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Abstract

Purpose of review—Despite high demand, a severe shortage of suitable allografts limits the use 

of liver transplantation for the treatment of end-stage liver disease. The transplant community is 

turning to the utilization of high-risk grafts to fill the void. This review summarizes the 

reemergence of ex-vivo machine perfusion for liver graft preservation, including results of recent 

clinical trials and its specific role for reconditioning DCD, steatotic and elderly grafts.

Recent findings—Several phase-1 clinical trials demonstrate the safety and feasibility of 

machine perfusion for liver graft preservation. Machine perfusion has several advantages 

compared with static cold storage and may provide superior transplantation outcomes, particularly 

for marginal grafts. Ongoing multicenter trials aim to confirm the results of preclinical and pilot 

studies and establish the clinical utility of ex-vivo liver machine perfusion.

Summary—Mounting evidence supports the benefits of machine perfusion for preservation of 

liver grafts. Thus, machine perfusion is a promising strategy to expand the donor pool by 

reconditioning and assessing viability of DCD, elderly and steatotic grafts during the preservation 

period. Additionally, machine perfusion will serve as a platform to facilitate graft intervention and 

modification to further optimize marginal grafts.
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INTRODUCTION

The concept of ex-vivo machine perfusion dates at least back to the Lindbergh Apparatus in 

the 1930s, establishing prolonged ex-vivo metabolic function in isolated organs [1,2]. Belzer 

et al. [3] first applied machine perfusion to human transplantation with the successful 

transplantation a kidney following 17 h of hypothermic machine perfusion (HMP); Starzl et 
al. [4] subsequently transplanted 7 HMP-preserved livers.
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The development of specialized preservation solutions in the 1980s allowed static cold 

storage (SCS) to emerge as the primary organ preservation modality, shelving the need for 

machine perfusion [5]. SCS was a simple, effective and transportable alternative to the 

cumbersome machine perfusion devices of the time. Organ preservation with SCS has been 

remarkably successful over the past 30 years, facilitating widespread application of liver 

transplantation as the only treatment for end-stage liver disease.

Global trends in liver disease combined with the success of liver transplantation have 

increased demand for transplantation, resulting in a shortage of suitable organs. One strategy 

to expand the donor pool is utilization of extended criteria donor (ECD) grafts, specifically 

donation after circulatory death (DCD), steatotic or elderly grafts. These marginal organs 

have increased susceptibility to ischemia reperfusion injury (IRI) and subsequent high risk 

of primary nonfunction (PNF), early allograft dysfunction (EAD) and biliary complications. 

These risks demand strict limitations on allowable ischemia time and minimization of other 

risk factors, precluding routine use of ECD grafts [6].

Utilizing ECD grafts depends on optimizing preservation conditions. Metabolic activity 

during SCS is substantially slowed, but does not cease completely. Oxygen debt results in 

deranged mitochondrial metabolism and accumulation of toxic metabolites. Paradoxically, 

oxygen inflow during reperfusion results in production of reactive oxygen species (ROS), 

widespread activation of inflammatory pathways and cell death, a process termed ischemia-

reperfusion injury (IRI) [7–9]. The standard criteria donor (SCD) graft possesses sufficient 

physiologic reserve to overcome preservation-induced IRI, though this does not hold true for 

ECD grafts. Machine perfusion is reemerging as an alternative to SCS, with potential for 

superior preservation of marginal grafts.

ADVANTAGES OF MACHINE PERFUSION

Although intricate in execution, the concept underlying machine perfusion is quite simple. 

Constant circulation supports endothelial function and washes out metabolic waste. 

Supplementation of oxygen, nutrients, metabolic substrates and other ‘additives’ allows the 

liver to maintain physiologic metabolic function, recover the energy deficit incurred during 

the procurement and early preservation period, and institute normal repair and regenerative 

pathways. In other words, machine perfusion is a platform for the graft to ‘live’ outside the 

body. machine perfusion has several advantages compared with SCS, including:

1. Prevents cold ischemia-related organ damage

2. ‘Reconditions’ marginal allografts

3. Allows viability assessment to detect poorly functioning organs before liver 

transplantation

4. Prolongs preservation period to improve organ utilization and surgical logistics

5. Serves as a platform for targeted therapeutic interventions
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Machine perfusion is classified by perfusion temperature as normothermic (35–38 °C), 

hypothermic (4–10 °C) or subnormothermic (20–30 °C). The reader is directed to recent 

reviews for description of the key technical components [10,11].

NORMOTHERMIC MACHINE PERFUSION

Normothermic machine perfusion (NMP) aims to simulate a near-physiologic environment, 

which maintains normal metabolic function and avoids cold ischemic injury. Viability is 

assessed by measurement of hemodynamic performance (vascular flow and resistance), 

biochemical parameters and synthetic function [12,13]. NMP is technically challenging, 

requiring dual perfusion of the hepatic artery and portal vein, an oxygen carrier perfusate 

and nutritional supplementation to support the fully functional liver [14,15].

NMP is still investigational in the clinical setting. The Oxford group reported the first phase 

1 clinical trial, demonstrating that NMP with the transportable OrganOx Metra device is safe 

and feasible in both donation after brain death (DBD) and DCD grafts [16■]. One minor 

technical issue was corrected during ground transport, however, no device failures occurred 

and all livers were successfully transplanted. Notably, the NMP cohort had a significantly 

lower peak in AST and lower incidence of EAD after transplantation compared with 

matched controls and no recipient developed ischemic cholangiopathy [16■]. This study also 

demonstrated viability assessment during NMP, via measurement of hemodynamics, 

metabolic and synthetic function during perfusion.

Two North American groups, Selzner et al. [17■] from Toronto and Bral et al. [18■] from 

Edmonton, have also completed phase 1 NMP trials using the OrganOx Metra. Both studies 

confirmed the safety and feasibility of NMP and produced comparable outcomes to SCS. 

Importantly, Bral et al. reported one instance where perfusion was aborted and the liver 

ultimately discarded because of an unrecognized operator error during cannulation, 

highlighting the technical complexity and specific training required for safe ex-vivo 

perfusion.

These pilot studies employed continuous NMP, where perfusion is initiated at the donor 

hospital and continued for the duration of preservation. In contrast, end-ischemic NMP 

occurs at the recipient hospital after a period of SCS [19■]. Watson et al. [20■] described a 

series of 12 declined livers treated with end-ischemic NMP. Viability was assessed by lactate 

clearance, glucose and liver enzyme concentrations, and ability to maintain pH. Although 

bile production is often suggested as a key marker of viability, the authors postulate that the 

quality of the bile, marked by alkaline pH, indicates functionality rather than the absolute 

quantity [20■]. See Table 1 for additional details of completed NMP trials.

Three multicenter, phase III randomized control trials (RCTs) comparing NMP to SCS are 

currently underway. The Consortium for Organ Preservation in Europe (COPE) conducted a 

seven-center European study. Compared with SCS, NMP-preserved livers had lower peak 

AST and reduced incidence of EAD post-liver transplantation. Although NMP improved 

early graft function in both DBD and DCD livers, the magnitude of effect was significantly 

greater in the DCD organs [21■■]. The published results, including long-term follow-up 
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data, will represent an important step in defining the clinical role of NMP in liver 

transplantation and are eagerly awaited [21■■]. See Table 2 for details of the additional 

ongoing RCTs and pilot trials.

HYPOTHERMIC MACHINE PERFUSION

Hypothermic machine perfusion (HMP) restores mitochondrial function, reducing ROS 

release and inflammatory cascade activation upon reperfusion [22]. HMP has also been 

shown to improve hepatobiliary secretory function and preserve endothelial function in 

discarded ECD livers [23,24].

HMP is the least complex machine perfusion system. Perfusion can be performed via the 

portal vein alone or as dual perfusion. Active oxygenation has shown benefit in DCD and 

steatotic livers, but is not a strict requirement [25,26■,27■,28,29]. In current practice, most 

centers will employ dual perfusion, active oxygenation (HOPE), or both (DHOPE; see Table 

3 for details of completed HMP pilot studies). This versatility is facilitated by the minimal 

metabolic demands of the liver under hypothermic conditions. Additionally, HMP treatment 

is typically end-ischemic, avoiding need for device transportation or additional personnel/

equipment. However, a distinct disadvantage of the near-dormant metabolism is the inability 

to perform meaningful viability assessment.

The largest HMP clinical trial, including 50 DCD grafts, has recently reported preliminary 

results including 5-year follow-up analysis. HMP-perfused grafts achieved superior 

outcomes compared with nonperfused DCD grafts and comparable outcomes to DBD grafts 

[26■]. Multicenter RCTs are currently underway evaluating HMP compared with SCS for 

extended DBD and DCD grafts [30] (see Table 4).

SUBNORMOTHERMIC MACHINE PERFUSION

Subnormothermic machine perfusion (SMP) serves as a compromise between warm and 

cold perfusion. Although an oxygen carrier may be utilized, liver metabolism is sufficiently 

reduced such that adequate oxygenation can be achieved via diffusion alone into a 

crystalloid-based perfusate. Additionally, SMP-preserved livers retain partial functional 

capacity, demonstrated by bile production and lactate clearance during perfusion. To date, 

the experience in SMP has been limited to animal transplantation and discarded human liver 

perfusion models [31–34].

CONTROLLED OXYGENATED REWARMING

Controlled oxygenated rewarming (COR) is the most recent machine perfusion iteration, in 

which machine perfusion is initiated at hypothermic temperatures and gradually increased to 

subnormothermia [35]. COR avoids heat shock injury caused by abrupt temperature shifts. 

The slow increase in metabolism and functional restitution prepares the graft for additional 

reconditioning during SMP or prior to normothermic reperfusion [36]. COR with a 

normothermic final temperature (COR35) was recently compared with subnormothermic 

COR (COR20) in a rat liver model [37]. The COR groups demonstrated similar therapeutic 
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benefit, however, the COR35 livers had more reliable bile production, which may enable 

reliable viability assessment [37].

COR has recently been applied clinically, with the successful transplantation of six DBD 

grafts accepted under ‘rescue allocation’ criteria [38■]. The COR group demonstrated lower 

peak AST and INR compared with controls with 100% patient and graft survival at 6 

months. The same group is currently conducting a pilot trial (CORAL Trial) comparing 

COR to SCS (see Tables 3 and 4).

MACHINE PERFUSION OF MARGINAL ORGANS

The ex-vivo machine perfusion environment is unique in that the organ is both functional 

and isolated. Machine perfusion converts the preservation period from a race against the 

clock into an opportunity to apply targeted graft-improving interventions without systemic 

effect in the donor or recipient. In this regard, warm perfusion is ideal for manipulation of 

the functional liver. This concept will be discussed as it relates to DCD, steatotic and elderly 

grafts.

Donation after circulatory death/ischemia reperfusion injury

Of the 7500 liver transplants performed in the United States in 2016, only 6% were DCD 

[AOPO.org]. Of recovered DCD livers, 29% were discarded, compared with 6% of 

recovered DBD livers [AOPO.org]. Although striking, this still underestimates the 

discrepancy considering recovery is often not attempted in DCD donors. Improving 

utilization of DCD livers is clearly an important strategy to increase the donor pool.

As mentioned, IRI underlies EAD and PNF in marginal organs. The obligatory warm 

ischemia of DCD recovery preconditions the liver, and especially cholangiocytes, for severe 

injury during SCS and reperfusion [15]. The biliary consequence is ischemic 

cholangiopathy, occurring in 20–40% of DCD grafts, compared with 5% in DBD grafts [39]. 

This complication carries high morbidity and mortality, routinely requiring multiple invasive 

procedures and up to 50% require retransplantation [10].

Recent evidence shows that machine perfusion reconditions DCD allografts, effectively 

reversing the deleterious effects of ischemia. However, machine perfusion alone may not be 

sufficient for all grafts. Addition of targeted interventions during perfusion has been 

suggested to augment the protective effect against IRI. Various targeted anti-inflammatory, 

antioxidant, antiapoptosis and vasoactive pharmaceuticals have been added to storage 

solutions with the goal of modulating IRI, however, the experience in ex-vivo perfusion is 

limited [40–43].

Goldaracena et al. assessed the effect of an anti-inflammatory cocktail (prostaglandin E1, 

acetylcysteine, sevoflurane and carbon monoxide) and decreased circuit temperature (33 °C) 

in a porcine transplantation model. Compared with controls perfused at 37°C or SCS, livers 

receiving anti-inflammatory treatment had reduced markers of inflammation, improved 

endothelial function and improved graft function [44■].
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Defatting

Consequent to the increasing incidence of fatty liver disease, 40–60% of donor allografts 

have fatty infiltration [45]. The limit of acceptable donor steatosis has yet to be established. 

Grafts with mild macrosteatosis (<30%) are generally considered safe for transplantation; 

however, moderately (30–60%) or severely (>60%) macrosteatotic grafts are often declined 

because of increased risk of EAD, PNF and acute rejection postliver transplantation [45–50]. 

Steatosis exacerbates IRI secondary to increased ROS generation, pro-inflammatory immune 

system activation, impaired mitochondrial ATP production and microcirculatory 

dysfunction, resulting in hepatocyte necrosis and graft failure upon reperfusion [46,47].

NMP and SMP have been investigated as alternative preservation methods of steatotic livers 

in animal models [51,52]. Okamura et al. evaluated the effect of SMP on severely steatotic 

rat livers. SMP-preserved livers exhibited maintained microvascular integrity and sustained 

mitochondrial function, resulting in higher energy charge compared with cold-stored organs 

[53].

Kron et al. [54■] evaluated end-ischemic HOPE of severely steatotic livers in a rat 

transplantation model. HOPE reduced inflammatory injury and subsequent fibrosis postliver 

transplantation, an effect that was dependent on oxygenation. However, HOPE had no 

impact on the amount of steatosis in the graft. The authors then analyzed the effect of HOPE 

in six steatotic human livers from their clinical trial, including five DCD. All livers 

demonstrated adequate early function as well as lower peak postliver transplantation ALT, 

decreased incidence of PNF (0 versus 25%), shorter ICU stay and improved 1-year patient 

survival (100 versus 42%) compared with SCS controls, a promising proof-of-concept for 

HOPE in fatty livers [54■].

Perfusion defatting seeks to augment the protective effect of perfusion by adding a 

pharmacologic ‘defatting cocktail,’ stimulating lipid metabolism [55]. Such treatment has 

been shown to significantly reduce lipid droplet burden, increase ATP production and lessen 

oxidative stress in cultured hepatatocytes [46]. Use of a defatting cocktail reduced 

intracellular lipid content by 50% during 3h of NMP in steatotic rat livers [56]. Efficacy of 

defatting cocktails may require normothermia, as similar effect was not seen under 

subnormothermic conditions [55].

Clinical experience of defatting is scarce. Banan et al. [57■] administered a defatting 

cocktail to two steatotic livers in an ex-vivo perfusion model, demonstrating a 10% 

reduction in one liver, although neither steatotic liver displayed increased markers of IRI. 

Considering that steatosis resolves quickly postliver transplantation, overcoming the initial 

risk of PNF/EAD may be key to improving viability and long-term survival [58,59].

Elderly

The functional capacity and physiologic reserve of the liver undergo normal decline with 

age, marked by volume loss, decreased blood flow, impaired regenerative capacity and 

atherosclerotic changes in the arterial vasculature [60]. Elderly donors also have more 

medical comorbidities. Concordantly, advanced donor age has been identified as an 

independent risk factor for EAD, graft loss and reduced recipient survival after liver 
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transplantation, particularly in HCV-positive recipients [60,61]. Despite the aging general 

population, use of elderly grafts is limited. With careful donor and recipient selection, some 

centers have found success with septuagenarian or even octogenarian donors [62,63]. These 

results suggest that age may be a confounder and coexisting risk factors are at least partially 

responsible for the observed poor function [64].

Machine perfusion serves two primary roles in the elderly. First is neutralizing the impact of 

other risk factors that predispose to IRI and subsequent dysfunction (such as prolonged CIT 

or steatosis). Secondly, viability assessment confirms the functionality and helps predict the 

effect of comorbid factors on transplant outcomes. Pezzati et al. [65] report a case of an 

octogenarian graft with severe atherosclerosis and poor initial flush that was reconditioned 

and assessed with NMP prior to successful transplantation. If machine perfusion can limit 

the CIT, mitigate steatosis and recondition the DCD graft, then a much larger pool of elderly 

donors would be acceptable for transplantation.

FUTURE DIRECTIONS

Ex-vivo organ perfusion technology is rapidly advancing. Progression from the experimental 

to the clinical realm has demonstrated early success, particularly for marginal livers. 

Attention is now turning toward employing the perfusion system as a platform for 

concurrent graft modification. Intervention during the ex-vivo period is highly advantageous 

to alter the liver phenotype prior to transplantation whereas avoiding systemic effects in the 

donor or recipient. We briefly introduced emerging therapies to reduce IRI and defat 

steatotic grafts, however, this just scratches the surface of conceivable interventions. 

Additional targets, such as antiviral medication for viral hepatitis, immune modulation for 

tolerance induction and gene therapy are under exploration [66,67]. Novel drug delivery 

systems, such as nanoparticles, aim to augment therapeutic efficacy with precise control of 

drug delivery and release and may prove to be a key component of machine perfusion graft 

intervention [68]. Machine perfusion has also been utilized during radical ex-vivo hepatic 

surgery, such as during autotransplantation for end-stage alveolar echinococcosis or 

resection of large tumors with critical invasion of the retrohepatic vena cava [69,70]. 

Continued research will solidify the use of machine perfusion as a tool for graft intervention 

in transplantation as well as facilitate treatment of hepatic disease in the nontransplantation 

setting.

CONCLUSION

The ever-increasing demand for liver transplantation has put suitable liver allografts at a 

premium and the use of marginal grafts represents a practical method for increasing the 

donor pool. Use of these grafts is dependent on the ability to recondition the graft and assess 

its viability. Recent clinical trials demonstrate that machine perfusion is capable of fulfilling 

both requirements. Continued investigation is necessary to determine optimal perfusion 

conditions, establish indications for machine perfusion and set guidelines for institutional 

implementation prior to becoming standard practice. Regardless, a new day in 

transplantation has arrived and the future of ex-vivo machine perfusion is bright.
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KEY POINTS

• A severe shortage of liver allografts suitable for transplantation exists 

globally.

• Utilization of marginal grafts (such as DCD, steatotic and elderly) is a 

strategy to expand the donor pool.

• Machine perfusion has multiple theoretical advantages compared with SCS 

for preservation of marginal grafts and may facilitate their use in liver 

transplantation.

• Clinical trials demonstrate safety of machine perfusion and confirm improved 

outcomes compared with SCS.

• Ongoing and future research will further expand the role of machine perfusion 

as a platform for graft intervention.
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