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The dawn of non-Hermitian optics
Ramy El-Ganainy1,2, Mercedeh Khajavikhan3, Demetrios N. Christodoulides3 &

Sahin K. Ozdemir4,5

Recent years have seen a tremendous progress in the theory and experimental
implementations of non-Hermitian photonics, including all-lossy optical systems
as well as parity-time symmetric systems consisting of both optical loss and
gain. This progress has led to a host of new intriguing results in the physics of
light–matter interactions with promising potential applications in optical sciences
and engineering. In this comment, we present a brief perspective on the
developments in this field and discuss possible future research directions that
can benefit from the notion of non-Hermitian engineering.

Introduction
The notion of non-Hermitian parity-time (PT) reversal symmetric Hamiltonians having real
spectra was first conceived within the context of quantum physics1,2. The introduction of this
concept later in optics3,4, has led to an explosion of research activities aimed to explore some of
the exotic features displayed by such non-conservative systems. In general, such configurations
can be synthesized by establishing an even distribution in the real part of the refractive index
while imposing an antisymmetric gain/loss profile, associated with the imaginary part of the
refractive index.

For example, despite being non-Hermitian, PT symmetric photonic structures can exhibit
either entirely real spectra or complex conjugate eigenvalue pairs. In the first regime, the
eigenstates also respect PT symmetry (i.e., the system is in an exact PT phase) while in the latter,
PT symmetry is broken with the optical intensities associated with the eigenstates being more
concentrated either in the gain or in the loss region4. The ability to design and implement
photonic systems operating in these domains has led to new light-wave dynamics and unusual
optical effects such as unidirectional invisibility5,6, laser self-termination7,8 and complex Bloch
oscillations9,10 just to mention a few. Beyond scientific curiosity, PT symmetric photonics is also
paving the way towards new technological innovations. For example, PT symmetry can be used
to engineer the spectral or the spatial properties of laser emission11–15.
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The intense research activity around PT symmetry in
optics16–20 has in turn led to the more general framework of non-
Hermitian photonics that seeks to use a judicious engineering of
the interplay between gain, loss and optical index distributions
in order to attain new functionalities. While the notion of PT-
symmetry requires the presence of gain in the system to com-
pensate for losses, non-Hermitian photonics does not necessarily
rely on the presence of gain. Non-Hermiticity covers all open
physical systems, regardless of the presence or the absence of
amplification, including loss-only arrangements.

Non-Hermitian optics toolbox
These new overarching concepts are currently expanding the
toolbox of photonics by exploiting the complex refractive index
landscape, thus enriching the design parameter space (see Fig. 1).
Importantly, numerous platforms, ranging from waveguide/cavity
arrangements4,11,21 and fiber optics22 to metamaterial6, and
microwave systems23, are readily available for building non-
Hermitian photonics. This opens the door for a wide range of
applications and future technologies such as optical sensors24,25,
microlasers11,12, nonreciprocal light propagation26, telemetry27,
and microscopic thermal mapping28.

When a non-Hermitian optical system is steered in the
complex eigenenergy landscape by varying one or more of its
parameters, it can be brought to the vicinity of a special type of
spectral singularity called an exceptional point (EP). Figure 2
illustrates some of the features of EPs using an archetypal
discrete Hamiltonian. Exceptional points differ from Hermi-
tian degeneracies known as diabolic points (DPs): at a DP, the
eigenvalues are degenerate but the corresponding eigenstates
are orthogonal whereas at an EP not only the eigenvalues but
also their corresponding eigenstates become identical, indi-
cating a collapse of the eigenspace dimensionality at an EP.
This in turn renders the system very sensitive to any external
perturbation. As it turns out, this responsivity becomes even
more pronounced as the order of the exceptional point (defined
by the number of coalescing eigenvalues and eigenstates at the
EP) is increased. This can be better understood by inspecting
the Riemann surface associated with the eigenvalues of non-
Hermitian Hamiltonians, where EPs appear as edge points on
the lines connecting two sheets. For example, Fig. 2a, b depicts
such surface for an archetypical PT symmetric dimer where the

locations of EPs are also indicated17. Along the projection
marked by white lines (where the Hamiltonian is PT sym-
metric), the eigenvalues bifurcate as the system crosses the EP.
Importantly, for small deviations from the EP, this eigenvalue
splitting is stronger than the splitting in Hermitian systems.
Figure 2c shows the behavior of the two eigenvectors high-
lighting the non-Hermitian degeneracy of their coalescence by
using the concept of Hermitian angle29. These features, toge-
ther with a recent proposal for utilizing bosonic algebra to
engineer discrete photonic arrays having higher order EPs, was
recently employed to demonstrate optical and radio frequency
(RF) sensors with superior performance24,25,27 compared to
those operating based on diabolic points. Interestingly, EPs can
affect the dynamics of the system even when they are away
from the operating point as has been demonstrated recently by
the work on dynamic encircling of these singularities30–32.

Future perspective
A particular field that can benefit significantly from non-
Hermiticity is nonlinear optics. Recently, non-Herrmitian engi-
neering was proposed as a means for building on-chip light
sources33 that rely on coherent wave-mixing processes without
the need for restrictive phase-matching conditions (momentum
conservation)—which represents a necessary requirement for
efficient light generation in standard nonlinear optical systems.
Within the context of four-wave mixing where two pump pho-
tons fuse together to produce one signal and one idler photon,
this proposition relies on the spectral and spatial engineering of
optical losses (absorption or radiation) in order to sweep the idler
component out of the system, thus leaving only the signal wave to
enjoy amplification in an irreversible fashion34. This concept is
schematically illustrated in Fig. 3. This opens up new possibilities
for nonlinear processes, because nonlinear effects in Hermitian
settings are by nature reversible, i.e., when the idler and signal
reach a high enough intensity, they can recombine to create pump
photons which then sets a limit on the attainable signal or idler
powers. Sweeping the idler component out of the system prevents
this recombination (backward process) and forces the nonlinear
wave-mixing to proceed in the forward direction such that signal
power increases as the pump is increased. Different imple-
mentations for this concept include hybrid dielectric plasmonic
waveguides35, coupled cavity systems utilizing the Vernier
effect36, and Bragg grating loaded waveguides37. A particularly
challenging task in all these systems is to achieve the desired
spectral/spatial loss engineering without sacrificing the modal
overlap necessary for efficient nonlinear interactions. While
similar effects related to loss-induced modulation instabilities
have been investigated in fiber optics setups38, this approach
becomes particularly interesting when considering semiconductor
platforms with the potential of building miniaturized nonlinear
light sources.

Currently, the impact of non-Hermitian engineering is rapidly
expanding into different research directions. On the one hand, non-
Hermiticity combined with other quantum-inspired symmetries
and technologies can be used to observe more exotic effects.
Exemplifying this direction is the recent work on supersymmetric
laser arrays39,40 and the experimental observation of topological
lasers in both one and two dimensional systems41–45. In the former,
pseudo global phase matching, which is engineered by using
supersymmetry transformations, is used in conjunction with loss
engineering to spoil the quality factor of all the undesired super-
modes of a laser array in order to force the system to lase in the in-
phase fundamental supermode. In the latter, the judicious intro-
duction of loss and gain in a 1D Su-Schrieffer–Heeger (SSH) lattice
replaces the usual chiral symmetry of the topological array with
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Fig. 1 No-Hermitian photonics. Non-Hermiticity expands the toolbox for
integrated photonics by enlarging the parameter space into the complex
domain (yellow and violet regions along the positive/negative εi axis
representing loss or gain)

COMMENT COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-019-0130-z

2 COMMUNICATIONS PHYSICS |            (2019) 2:37 | https://doi.org/10.1038/s42005-019-0130-z | www.nature.com/commsphys

www.nature.com/commsphys


f

Idler

Lo
ss

 p
ro

fil
e

Pump

Signal

f

Idler

Lo
ss

 p
ro

fil
e

Pump

Signal

Propagation distance

Propagation distance

a

b

Fig. 3 Non-Hermitian parametric amplification. Schematic illustration of the process of four wave-mixing when the phase matching condition is violated in
two different cases: a when the losses of all the components are neglected; and b when the idler loss is appreciable while the pump and signal loss are
negligible. In the first scenario, the process is reversible as a function of the propagation distance: two pump photons can be combined to produce a signal
and an idler photons, which upon propagation acquire different phases that allows them to combine and reproduce the pump photons again. In the latter
case (b), the idler loss sweeps the idler photons out of the system, leaving only the signal photons. As a result, the process becomes irreversible. This leads
to the amplification of the signal beam even in the absence of phase matching. The conversion efficiency between the different components depend on the
exact frequencies involved and the details of the loss profile33,34
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Fig. 2 Exceptional points. a and b plot the real and imaginary parts of the eigenvalues (Riemann surface) associated with an archetypal 2 × 2 non-Hermitian

Hamiltonian H ¼ x1 þ ix2 1
1 �x1 � ix2

� �
(representing coupled waveguides or resonators for instance) having an exceptional point (EP) of order two, as

a function of two parameters x1,2. The singular point between the two sheets of the Riemann surface is called an EP. c Presents the Hermitian angle29

between the two eigenvectors of H as a function of the non-Hermitian parameter x2 when x1= 0. At the EP, not only the eigenvalues but also the
eigenvectors coalesce and become identical. Additionally, the Taylor series expansion fails at that point. These properties equip non-Hermitian systems
with very exotic behavior such as loss-induced gain, mode selectivity, loss-enabled phase matching, to mention just a few examples (see ref. 17,18 for
more details)
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charge-conjugation symmetry, which in turn allows the system to
lase in a pre-selected topologically protected defect state even when
the whole structure is uniformly pumped. On the other hand, the
notion of non-Hermitian engineering is applied in numerous
physical platforms other than optics such as electronic46 and
microwave23 with potential applications in wireless power transfer47

and telemetry sensing27. Along this line, two directions promise
major advances in light sciences and technologies: optomechanics
and plasmonics. Concepts from non-Hermitian engineering
have already been used in theoretical explorations in these
fields, showing how PT symmetric systems can be integrated with
plasmonics structures48, and predicting emergence of high-order
EPs in optomechanical systems, enhanced optomechanical inter-
actions and cooling rates49, as well as thresholdless phonon lasing50.
The experimental demonstration of such predictions can lead to
technological advances. For example, a recent experimental work
has demonstrated the broadening of the linewidth of a phonon laser
operating in the vicinity of an exceptional point (analogous to
Petermann factor in photon lasers physics) and the possibility of
tuning the linewidth of phonon lasers by operating them close to
or far from exceptional points51.

The research area of non-Hermitian photonics is relatively
new. Compared to other more mature fields such as photonic
crystals or metamaterials, it is still largely unexplored. Novel
theoretical ideas combined with new experimental schemes are
expected to produce more surprising results, leading to altogether
different, previously unknown, means for controlling light-matter
interactions both in the classical and the quantum regimes.
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