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The DDR‑related gene signature with cell 
cycle checkpoint function predicts prognosis, 
immune activity, and chemoradiotherapy 
response in lung adenocarcinoma
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Abstract 

Background:  As a DNA surveillance mechanism, cell cycle checkpoint has recently been discovered to be closely 
associated with lung adenocarcinoma (LUAD) prognosis. It is also an essential link in the process of DNA damage 
repair (DDR) that confers resistance to radiotherapy. Whether genes that have both functions play a more crucial role 
in LUAD prognosis remains unclear.

Methods:  In this study, DDR-related genes with cell cycle checkpoint function (DCGs) were selected to investigate 
their effects on the prognosis of LUAD. The TCGA-LUAD cohort and two GEO external validation cohorts (GSE31210 
and GSE42171) were performed to construct a prognosis model based on the least absolute shrinkage and selection 
operator (LASSO) regression. Patients were divided into high-risk and low-risk groups based on the model. Subse-
quently, the multivariate COX regression was used to construct a prognostic nomogram. The ssGSEA, CIBERSORT 
algorithm, TIMER tool, CMap database, and IC50 of chemotherapeutic agents were used to analyze immune activity 
and responsiveness to chemoradiotherapy.

Results:  4 DCGs were selected as prognostic signatures, and patients in the high-risk group had a lower overall 
survival (OS). The lower infiltration levels of immune cells and the higher expression levels of immune checkpoints 
appeared in the high-risk group. The damage repair pathways were upregulated, and chemotherapeutic agent sensi-
tivity was poor in the high-risk group.

Conclusions:  The 4-DCGs signature prognosis model we constructed could predict the survival rate, immune activ-
ity, and chemoradiotherapy responsiveness of LUAD patients.
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Background
Cancer is the primary threat to human public health, 
with an estimated 23.6 million new cancer cases and 

10 million cancer deaths by 2019 worldwide [1]. Lung 
adenocarcinoma (LUAD), the primary pathological type 
of lung cancer, remains the predominant cause of can-
cer deaths in most countries [2, 3]. Despite significant 
breakthroughs achieved in the treatment of LUAD, radia-
tion and drug resistance after treatments are still the 
main challenges to the survival of patients [4]. Emerg-
ing studies suggest that autophagy-related signature [5], 
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immune-related signature [6], and methylation-related 
markers [7] can be used as prognostic markers to predict 
the prognosis of LUAD patients, while the heterogeneity 
of the tumor makes it difficult to evaluate the prognosis 
of each patient precisely [8]. Therefore, discovering and 
identifying a distinctive prognostic signature for LUAD 
to accurately assess patient outcomes and facilitate indi-
vidual tumor treatment remains critical.

DNA damage can be recognized and repaired by the 
cell’s internal DNA damage repair (DDR) mechanism. 
Incorrect repair is one of the leading causes of cancer’s 
occurrence and development [9]. Studies have shown that 
DDR acts as a barrier to tumorigenesis in the early stages 
of LUAD. Yet, it can promote malignant growth in tumor 
cells with defective genomic maintenance mechanisms 
[10]. In addition, DDR is associated with radiation resist-
ance in LUAD cells. The serine proteinase inhibitor clade 
E member 2 (SERPINE2), a DDR-related gene, regulates 
radiation sensitivity. Its high expression positively cor-
relates with poor prognosis in patients with LUAD [11]. 
ERK5 increases the radiation resistance of LUAD cells by 
enhancing the DNA damage response, leading to a poor 
prognosis for patients [12]. Ubiquitin-specific protease 
14 (USP14) is a modulator of the double-strand break 
(DSB) repair pathway that increases radiation resistance 
in LUAD cells, leading to poor treatment in patients [13]. 
It is no doubt that DDR-related genes are closely related 
to LUAD prognosis.

Cell cycle checkpoints, acting as DNA surveillance 
mechanisms, can prevent the accumulation and propa-
gation of genetic errors during cell division [14]. Activat-
ing different cell cycle checkpoints is also considered an 
essential process in DDR, allowing cells time to repair 
their damaged DNA before moving to the next cell cycle 
stage [15]. When DNA double-strand breaks (DSBs), the 
primary type of DNA damage, the MRE11/NBS1/RAD5 
complex activates the ataxia telangiectasia mutated 
(ATM) /checkpoint kinase 2 (CHK2) pathway to pro-
mote the S-phase cell cycle arrest and the p53-associated 
G1/S-phase checkpoint [16, 17]. Furthermore, the cell 
cycle checkpoint is closely related to LUAD prognosis. 
Some studies suggested that genetic variations in the 
CHEK2 gene may play a key role in predicting the tox-
icity and prognosis of NSCLC [18]. Higher checkpoint 
gene PRKCSH expression, which suppresses the acti-
vation of the STAT6/p53 pathway, was correlated with 
a poorer prognosis and more significant infiltration of 
most immune cell types in patients with lung cancer [19].

As mentioned above, both DDR and cell cycle check-
point are closely related to the prognosis of LUAD, while 
the cell cycle checkpoint also has a vital role in DDR. In 
addition, radiotherapy and chemotherapy are two of the 
three primary means of cancer treatments, which rely on 

causing DNA breaks to kill tumor cells. Therefore, the 
expression of genes related to DDR and cell cycle regu-
lation also directly affect chemoradiotherapy results. A 
reasonable hypothesis could be generated that genes with 
both cell cycle checkpoint and DDR functions may have 
more critical effects on LUAD prognosis.

Consequently, the DDR-related genes with cell cycle 
checkpoint function, here called DCGs, were selected to 
construct a prognosis model for LUAD by a systematical 
method and its effect on immune activity and response 
to chemoradiotherapy were further explored to reveal the 
causes behind the poor prognosis.

Materials and methods
Data collection
The transcriptome profiling data and clinical information 
of 322 lung adenocarcinoma (tumor purity > 60) and 59 
normal samples were downloaded from the TCGA data-
base by using the R package “TCGAbiolinks”. The two 
independent validation cohorts, including GSE31210 
(224 lung adenocarcinoma samples) and GSE42171 
(181 lung adenocarcinoma samples), were downloaded 
from the GEO database by using the R package "GEO-
query". The raw RNA-Seq transcriptome count data 
were normalized by the R package "EDASeq" and were 
log2 (data + 1) transformed for the following analysis. 
296 DNA damage repair related-genes were obtained 
from GeneCards (https://​www.​genec​ards.​org/), listed in 
Table S1 in Additional file 1.

Functional enrichment analyses
To search the DDR-related genes with cell cycle check-
point function (DCGs), the 296 DDR genes were anno-
tated by Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) using R packages “cluster-
Profiler” and “org.Hs.eg.db”.

Identification of differentially expressed DCGs
The expression of DCGs in the TCGA cohort was ana-
lyzed to identify differentially expressed genes (DEGs) 
between LUAD and normal samples. The DEGs with a 
P < 0.05 and |logFC|> = 1 were determined by the R pack-
age “limma”. The heatmap and volcanic plot of DEGs were 
depicted by R package “pheatmap” and "EnhancedVol-
cano”. The Protein–protein interaction (PPI) network of 
DEGs was constructed by the STRING database (https://​
cn.​string-​db.​org/), and the hub genes were selected by 
the cytohubba plugin (Degree method) in Cytoscape 
software.

DNA methylation analysis
MethSurv (https://​biit.​cs.​ut.​ee/​meths​urv/) is a bio-
informatics tool for survival analysis based on CpG 
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methylation patterns, with methylation data of multiple 
human cancers [20, 21]. The CpG methylation status of 
DCGs and the associations between DCGs methylation, 
gene expression, and prognosis were revealed by using 
this tool in our study.

Unsupervised consensus clustering analysis
Consensus Clustering (unsupervised clustering) is a 
common cancer subtype classification method that can 
distinguish samples into several subtypes according to 
different omics data sets to discover new disease sub-
types or compare different subtypes [22]. Here, a Con-
sensus Clustering analysis was performed to identify the 
heterogeneity of LUAD based on the expression levels of 
DCGs. The LUAD subtype was classified by the “K-mean” 
method on the R package “ConsensusClusterPlus”.

Establishment and validation of the DCGs prognostic 
model
A total of 298 TCGA-LUAD samples (excluding patients 
with a survival time of fewer than 30  days) were ran-
domized into a training set (n = 198) and a test set 
(n = 100) in a 2:1 ratio by using the R package “caret” (set 
seed 123,456, y = overall_survival).

The process of the prognostic model establishment 
was performed in the training set. The test set, external 
validation cohort GSE31210 and GSE42171, were used 
to validate the predictive capability of the prognostic 
model. The receiver operator characteristic (ROC) curves 
were constructed to assess the capacity of the prognosis 
model.

Univariate Cox regression analysis was first used to 
screen for survival-associated DCGs using the R package 
“survminer” and “survival”. Subsequently, the least abso-
lute shrink-age and selection operator (LASSO) regres-
sion model was used to prevent overfitting, selecting the 
best candidate genes into the prognosis model by using 
the R package “glmnet”. A risk score was calculated by 
Lasso regression coefficients. Riskscore =

k

i
Xi × Yi 

(X: coefficients, Y: gene expression level). LUAD patients 
were divided into high-risk and low-risk groups based on 
the optimal cutoff value of the risk score using the X-tile 
software, and the test set and validation cohorts were 
applied to the same cutoff value.

Kaplan–Meier (K–M) survival curve analysis was con-
ducted to compare the overall survival (OS) between the 
two groups by using the R package “survival”. Principal 
component analysis (PCA) based on the DCGs was con-
ducted by the “prcomp” function in the R package “stats”. 
The receiver operator characteristic (ROC) curves for 
1-, 3- and 5-years survival were constructed using the R 

package “timeROC” to assess the predictive accuracy of 
the DCGs prognosis model.

Establishment of prognosis nomogram combined 
with clinical features
The Univariate COX regression model was conducted 
to analyze the risk score and clinical characteristics of 
TCGA-LUAD patients. Variables with P < 0.05 were 
subsequently included in the multivariate Cox regres-
sion analysis to screen independent prognosis factors in 
LUAD. Finally, a nomogram was established based on 
multivariate Cox regression analysis results for guiding 
the clinical decision by using the R package “rms”. The 
calibration curves for 1, 3, and 5 years were used to assess 
the predictive ability of the nomogram.

Assessment of immune microenvironment between two 
risk groups
The compositions of the 22 kinds of tumor-infiltrating 
immune cells between two risk groups were calculated 
by the CIBERSORT algorithm. The Spearman correla-
tion analysis was performed between 27 types of immune 
checkpoint expression and risk score by R package 
“ggstatsplot”. The details of 27 immune checkpoints were 
listed in Table  S2 in Additional file  1. TIMER (https://​
cistr​ome.​shiny​apps.​io/​timer/) is an online database for 
comprehensively analyzing tumor-infiltrating immune 
cells [23, 24]. The relationship of DCGs with immune 
cells was further validated in the TIMER database.

Assessment of chemoradiotherapy response between two 
risk groups
The scores of DNA damage repair, X-ray, and UV 
response were calculated by single-sample gene set 
enrichment analysis (ssGSEA) on the R package “gsva”. 
The gene sets of DNA damage repair, X-ray, and UV 
response were downloaded from Gene Set Enrichment 
Analysis (http://​www.​gsea-​msigdb.​org/​gsea/​index.​jsp), as 
shown in Table S3 in Additional file 1.

The pRRophetic (https://​github.​com/​paulg​eeleh​er/​
pRRop​hetic) R package was used to predict the half-max-
imal inhibitory concentration (IC50) of chemotherapeu-
tic agents for two risk groups. The R package was based 
on pre-treatment gene expression and drug sensitivity 
data of cancer cell lines to predict the chemotherapeutic 
response [25]. The parameters of tissueType were set to 
the “lung”. Since Connectivity Map (CMap) (https://​clue.​
io/) establishes links between drugs, diseases, and genes 
by comparing gene expression profiles [26, 27]. We used 
the CAMP database to identify potential small molecule 
drugs for high-risk groups.

https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
http://www.gsea-msigdb.org/gsea/index.jsp
https://github.com/paulgeeleher/pRRophetic
https://github.com/paulgeeleher/pRRophetic
https://clue.io/
https://clue.io/
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Statistics
The t-test or the Wilcoxon test (not met parameter test 
requirement) were used to compare the mean between 
the two groups. The correlation analysis was performed 
using the Pearson correlation (based on bivariate nor-
mality) or Spearman correlation (not met parameter test 
requirement). The chi-square test was used for the com-
parison of the categorical variables. The survival curves 
of the two groups were plotted with the Kaplan–Meier 
method and tested by the Log-rank test. Independent 
prognosis factors were determined using Cox propor-
tional hazards regression analysis. The LASSO regression 
was used to screen for key factors to construct the mod-
els. All statistical analyses were performed using the R 
software (version 4.1.2). P-value < 0.05 was considered a 
statistically significant. The workflow chart for this study 
is shown in Fig. 1.

Results
Identification of DDR‑related genes with cell cycle 
checkpoint function (DCGs)
To explore genes with both DDR and cell cycle check-
point functions, we performed GO and KEGG functional 
enrichment analyses on 296 DDR genes. The results 
showed that, besides being involved in DDR, these genes 
were also significantly enriched in the cell cycle related-
regulation, such as mitotic cell cycle phase transition, 
regulation of mitotic cell cycle, and regulation of cell 
cycle phase transition, etc. (Fig. 2A, B). Further analysis 
of the cell cycle-related functions revealed that 44 DDR 
genes were significantly enriched in the cell cycle check-
point-related biological processes (Fig.  2C). Therefore, 
we defined these 44 genes as DDR-related genes with cell 
cycle checkpoint function (DCGs).

Identification of differentially expressed DCGs 
between LUAD and normal samples
The expression levels of 44 DCGs were analyzed between 
TCGA-LUAD and normal samples. A total of 24 DEGs 

Fig. 1  The workflow chart of this study
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were identified (P < 0.05, |logFC|> = 1), and all of them 
(BRSK1, CDC6, FANCD2, AURKB, BUB1B, MAD2L1, 
PLK1, CHEK1, E2F1, MSH2, BLM, CHEK2, CDK1, 
BRCA1, CDT1, TTK, CCNB1, CENPF, PRKDC, BRIP1, 
CDC45, CLSPN, NBN, and PLK2) were upregulated in 
LUAD (Fig. 3A, B). Furthermore, a protein–protein inter-
action (PPI) for 24 DEGs was constructed (Fig. 3C), with 
0.4 (medium confidence) as an interaction score stand-
ard. BRCA1, CDC45, CHEK1, CCNB1, PLK1, BLM, 

CDC6, CDK1, FANCD2, and CLSPN were considered 
hub genes based on PPI results (Fig. 3D).

DNA methylation analysis of DCGs
DNA methylation has an irreplaceable role in the gene 
transcriptional regulatory, and generally the methyla-
tion of the gene CpG island can exert a transcriptional 
silencing [28]. Therefore, to confirm the expression of 
DCGs in LUAD, we analyzed the methylation status 
of their CpG island by using the MethSurv database. 

Fig. 2  Identification of DDR-related genes with cell cycle checkpoint function (DCGs). A GO enrichment analysis of 296 DDR genes, BP: Biological 
process; MF: Molecular function; CC: Cellular components. B KEGG enrichment analysis of 296 DDR genes. C The Biological processes of cell cycle 
checkpoint involved by DDR genes
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The results indicated low methylation levels in most 
DCGs (Fig. S1 in Additional file  2). Furthermore, the 
low methylation levels in cg17653972 from BRSK1, 
cg18576335 from AURKB, cg25653141 from BLM, 
cg09161138 from CDT1, cg22041712 from CENPF, 
cg12148237 from PRKDC, and cg07084161 from NBN 
correlated with a poor prognosis in LUAD patients 
(P < 0.05, HR < 1, Fig. 4A–G).

LUAD classification based on the DCGs
To investigate the heterogeneity of LUAD based on 
DCGs, we performed a consensus clustering analy-
sis in TCGA-LUAD patients. K = 2 (from 2 to 5) was 
determined as the best cluster number, with the high-
est intragroup correlations (Fig.  5A). TCGA-LUAD 

patients were divided into two clusters according to 
the clustering results. The expression profile of DCGs 
in the two clusters combined with clinical features was 
shown in Fig. 5B. The heatmap displayed the difference 
in DCGs expression in two clusters while there was no 
difference in clinical features. Subsequently, survival 
analysis in two clusters was performed. It was found 
that the overall survival of cluster1 was significantly 
lower than cluster2 (Fig. 5C).

Establishment of the DCGs prognosis model based 
on the TCGA‑LUAD training set
First, the univariate COX regression was used to 
screen DCGs affecting the prognosis in TCGA-LUAD 

Fig. 3  Identification of differentially expressed DCGs in TCGA-LUAD and normal samples. A Differential expression volcano plot based on DCGs (red: 
P < 0.05 and |logFC|> = 1, blue: only P < 0.05). B The heatmap of 24 differentially expressed DCGs in LUAD and normal samples (blue: low expression 
level, orange: high expression level, **P < 0.01, ***P < 0.001). C Protein–protein interaction (PPI) network of 22 DCGs. D The hub genes calculated by 
the PPI network
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training set patients (Fig.  6A). A total of 18 prognosis 
DCGs (P < 0.05, |HR|> 1) were selected into the LASSO 
regression model for further narrowing down the 
candidate genes, and a 4-DCGs signature was finally 
established based on the best λ value of 0.03165087 
(Fig.  6B, C). The risk score was calculated as fol-
lows: Risk score = (0.054*PLK1exp.) + (0.199*PLK-
2exp.) + (0.229*PRKDCexp.) + (0.320*NBNexp.).

LUAD training set patients were divided into high-risk 
and low-risk groups according to the optimal cutoff value 
of the risk score (using the X-tile software, Fig. S2A, B in 
Additional file  2) (Fig.  6D). Principal component analy-
sis (PCA) showed a clear distinction between the two risk 
groups (Fig. 6G). Subsequently, survival analysis revealed 
that patients in the high-risk group had poorer survival 
than the low-risk group (Fig. 6E, F). Finally, to assess the 
model’s predictive capability, we constructed the time-
dependent receiver operating characteristic (ROC). The 
areas under the ROC curve (AUCs) at 1 year, 3 years, and 
5 years were 0.749, 0.711, and 0.592 (Fig. 6H). Patients in 
the test set were also divided into high-risk and low-risk 
groups using the same cutoff value (6.46). The results of 
PCA and survival analysis were consistent with the train-
ing set. The AUCs of the test set at 1 year, 3  years, and 

5 years were 0.698, 0.710, and 0.793 (Fig. S2C–G in Addi-
tional file 2).

Validation of the 4‑DCGs signature prognostic model
To further validate the reliability of the model, two inde-
pendent GEO-LUAD cohorts, GSE31210 (n = 224) and 
GSE42171 (n = 181), were included as the validation 
cohorts. The patients in two validation cohorts were 
also divided into high-risk and low-risk groups accord-
ing to the same cutoff value as in the TCGA training 
set (Fig. 7A, F). PCA analysis also displayed a clear dis-
tinction between the two groups (Fig. 7D, I). Consistent 
with the results in the TCGA cohort, the high-risk group 
patients had a poorer prognosis than the low-risk group 
patients in the two validation cohorts (Fig. 7B, C, G, H). 
Furthermore, the AUCs of the two validation cohorts dis-
played good predictive ability. The AUCs of GSE31210 at 
1 year, 3 years, and 5 years were 0.776, 0.681, and 0.600 
(Fig. 7E), and the AUCs of GSE42171 at 1 year, 3 years, 
and 5  years were 0.685, 0.664 and 0.754 (Fig. 7J). These 
results indicated that our 4-DCGs signature could reli-
ably predict LUAD patient prognosis.

Fig. 4  DNA methylation survival analysis of DCGs based on the MethSurv database. The Kaplan–Meier (K–M) survival curve of LUAD patients 
with different methylation levels in A cg17653972 from BRSK1, B cg18576335 from AURKB, C cg25653141 from BLM, D cg09161138 from CDT1, E 
cg22041712 from CENPF, F cg12148237 from PRKDC, and G cg07084161 from NBN
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Establishment of a prognosis nomogram combining risk 
score and clinical features for LUAD patients
To assess whether the 4-DCGs signature could be inde-
pendent risk factors affecting LUAD prognosis, we per-
formed univariate and multivariate COX regression 
analysis combining DCGs risk scores with clinical char-
acteristics. Variables screened by the univariate COX 
regression (P < 0.05) were included in the multivariate 
COX regression (Fig.  8A). The risk score, stage, and T 
classification were determined as independent factors 
influencing LUAD prognosis (Fig.  8B). A clinicopatho-
logical information heatmap displayed that 4 DCGs were 
upregulated in the high-risk groups, and the stage had 
a significant difference in the two risk groups (P < 0.05) 
(Fig.  8C). Finally, to improve the clinical applicability 

of the model, a prognostic nomogram was constructed 
based on the results of the multivariate COX regression 
(Fig.  8D). Calibration curves, used to evaluate the pre-
diction capability of the nomogram, indicated that the 
nomogram has a good prediction accuracy for the 1 year, 
3 years, and 5 years survival (Fig. 8E).

Functional enrichment of the 4‑DCGs signature
To further investigate the underlying molecular hetero-
geneity in two risk groups based on the 4-DCGs signa-
ture, we performed a functional enrichment analysis of 
GO and KEGG for the DEGs between two risk groups 
in TCGA-LUAD. A total of 3882 DEGs were screened 
between the high-risk and low-risk groups (P < 0.05). 
The enrichment results showed that except enriched in 

Fig. 5  LUAD classification based on the DCGs. A Consensus clustering matrix for k = 2. B Heatmap for the expression of DCGs based on the two 
clusters and clinical features. C Kaplan–Meier OS curve for two clusters in LUAD
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Fig. 6  Prognosis model based on the DCGs signature. A A forest plot of univariate Cox regression analysis for 24 DCGs. B Cross-validation for 
optimal parameter selection in the LASSO regression. C Partial likelihood deviation under the number of different variables. D Distribution of 
patients based on the risk score. E, F Analysis of the survival rate and survival status in the two risk groups. G Principal component analysis (PCA) of 
the 4-DCGs signature. H The time-dependent receiver operating characteristic (ROC) of 4-DCGs signature
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Fig. 7  The validation of the DCGs signature Prognosis model in two GEO cohorts. A, F Distribution of patients based on the risk score. B, C, G, H 
Analysis of the survival rate and survival status in the two risk groups. D, I Principal component analysis (PCA) of the 4-DCGs signature. E, J The 
time-dependent receiver operating characteristic (ROC) of 4-DCGs signature
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Fig. 8  Establishment of a prognosis nomogram based on TCGA-LUAD. A Univariate COX regression analysis for the risk score and clinical 
characteristics. B Multivariate COX regression analysis for independent prognostic factors. C Heatmap for 4-DCGs and the correlation between 
clinical features and the risk groups (*P < 0.05). D Prognosis nomogram for predicting the survival of patients based on multivariate Cox regression 
analysis. E The calibration curves of the Nomogram for 1-year, 3-year, and 5-year survival in LUAD patients

Fig. 9  Functional enrichment of the 4-DCGs signature in TCGA-LUAD. A GO enrichment analysis of 4-DCGs, BP: Biological process; MF: Molecular 
function; CC: Cellular components. B KEGG enrichment analysis of 4-DCGs
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DDR and cell cycle functions, these DEGs significantly 
enriched in immune and chemotherapy reactivity path-
ways, such as Human T cell leukemia virus 1 infection 
and platinum drug resistance (Fig. 9A, B).

Comparison of immune activity in two risk groups
To explore the relationship between the 4 gene signa-
ture and LUAD immune microenvironment, we com-
pared the composition of 22 tumor-infiltrating immune 
cells between high-risk and low-risk groups in TCGA-
LUAD. The results indicated that the infiltration levels 
of most immune cells were lower in the high-risk group 
(Fig.  10A). The TIMER database results revealed DCGs 
closely correlated with immune cells (Fig. S3 in Addi-
tional file  2). In addition, the relationship between the 
expression of 27 immune checkpoints and two risk 
groups was further investigated. Most immune check-
points were highly expressed in the high-risk group 
(Fig.  10B), and the expression levels of PDCD1, TIGIT, 
and CD276 were significantly correlated with the risk 
score (Fig. 10C–E). The results of validation cohorts are 
shown in Fig. S4 in Additional file 2.

Comparison of chemoradiotherapy response in two risk 
groups
Radiotherapy and chemotherapy are the dominant treat-
ments for cancer therapy. Therefore, we first compared 
the scores of 16 main DDR pathways, UV and X-ray 
responses in two groups using ssGSEA (single sample 
Gene Set Enrichment Analysis). Almost all DDR path-
ways were upregulated in the high-risk group (Fig. 11A), 
and there was higher reactivity for UV and X-ray in the 
high-risk group (Fig. 11B), indicating that patients in the 
high-risk group had the stronger radiation resistance.

Furthermore, the sensitivity of 4 common lung adeno-
carcinoma chemotherapy agents (Cisplatin, Crizotinib, 
Erlotinib, and Nilotinib) and 6 other tumor chemo-
therapy agents (Axitinib, Camptothecin, Etoposide, and 
Gemcitabine) for two risk groups were analyzed based 
on Genomics of Drug Sensitivity of Cancer (GDSC) 
using the R package “pRRophetic”. Results displayed 
that besides Nilotinib, the high-risk group had lower 
sensitivity to all other drugs (Fig.  11C–J), which meant 
that high-risk patients were more insensitive to chemo-
therapy. The results of validation cohorts are shown in 
Fig.  S5 in Additional file  2. Furthermore, the DEGs of 
two risk groups were imported into the CMap database 

Fig. 10  Immunoactivity analysis of two risk groups in TCGA-LUAD. A The composition of 22 types of tumor-infiltrating immune cells in the 
TCGA-LUAD samples. B The expression of 27 immune checkpoints in two risk groups. C–E Correlation analysis for the expression of immune 
checkpoints and risk scores
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to discover potential small molecule drugs for treatment. 
The top 15 positively correlated molecules and the top 15 
negatively correlated molecules were obtained from the 
CMap (Table S4 in Additional file 1). The patients in the 
low-risk group could benefit from the positively corre-
lated molecules.

Discussion
In recent years, the association between some molecular 
markers and the prognosis of LUAD has been found in 
a great number of studies. For example, Koh et al. found 
that PD-1 overexpression in patients with LUAD resulted 
in poor overall survival and progression-free survival 
[29]. Wang et al. indicated that the decreased expression 

of miR-133a in patients with LUAD was related to poor 
prognosis [30]. Takamizawa et  al. found that the over-
expression of let-7 microRNA in postoperative patients 
with LUAD was associated with a relatively short sur-
vival time [31]. However, due to the high heterogeneity 
of cancer, single-function genes explaining the patient 
prognosis may be farfetched. Furthermore, some prob-
lems hamper the prediction accuracy of these prognostic 
signatures, such as insufficient clinical samples and a lack 
of external independent validation.

The cell cycle checkpoints play an essential role in 
DDR. Moreover, it and DDR are respectively related to 
LUAD prognosis. Therefore, we sought to select genes 
with both cell cycle checkpoints and DDR functions in 

Fig. 11  Comparison of chemoradiotherapy response in TCGA-LUAD. A The ssGSEA scores of 16 DDR pathways in the two risk groups. B The ssGSEA 
scores of X-ray and UV response in the two risk groups. C–F The sensitivity analysis of LUAD common chemotherapy agents (Cisplatin, Crizotinib, 
Erlotinib, and Nilotinib) in two risk groups. G–J The sensitivity analysis of other cancers’ common chemotherapy agents (Axitinib, Camptothecin, 
Etoposide, and Gemcitabine)
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this study, developed a prognosis model in the TCGA-
LUAD cohort, and validated it in two independent GEO 
cohorts. To make the results more scientific and reli-
able, the TCGA cohort was divided into a training set 
and a test set according to the 2:1 ratio. The training 
set was used to construct the model, the test set was 
used to test the model’s efficacy, and the independent 
GEO cohorts were finally used to verify the model. The 
LASSO regression, screening for the key variables, has 
been widely used to construct prognosis models for dif-
ferent tumors, and the patient classification based on 
risk score, which is calculated by the LASSO coefficient, 
has feasible clinical guiding significance [32–34]. Thus, 
we combined univariate COX regression and LASSO 
regression to establish a 4-DCGs prognostic model with 
high predictive accuracy for LUAD survival, especially 
in 3-year survival (AUC = 0.711, 0.710). Greater AUC 
indicates a higher diagnostic value of the test, and AUC 
greater than 0.7 means high test accuracy. From this, 
the model we constructed has some clinical application 
value. In addition, to improve the clinical applicability, we 
also identified independent prognostic factors combined 
with the patient’s clinical features to establish a prognos-
tic nomogram with good predictive power. For example, 
a 70-year-old LUAD patient with stage II, T3, and risk 
score (4-DCGs signature) equal to 6.8 would score a total 
of 122 points (12 points for age, 20 points for stage, 20 
points for T classification, and 70 points for risk score). 
For this patient, the predicted survival for 1 year, 3 years, 
and 5 years was 63.0%, 19%, and < 10.0%, respectively.

The 4-DCGs signature consists of PLK1, PLK2, 
PRKDC, and NBN. PLK1 (Polo-like kinase 1), a member 
of the polo family of serine/threonine protein kinases, 
is an essential regulator of cell cycle progression that 
induces activation of DNA damage checkpoint [35, 36]. 
The overexpression of PLK1 appeared in various can-
cers with poor prognosis and survival. In addition, stud-
ies have shown that inhibition of PLK1 promotes tumor 
cell apoptosis in lung cancer [37, 38]. PLK2, also called 
SNK, regulates the replication of centrosomes during cell 
division and can be induced by P53 to activate the G2 
checkpoints in the DNA damage response [39]. It was 
reported that PLK2 promotes tumor growth by target-
ing the FBXW7/ Cyclin E pathway [40, 41]. The PRKDC 
gene encodes DNA-PK protein kinase, a protein kinase 
required for cell cycle progression during mitosis and the 
NHEJ pathway. Moreover, PRKDC can be a drug target 
for immune checkpoint inhibitors, while the inhibition 
of DNA-PK can also enhance the chemosensitivity and 
radiosensitivity of NSCLC. NBN, encoding the Nibrin 
protein, is a component of the Mre11-Rad50-Nbs (MRN) 
complex, which can trigger cell cycle checkpoint activa-
tion through interaction with ATM proteins, and plays 

a vital role in the DDR [42]. Increased expression of 
NBN genes in breast and ovarian cancer cells can induce 
chemoresistance and poor prognosis, and mutations in 
NBN can also cause Nijmegen breakage syndrome (NBS), 
leading to low immune function and abnormal lympho-
cyte function in patients [43, 44]. To sum up, consistent 
with our results, high expression of 4-DCGs was closely 
associated with cancer progression and poor prognosis, 
and also suggested that these four genes may influence 
the immune environment and chemoradiation resistance 
of LUAD patients.

Increasing evidence suggests that tumor development 
and progression largely depend on the complex micro-
environment in which they reside, including the tumor 
cells and their surrounding immune cells [45]. Therefore, 
to further explore the potential prognostic mechanism 
of risk grouping based on the 4-DCGs signature model, 
we compared the compositions of the 22 tumor-infil-
trating immune cells in the two risk groups. The results 
showed that infiltration levels of naive B cells, activated 
NK cells, monocytes, and activated dendritic cells were 
significantly lower in the high-risk group. In contrast, 
M0 macrophages and resting NK cells were higher in 
the high-risk group. Naive B cells are a type of lympho-
cyte, and many studies have reported that its infiltration 
level correlated with a favorable prognosis in NSCLC [46, 
47]. NK cells involved in tumor immunity can be divided 
into resting and activated subtypes [48]. Generally, the 
higher the proportion of resting NK cells or the lower the 
proportion of activated NK cells is, the higher the level 
of tumor infiltration will be, which favors the formation 
of the tumor microenvironment [49]. Recruitment of 
monocytes in the early stages of tumor progression can 
be found in multiple types of cancer, where monocytes 
directly kill malignant cells by cytokine-mediated cell 
death and phagocytosis [50]. An emerging study indi-
cated that the anti-tumor effect of dendritic cells (DCs) 
could be reduced by the low DCs count inducing the low 
antigen presentation efficiency of tumor-invasive DCs 
[51]. Tumor-associated macrophages (TAMs) function 
as a promoter during tumor progression. TAM con-
sists of several macrophages’ phenotypes, including M0 
(inactivated macrophages), M1 (classical activated), and 
M2 (alternately activated). M2 cells are polarized from 
M0 macrophages and promote immunosuppression and 
angiogenesis by producing immunosuppressive factors, 
interleukin-10 [52, 53]. It follows then that our high-risk 
group with low anti-tumor immune cells and high pro-
tumor immune cells showed a low tumor-suppressive 
immune microenvironment. In other words, our 4-DCGs 
signature could somewhat predict the immune activity of 
LUAD patients.
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Furthermore, in our study, the immune checkpoint 
expression levels were generally elevated in the high-risk 
group, and immune checkpoints (PDCD1, TIGIT, and 
CD276) expression were positively correlated with the 
risk scores. Immune activation can be increased by block-
ing immune checkpoints. Thus immune checkpoint gene 
expression is considered an indicator of immunother-
apy response in clinical practice. Blocking the immune 
checkpoint has become a novel approach to eliminating 
the immunosuppressive microenvironment to enable 
tumor immunotherapy [54, 55]. Lower immunoactivities’ 
cell infiltration and higher immune checkpoint expres-
sion may explain why a poor prognosis appeared in high-
risk LUAD patients. Targeted immune checkpoints, in 
turn, may be a viable option for immunotherapy of the 
high-risk group.

Radioresistance in cancer cells remains the main limi-
tation in radiotherapy applications. DNA double-strand 
breaks are the most lethal damage caused by ionizing 
radiation and trigger a series of DNA damage responses 
(DDRs) that help cells recover from radiation damage. 
These DDRs confer radioresistance to the tumor, bring-
ing a poor prognosis [56]. The 4-DCGs have DDR func-
tion, therefore we compared the ssGSEA scores of the 
DDR pathway, X-ray, and UV response in different risk 
groups. The results displayed that almost all DDR path-
ways, X-ray, and UV responses were upregulated in the 
high-risk group, indicating the high radioresistance may 
contribute to a poor prognosis in patients of the high-
risk group. It also suggested that the 4-DCGs can predict 
radiotherapy responsiveness in LUAD patients.

Platinum-based chemotherapy is the cornerstone of 
treatment for LUAD patients. However, many patients 
relapse because of resistance to tumor-killing drugs, 
leading to a poor prognosis [57, 58]. Therefore, the dis-
tinction of primary-resistant LUAD patient populations 
can maximize the clinical benefit of these patients [59]. 
Our functional enrichment results showed that the dif-
ferential genes in the two risk groups were significantly 
enriched in pathways with platinum drug resistance, thus 
speculating that our risk grouping could predict drug 
sensitivity. Unsurprisingly, sensitivity analysis of com-
mon anti-tumor drugs displayed that the high-risk group 
showed low sensitivity in the common anti-lung adeno-
carcinoma drugs (Cisplatin, Crizotinib, Nilotinib) and 
other anti-tumor drugs, indicating that the low drug sen-
sitivity contributes to a poor prognosis in the high-risk 
group. In other words, our grouping could distinguish 
drug-sensitive populations to some extent. We found 
that Erlotinib had high sensitivity in the high-risk group, 
suggesting that the treatment for the high-risk group 
could adopt Erlotinib. In addition, we also predicted rel-
evant small molecule drug targets using the drug analysis 

database, which offers some references for the clinical 
treatment of risk grouping.

In conclusion, the 4-DCGs signature participates in the 
DNA damage repair and cell cycle checkpoints regula-
tion, and its higher expression implies the better repair 
in damaged cells of high-risk group patients after chemo-
radiotherapy, meaning the higher chemoradioresistence. 
Therefore, combined with the immune activity analysis, 
the prognosis model constructed by the 4-DCGs signa-
ture could reasonably predict the prognosis of LUAD 
patients. Our study provides auxiliary guidance for the 
clinical therapy of LUAD, while more clinical cohorts and 
experiments are required to validate these results further.

Conclusions
The prognosis model based on the 4-DCGs signature 
could well predict the survival rate, immune activity, and 
chemoradiotherapy responsiveness of LUAD patients. 
This study provides some guidance for the treatment and 
prognosis evaluation of LUAD.
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