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Abstract. In this paper, we introduce a new power analysis attack
against DES. It is based on the well known Davies-Murphy attack. As
for the original attack, we take advantage of non-uniform output distri-
butions for two adjacent S-boxes. We show how to detect these biased
distributions by power analysis on any DES inner round and thus obtain
one bit of information about the key.

An advantage of this new attack is that no information about DES
inputs or outputs is required. Therefore it is likely to defeat many actual
countermeasures, in particular the popular masking techniques.

1 Introduction

Side-channel attacks have been developed in parallel to “classical” attack tech-
niques since about 10 years. The initial publication by Kocher [13, 14] of Simple
Power Analysis (SPA) and Differential Power Analysis (DPA) has been a ma-
jor breakthrough in the domain. The general idea in this new family of attacks
is to use “non-conventional” sources of information. Typically, the situation is
we have a cryptographic device manipulating secret key or data which is pro-
tected against physical intrusion (we can think of this device as a smart-card,
for instance). Then an attacker tries to obtain these secrets by measuring some
external elements of information about the device. A leakage can result from the
electric consumption of the device, its electromagnetic radiations, or simply by
timing measurements. Some related attacks are also based on analyzing faults
during the execution of the cryptographic computations [8].

Side channel attacks using the electric consumption are generally called
“Power Attacks”. It is widely believed that power consumption is always some-
how correlated to the manipulated data. The question is thus to find appropriate
countermeasures in order to thwart all known attacks. Power Attacks have been
developed without distinction to secret and public key primitives. However in this
paper, we mostly focus on the analysis of block ciphers. In this particular con-
text, the most popular family of attacks are DPA [14] and its extended version,
Higher-Order DPA [17, 21]. Advanced attacks usually revisit some techniques of
“classical” cryptanalysis, like collision attacks [20] or differential attacks [15].

The goal of this paper is to propose a new power attack. We revisit the well-
known Davies-Murphy cryptanalysis of DES [5, 11] and transform it into a power
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analysis attack. The “classical” attack uses non-uniform output distributions for
each pair of adjacent S-boxes in DES. This property results from the duplication
of some state bits by the expansion function. Non-uniform distributions result in
detectable imbalance in electric consumption, and we propose several techniques
to detect and exploit this imbalance. We call our new attack the Davies-Murphy
Power Attack (DMPA).

First we discuss the model used to describe the correlation between interme-
diate data and power consumption. Then we recall the principles of DES, the
Davies-Murphy attack and investigate some additional properties. In Section 5,
the general principle of DMPA is exposed and we propose some tricks to apply
it to various scenarios and different kinds of implementation. The final sections
are dedicated to discussing the advantages and the extensions of DMPA.

2 The Power Consumption Model

In power analysis attacks, the basic assumption is that power consumption is
somehow correlated with some data handled during the execution of an instruc-
tion. A classical assumption is the Hamming weight model [1, 9] where we
suppose that the power consumption is proportional to the hamming weight of
the manipulated data D. Let W be the power consumption and H the hamming
weight function. We suppose that

W = λ H(D ⊕ R) + θ

where θ is a term of noise, λ a scalar and R a reference state from which we
measure the number of bits flipped. For instance, R is often seen as a constant,
unknown machine word (but R is not necessarily zero). The underlying assump-
tion for electric consumption is that flipping a bit from 0 to 1 or flipping it from
1 to 0 costs almost the same thing, while keeping a bit unchanged costs almost
nothing.

Many papers on side channel attacks [7, 10, 14, 18] observed empirically this
correlation between the consumption of a smart card and the hamming weight
of the operands. This model has also been verified more formally (see [9] for
instance). Although a finer analysis has revealed that an extended linear model
was sometimes more appropriate [1], it is still widely believed in practice that the
Hamming weight model is a reasonable approximation. Actually it seems partic-
ularly well suited to model circuits based on the widely used CMOS technology,
while it may be less appropriate for other technologies.

In the following, we suppose that the Hamming weight model is verified. We
stress out that this model is not specifically helpful for our attack. We choose it
because it is frequently used in the literature, and from our experience of cryp-
tographic hardware, we believe it is very often appropriate. However our attack
could probably be adapted to another model, as long as an actual correlation
exists between W and D.

It is classically known that implementations can be subject to power analysis
attacks when one of the following condition holds :
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– the intermediate data D depends only on the plaintext and a small portion of
key bits. This is the fundamental hypothesis for Differential Power Analysis
(DPA).

– a simple function of several intermediate data D1, . . . , Dt depends only on the
plaintext and a small portion of key bits. This is the fundamental hypothesis
for Higher-Order Differential Power Analysis (HO-DPA)1.
Then an attacker would use the correlation between intermediate data and

power consumption to detect a correct guess of the key bits. Recent implemen-
tations take into account this threat by protecting all inner instructions. For
instance a popular family of countermeasures consists in masking the manip-
ulated data [2–4]. The underlying idea is that intermediate values should look
random, even when the plaintext is known. However, most countermeasures do
not take into account the fact that intermediate data may be biased indepen-
dently of the plaintext. In the case of DES, this is actually the case because
of Davies’ observation about pairs of adjacent S-boxes [11]. In the next section,
we focus on DES and recall the well-known Davies-Murphy attack.

3 DES and the Davies-Murphy Attack

The Data Encryption Standard (DES) is one of the most popular block cipher.
Since it was selected as a standard by the NBS in 1977 [19], it has been the
target of many research on cryptanalysis. Among all the results against DES,
three attacks have emerged :

– Differential Cryptanalysis (DC) [6] was proposed by Biham and Shamir in
1990. It has been a major breakthrough and many applications to other
algorithms have been demonstrated thereafter. Since then, it was revealed
that the principle of DC was already known by the designers of DES.

– Linear Cryptanalysis (LC) [16] was proposed by Matsui in 1993. Like DC,
it became quickly very popular and was applied successfully to other algo-
rithms. In addition, this attack was practically implemented by Matsui in
the case of DES. This technique was presumably not known by the designers
of DES.

– The Davies-Murphy Cryptanalysis [5, 11] is a dedicated attack against DES.
It takes advantage of biased distributions for two adjacent S-boxes. Although
less generic than the previous two, Davies-Murphy cryptanalysis is a concern
for Feistel ciphers with a non-bijective round function.

First we remind the general structure of DES (see Figure 1). We call F the
round function, iterated 16 times in this case.

F is represented in more details in Figure 2. The general idea of Davies-
Murphy attack is to look at two adjacent S-boxes (say S1 and S2). Because of
the expansion phase, two bits of the input have been duplicated and are shared
by the inputs of S1 and S2. These two bits are the two rightmost bits of S1 and

1 Here it is t-th order DPA, since t intermediate data are considered.
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Fig. 1. The general structure of DES

the two leftmost bits of S2. Consequently the output distributions for S1 and for
S2 are not independent. A precise analysis shows that the joint distribution is
not uniform. Moreover, depending on one key bit2, two distributions (both non
uniform) can be observed. Theoretically this allows an attacker to learn the sum
of the 4 key bits corresponding to the shared positions in S1 and S2 (see [5, 11]).

S8

PERMUTATIONPERMUTATION

SUBKEY ADDITION

S1 S2 S3 S4 S5 S6 S7

Fig. 2. The round function of DES

To give an illustration of the Davies-Murphy biased distributions, we focus
on the S-boxes S1 and S2. We denote by (k1, k2, k3, k4) the 4 subkey bits corre-
sponding to the “shared” positions of S1 and S2, and we call k = k1⊕k2⊕k3⊕k4
the sum of these 4 bits. In Table 1 we represent the output distributions for both
cases k = 0 and k = 1. y1 and y2 represent respectively the outputs of S1 and
S2. These distributions were simply obtained by looping on all possible inputs
of S1 and S2.

This kind of imbalance was initially observed by Davies [11]. At first, it was
thought that the attack could not be extended to the full DES. Indeed the pre-
vious observation extends to 16 rounds by composing 8 times the distributions.

2 Actually, it is one linear combination of key bits.



The Davies-Murphy Power Attack 455

Table 1. Biased Distributions for S1 and S2 (all elements in the table should be divided
by 210)

���y2
y1 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

00 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
01 5 5 4 3 4 4 3 4 3 4 6 4 4 5 3 3 3 3 4 5 4 4 5 4 5 4 2 4 4 3 5 5
02 2 2 4 6 4 4 6 4 6 4 0 4 4 2 6 6 6 6 4 2 4 4 2 4 2 4 8 4 4 6 2 2
03 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
04 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
05 3 3 4 5 4 4 5 4 5 4 2 4 4 3 5 5 5 5 4 3 4 4 3 4 3 4 6 4 4 5 3 3
06 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
07 5 5 4 3 4 4 3 4 3 4 6 4 4 5 3 3 3 3 4 5 4 4 5 4 5 4 2 4 4 3 5 5
08 5 5 4 3 4 4 3 4 3 4 6 4 4 5 3 3 3 3 4 5 4 4 5 4 5 4 2 4 4 3 5 5
09 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
10 6 6 4 2 4 4 2 4 2 4 8 4 4 6 2 2 2 2 4 6 4 4 6 4 6 4 0 4 4 2 6 6
11 3 3 4 5 4 4 5 4 5 4 2 4 4 3 5 5 5 5 4 3 4 4 3 4 3 4 6 4 4 5 3 3
12 5 5 4 3 4 4 3 4 3 4 6 4 4 5 3 3 3 3 4 5 4 4 5 4 5 4 2 4 4 3 5 5
13 3 3 4 5 4 4 5 4 5 4 2 4 4 3 5 5 5 5 4 3 4 4 3 4 3 4 6 4 4 5 3 3
14 3 3 4 5 4 4 5 4 5 4 2 4 4 3 5 5 5 5 4 3 4 4 3 4 3 4 6 4 4 5 3 3
15 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Case k = 0 Case k = 1

The XOR of plaintext and ciphertext is therefore non uniform and it turns out
things depend only on one combination of key bits. Unfortunately the resulting
imbalance is too small to be detected. Later on, Biham and Biryukov demon-
strated how to improve this attack to obtain an attack faster than exhaustive
search for the full DES [5]. In this paper we focus on Davies-Murphy’s biased
distributions for just one round.

4 Extension of Davies-Murphy to the Hamming Weight

The key observation of Davies-Murphy attack is that, for any DES inner round,
intermediate data are not distributed uniformly, for randomly-chosen inputs.
However in a power attack we do not have access directly to the intermediate
data but to the power consumption (which is hopefully correlated to the data).
Since we assume the Hamming weight model, this correlation depends on the
Hamming weight of the S-box output. Hence it is natural to consider how the
Davies-Murphy property translates to the Hamming weight.

As a first example, we consider the S-boxes S1 and S2 and look at the joint
distribution of (h1, h2) = (H(S1(x1)), H(S2(x2))) where x1 and x2 are uniformly
chosen. The resulting distribution is given in Table 2.

Four values are biased in Table 2 (the corresponding positions are (h1, h2) =
(0, 2), (4, 2), (0, 3) and (4, 3)). Hence the imbalance exists but is not huge. Still,
we hope to make it exploitable but we need to introduce appropriate statistical
tools.

Definition 1. Let D1, D2 be two distributions over some finite domain X. The
statistical distance between D1 and D2 is defined as

|D1 − D2| =
∑

x∈X

|D1(x) − D2(x)|
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Table 2. Distributions of output hamming weight for S1 and S2 (all elements in the
table should be divided by 210)

Random Distribution Case k = 0 Case k = 1

����h2

h1 0 1 2 3 4
����h2

h1 0 1 2 3 4
����h2

h1 0 1 2 3 4

0 4 16 24 16 4 0 4 16 24 16 4 0 4 16 24 16 4

1 16 64 96 64 16 1 16 64 96 64 16 1 16 64 96 64 16

2 24 96 144 96 24 2 26 96 144 96 22 2 22 96 144 96 26

3 16 64 96 64 16 3 14 64 96 64 18 3 18 64 96 64 14

4 4 16 24 16 4 4 4 16 24 16 4 4 4 16 24 16 4

Using this definition, we can compute the statistical distance between the
previous distributions. Let U be the distribution of hamming weight for uni-
formly chosen inputs. Di denotes the distribution in the case k = i. For S-boxes
S1 and S2, we can easily compute :

|D0 − U| =
1

128

|D1 − U| =
1

128

|D1 − D0| =
1
64

The imbalance for S-boxes S1 and S2 is not the best we can obtain. We
repeated the same experience with different pairs of S-box and obtained better
results. This is summarized in Table 3.

When using random inputs, all pairs of adjacent S-boxes present an imbalance
regarding the output hamming weight. The best ones are obtained for (S2,S3),
(S7,S8) and (S8,S1). One can also notice that

Table 3. Statistical distance between distributions U , D0 and D1

S-boxes |D0 − U| |D1 − U| |D1 − D0|

S1 and S2
1

128
1

128
1
64

S2 and S3
3
64

3
64

3
32

S3 and S4
1

256
1

256
1

128

S4 and S5
1

128
1

128
1
64

S5 and S6
1

128
1

128
1
64

S6 and S7
3

128
3

128
3
64

S7 and S8
1
32

1
32

1
16

S8 and S1
1
32

1
32

1
16
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|D0 − U| = |D1 − U| = 0.5 × |D1 − D0|
always holds due to the symmetry property :

D0(x) + D1(x) = 2 · U(x)

Therefore we have exhibited a Hamming weight version of the Davies-Murphy
imbalance on DES, and we are confident that the electric consumption for adja-
cent S-boxes is biased, even for randomly-chosen plaintexts.

5 The Davies-Murphy Power Attack

In this section, we want to turn the imbalance of Hamming weight into a pow-
erful side channel attack against DES. First, we need to specify which specific
assumptions we make about the power consumption of the cryptographic device.

5.1 Assumptions

As mentioned previously, our general assumption is the Hamming weight model.
However, before describing an attack, we need to precise more specifically this
model.

A first and crucial question is to determine what the reference state R cor-
responds to in practice. In [9], some experiments were conducted on different
hardwares to answer this question. Depending on the chips, different results
were obtained. In many cases, R corresponded to the address of the input value
or to the opcode of the current instruction. For other chips, R was always 0, pre-
sumably because these chips clear the bus between each instruction. Overall it is
reasonable to consider that each instruction corresponds to a unique constant R.

More formally, we make the assumption that there is a constant Ri, inde-
pendent of the round, such that the electric consumption Wi of S-box
Si is

Wi = λ H(yi ⊕ Ri) + θ

with the same notations than in Section 3.
Moreover, we suppose that all S-box computations are done separately,

hence we can observe any Wi separately by looking at an appropriate portion of
the power consumption curves. This assumption is reasonable, but may be sub-
ject to discussions, depending on the implementation. Indeed some computations
might be done in parallel (for instance, on a 8-bit architecture, it is likely that
pairs of adjacent S-boxes are executed simultaneously, thus we could observe
only W2i + W2i−1).

We further explore these different scenarios in Section 6. Here, we explore
only the case where all S-boxes are computed sequentially. This is convenient to
describe a basic attack.
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5.2 The Principle of the Attack

We have already seen that (H(yi), H(yi+1)) is biased a priori for random plain-
text, depending just on one key bit k. Actually what we observe also depends
on the unknown constants Ri, Ri+1 and on the noisy term θ. The general idea
of the attack is decomposed in 3 steps:
– First, we observe that the distribution of (H(yi ⊕Ri), H(yi+1 ⊕Ri+1)) is, in

general, still biased for most constants Ri, Ri+1.
– Secondly, we build an empirical distribution of (H(yi ⊕Ri), H(yi+1 ⊕Ri+1))

by encrypting a set of randomly chosen plaintexts. Hence we need to iden-
tify the portion of curves corresponding to Wi and Wi+1, then to counter
the influence of the noisy term. The resulting empirical distribution is then
matched with theoretical results.

– Finally, a good method to perform this matching is proposed. Our strategy
is to compare distributions for two different inner rounds (not necessarily
consecutive).

1 - Adding the Constants in the Distributions. To analyze the influence
of constants Ri, we simply explored all possible cases. Hence we have looked at
distributions (H(yi ⊕ Ri), H(yi+1 ⊕ Ri+1)) for various pairs of S-boxes, with all
possible constants (Ri, Ri+1). These results are summarized in Table 4. As be-
fore, distribution Di corresponds to the case k = i. Besides the column “constant
= 0” corresponds to the previous results (see Table 3).

Table 4. Statistical distances with constant Ri’s

S-boxes Statistical Distance |D1 − D0|
constant = 0 worst constant best constant average value

(S1,S2) 1
64 0 5

32
1.5
32

(S2,S3) 3
32

3
32

7
32

3.656
32

(S3,S4) 1
128 0 9

128
0.473
32

(S4,S5) 1
64 0 9

64
0.984
32

(S5,S6) 1
64

1
64

3
32

1.195
32

(S6,S7) 3
64

1
64

9
128

1.262
32

(S7,S8) 1
16

1
16

25
128

3.094
32

(S8,S1) 1
16

1
128

3
32

0.711
32

Clearly, we observe that the average distance is quite significant for all pairs
(it ranges from 0.473

32 � 1
64 to 3.656

32 � 1
8 ). We also observe that there are “good”

and “bad” constants, but in average an imbalance is expected.

2 - Getting Rid of the Noise. In the second phase, our goal is to build
empirical distributions. More precisely, we encrypt a set of M randomly chosen
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plaintexts and we monitor the electric consumption. We target the appropriate
portion of the curves to observe (Wi, Wi+1). Our goal is, from these observations,
to decide the underlying value of (H(yi ⊕ Ri), H(yi+1 ⊕ Ri+1)) for each sample,
despite the noise. Hence we obtain an empirical distribution over M samples. It
is well known that when M grows, the empirical distribution converges to the
theoretical distribution. More precisely, to get rid of the noise, two situations
must be distinguished :
1. Suppose we can repeat each experiments. Typically, we can obtain twice

from the cryptographic device the same encryption and the same execution.
This assumption is commonly used in power analysis attacks. In this case the
noise is eliminated by multiplying the samples for each trace and computing
the average consumption.

2. Suppose we cannot repeat any experiments. Typically, any encryption corre-
sponds to a random plaintext. This can result from masking countermeasures
(with a fresh mask for each block !) or from a randomized mode of operation
(CBC plus IV for instance).

In the first hypothesis, there is just an extra workload per message to make
the noise arbitrarily small. Typically, if we have a Gaussian noise with expected
value 0 and standard deviation σ, we expect to reduce the standard deviation by
a factor

√
M if we repeat M times each experiment. Therefore, since our model is:

Wi = λ H(yi ⊕ Ri) + θ

we consider the noise is sufficiently small when λ � σ√
M

, i.e. the noise is negli-
gible compared to the data-dependent term.

In the second hypothesis, we cannot eliminate the noise by averaging methods.
However we hope that it will only slightly perturb our empirical distributions.
Hence we suppose λ � σ, so when making a decision for each hamming weight,
we have a small probability p of making a mistake. Our practical experiments on
a smart card confirmed this supposition (see Section 6). A justification is that the
data-dependent terms represent the consumption of bus lines which is generally
dominant in a chip. More precisely, our decisions are made using thresholds:

t − 1
2

<
Wi

λ
< t +

1
2

⇒ H(yi ⊕ Ri) = t

For example if Wi

λ is in the range [2.5 - 3.5], we decide H(yi ⊕ Ri) = 3.
If the noise is indeed negligible, we are successful in predicting the hamming
weight with overwhelming probability. This threshold strategy is summarized in
Figure 3 and further analyzed in Appendix A. Of course, in practice, λ is not
known but we can set up thresholds experimentally to fit to the observations. We
stress out that this analysis requires a good knowledge of the electric behavior
of the chip.

3 - Comparing Two Inner Rounds. After the step 2, we construct an empir-
ical distribution of hamming weight from power consumption curves. We know
this is biased depending on one round key bit k. However since the key is fixed,
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decide h=0 decide h=4

+0.5

Fig. 3. Threshold rules of decision when observing Wi
λ

we have nothing to compare it with. Besides it is impossible to tell the value of k
just by looking at the distribution, because it highly depends on the unknown Ri.

However an attack is still possible by looking at two different inner
rounds of DES (not necessarily consecutive rounds). For instance, suppose
we encrypt random plaintexts and compare the consumptions of round 1 and
2 for the adjacent S-boxes (S2, S3). At round 1 we observe (W2, W3), which is
distributed differently depending on whether some first round key bit k is 0 or
1. These distributions are respectively called D1 and D0. A similar observation
holds for round 2 with a second round key bit k′. Thus

– If k = k′ = i, we have distributions Di for both rounds.
– If k �= k′, we have distributions D0 for one round and D1 for the other.

D1 and D0 depend on the constants Ri, but we have seen that, in average

|D1 − D0| =
3.656
32

� 0.114

and even in the worst case, this value is 3
32 . So, in theory, if the number of

samples M is sufficient (typically M ≥ 1
0.1142 � 100), we should be able to tell if

k = k′ or k �= k′ and thus learn one bit of information about the key. In practice,
we retrieve two empirical distributions E0 and E1. We must decide whether these
distributions are the same (k = k′) or if they are different (k �= k′). Because of
the symmetry property exhibited in Section 4, we use the following indicator :

I =
∑

x

(E0(x) − U(x)) × (E1(x) − U(x))

Basically, we have normalized the empirical distributions by subtracting the
U distribution, and then we compute a scalar product. If k = k′ = i, then this
indicator is positive :

Ik=k′ =
∑

x

(Di(x) − U(x))2

Otherwise, if k �= k′, then the indicator should be negative

Ik �=k′ =
∑

x

(D0(x) − U(x)) × (D1(x) − U(x))

= −
∑

x

(D0(x) − U(x))2

= −
∑

x

(D1(x) − U(x))2
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because of the symmetry property described in Section 4. Therefore

Ik=k′ = −Ik �=k′

and these values are sufficiently large to be detected in practice.

5.3 Simulations

We ran some simulations of the previous distinguisher to evaluate our ability
to predict correctly whether k = k′, and we obtained the results summarized
in Table 5. Four intensity of noise where considered (see Appendix A for the
role of the probability p) as well as several values for the number of samples M .
We repeated the attack about 1000 times in each case, with a random choice of
constants Ri.

Table 5. Simulation results

Probability of success in Deciding if k = k′

p = 0 0.1 0.25

M = 256 4000 40000 256 4000 40000 256 4000 100000

(S1, S2) 0.5 0.65 0.98 0.5 0.59 0.90 0.5 0.51 0.69

(S2, S3) 0.67 0.99 1 0.58 0.96 1 0.52 0.61 0.99

(S3, S4) 0.5 0.54 0.83 0.5 0.54 0.72 0.5 0.5 0.54

(S4, S5) 0.5 0.59 0.94 0.5 0.56 0.80 0.5 0.51 0.59

(S5, S6) 0.5 0.59 0.93 0.5 0.56 0.81 0.5 0.51 0.63

(S6, S7) 0.51 0.61 0.96 0.5 0.57 0.84 0.5 0.51 0.65

(S7, S8) 0.70 0.99 1 0.58 0.95 1 0.51 0.59 0.99

(S8, S1) 0.5 0.57 0.91 0.5 0.56 0.77 0.5 0.51 0.58

It appears from Table 5 that the best pairs of S-boxes are (S2, S3) and
(S7, S8), as predicted in Section 5.2. Hence, for our basic attack we will use
any of these two pairs. For the variation attack with an 8-bit architecture, we
can only use pairs with index of the form (2i, 2i−1). Fortunately we can use the
pair (7, 8) here, which is strongly biased.

6 Some Variations of the Attack

In the previous section, we considered a simple hypothesis where all S-boxes
were computed separately. Therefore we could identify portions of the power
consumption curves corresponding to each S-box. In practice, the implementa-
tions are often more complex and we need to investigate if our attack applies to
other situations
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6.1 A Real-Life Situation : 8-Bit Architecture

As an example of our attack, we have considered a recent smart-card running
a software DES implementation. The card also featured some usual hardware
countermeasure (but no software countermeasure like masking). These counter-
measures included a variable internal clock and some random peaks of power.
Despite these protections, we managed to identify the power consumption cor-
responding to each portion of the DES execution. This analysis required first
to understand well the behavior of the card. The trickiest part was to eliminate
the random peaks of power but it turned out they were not “that” random and
their presence was strongly correlated with the external clock.

In addition, we realized that two S-boxes are executed simultaneously by the
card, i.e. each pair of adjacent S-boxes (S1 and S2, S3 and S4, etc ...). Therefore,
the power consumption observed is W2i + W2i−1 for i = 1 . . . 4. It is strongly
correlated with the sum of the hamming weights:

H(y2i ⊕ R2i) + H(y2i−1 ⊕ R2i−1)
= H((y2i ⊕ R2i)||((y2i−1 ⊕ R2i−1)))

Accordingly, we expect to observe 9 groups of curves locally, if we have many
samples (corresponding to hamming weight ranging from 0 to 8). In fact, due
to the noise influence, it is difficult to make the groups appear very distinctly,
but if we display a few curves (see Figure 4), a clear distinction starts to ap-
pear depending on the hamming weight. Low hamming weight correspond to low
consumption (few bits are flipped from the reference states), while high ham-
ming weights curves are located at the top of this Figure. In addition, these
experiments illustrate the fact that some noise θ is indeed present, but it is rel-
atively small compared to the data-dependent term, since the Hamming weight
distinction appears clearly.

In this scenario, we can only observe the sum of power consumption for cer-
tain pairs of S-boxes. We computed theoretically the expected imbalance for
these pairs (see Table 6). Here the distributions considered are over the sum
of hamming weights h1 + h2 and not the joint distribution (h1, h2) as previ-
ously.

Hence, the statistical distances are still relatively high for the four pairs of
S-boxes. To perform the Davies-Murphy power attack here, we can use again the
trick of comparing two different inner rounds, like in Section 5.2.

6.2 Case When More S-Boxes are Computed Simultaneously

When considering software implementations of DES, we believe the most com-
mon situation are those where 1 or 2 S-boxes at most are computed simulta-
neously. This was developed in Section 5 and Section 6.1. To our knowledge,
no software implementation presents a higher degree of parallelization than
that.

However, when turning to DES hardware implementations, more than two
S-boxes are often computed at the same time. Things are thus more complex
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Fig. 4. Distinction of Curves According to the Hamming Weight

Table 6. Statistical distances in the 8-bit scenario

S-boxes Statistical Distance |D1 − D0|
constant = 0 worst constant best constant average value

(S1,S2) 1
64 0 1

8
1.097
32

(S3,S4) 1
128 0 3

64
0.406
32

(S5,S6) 1
64

1
64

21
256

1.076
32

(S7,S8) 1
16

1
16

39
256

2.627
32

because we observe many biased distributions simultaneously, and this depends
on many key bits. We are currently investigating some refined version of our
attack in this case. We believe an attack can be achieved since the imbalance is
detectable in theory, but it will probably not be very efficient.

7 Impact on DES Implementations

Modern countermeasures against Side Channel Attacks are often focused against
DPA. Accordingly they try to make intermediate data handled during the block
cipher computation as random and unpredictable as possible. Two main tech-
niques have receive a huge interest in recent years

– Masking Techniques [2–4] where the idea is to ensure that critical intermedi-
ate data are equal to the “true” data XOR some random mask. Masking the
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round input has clearly no effect, since we process randomly-chosen data.
However masking the output is problematic since the Davies imbalance now
depends on the mask. But, for consistency, masking countermeasures gen-
erally require some unmasked round output (see [4]). This was not believed
to be critical because the goal was to thwart DPA and HO-DPA. However
DMPA will still work here, except we need to choose two inner rounds with
unmasked output.

If all round outputs were masked with the same value, an higher-order
version of DMPA could be envisaged3. So the best protection consists in
masking all round outputs with a distinct value. But this is probably too
expensive in practice (actual countermeasures use one or two masking values
at most).

– Duplication Techniques [12] where all intermediate data are split into two
parts, using the secret sharing principle. However, by analyzing simulta-
neously the behavior of both parts, the Davies imbalance should still be
observed. Since everything is duplicated, the analysis is probably more com-
plicated because 4 S-boxes need to be considered instead of just 2.

Therefore the Davies-Murphy Power Attack (DMPA) is likely to defeat most
“software” countermeasures. In fact, this new attack is not fundamentally dif-
ferent from classical DPA : both gather power traces and sort them according to
some intermediate data, the goal being to verify a guess on a few key bits. How-
ever, while DPA focuses on predicting some data from the plaintext and a few
key bits, DMPA does not require the knowledge of the plaintext. The analysis
is based only on the internal structure of DES and we can predict intermediate
data (actually a bias on intermediate data), only from a few key bits. The ad-
vantage is that we can focus our analysis on any inner round, while DPA usually
focuses on the first (or last) rounds of DES.

An other advantage is that countermeasures designed specifically to thw art
the family of DPA attack (like masking, duplication, or others ...) are unlikely to
be very efficient as a protection against DMPA. The main drawback of the attack
is that it is rather expensive in terms of messages encrypted. Moreover it requires
a fine analysis of the electric behavior of the target cryptographic hardware, in
order to find an appropriate power consumption model and to identify each
portion of the DES execution. So there is a lot of preliminary analysis to do
before applying the attack.

Finally DMPA proves that even slight weakness or small “non-random” be-
havior of a cipher can be exploited to mount a side channel attack. Software
countermeasures are helpful to complicate the task of the attacker, but a better
protection against power attacks will be obtained if

– the cipher behaves as randomly as possible.
– efficient hardware countermeasures are implemented, to limit the information

leaked in the electric consumption.

3 Actually the trick from Section 5.2 of using power traces of any two inner rounds is
already, by definition, a second-order attack.
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8 Extensions

All our analysis has focused on the case of DES. Indeed the principle of Davies-
Murphy attack was initially developed specifically against DES. However, more
generally, for any Feistel cipher with a non-bijective round function, some im-
balance in the round output necessarily exists. In this case, the requirements for
DMPA are

– Express the output imbalance with a small number of key bits.
– Find a correlation between the non-randomly distributed data and the elec-

tric consumption

The first requirement depends on the cipher, while the second depends on
the cryptographic hardware considered. We did not explore further to find ap-
plications on other algorithms but we believe it is an interesting topic for further
research.

9 Conclusion

We have proposed a new side channel attack against DES, the Davies-Murphy
Power Attack. It is based on the well known Davies-Murphy attack. Like its
predecessor, our attack uses non-uniform output distributions of adjacent S-
boxes. Then we detect this imbalance using electric consumption curves.

DMPA is very powerful, because it requires no information about the plain-
text and can be performed on any inner rounds of DES. Therefore we believe
it can defeat software countermeasures, which do not take into account this
type of threat. However DMPA is rather expensive : good knowledge of the de-
vice behavior regarding power consumption is required, and the data processing
complexity is rather high. For a non-protected implementation of DES, simpler
side-channel attacks (like DPA) should be preferred.
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A Statistical Influence of the Noise

In Section 5, we are interested in distinguishing two distributions, D0 and D1.
Our analysis of DES revealed that the statistical distance d = |D0 − D1| was
sufficiently large to distinguish between these two distributions. But in practice
we need to build an empirical observation of these distributions in the presence of
noise. As we argued, this noise is generally small, but still it may result in errors
of prediction in the threshold technique of Figure 3. There is a small probability
p that the noise is larger than 0.5 λ and thus we predict h+1 or h−1 instead of
the “true” h. We call D′

i the new distribution obtained when the noise is taken
into account. We have :

D′
i(h) = p Di(h − 1) + p Di(h + 1) + (1 − 2p) Di(h)

Thus

∆(h) = D′
i(h) − Di(h) = p · [Di(h − 1) + Di(h + 1) − 2 Di(h)]

∆(h) is the difference of probability of deciding h, resulting from the noise in-
fluence. We see that if p � 1, then ∆(h) � 1 for all h ∈ {0, . . . , 4}. Therefore

|D′
i − Di| =

∑

h

|∆(h)| = ε � 1

for i = 0, 1. Hence, it is still possible to make the difference between the two
distributions since

|D′
1 − D′

0| ≤ |D′
1 − D1| + |D1 − D0| + |D′

0 − D0|
≤ |D1 − D0| + 2 ε

Therefore as long as the noise results in small probabilities of incorrect deci-
sions, we can still apply the same methods.
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