes

and terms into biological modules are: it largely reduces

redundant results into a manageable size; it is much easier to

understand and visualize gene-to-gene, term-to-term, and

gene-to-term relationships, since related genes and terms are

brought together in one place; and it is much easier to relate

biological modules of interest to a study than it is to relate

hundreds of individual terms.

The goals of the project are to identify groups of genes sharing

common biology or, alternatively, to identify groups of bio-

logical terms sharing common genes relevant to an investiga-

tor's study. Most importantly, the heterogeneous

annotations/genes can be grouped as long as they are within

the same, relevant biological context. In this sense, the defini-

tion of functional group in this work is much broader than the

traditional concept. The improvement of biological discovery

is through better organization of massive and redundant

results into a more readable and manageable format (that is

biological groups). To this end, we developed the DAVID (The

Database for Annotation, Visualization and Integrated Dis-

covery [26]) Gene Functional Classification Tool and the

DAVID Functional Annotation Clustering Tool to provide a

module-centric approach for functional analysis of large gene

lists. First, we developed a new method to measure gene-gene

similarity, based on the assumption that genes that share glo-

bal functional annotation profiles are functionally related to

each other. Conversely, we measure term-term similarity

based on the assumption that terms that share global gene

profiles are functionally related to each other. Then, a DAVID

agglomeration method was developed to group related genes

or terms into functional groups (biological modules) based on

the similarity distances measure. The fuzziness feature of the

agglomeration method allows a gene or term to participate in

more than one functional group, better reflecting the true

'multiple-roles' nature of genes that can be lost if exclusive

methods, such as Hierarchical, K-means, or SOM clustering

are used. Functional groups are ranked based on all group

members' overall participation in the enriched biological

processes associated with the total gene list. A global view of

group-to-group relationships is also provided through a

unique fuzzy heat map visualization. A subset of 'drill-down'

functions associated with each biological module allows

investigators to explore and visualize relationships between

genes and terms. In this paper, we will mainly describe the

key algorithms associated with the DAVID Gene Functional

Classification Tool, illustrate the usefulness of several of the

functionalities, and demonstrate how quickly investigators

can apply the information in a biological module to their

study.

Implementation
The DAVID Gene Functional Classification Tool [27] and

DAVID Functional Annotation Clustering Tool [28] are two

new components integrated in DAVID Bioinformatics

Resources [26]. They were designed as a server-client appli-

cation on a UNIX server, with the Tomcat web server as the

serving engine. Java is the primary language used for calcula-

tions as well as the user interface, which utilizes Java Server

Page (JSP) technology. In-memory Java data objects contain-

ing all mappings between genes and annotation were devel-

oped to advance the calculation speed. The DAVID

Functional Annotation Clustering Tool uses the same algo-

rithm as the DAVID Gene Functional Classification Tool, but

conversely. Therefore, to illustrate the key scientific concepts,

we describe only the major procedures of the DAVID Gene

Functional Classification Tool. These procedures consist of

three major steps: measurement of functional relationship of

gene pairs, DAVID agglomeration method to partition genes

into functional gene groups, and visualization of results in

text and graphic modes (Figure 1).

Measuring functional relationship of gene pairs based 

on the similarity of global annotation profiles

The traditional ways of grouping related genes are based on

either sequence similarity (sequence homologs), functional

categories (protein domain families), or co-expression clus-

ters (microarray clusters). In fact, the majority of co-func-

tioning genes are neither sequence-related nor in the same

protein families, such as genes in the same pathway. There-

fore, the traditional phylogenetic grouping methods are pow-

erful for evolution-based studies, but too specific and strict to

be of much use in classifying genes for the purpose of func-

tional annotation. We propose a novel method to identify

related genes by measuring the similarity of their global

annotation profiles based on the hypothesis that if two genes

have similar annotation profiles, they should be functionally

related. This method is able to identify much broader gene

groups in which genes share major common biological fea-

tures as well as tolerate some differences. For example, many
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different types of genes, with or without too much sequence

similarity, could be grouped into a transcription regulation

class. We believe that the broader functional groups are more

useful for functional annotation purposes and, hence, biolog-

ical interpretation.

Firstly, a gene-term annotation matrix (Figure 2a) was com-

piled in a binary mode using thousands of annotation terms

in 14 annotation categories (including Gene Ontology (GO),

Biological Process, GO Molecular Function, GO Cellular

Component, KEGG Pathways, BioCarta Pathways, Swiss-Prot

Keywords, BBID Pathways, SMART Domains, NIH Genetic

Association DB, UniProt Sequence Features, COG/KOG

Ontology, NCBI OMIM, InterPro Domains, and PIR Super-

Family Names) collected in the DAVID knowledgebase [29]

(Additional data file 7). Then, kappa statistics, a chance-cor-

rected measure of co-occurrence between two sets of catego-

rized data, is adopted to statistically measure the annotation

co-occurrence of any given gene pairs [30,31]. Since the anno-

tation profile is in a binary categorical scale, kappa statistics

is more suitable than the Pearson correlation, which is typi-

cally used for continuous, non-categorical data.

For given annotation profiles of genes m and n, Omn repre-

sents the observed co-occurrence, Amn represents chance co-

occurrence, and Kmn is the kappa value representing the

degree of annotation co-occurrence between genes m and n.

Flow chart of the procedures for the DAVID Gene Functional Classification Tool and the DAVID Functional Annotation Clustering ToolFigure 1

Flow chart of the procedures for the DAVID Gene Functional Classification Tool and the DAVID Functional Annotation Clustering Tool.

Collect and integrate annotation terms from

 14 public annotation categories  

Compile gene-term binary matrix  

Measure functional relationships of all gene-gene 

 or term-term by Kappa Statistics  

Build Kappa Statistics score matrix  

Fuzzy heuristic multiple-linkage partition  

Display results in either text or graphic mode  
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where Kmn is 1 for perfect co-occurrence and 0 for co-occur-

rence no better than random chance (Figure 2b).

While building the binary annotation matrix, the annotation

terms could be redundant or in a structured relationship

because many terms from different sources may have the

same biological meaning; in addition, GO terms fall into a

parent-child relationship in the GO hierarchical structure.

Some works demonstrate that gene-term enrichment analysis

is improved if the GO hierarchy is considered during the cal-

culation of the enrichment score [32,33]. However, due to the

non-hierarchical structure of a majority of annotation

sources, we proposed a new 'flat' matrix strategy to break all

redundant and structured terms into 'independent' terms in a

flat, linear collection (Figure 2a). We believe that an equally

weighted, linear, all-inclusive strategy can greatly simplify

the situation, as well as maximally leverage the heterogene-

ous annotations in the similarity measurement (see Addi-

tional data files 11 and 12 for more discussion). To answer the

question, 'Can this strategy specifically detect the real rela-

tionship of gene-gene?', we conducted three studies. The first

was to compare the kappa score distribution of every possible

pair of human genes (approximately 300 million pairs) to

that of reported human protein-protein interaction pairs

[34]. The protein-protein interaction pairs should have a bet-

ter chance to co-function in the same biological processes in

A hypothetical example of detecting gene-gene functional relationships by kappa statisticsFigure 2

A hypothetical example of detecting gene-gene functional relationships by kappa statistics. (a) The all-redundant and structured terms are broken into 
'independent' terms in a flat linear collection. Each gene associates with some of the annotation term collection so that a gene-annotation matrix can be 
built in a binary format, where 1 represents a positive match for the particular gene-term and 0 represents the unknown. Thus, each gene has a unique 
profile of annotation terms represented by a combination of 1 s and 0 s. (b) For a particular example of genes a and b, a contingency table was constructed 
for kappa statistics calculation. The higher kappa score (0.66) indicates that genes a and b are in considerable agreement, more so than by random chance. 
By flipping the table 90 degrees, the kappa score of term-term can be achieved, based on the agreement of common genes (not shown). For more 
information see Additional data files 11 and 12.
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The gene-gene functional relationship can be specifically detected by kappa statisticsFigure 3 (see following page)

The gene-gene functional relationship can be specifically detected by kappa statistics. (a) Kappa scores were calculated for all possible combinations of 
human gene-gene pairs (approximately 300 million). Only gene-gene pairs with a higher number of annotation terms in common possibly have good kappa 

values. The box plot consists of the smallest and largest observations at the two end points (95% confidence interval), as well as a box from the 1st to 3rd 
quartiles. The blue and red lines represent median and mean observations, respectively. (b) Kappa scores were calculated for all possible human gene-gene 
pairs, gene-gene pairs with randomized annotation terms, all collected protein-protein interacting pairs, and all 'chemokine' gene pairs, respectively. The 
distributions of those kappa scores from protein-protein interacting pairs (pink) and 'chemokine' gene pairs (light blue) significantly shift to the high value 
end compared to human total (blue); conversely, the kappa score distribution (yellow) of gene pairs with randomized annotation terms remains in the 
lower value end below 0.35. Interestingly, for the human genome (blue), over 50% of the kappa scores equal 0 (no detectable relationships) and >95% are 
lower than 0.35. Altogether, this indicates that kappa statistics can specifically detect the gene-gene functional relationships.
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Figure 3 (see legend on previous page)
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contrast to random protein-protein pairs. Therefore, a certain

degree of functional relatedness should be observed by the

method, but not always. If the similarity measurement can

specifically detect gene-gene relationships rather than ran-

dom noise, we would expect to see the score distribution of

the protein-protein interaction pairs to shift to the higher

value end (Figure 3b). The second study was to detect the

kappa score distribution of genes specifically selected

because their names contained the word 'chemokine'. Since

we selected genes with an extreme bias of similarity, we

expected the kappa scores to give much higher values (Figure

3). The third study was to compare the kappa score distribu-

tion of all human gene pairs to that of artificial gene pairs with

annotation profiles randomly generated, based on the true

human annotation frequency. It was expected that the simu-

lated kappa scores would be located only in the lower value

end (Figure 3). The three independent studies, combined

with the extensive test analysis on microarray datasets,

strongly supported the strategy that functional similarity

measurement is able to specifically detect gene-gene relation-

ships, particularly for the pairs with a kappa score 0.35 or

above, as suggested by our randomization study (Figure 3;

Additional data file 10). However, since the measurement

relies on known annotation profiles, this method, like any

other high-throughput functional analytical tools, will obvi-

ously not work for the genes that lack annotation.

A novel agglomeration method to classify a gene list 

into functionally related groups based on the functional 

similarity scores

After the kappa score matrix of all possible pair-wide genes is

calculated, it is possible to classify the highly related genes.

We examined the typical clustering methods, including hier-

archical tree, K-means, hierarchical, FANNY, and SOM. All of

them produced weaker clustering results (Additional data file

5) with our test datasets. The poor clustering results stem

from one or more of the following weaknesses associated with

the aforementioned clustering algorithms. First,: genes must

be assigned to one cluster, even though their absolute rela-

tionship is weak to all clusters. This results in higher contam-

ination of clusters with noise by forcing membership of

weakly related genes. Second, genes can belong to only one

cluster, which does not align well with the basic biological

nature of genes, in that one gene could participate in multiple,

different roles. Third, outliers and uneven cluster sizes can

greatly affect clustering quality. Fourth, it is difficult to know

the optimal K (number of clusters) for K-means, FANNY, or

SOM.

This situation motivated us to develop another agglomeration

approach, heuristic fuzzy multiple-linkage partitioning, to

better reflect the structure of functional annotation data. It

can be described as three major steps (Figure 4; see Addi-

tional data file 13 for a step-by-step example). Step 1, multiple

initial seeds: each gene is selected to serve as a medoid, or

center of an initial cluster, as long as it meets minimum relat-

edness (user input parameters, such as genes, are related to

more than three other genes with kappa > 0.35) to other

genes in the list. Step 2, merge seeds by a minimum, multiple

linkage (that is, merge two seeds when they share 50% of their

group members). Step 3, repeat step 2 until no more merging

can occur.

This method works better than others for this particular type

of analysis (Additional data file 5). This method: eliminates

overall irrelevant/weak elements, as orphan genes, to signifi-

cantly push the signal out of noise; allows for fuzziness by

allowing genes to be assigned to more than one cluster which

aligns with the biological nature; dynamically determines the

number of clusters based on the chosen threshold; generates

grand groups for easy interpretation; and tolerates outliers

extremely well by excluding them in step 1.

There is no gold standard or null hypothesis to evaluate clus-

tering methods and hence no right or wrong answers for any

given clustering algorithms. One method may work better

than others in the sense that it is more sensitive to the natural

structure of a particular problem. However, this method, like

any other heuristic approach, has the common weakness that

an improper running criteria setting can lead to distorted

results. In order to aid less advanced users with the setting of

these criteria, we preset five general levels representing com-

binations of the detailed settings from very low to very high

stringencies; based on our extensive tests on multiple data-

sets, the default stringency level (medium) should be optimal

for most cases.

Since there is not a null hypothesis test to compare the quality

between clustering algorithms, we try to summarize the

quality of our agglomeration algorithm based on randomly

selected genes that all clearly belong to one protein family (for

example, kinase, phosphatase, chemokine, and so on). Then,

the genes were classified by the method. Since we have pre-

knowledge about the gene family information, the gene(s)

that are grouped incorrectly or excluded from the correct

group(s) can be roughly estimated. We observed that the

leaking rate (that is, a gene not placed into a group to which it

does belong) is between 1% and 2%, and the noise rate (that

is, a gene incorrectly placed into a group to which it does not

belong) is between 1% and 5%. Most importantly, the method

is able to identify key members of groups so that the major

biology of each group can quickly be determined. Since the

analytical approach is biological module-centric, the major

biology associated with each gene group is determined by the

majority of gene members rather than by individual genes.

Thus, the biology of each group should be very stable, even

though there is a chance that a few members are excluded or

incorrectly included. In summary, this clustering method

shows reasonable performance by eliminating irrelevant,

'noisy' genes and by bringing together strongly related func-

tional groups, while maintaining the fuzzy nature of biology

by which genes may be involved in multiple processes.
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Graphical illustration of the heuristic fuzzy partition algorithmFigure 4

Graphical illustration of the heuristic fuzzy partition algorithm. (a) Hypothetically, each element (gene) can be positioned in a virtual two-dimensional 
space, based on its characteristics (annotation terms). The distance represents the degree of relationship (kappa score) among the genes. (b) Any gene has 
a chance as a medoid to form an initial seeding group. Only the initial groups with enough closely related members (for example, members >3 and kappa 

score ≥0.4) are qualified (solid-line circle). Conversely, unqualified ones are shown as dashed-line circles. (c) Every qualified initial seeding group is 
iteratively merged with each other to form a larger group based on the multi-linkage rule, that is, sharing 50% or more of memberships, until all secondary 
clusters (thicker oval) are stable. Importantly, the genes not covered by any qualified initial seeding group are considered as outliers (in gray). (d) Finally, 
three final groups (thicker ovals) are formed because they can no longer be merged with any other group. One gene (in red) belonging to two groups 
represents the fuzziness capability of the algorithm. And outliers (in gray in (c)) are removed for clearer presentation. A step-by-step example can be 
found in Additional data file 13.
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(c)

Initializing multiple seeds

(d)

Final groups after iterative merging
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The last question is, 'Which final functional gene groups are

more significant for the experiment?' We extended the tradi-

tional enrichment analysis logic so that a gene group is more

important if a majority of its gene members is associated with

highly enriched annotation terms as found in the traditional

enrichment analysis of the total gene list. Thus, the enrich-

ment score of each group is measured by the geometric mean

of the EASE Scores (modified Fisher Exact) [2] associated

with the enriched annotation terms that belong to this gene

group. Importantly, the multiple testing correction issues are

considered in the individual EASE scores [2]. And all EASE

scores (significant or insignificant) associated with the group

participate in the algorithm. In order to emphasize that the

geometric mean is a relative score instead of an absolute p

value, minus log transformation is applied on the geometric

mean (Additional data file 6). Therefore, the group enrich-

ment scores are intended to order the relative importance of

the gene groups instead of as absolute decision values. A

higher score for a group indicates that the group members are

involved in more important (enriched) roles. However, all

gene groups are potentially interesting despite lower

rankings.

Visualization of results in a very simple text format and 

a novel fuzzy heat map view

We implemented both a very simple text format (Figure 5)

and a comprehensive novel fuzzy heat map graphic view

(Additional data file 4) to present the functional groups

derived from the above procedure. The text format simply

lists all functional gene groups identified by the algorithm.

Although it looks like a linear format, the view allows the user

to visualize the multidimensional data of the groups, that is,

group members consisting of multiple related genes and

terms. Users are able to easily explore the major functional

groups by viewing many related genes and annotation terms

brought together by the tool. Some accessory, 'drill-down'

functionalities (for example, Enriched Terms Report, 2-D

View, and so on; Figure 5) are available for each functional

group for users to rapidly explore the associated biology in

detail. For example, the 'Enriched Term Report' button lists

the major annotation terms associated within the functional

groups based on the DAVID enrichment engine; the '2-D

View' button gives the detailed relationship of genes-to-terms

in a two-dimensional heat map view so that the user is able to

examine the rich relationship of related genes and annota-

tions in-depth (Figure 6); the 'Related Genes' button allows

users to refine the group gene members in different scopes,

which can extend the membership of interest and also correct

potential type I and II errors in the clustering algorithm

(Additional data file 9C). Furthermore, the text format pro-

vides links to the list of orphan genes not classified into any

functional groups. These genes are orphaned because they do

not meet one or more of the partitioning criteria (that is,

group membership thresholds, and so on) The list is provided

since they may be important genes for the user to examine.

Results and discussion
We examined the newly developed biological module-centric

tools (see Additional data file 8 for a graphical tutorial of

using the tools) on two published microarray datasets. It is

important to mention that, to avoid potential bias, the

datasets of the case studies are different from those used dur-

ing algorithm development. For the first microarray dataset

[35], G1 response genes were identified by microarray exper-

iments after introducing G1 cyclin Cln3p to cln- yeast cells

that were previously arrested with cdc34-2. For comparison,

the dataset was analyzed by tools with very different algo-

rithms, that is, DAVID Tools [26], GoMiner [16], Ontologizer

[33], GOStat [3], ermineJ [36], ADGO [37] and GENECODIS

[38]. All tools are able to highlight the major terms (for exam-

ple, cell cycle, DNA repair, DNA replication, budding, and so

on), consistent with previously published observations. How-

ever, the DAVID methods are more sensitive to a couple of

additional important terms (for example, cyclin-dependant

kinase activity, mating, and so on) that were not found among

the top terms in the output from the other tools. For more

detailed results, comparisons and discussion, see Additional

data file 14.

The following detailed discussion is mainly focused on the

second microarray dataset [39], of which the gene list is

available as demo list 2 on our tool entry page. In this example

dataset, authors treated freshly isolated peripheral blood

mononuclear cells (PBMCs) with an HIV envelope protein

(gp120) and further measured genome-wide gene expression

changes using Affymetrix U95A chips [40]. This study pro-

vides a global view of the complex interaction between viral

and cellular factors, which is an essential mechanism for HIV

replication in resting or suboptimally activated PBMCs. A

functionally significant annotation of approximately 400

genes (Additional data file 1) derived from the microarray

experiment was classified by the authors into five major func-

tional categories: cytokines, chemokines, transcription

factors, kinases, and membrane fusion [39]. While the

cytokine and chemokine categories were systematically

highlighted by EASE (a GO enrichment analysis based on the

Fisher Exact Test) [2], other annotation categories reported

in the publication were discovered through semi-manual

analysis by bioinformatics experts with an advanced level of

knowledge of both biology and computer tools.

The same data re-analyzed by typical functional 

annotation tools

After the continuous addition of annotations for genes as well

as the refinement of gene-term enrichment algorithms during

the years since the above study [39] was published, it is

interesting to see how the systematic results from current

functional annotation tools compare to those reported in this

publication. Some of the popular functional annotation tools,

such as DAVID Gene Functional Annotation Tool, GOStat,

GoMiner, TopGO, Ontologizer, ADGO and GENECODIS

[1,3,16,32,33,37,38], were chosen to identify major biological
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terms with the same gene list. In order to maximally reflect

the design spirit of each tool and also make the results more

comparable, we kept all default parameters of the tools

unchanged, except for synchronizing the data coverage scope

within all GO levels (DAVID covers multiple data sources and

GOstat covers GO level 3 or above by default). Although all of

the testing tools are based on similar gene-term enrichment

algorithms, the sensitivity and specificity could be different

due to different updates of GO data content, different back-

ground gene lists, different score systems, different gene ID

mapping schemes, and so on. After obtaining hundreds of

annotation terms reported by each of the above tools, the

terms, particularly at the top of the results, were compared

with each other (Table 1). Approximately 30% of the top

terms overlapped between at least two of the tools, for exam-

ple, cytokine/chemokine activity, inflammatory response,

and so on. Some reported terms, for example, kinase, are not

ranked at the top by any of the tools (that is GOMiner, 49;

DAVID, 24; GOStat, 82; topGO, 76; Ontologizer, 111).

Even though the results from the tools all point in the same

biological direction, there are four obvious problems. First,

redundant/similar/hierarchical terms appear in different

(significance) positions within the reports (for example,

response to stress, response to wounding, response to patho-

genic bacteria, response to other organisms, response to

external biotic stimulus, inflammatory response, and so on),

which makes it difficult for the user to gain or maintain a clear

focus of the whole biological picture. It is not easy for users to

comprehensively pool all genes related to the same key biol-

ogy without manually summarizing all related redundant

terms. Second, the redundant/similar/hierarchical terms

could largely dilute the focus on other key biology that has few

or no redundancies (for example, only one term is for estab-

lishment of cellular localization). If several redundant/simi-

lar/hierarchical terms are represented in the top of the list,

less redundant terms may be pushed down the list, possibly

decreasing the chance of discovery; for example, a transcrip-

tion regulation term, reported in an original publication, was

A text format report from the Gene Functional Classification ToolFigure 5

A text format report from the Gene Functional Classification Tool. The example shows the output of 16 genes (Additional data file 1) analyzed by the tool 
with default settings. Without prior knowledge, the tool is able to classify genes into three functional gene groups. On each group header, a set of buttons 
is provided for in-depth exploration of the annotation for the group. 'T' reports the major enriched annotation terms associated with the group. The 'Heat 
Map' symbol provides a detailed graphical view of gene-term relationships. 'RG' searches other related genes in the genome but not in the list.
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Figure 6 (see legend on next page)
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not listed in the top 20 by any of the tools. Third, in contrast,

due to differences of the annotation levels of different

sources, redundant/similar/hierarchical terms may them-

selves be diluted. While alone a single term may not be at the

top of the list, in combination with redundant/similar/hierar-

chical terms, the biological function may be very significant.

Fourth, current tools do not emphasize the inter-relation-

ships between key biological terms (for example, relation-

ships between chemokine/cytokine and signal transduction).

In conclusion, the recent improvement of functional annota-

tion tools provides a powerful means for users to systemati-

cally identify key biological functions associated with a gene

list. However, due to the weaknesses discussed above, refine-

ment of current gene-term enrichment algorithms and

improvement of software usability alone may not address all

the issues. Therefore, the development of novel alternative

algorithms as a complement is still very necessary.

The same data analyzed by the DAVID Gene 

Functional Classification Tool

The same gene list (Additional data file 1) was submitted to

our newly developed DAVID Gene Functional Classification

Tool described previously (Additional data file 8). The tool is

able to efficiently handle up to 3,000 genes at a time, within a

few seconds. The tool classified the approximately 400 genes

into 16 functional groups (Table 2 and Additional data file 2).

The result is much more focused, simplified, and in a manage-

able size for investigators' interpretation compared to work-

ing with a few hundred terms, of which many are redundant

in results derived using the traditional tools discussed in the

previous section. More importantly, all five reported annota-

tion categories are covered by the 16 functional groups (Table

2). In addition, the tool also lists another 11 interesting gene

groups not reported in the original publication. For example,

group 13 (tubulin genes) plays a critical role in the nucleation

of microtubule assembly. Some studies suggest that HIV

infection leads to enteric microtubule depolymerization of

infected cells, resulting in increases in HIV permeability [41].

This tool focuses on the overall major common annotation

terms associated with a gene group rather than one term or

one gene at a time, thereby producing clearer, more concise

results that can better allow for focus on the major biology of

an experiment. The tool simplifies the results by condensing

the redundant terms and summarizing inter-relationships.

This analytical logic and presentation format closely mimics

how the human brain works and the results better represent

the nature of biology.

The DAVID Gene Functional Classification Tool allows users

to further explore a given biological module/gene group in

depth. For example, the 'enriched terms' button '2-D View' is

able to list all related terms and genes for the kinase group.

Thus, a user who is not familiar with kinases can explore the

terms of kinase activity, transferase activity, ATP-binding,

nucleotide binding, protein metabolism, tyrosine specificity,

serine/threonine specificity, regulation of G protein signal-

ing, and signal transduction, and so on in one view at the

same time (Figure 6). Therefore, we can quickly learn the

biology for the kinase group with the above related terms in a

single view and also identify the fine differences among them.

For example, there are two G-protein coupling receptor

kinases, three protein tyrosine kinases and six kinases

involved in cell surface receptor-linked signal transduction

among the 23 kinases within the group (Figure 6). The fine

details may be very important for pinpointing the key biology

associated with a study.

Furthermore, the DAVID Gene Functional Classification Tool

allows one gene to be present in more than one functional

group, which closely reflects the nature of biology whereby

one gene could play multiple roles in different processes. This

fuzziness feature improves the chances of discovery by maxi-

mally preserving all of the true relationships. For example,

general transcription factor II H (GTF2H4/TFIIH,

41371_at) was assigned to group 2 (transcription regulation

group) and group 5 (DNA damage/repair group) (Additional

data file 2). Some studies suggest TFIIH increases polymer-

ase processivity in HIV infection [42]. Currently, there are

few reports about the TFIIH DNA repair mechanism being

involved in HIV infection, although this DNA repair

mechanism could be essential in HIV integration. Hence, the

fuzzy capability allows users not only to focus on the TFIIH

transcription regulation role but also to consider the possible

role in HIV integration through the DNA repair mechanism.

For another example, ring finger protein 40 (RNF40) is in

group 2 (transcription regulation group) and group 10 (chro-

mosome assembly) (Additional data file 2). Although the bio-

logical significance of the ring finger protein in HIV infection

is still largely unclear, the annotation result points out two

potential areas for further exploration: first, the ring finger

protein regulates the tumor necrosis factor-related transcrip-

tional pathway, which is critical to many aspects of HIV tran-

scription; and second, it plays some role in DNA packaging

and chromosome integration. Thus, the fuzziness capability is

a powerful feature to maximally preserve biological patterns

and to discover fine differences for a given gene compared to

exclusive methods.

An example of genes-to-terms 2-D viewFigure 6 (see previous page)

An example of genes-to-terms 2-D view. All the related 23 kinase genes and their associated annotation terms from gene group 3 (kinase group) for demo 
list 2 are displayed in a 2-D heat map-like interactive graphical view. Green represents the positive association between the gene-term; conversely, black 
represent an unknown relationship. The annotation terms are ordered based on their enrichment scores associated with the group. The kinase commonly 
related annotations (big green block) are shown on the left side, and the scattered pattern (green and black) on the right side shows the functional 
difference.
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Table 1

The top 20 enriched terms for demo list 2 by various traditional functional annotation tools

No. GOMiner DAVID Chart GOstat Ontologizer topGO elim ADGO

1 Inflammatory 
response

Response to 
pathogenic bacteria

Cell-cell signaling Response to stimulus Induction of positive 
chemotaxis

Inflammatory 
response/
extracellular region

2 Clathrin coat of 
coated pit

Chemokine activity Response to pest, 
pathogen or parasite

DNA repair Positive regulation of 
vascular endothelium

Inflammatory 
response

3 Viral genome 
replication

Cell migration Response to stress Cell surface receptor 
linked signal 
transduction

Chemokine activity Cell-cell signaling/
extracellular space

4 Morphogenesis Clathrin-coated 
vesicle

Response to external 
biotic stimulus

Positive regulation of 
protein metabolic 
process

Angiogenesis Soluble fraction/
chemokine activity

5 Cytokine activity Clathrin vesicle coat Response to 
wounding

Cytoskeleton 
organization and 
biogenesis

Vascular endothelial 
growth factor 
receptor

Extracellular space

6 Establishment of 
spindle localization

Clathrin coated 
vesicle membrane

Negative regulation 
of biological process

Molecular_function Extracellular matrix 
binding

Sensory perception/
chemokine activity

7 Cell communication Receptor binding Negative regulation 
of physiological 
process

Cell communication Viral genome 
replication

Inflammatory 
response/chemokine 
activity

8 Establishment of 
mitotic spindle 
localization

Response to other 
organism

Cytoplasmic vesicle 
membrane

DNA binding Extracellular space Sensory perception/
extracellular space

9 Regulation of cellular 
process

Kinase activity Cytoplasmic vesicle 
membrane

Protein binding Cell-cell signaling Chemokine activity

10 Regulation of 
biological process

RNA polymerase II 
transcription factor 
activity

Negative regulation 
of cellular process

Cell cortex Inflammatory 
response

Chemotaxis/
extracellular space

11 Development Clathrin coat Regulation of 
biological process

Mitochondrial part Vasculogenesis G-protein coupled 
receptor protein 
signaling pathway/
extracellular space

12 Signal transduction Establishment of 
cellular localization

Cell proliferation GTPase activity Chemotaxis Inflammatory 
response/
extracellular space

13 Viral infectious cycle Cell differentiation Phagocytic vesicle Chemotaxis Neutrophil activation Extracellular space/
chemokine activity

14 Positive regulation of 
protein metabolism

Cell death Calpain inhibitor 
activity

Anatomical structure 
formation

Ammonia ligase 
activity

G-protein coupled 
receptor protein 
signaling pathway/
chemokine activity

15 Regulation of 
protein-nucleus 
import

Regulation of isotype 
switching

Cell adhesion Lyase activity Endothelin-
converting enzyme 1 
activity

Chemotaxis/soluble 
fraction

16 Immune cell 
migration

Membrane-bound 
vesicle

Negative regulation 
of cellular 
physiological process

Interleukin-12 
production

U-plasminogen 
activator receptor 
activity

Cell-cell signaling/
chemokine activity

17 Organ development Cell cycle Vesicle membrane Nitrogen compound 
biosynthetic process

Cell adhesion Cell proliferation/
extracellular space

18 Organogenesis Membrane fraction Inflammatory 
response

DNA recombination Fructose metabolism Extracellular region/
chemokine activity
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The sensitivity of the Functional Classification Tool can vary

with different datasets and stringency criteria. If the running

criteria are not suitable to a particular dataset, the output can

be distorted. In such cases, some exploration of different run-

ning stringencies is necessary in order to obtain the optimal

results to meet the expectation of the study.

The same data analyzed by the Functional Annotation 

Clustering Tool

Due to the redundancy/hierarchy problems in the results

obtained from traditional annotation tools (Table 1), a Func-

tional Annotation Clustering Tool was also developed to

organize the highly redundant annotation term results into a

simplified and clustered format. This new format allows

investigators to focus on an annotation group level by quickly

skipping many redundant/similar/hierarchical terms within

the group. Compared to 222 individual terms reported by the

DAVID Functional Annotation Tool, a traditional term-cen-

tric enrichment method, the new tool was able to organize

them into 65 annotation clusters (Additional data file 3). For

example, the annotation cluster 3 (immune-response group)

consists of 11 redundant/similar/hierarchical terms; that is,

response to stress, inflammatory response, response to exter-

nal stimulus, response to pest, pathogen or parasite, and so

on. These similar terms are spread throughout the traditional

term-centric enrichment report list of 222 terms. Most

19 Chemotaxis Angiogenesis Cell communication Cytokine 
biosynthetic process

Response to 
pathogenic bacteria

G-protein coupled 
receptor protein 
signaling pathway/
soluble fraction

20 Taxis Cell communication Cell differentiation Immune system 
process

Hyaluronic acid 
binding

Sensory perception/
extracellular region

Total 380 terms
(p < 0.05)

Total 157 terms
(p < 0.05)

Total 119 terms
(p < 0.05)

Total 31 terms
(p < 0.05)

Total 160 terms
(p < 0.05)

Total 67 terms 
(p < 0.05)

The example gene list was analyzed by GoMiner, DAVID, GOStat, Ontologizer, topGO, and ADGO. The annotation data coverage was set to GO 
terms of all levels, and all other parameters used were each tool's default settings. Only the top 20 terms from each tool are shown (see Additional 
data file 15 for all results). Many of the terms are redundant or found within the same hierarchy. We emphasize the top 20 terms for three reasons: 
first, the top ranked terms represent the overall quality of the tools in terms of sensitivity and specificity; second, it renders the amount of analytical 
effects equivalent and comparable throughout the comparisons, including the clustered results; and third, analysts usually spend more time and 
attention on the top ranked terms due to time and focus constraints.

Table 2

Sixteen total gene functional groups identified by the Functional Classification Tool

Gene functional group no. Associated biology Group enrichment score

1 Chemokine/cytokine 3.37

2 Transcription regulation 2.89

3 Signal transduction/membrane receptors 2.68

4 Kinase activity 2.54

5 DNA damage/repair 2.23

6 Iron binding 2.05

7 RNA processing/splicing factors 1.81

8 Organic acid transport 1.71

9 Cation/ion transport 1.69

10 DNA metabolism/chromosome organization 1.53

11 Cellular macromolecule catabolism 1.41

12 Metalloprotease 1.34

13 Macrotubule 1.24

14 Protein localization/fusion 1.17

15 Amine metabolism 1.1

16 RAS small GTPase 1.03

The genes of demo list 2 were analyzed by the Functional Classification Tool. The major biology terms associated with each group are manually 
summarized based on gene-term enrichment buttons provided for each functional group.

Table 1 (Continued)

The top 20 enriched terms for demo list 2 by various traditional functional annotation tools
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importantly, the top 20 annotation clusters with a group

enrichment score less than or equal to 0.05 (Table 3 and

Additional data file 3) contain all annotation categories

reported by the original publication, as well as interesting

groups not identified. The highly organized and simplified

annotation results allow users to quickly focus on the major

biology at an annotation cluster level instead of trying to come

to the same conclusions by putting together pieces that are

scattered throughout a list of hundreds of terms. In addition,

the annotation cluster is helpful in comprehensively pooling

all related genes associated with an annotation cluster con-

sisting of many related terms. For example, each of the 11

terms within cluster 3 (immune-response cluster) associates

with different genes. A pooled gene list brought together by

cluster 3 regarding immune-response could be much more

comprehensive, compared to the genes selected from one or a

few individual terms. Moreover, the tool could possibly bring

up the terms not passing the minimum enrichment threshold

but highly related to other terms with significant enrichment

scores. In conclusion, the clustered result condenses the data

into smaller, much more organized biological term modules,

which allows investigators to quickly and comprehensively

focus on the key biology of interest.

Conclusion
The DAVID Gene Functional Classification Tool [26] is able

to organize and condense large gene lists into biologically

meaningful modules. It changes functional annotation analy-

sis from term- or gene-centric to biological module-centric.

This method takes into account the redundant and network

nature of biological annotation contents in order to concen-

trate on the larger biological picture rather than an individual

terms or genes. The DAVID Gene Functional Classification

Tool is complementary to other functional annotation tools.

Abbreviations
GO, Gene Ontology; PBMC, peripheral blood mononuclear

cell.
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Table 3

The top 20 annotation clusters identified by the DAVID Functional Annotation Clustering Tool

Annotation cluster Representative annotation terms Enrichment score

1 Negative regulation of biological process 5.38

2 Signal transduction 4.36

3 Inflammatory response 3.75

4 Extracellular region 3.69

5 Cytokine/chemokine activity 3.12

6 Viral genome replication 2.23

7 Cell death/apoptosis 2.19

8 Regulation of biological process 2.18

9 Organ morphogenesis 2.06

10 Regulation of cell cycle 2.01

11 Positive regulation of biological process 1.87

12 Biological process unknown 1.76

13 Physiological interaction between organisms 1.69

14 Antimicrobial humoral response 1.52

15 Transcription cofactor activity 1.46

16 Integral to plasma membrane 1.44

17 Coated vesicle membrane 1.42

18 DNA repair/DNA metabolism 1.38

19 Kinase activity 1.3

20 Myoblast differentiation 1.3

The genes of demo list 2 were analyzed by the Functional Annotation Clustering Tool. The top 20 annotation clusters out of 65 total clusters have 
group enrichment scores less than or equal to 0.05 (equivalent to 1.3 in minus log scale). The clusters are ordered by group enrichment score. The 
representative biology terms associated with the top 20 annotation clusters are manually selected, showing a much clearer and non-redundant view 
of the annotation terms associated with the study.
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Additional data files
The following additional data are available with the online

version of this paper. Additional data file 1 lists the genes used

in the paper. Additional data file 2 provides the complete out-

put in text format for demo list 2 analyzed by the DAVID Gene

Functional Classification Tool. Additional data file 3 provides

the complete output in text format for demo list 2 analyzed by

the DAVID Functional Annotation Clustering Tool.

Additional data file 4 is a figure showing the fuzzy heat map

visualization of biological modules. Additional data file 5 is a

comparison of the novel fuzzy heuristic partitioning method

with other clustering methods. Additional data file 6 is an

example of the group enrichment score calculation used for

the Functional Annotation Clustering Tool. Additional data

file 7 describes the fourteen annotation categories used in the

DAVID Functional Classification Tool. Additional data file 8

provides graphical instruction and a tutorial on how to use

the DAVID Functional Classification Tool and the DAVID

Functional Annotation Clustering Tool. Additional data file 9

gives the output examples for the related gene search and

related term search. Additional data file 10 is the default set-

ting for minimum overlapped annotation in kappa score cal-

culation. Additional data file 11 describes the effect of Kappa

statistics on biased annotation data. Additional data file 12

provides a hypothetical example to measure the relationships

of gene-gene pairs by kappa statistics with annotations

organized in a 'flat' matrix. Additional data file 13 provides a

hypothetical example to demonstrate the general procedure

of our agglomeration procedure. Additional data file 14

includes detailed results, comparisons of the new DAVID

clustering tools with regards to yeast cell cycle G1 genes [21].

Additional data file 15 gives the annotation results of demo

list 2 by GOMiner, GOStat, DAVID chart, topGO, ermineJ

ORA, Ontologizer (three methods), ADGO and GENECODIS.

Additional data file 1Genes used in the paperGenes used in the paper: 409 Affymetrix IDs of demo list 2; 84 chemokine genes; approximately 17,000 pairs of protein-protein interactions; and 16 Affy IDs.Click here for fileAdditional data file 2Complete output in text format for demo list 2 analyzed by the DAVID Gene Functional Classification ToolComplete output in text format for demo list 2 analyzed by the DAVID Gene Functional Classification Tool.Click here for fileAdditional data file 3Complete output in text format for demo list 2 analyzed by the DAVID Functional Annotation Clustering ToolComplete output in text format for demo list 2 analyzed by the DAVID Functional Annotation Clustering Tool.Click here for fileAdditional data file 4Fuzzy heat map visualization of biological modulesThe genes in demo list 2 were analyzed by DAVID Gene Functional Classification Tool. The identified biological groups/modules were displayed by the fuzzy heat map.Click here for fileAdditional data file 5The novel fuzzy heuristic partitioning method compared with other clustering methodsThe binary gene-term matrix (like Figure 2a) was compiled and submitted to different clustering engines, including Hierarchical clustering, and K-means. The results were evaluated and compared side-by-side.Click here for fileAdditional data file 6An example of the group enrichment score calculation used for the Functional Annotation Clustering ToolAn example of the group enrichment score calculation used for the Functional Annotation Clustering Tool.Click here for fileAdditional data file 7Fourteen annotation categories used in the DAVID Functional Classification ToolFourteen annotation categories used in the DAVID Functional Classification Tool.Click here for fileAdditional data file 8Graphical instruction and tutorial on how to use the DAVID Func-tional Classification Tool and the DAVID Functional Annotation Clustering ToolGraphical instruction and tutorial on how to use the DAVID Func-tional Classification Tool and the DAVID Functional Annotation Clustering Tool.Click here for fileAdditional data file 9The output examples for the related gene search and related term search(a) Related gene search for 'interleukin 8' in the scope of demo list 2. (b) Related term search for 'inflammatory response' in the scope of all annotations. (c) Related gene search for a group of genes, group 1 for demo list 2, identified by the DAVID Gene Functional Classification Tool.Click here for fileAdditional data file 10The default setting for minimum overlapped annotation in kappa score calculation(a) Significant kappa scores (≥0.35 based on randomization study in Figure 3) can be obtained only for gene-gene pairs with higher overlapped annotation terms (≥10). Thus, there is no reason to cal-culate kappa scores, in an attempt to save the calculating time for DAVID Functional Classification, for the large number of those gene-gene pairs with fewer annotation terms overlapped. A con-servative default filter is 4. (b) Such a default filer (blue curve) has somewhat greater impact on the significant kappa scores in the higher end, compared to those in the lower end. However, it will skip a significant amount of kappa calculation of gene-gene pairs.Click here for fileAdditional data file 11The effect of kappa statistics on biased annotation dataThe annotation data contents contain many more 0 s than 1 s. The test shows that kappa statistics is able to detect 1-1 relationships, which are the key biological co-occurrences that we desire to measure.Click here for fileAdditional data file 12A hypothetical example to measure the relationships of gene-gene pairs by kappa statistics with annotations organized in a 'flat' matrixThe examples suggest that the 'flat' matrix strategy, along with kappa statistics, allows for the quantitative measurement of gene-gene and term-term relationships based on global annotation pro-files. All levels of annotation are important to measurement contribution.Click here for fileAdditional data file 13A hypothetical example to demonstrate the general procedure of our agglomeration procedureThe example provides a step-by-step demonstration of the cluster-ing algorithm, thereby showing how the members are grouped together, how the number of total groups are determined, and how fuzziness can occur.Click here for fileAdditional data file 14Detailed results, comparisons and discussion of the new DAVID clustering tools with regards to yeast cell cycle G1 genes [21]Detailed results, comparisons and discussion of the new DAVID clustering tools with regards to yeast cell cycle G1 genes [21]Click here for fileAdditional data file 15The annotation results of demo list 2 by GOMiner, GOStat, DAVID chart, topGO, ermineJ ORA, Ontologizer (three methods), ADGO and GENECODISThe annotation results all point in the right direction, that is, inflammatory responses. However, the redundant/similar/hierar-chical terms are spread throughout the results, which decreases analytical efficiency. In addition, some of the key terms reported by the original publication are not on the top of the results produced by other tools, but are always covered by the DAVID tools.Click here for file
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