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ABSTRACT

The DINO CPU is an open source teaching-focused RISC-V CPU de-

sign available on GitHub (https://github.com/jlpteaching/dinocpu).

We have used the DINO CPU in the computer architecture course

at UC Davis for two quarters with two separate instructors. In this

paper, we present details of the DINO CPU, the tools included with

the DINO CPU, and our experiences using the DINO CPU.
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1 INTRODUCTION

This paper introduces the UC Davis In-Order (DINO) CPU. We

have designed the DINO CPU for use in our senior-level computer

architecture course (ECS 154B)which covers performancemodeling,

pipeline design, and memory systems.

In our computer architecture course, we use a set of four to five

assignments over a 10 week quarter that ask the students to imple-

ment an in order CPU pipeline. In the past, we asked the students

to implement their hardware design in Logisim [4]. Some students

have found Logisim frustrating and lacking in resources, with com-

plaints such as łthere isn’t much documentation on Logisim onlinež

and łI hate logisim with a passion.ž Additionally, Logisim limited

the complexity of the design we could ask students to create (e.g.,

the maximum register size is 32 bits), and it was very difficult to test.

Finally, it was nearly impossible to execute any real applications

on students’ design in Logisim which limited its use for comparing

different architectural design decisions.

In order tomove away from Logisim and enablemore complex de-

signs, we implemented a single cycle and a five stage pipelined CPU

in a hardware description language (HDL). The instructors of the

computer architecture courses at UC Davis have long desired to use

a HDL instead of Logisim; however, tools that supported existing

HDLs were significantly larger in size or supported many unneeded

features. We chose to implement the DINO CPU in Chisel [3], a

domain-specific language written in Scala. Using Chisel instead of

Verilog or other low-level HDLs allowed the instructors to more
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quickly and easily implement tests, write simulators, and use auto-

graders. Additionally, we designed the DINO CPU for a computer

science class with the knowledge that the students are familiar with

object oriented languages than HDLs.

The main features of DINO CPU are

• A single cycle processor design (Section 2.2)

• A five stage pipelined processor design with full forwarding

and hazard detection (Section 2.3)

• Nearly full support for 32-bit RISC-V integer (rv32i) instruc-

tion set allowing for many C programs to be compiled and

executed without modifications

• A suite of tests including unit tests for each component,

instruction tests, and small benchmarks (Section 3.1)

• An RTL simulator interface for debugging (Section 3.2)

We have used the DINO CPU for two quarters at UC Davis in our

Computer Architecture class (ECS 154B). So far, the students’ feed-

back has been generally positive. From our feedback, we received

comments such as łVery challenging but rewarding course. Please

keep using Chisel in the future!ž Additionally, after teaching this

course for the first time, one student reported that they received

an internship offer because they had Chisel experience.

So far, we have designed a set of four assignments based around

the DINO CPU. In the first assignment, to expose the students to

Chisel and hardware design languages, we ask the students to im-

plement a simple ALU control unit and wire part of the CPU data

path. In the second assignment, we have the students extend their

code to a full single cycle RISC-V processor which successfully

executes full RISC-V applications. The third, and most challeng-

ing, assignment has the students create a pipelined CPU with full

forwarding and hazard detection. In the fourth assignment, the

students add a branch predictor to the pipeline, implement two

different kinds of branch predictors, and compare the performance

of different processor designs.

For each of these assignments, we gave the students a code tem-

plate to ensure there was a common framework for their imple-

mentations. By giving the students a template, we were also able to

leverage autograder software since all student solutions used the

same interfaces.

All assignments were tested on real RISC-V binaries created with

an unmodified GCC toolchain. Most of these binaries were simple

instructions tests with only one or a few instructions until the third

assignment. In the third and fourth assignments, the students ran

full workloads written in C on their CPU designs through our Scala-

based simulator culminating in an assignment which compared

and contrasted different hardware design decisions on cycle time,

complexity, and performance.

The rest of this paper is organized as follows. First, in Section 2

we explain the goals of the DINO CPU, details of the DINO CPU’s
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design, and our four assignments. Then, in Section 3 we describe

the tools included with the DINO CPU to enable its use in the

classroom. In Section 4 we detail our experience and the lessons

learned while using the DINO CPU in the last two quarters at UC

Davis. Finally, Section 5 concludes.

2 DINO CPU

2.1 Overall goals and non-goals

Our goal in creating the DINO CPU is to use the code to teach

senior-level computer science undergraduates details of in-order

processor design. We use the public version of DINO CPU as a basis

for four to five CPU design assignments. Our main goals for DINO

CPU are:

• Simple design and easy to teach

• Implement enough of the RISC-V ISA to compile and run

real C programs

• Clean and understandable code

To make the design easy to teach, we decided to closely follow

the design in the RISC-V edition of the Patterson and Hennessy

Computer Organization and Design book [7]. This allowed us to

refer to the book for the reasons behind design decisions.We did this

with minimal modifications for both the single cycle and pipelined

designs.

There are a number of common hardware design goals that we

explicitly forego in the design of the DINO CPU. We did not try to

design a high performance CPU in terms of low CPI or fast cycle

time. Instead, we focused on readability and pedagogical design.

We also have not investigated emulating the design on FPGA or

implementing the design with EDA tools.

Finally, the DINO CPU does not implement a fully compatible

RISC-V CPU design. Specifically, we do not support most of the

privileged instructions, the CSR instructions, or ecall and ebreak.

We would like to support these instructions and enable machine

mode so we can run a more diverse set of workloads (e.g., workloads

with system calls like printf). However, we will focus on adding

this feature in a modular way which does not affect the overall

complexity of the control or the data path.

Chisel [3] is an emerging hardware design language. It is a

domain-specific language written in Scala. We considered using

Verilog; however, we chose Chisel for three main reasons. First, it

is a more familiar programming interface for our predominately

computer science students allowing them to concentrate on the

hardware design and not on syntax. Second, we found it straightfor-

ward to integrate Chisel with autograding software. Finally, Chisel

is easier to parameterize for many different designs which allows

us to use the same interfaces for multiple CPU designs and different

design variations.

Chisel is becoming increasingly popular in industry. Google

recently announced they designed the edge TPU in Chisel [6], the

fabless semiconductor startup SiFive uses Chisel, and many other

companies are investigating Chisel.

2.2 Single cycle CPU design

The single cycle CPU design in the DINO CPU closely follows the

design in the RISC-V edition of the Patterson and Hennessy (P&H)

1 class SingleCycleCPU extends Module {

2 val io = IO(new CoreIO())

3 val pc = RegInit(0.U)

4 val control = Module(new Control())

5 val registers = Module(new RegisterFile())

6 val aluControl = Module(new ALUControl())

7 val alu = Module(new ALU())

8 val immGen = Module(new ImmediateGenerator())

9 val branchCtrl = Module(new BranchControl())

10 val pcPlusFour = Module(new Adder())

11 val branchAdd = Module(new Adder())

12

13 io.imem.address := pc

14

15 pcPlusFour.io.inputx := pc

16 pcPlusFour.io.inputy := 4.U

17

18 val instruction = io.imem.instruction

19 immGen.io.instruction := instruction
20 control.io.opcode := instruction(6,0)
21

22 registers.io.readreg1 := instruction(19,15)

23 registers.io.readreg2 := instruction(24,20)

24 registers.io.writereg := instruction(11,7)

25 registers.io.wen := control.io.regwrite

26

27 aluControl.io.add := control.io.add

28 aluControl.io.immediate := control.io.immediate

29 aluControl.io.funct7 := instruction(31,25)

30 aluControl.io.funct3 := instruction(14,12)

31

32 when (control.io.alusrc1 === 0.U) {

33 alu.io.inputx := registers.io.readdata1

34 } .elsewhen (control.io.alusrc1 === 2.U) {

35 alu.io.inputx := pc

36 } .otherwise {

37 alu.io.inputx := 0.U

38 }

39 alu.io.inputy := Mux(control.io.immediate,

40 immGen.io.sextImm, registers.io.readdata2)

41 alu.io.operation := aluControl.io.operation
42

43 branchCtrl.io.branch := control.io.branch
44 branchCtrl.io.funct3 := instruction(14,12)
45 branchCtrl.io.inputx := registers.io.readdata1
46 branchCtrl.io.inputy := registers.io.readdata2
47

48 io.dmem.address := alu.io.result
49 io.dmem.writedata := registers.io.readdata2
50 io.dmem.memread := control.io.memread
51 io.dmem.memwrite := control.io.memwrite
52 io.dmem.maskmode := instruction(13,12)
53 io.dmem.sext := ~instruction(14)
54

55 when (control.io.toreg === 1.U) {
56 registers.io.writedata := io.dmem.readdata
57 } .elsewhen (control.io.toreg === 2.U) {
58 registers.io.writedata := pcPlusFour.io.result
59 } .otherwise {
60 registers.io.writedata := alu.io.result

61 }
62

63 branchAdd.io.inputx := pc
64 branchAdd.io.inputy := immGen.io.sextImm
65 when (branchCtrl.io.taken ||
66 control.io.jump === 2.U) {
67 pc := branchAdd.io.result
68 } .elsewhen (control.io.jump === 3.U) {
69 pc := alu.io.result & Cat(Fill(31, 1.U), 0.U)
70 } .otherwise {
71 pc := pcPlusFour.io.result

72 }
73 }

Listing 1: Single cycle RISC-V CPU data path. Highlighted

lines show restricted data path for R-type only instructions.
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Figure 1: Single cycle RISC-V CPU diagram. Highlighted wires show restricted data path for R-type only instructions.

book [7]. There are two main differences between the DINO CPU

design and the design detailed in the book. First, we rename some of

the control signals. This is a small detail that does not affect the ped-

agogical design of the processor, but does decrease the prevalence

and ease of cheating on future versions of this assignment. Second,

since the DINO CPU implements all of the RISC-V instructions,

some components require more hardware than presented in the

original design. For example, the book only implements four of the

ten R-type instructions.

In the largest deviation from the P&H design, we split the branch

logic into its own unit (the branch control unit). However, this

deviation is not a requirement. In our second offering of the class

using the DINO CPU, we calculated the comparison flags in the

ALU and passed them to the branch control unit instead of having

the branch control unit do the calculations. This is an example of the

flexibility of our design and an example of howminor modifications

can enable high re-usability in the classroom of this design by

discouraging copying code from previous offerings.

To simplify the code base, the DINO CPU makes heavy use of

the modularity and encapsulation available in Chisel. Each of the

modules in boxes in Figure 1 are their own Chisel class with a

set interface (shown as the input/output in the figure). By using

this modularity, the code for the data path shown in the figure is

quite simple: only about 70 lines of code as shown in Listing 1. In

the main CPU file, the students only need to instantiate all of the

modules (we suggest giving them this in the template to ensure

consistent naming), add any necessary multiplexers, and connect

the wires.

Similarly, each of the modules can be tested on their own, and

we provide the students with unit tests for each module. Thus, if the

students pass the unit tests for eachmodule and have wired the CPU

correctly, then all of the applications will work correctly. In practice,

we found that our initial set of unit tests did not have complete

coverage, and we are currently working to improve this coverage.

Improving the test coverage is discussed more in Section 4.2.

We used this single cycle design for the first and second assign-

ments in our classes. The first assignment asks the students to create

the ALUControlUnit logic to determine the ALU operation based

on the only funct7 and funct3 bits of the instruction. Additionally,

in the first assignment the students must wire the data path for

R-type instructions (highlighted in Figure 1 and Listing 1). In this

assignment, the students did not need to implement the control

unit or add any multiplexers.

For the second assignment, the students were asked to implement

the rest of the data path shown in Figure 1 and the logic in the

control unit. We supplied the students with a simple outline which

included lines 1ś13 and line 18 in the code above. We also supplied

the logic for all modules except the ControlUnit. The students’

data path designs were tested with single instruction tests and with

full applications as discussed in Section 3.1.

During the second time we used this set of assignments, we

made minor changes to the data path so the solution would not be

exactly the same between classes. For this class, we integrated the

branch control logic into the ALU, similar to the original design in

the Patterson and Hennessy book.

There are many other ways to make minor modifications to the

data path or the signals which will produce a correct RISC-V CPU,
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1 class IFIDBundle extends Bundle {
2 val instruction = UInt(32.W)
3 val pc = UInt(32.W)
4 val pcplusfour = UInt(32.W)
5 }
6 class EXControl extends Bundle {
7 val add = Bool()
8 val immediate = Bool()
9 val alusrc1 = UInt(2.W)
10 val branch = Bool()
11 val jump = UInt(2.W)
12 }
13 class MControl extends Bundle {
14 }
15 class WBControl extends Bundle {
16 }
17 // Pipeline registers
18 class IFIDBundle extends Bundle {
19 }
20 class IDEXBundle extends Bundle {
21 val excontrol = new EXControl
22 val mcontrol = new MControl
23 val wbcontrol = new WBControl
24 }
25 class EXMEMBundle extends Bundle {
26 val mcontrol = new MControl
27 val wbcontrol = new WBControl
28 }
29 class MEMWBBundle extends Bundle {
30 val wbcontrol = new WBControl
31 }

Listing 2: Template Chisel code for control bundles and

pipeline registers. Students are required to fill in missing

control signals.

but make the Chisel code significantly different. As we continue

using these assignments, we plan on making small changes to the

CPU for each class.

2.3 Pipelined CPU design

Figure 2 shows the design of the baseline pipelined CPU. We also

have a second version of this design with a branch predictor for the

fourth assignment. This design supports full forwarding between

writeback and memory to execute and hazard detection for load to

use hazards and branch hazards.

The pipelined CPU uses all of the same modules from the single

cycle design. The differences are the data path, which now includes

pipeline registers and the forwarding and hazard detection units.

In the third assignment, we provided the students with outlines

for the pipeline registers as shown in Listing 2, but did not specify

the required control signals. The first step in the assignment was to

fill in the pipeline registers with the required signals. This is a good

example of the benefits of Chisel’s modularity compared to using

Verilog. The students were able to concentrate on one aspect of

the design at a time (e.g., first deciding the required signals before

writing the data path logic).

After specifying the signals in each pipeline register, the students

implemented the pipeline without forwarding or hazard detection.

We provided the students with a set of applications (about 50, most

of which had a single instruction) which would correctly execute

even without forwarding and hazard detection. Once they were

able to correctly execute these tests, the students had confidence

their data path logic was correct.

In this part, the students struggled the most with correctly up-

dating the PC. The students tried to update the PC in the writeback

stage instead of during the fetch stage even though this was spec-

ified on the diagram they were given (Figure 2). We believe this

struggle was actually a good thing because instead of struggling

with the tools or how to wire simple parts of the design, the stu-

dents were strugglingwith the concept of pipelined designs. Inmany

cases, after coming to office hours and asking questions about how

pipelining works, the students were able to successfully complete

the assignment. 95% of students in successfully completed this part

of the assignment between the two times this assignment was used.

For the next part of the assignment, the students implemented

full forwarding and hazard detection in the pipeline. The pipeline

diagram the students were given contained all of the required wires,

but it did not have the forwarding or hazard detection logic; the

students had to consult the book or work it out on their own. The

forwarding logic exactly matched the textbook, but the hazard

detection logic was slightly different.

Similar to the first part, we supplied a set of applications which

required forwarding (about 15) and another set of applications

that required both forwarding and hazard detection (about 10).

These were more complicated applications, usually containing a

few instructions. 72% of the students successfully passed these tests.

Finally, we also provided the students with six full applications

from the RISC-V test suite, which contained 100s of instructions

and ran for 5,000ś50,000 cycles. These were a multiply, median,

quicksort, radix sort, towers, and vector-vector addition.

Many students failed to correctly execute these full applications

on their pipeline design, which caused significant frustration. Only

around half (57%) of the students executed all of the full applications

successfully. We believe the main reason students were unsuccess-

ful in this part of the assignment because the previous tests and

applications did not cover all possible corner cases. When these

large applications failed, it was very difficult to debug the exact

problem. We are currently focusing on improving debugging sup-

port and adding more tests to cover the common mistakes found in

the full application tests.

3 TOOLS INCLUDED WITH DINO CPU

We distribute a number of tools with the DINO CPU to enable

students to use Chisel and develop the DINO CPU quickly. Chisel

is a Scala-based language with a number of dependencies. Down-

loading these correctly is potentially error prone. We did not want

to spend a significant amount of time in office hours or on online

forums debugging the system configuration.

Therefore, we distribute a Singularity container [5] which con-

tains all of the necessary software to develop, build, and test the

DINO CPU. We chose to distribute a Singularity container instead

of a Docker container to the students because our IT staff did not

allow Docker for security reasons. This container contained the

exact versions of Scala, Java, Chisel, and its dependencies the in-

structional staff used to develop the assignments so there would be

no possibility of misconfigured software.

Using the container interface was relatively simple, although

not painless. On Linux, working with the DINO CPU through Sin-

gularity was as simple as running a single command: singularity

run library://jlowepower/default/dinocpu. This command

will download the container image from Singularity Hub [8] and
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Figure 2: Pipelined RISC-V CPU diagram.

drops the user into the Scala Build Tool shell, which allows them

to build, test, and run the DINO CPU simulator.

For students not using Linux (i.e., MacOS or Windows), they

cannot directly use Singularity and must use a virtualized Linux

environment. To make this simple, we distribute a Vagrant Box

that contains all of the needed Linux tools for Singularity. Thus,

on MacOS and Windows, the students had one extra step. Before

running the container as above, they must start the Vagrant Box

with vagrant up && vagrant ssh. Although therewas some initial

confusion on the first assignment with the tools, the students did

not cite the tools as a point of frustration on any other assignment.

Therewere a few downsides to using this container/virtualization

approach. The biggest downside to using Vagrant and Singularity is

that on MacOS and Windows building the DINO CPU and simulat-

ing it was quite slow under default VirtualBox settings; increasing

resources to 2 GB and 2 cores for the VM showed dramatic improve-

ments. Also, the Singularity image was a 320MB file which took a

significant fraction of our students’ filesystem quota on our shared

lab machines. Finally, requiring the students to use the command

line interface on the Singularity container meant they could not

use an IDE which would have made Chisel coding easier.

We decided not to include the entire RISC-V development tool-

chain (e.g., gcc, as, objdump, etc.) in our Singularity images. The

main reason was that these tools take a significant amount of disk

space ( 500 MB) and the images were already very large. Addition-

ally, by not distributing the toolchain and requiring the students

to use the provided binaries, we reduced the possibility of broken

binaries causing tests to fail.

We also include a Dockerfile and code to autograde all of the

assignments on Gradescope. This Dockerfile sets up an image with

exactly the same versions of all dependencies as the Singularity

container. We also have scripts to run the tests on Gradescope, and

distribute a library which creates Gradescope compatible output.

Finally, in our source repository, we have detailed documentation

on using DINO CPU with autograders.

3.1 Testing support

We provide three different kinds of tests in DINO CPU to help the

students and other developers test their designs: unit tests, simple

instruction tests, and application tests.

Unit tests are modeled after Chisel unit tests and test a single

component in isolation. We have unit tests for each of the units

that we give to the students (e.g., ALU, memory, register file) and

the units which the students design (e.g., the ALU control unit).

Unit tests are mostly helpful when designing the assignments

and making updates to the DINO CPU infrastructure. We found it

difficult for the students to effectively use these simple component-

wise unit tests. In the future, as we require the students to fill in

the logic for different units, these tests may be more useful.

We also constructed general CPU integration tests. These tests

take a RISC-V binary, initial register values, and initial memory

values as inputs as well as final register and memory values. Then,
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the tester loads the binary into the simulator, simulates the CPU

(either the single cycle or the pipelined design) for a set number

of cycles. Finally, the tester compares the final register values and

memory values to the correct values to generate the result.

We have two kinds of application tests: simple and full applica-

tions. Many of the simple application tests are just a single instruc-

tion (e.g., add1 above is simply add t1, zero, t0 # (reg[6] = 0

+ reg[5])). The full application tests range from simple assembly

functions (e.g., swap using xors) to benchmarks (e.g., towers).

For simplicity, we distribute the RISC-V binaries built with the

mainline of the RISC-V toolchain. We also distribute the RISC-V

assembly source files so students can examine the assembly when

the applications fail. In practice, we found the students rarely looked

at the source code for failing applications and instead focused more

on examining the output of the simulator.

Most of our tests are written in RISC-V assembly code; however,

some of the benchmarks are written in C. As part of the DINO CPU

distribution, we also include makefiles and loader files that will

take RISC-V assembly and simple C code and create a RISC-V ELF

binary that is compatible with our simulator, described next.

3.2 Debugging support

We also provide a Scala-based simulator and debugger with the

DINO CPU. The simulator is based on Treadle [2] which is an circuit

simulator that executes Firrtl IR written in Scala.

Our simulator loads RISC-V ELF files and can initialize registers

and memory. It loads a subset of the symbols in the ELF file (.text

and .data) into the simulated memory. It loads these symbols

by parsing the ELF file and then writing a new text file which

is loaded by the Chisel loadMemoryFromFile utility. The loader

scripts distributed with DINO CPU ensure that all code and data

are in these ELF sections.

Then, from a very simple read, execute, print loop (REPL), users

can step through the application cycle by cycle. At each step, a

subset of the CPU’s state is dumped to the terminal. This state can

be set by using printf in the Chisel code giving computer science

students a familiar łprintf debuggingž interface. By default, we print

the values of each of the pipeline registers, as shown in Listing 3.

Improving the debugging support by providing a more full fea-

tured REPL is high priority as debugging difficulty was one of the

main pain points in the students’ feedback ł The output of Chisel

is very difficult to read, so I cannot easily debug my program. ž

4 EXPERIENCE USING DINO CPU

Overall, we believe that DINO CPU infrastructure has succeeded

at providing our students with an infrastructure to learn about

tradeoffs in architectural design and details of pipelined processor

control. Initially developing the DINO CPU infrastructure was a

significant undertaking. This was our first experience with many

of the tools including Chisel. However, after this initial investment,

we have found that using DINO CPU in other classes is significantly

less work.

4.1 Other instructor experience

As mentioned earlier, we have used the DINO CPU in two offerings

of ECS 154B with different instructors. Despite being a researcher

Cycle=10 Cycles > ?
? : print this help
q : quit
number : move forward this many cycles
Cycle=10 Cycles > 1
---------------------------------------------
MEM/WB: MEMWBBundle(writereg -> 8, aluresult -> 0, readdata ->

4294967187, pcplusfour -> 32, wbcontrol -> WBControl(toreg -> 0,
regwrite -> 1))

֒→

֒→

EX/MEM: EXMEMBundle(writereg -> 9, readdata2 -> 0, aluresult -> 0,

nextpc -> 36, pcplusfour -> 36, mcontrol -> MControl(memread ->
0, memwrite -> 0, taken -> 0, maskmode -> 0, sext -> 1),
wbcontrol -> WBControl(toreg -> 0, regwrite -> 1))

֒→

֒→

֒→

ID/EX: IDEXBundle(writereg -> 10, funct7 -> 0, funct3 -> 0, imm -> 0,

readdata2 -> 0, readdata1 -> 0, pc -> 36, pcplusfour -> 40,
excontrol -> EXControl(add -> 0, immediate -> 1, alusrc1 -> 0,
branch -> 0, jump -> 0, prediction -> 0), mcontrol ->
MControl(memread -> 0, memwrite -> 0, taken -> 0, maskmode -> 0,
sext -> 1), wbcontrol -> WBControl(toreg -> 0, regwrite -> 1),
rs1 -> 0, rs2 -> 0, branchpc -> 36)

֒→

֒→

֒→

֒→

֒→

֒→

DASM(593)
IF/ID: IFIDBundle(instruction -> 1427, pc -> 40, pcplusfour -> 44)
PC: 44
Cycle=11 Cycles >

Listing 3: Detailed debugging output from the single stepper

included with the DINO CPU.

in the field of computer architecture for many years, this is the first

time the second instructor has taught ECS 154B. The instructor had

no prior experience with Chisel, nor did they have experience with

RISC-V. Even without the prior experience the second instructor

has found that they can take the provided assignments, modify

them so as not to be identical to the publicly available DINO CPU,

and solve them all on average of 4 hours.

There have been some advantages and disadvantages that the

second instructor experienced during this quarter. The advantages

the instructor has found thus far are:

• Ease of tool-chain setup

• Ability to easily modify existing assignments and to solve

them

• Reduced overhead of managing assignments

The disadvantages the instructor has found thus far are:

• Questions that arise are difficult

• Many different languages/tools used

Ease of toolchain setup. The second instructor was able to setup

the tool chain on OS-X with minimal effort. The requirements of

VirtualBox and Vagrant were able to be met by simply installing

them using the downloadable installers. Once Vagrant had been

installed getting the rest of the tools setup were mainly cloning

the DINO CPU and starting Vagrant. The biggest challenge the

instructor found was not remembering to change directory into

dinocpu before running singularity.

Ease of updating assignments. The assignments already had signifi-

cant structure and well-written instructions, so making modifica-

tions for the second offering of ECS 154B was fairly straightforward.

The instructor found that the most challenging (though not excep-

tionally challenging) part of updating the assignments were figuring

out the parts of the testing infrastructure that needed to be modified

to accomodate the modified assignments.

Reduced overhead of managing assignments. The instructor has

found that there have been a relatively low number of questions
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on the assignments as compared to past experience with Logisim

assignments from prerequisite course (ECS 154A). The number

of students that have attended office hours needing help on the

assignments has been almost non-existent this quarter.

Questions that arise are difficult. There have been fairly few ques-

tions that have arisen this quarter; however, those that have arisen

have been more complicated to answer. One common problem

that arose was that the Chisel optimizer completely optimized out

the register file and the error that was output was łCannot find

cpu.registers.regs_5 in symbol tablež. This problem occured

because the write enable never was set to true so the register file

would only ever output zeros. Fortunately, some of these difficult

issues have been uncovered over the past months and have been

added to the common issues.

Many different languages/tools used. There are many tools and lan-

guages being used in the DINO CPU projects. The use of Chisel,

Scala, Java, Singularity, etc. makes it challenging to understand

all of the parts and how they interact with one another. The file

structure of projects makes it fairly easy to track issues down and

to modiify the necessary parts.

4.2 Lessons Learned: What can be improved

Chisel is still a young language that is in flux with an average of 5ś

10 commits in themain Chisel repository weekly. Unfortunately, the

simulator we used for debugging and testing applications required

Chisel features that were not yet part of an official release. Since

we could not use an official release supplied by the Scala package

manager, we had to distribute our own compiled versions of Chisel

and all of its dependencies to the students. This lead to bloated

containers and long build times. We expect that Chisel will become

more stable in the future, and we will be able to distribute DINO

CPU with supported Chisel releases.

Another problem we ran into while using the relatively young

Chisel language was that the documentation could be improved.

The Chisel bootcamp [1] is a fantastic resource. However, most of

the Chisel documentation targets graduate students and profession-

als with architecture and digital design background. Therefore, we

supplemented this documentation with our own slimmed down doc-

umentation which only contained details required for completing

the DINO CPU assignments.

Many of the student complaints were related to limited docu-

mentation. One of our main focuses while improving the DINO

CPU will be to improve the documentation both for Chisel and for

the DINO CPU more generally.

Finally, the biggest pain point in using DINO CPU in our classes

has been students trying to debug their hardware. We believe this

stems from two places: a misunderstanding of digital design logic

and a lack of debugging support.

First, computer science students are often confused by the fact

that Chisel is only describing hardware and not a programming

language. We found many examples of students re-assigning the

same wire twice as the example in Listing 4. The students expected

that line 1 would execute first followed by line 3 like an imperative

program. However, since this is describing hardware the above

lines actually mean łConnect the output wire from pcPlusFour

1 pc := pcPlusFour.io.output
2 ...
3 pc := branchAdd.io.result

Listing 4: Example common mistake. The students fre-

quently left outmultiplexers because they assumed the code

was executed imperatively.

0%

10%

20%

30%

40%

50%

60%

< 5 5 - 10 10 - 20 > 20

P
e

rc
e

n
t 

o
f 

S
tu

d
e

n
ts

Hours

"How much time did this assignment take?"

WQ L2 SQ L2

WQ L3 SQ L3

Figure 3: Time spent on second and third assignments.

to the pc register. ... connect the output wire from the branchAdd

to the pc register.ž The second statement overwrites the first. In

the future, we believe that a Chisel or FIRRTL pass which detects

overwritten wires may help to give warnings or errors when this

misunderstanding occurs.

Second, 37% of the class that provided feedback on one of the

labs specifically mentioned that lack of debugging support made

the assignment more difficult. The first time we used DINO CPU,

we did not provide the students a way to łsingle stepž through

the execution of examples. There was significant frustration when

running the applications on the simulator because it would fail

after 100s or 1000s of cycles and there was no way to easily track

the execution over time.

To partially alleviate this issues, we implemented a single step

feature in our simulator as shown in Section 3.2 which allows

students to step one cycle at a time and investigate the current state

of the registers. We are currently working on extending this to be

more feature rich. For instance, we would like the students to be

able to print the value of any wire or register when the simulation is

paused like gdb’s print command. The use of the single step feature

in this quarter appears to have reduced the amount of time students

have spent on the assignments. Figure 3 shows the amount of time

the students have reported they spend working on the assignments.

4.3 Using DINO CPU for future assignments

DINO CPU is an open source project, and we hope that our effort

can be leveraged by other instructors. There are a number of ways

to make minor changes to the CPU pipeline that will not affect

functional correctness, but do require significantly different Chisel

code. By making some of these minor modifications each time the

assignments are used, we believe it will reduce the incidence of

cheating. A few ideas are below.

• Change the way branches are resolved by changing the in-

puts on the branch control unit or merging the branch con-

trol unit with the ALU.

• Changing the meaning of the ALU control unit signals.
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• Changing the way the auipc instruction is implemented (i.e.,

how the PC moves through the pipeline).

• Changing the way the zero register is implemented.

• Moving the branch resolution logic to the decode stage.

• Changing the I/O for the control unit.

• Change the I/O for the data memory (e.g. change maskmode

and sext to just funct3)

Additionally, we have implemented a couple of extensions to the

DINO CPU in our classes, but many other extensions are possible.

• Add a branch predictor. We added a branch predictor to the

decode stage, but it could be moved to the fetch stage.

• Adding more stages to the pipeline or removing stages from

the pipeline.

• Updating the instruction and datamemory interfaces to work

asynchrounously instead of sequentially and then adding

caches will be possible.

• Adding multiple issue (e.g., 2-way superscalar) should be

straightforward even without scoreboarding.

• Implementing more RISC-V instructions (e.g., floating point,

compressed instructions, etc.)

Finally, we are working to extend the DINO CPU to implement a

subset of the privileged instructions to be able to execute interrupts

and exceptions. With this support, we believe students could even

write simple operating systems that can execute on the DINO CPU.

5 CONCLUSIONS

After using the DINO CPU for two quarters, we believe that it

has improved the learning outcomes in our computer architecture

course. We are currently working to improve the DINO CPU, and

we plan to continue improving it as we use it in future classes.

The code, tools, and documentation for the DINO CPU are avail-

able on GitHub at https://github.com/jlpteaching/dinocpu. The

DINO CPU is an open source project, and we welcome any contru-

bitions from the community. We look forward to working with the

architecture education community to improve the DINO CPU.
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