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S U M M A R Y  
The spectrum of the Earth's gravitational potential and topography, as represented 
by spherical harmonic expansions to degree 180, have been computed. Modelling 
the decay in the form of Alps, values of A and /3 for several degree (1) ranges were 
computed. For degree range 5-180, /3 was 2.54 for the potential and 2.16 for 
equivalent rock topography. The potential decay was somewhat slower than that 
(i.e. /3 = 3) implied by Kaula's rule. However, at high degree ranges, the /3 values 
were larger (3.20 for degrees 101-180) agreeing better with recent determinations 
from terrestrial gravity data and geoid undulations implied by satellite altimetric 
data. The values imply that the potential decays faster at higher I values. The values 
of /3 for topography were fairly uniform around 2 which agrees with a suggestion 
made by Vening-Meinesz in 1951. We also found that the /3 value for the Earth's 
potential agrees well with the value implied by the topography with Airy isostatic 
compensation with the depth of compensation equal to 30km. However, the 
magnitude of the power implied by the topographiclisostatic potential was ap- 
proximately one-third of the observed potential. 
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INTRODUCTION 

The Earth's gravitational potential is usually represented in 
a spherical harmonic series: 

where kM is the product of gravitational constant and mass 
of the Earth; r,  8, A are the geocentric coordinates; el,,,, st,,, 
are the fully normalized potential coefficients of degree 1 and 
order m; and a is the scaling parameter associated with the 
potential coefficients. 

Estimates of the potential coefficients can be made from 
the analysis of satellite observations or terrestrial gravity 
data or a combination of both (Rapp 1986; Kaula 1987). 
From (1) various gravimetric quantities such as gravity 
anomalies, geoid undulations, etc., can be derived. 

The topography of the Earth can be represented in a 
surface spherical harmonic expansion. Following Rapp 
(1982) we write: 

- /  

h(e, A) = R 2 2 (helm cos ma + sin m ~ p 1 , , , ( ~ ~ s  e) (2) 
I = O  m=O 

- 
where h,,,, h,, are fully normalized spherical harmonic 
coefficients of the topography; and R is a scaling parameter 
associated with the elevation coefficients; R is usually a 
mean earth radius (6371 km). 

Balmino, Lambeck & Kaula (1973) reported unscaled 
(i.e. R = 1 m) coefficients based on 5" X 5" mean elevations 
and depths. These coefficients were given for the actual 
topography and equivalent rock topography. The latter 
quantity compresses the ocean to an equivalent density as 
land masses. This means that the elevation in ocean areas is 
computed, for harmonic analysis purposes, as: 
h(e, a) = d ( e ,  n)(i - 1.03/2 .q  (3) 
where d is the (negative) ocean depth. 

Rapp (1982) computed the harmonic coefficients of a set 
of 1" x 1" elevations to degree 180. The topographic/ 
isostatic potential implied by this elevation model was 
compared with the observed gravitational potential implied 
by a potential coefficient model to degree 180 (Rapp 1981). 
Rummel et al. (1988) have extended this work to a more 
exact formulation of the topographicJisostatic model 
equations and consideration of degree-dependent depths of 
compensation. 

Of interest for this paper is the spectrum of the observed 
potential and the topography. The usual power spectra of 
the potential and the topography can be written as 
(Rapp 1982): 

I 

Vt(AV) = (c;m + sfm). 
rn =O 

(4) 
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Note that both equations are unitless. Note also that 
equation (5) implies the power spectrum of the potential on 
the  surface of a sphere of radius a. 

Various models have been developed to express the 
spectrum of the potential. One well-known model is the 
Kaula rule (Kaula 1966) that gives an estimate of the rms 
potential coefficient: 

The  power spectrum implied by this model is: 
o(c, s) = 10-511~. (6) 

V:(AV> = (21 + 1) (10-~ /1~)~ .  (7) 
Other analyses have estimated the behaviour of V:(AV)  
from satellite altimeter data (e.g. Rapp 1986) and from 
terrestrial gravity data (e.g. Forsberg 1984; Vassiliou & 
Schwarz 1987). In these studies Fourier analysis was carried 
out  to imply potential coefficient behaviour for a local area. 
This behaviour was studied to degree 960 for altimeter data 
and to degree 2000 for the terrestrial gravity data. 

Following the lead of Kaula's rule, various authors have 
developed a model for the decay of the potential spectrum. 
One  general form used is: 

A 
V: (AV)  =- 

16' 

Estimates of A are sensitive to the specific geographic area 
under study. Values of /J seemed to be consistent between 
altimeter data and the terrestrial gravity data being 3.6 as 
compared with a value of 3 implied by the Kaula rule. 
Additional analysis is needed to understand as a function 
of degree and of geographic area, if in fact such functional 
dependence exists. 

If we assume an Airy isostatic model, elevations (and 
depths) imply a potential that can be compared with the 
observed potential to test the validity of the model. If D is 
the depth of compensation (specified as an equal mass 
condition), Rummel et al. (1988) show that the topographic 
isostatic potential coefficients can be expressed as: 

R - D '  
C;ma = - - ([ 1 - (7) ]h,ma 

2 1 + l  p 

+ . . .  (9) 
where LY is 1 for C,, and a = 2  for Snm; pcr is the crustal 
density; R is the mean Earth radius; p is the mean Earth 
density; and A p  = p m  - per; p m  is the average mantle density. 

The coefficients represented by him,, h21ma, and h3,,, 
are those found from the spherical harmonic expansion of 
( h / R ) ,  (h /R)2 ,  ( h / R ) 3 ,  respectively, where h is equivalent 
rock topography. In many applications of (8) (e.g. Rapp 
1982), only the first term has been used, but Rummel et al. 
(1988) show that the other terms (especially the second) 
play a significant role in calculating the topographic/isostatic 
potential. If we do neglect the second and third terms, the 
simple power spectrum of the topographic isostatic potential 
can be written: 

A more accurate formulation would yield: 

v:(AvTII) = 2 (cka)2 
m,  a 

where C!,,,a are computed from (9). In a subsequent section 
of this paper we will consider the spectrum implied by 
equation (11). 

In an alternate spectrum discussion, Turcotte (1987) 
considers topography and potential theory in terms of fractal 
theory. The definitions used in this paper are somewhat 
different from that used in this and other papers. In addition 
he restricted his discussion to potential and topographic 
expansions to degree 36. With the availability of new 
high-degree potential coefficient models (Rapp & Cruz 
1986) and substantially improved topographic models 
(TUG87, Wieser 1987), we wish to study their implications 
in the estimation of the spectrum of the potential from the 
topography and its isostatic compensation. 

Turcotte (1987) defines the 'variance of the spectra' for 
topography, in our notation, as follows: 

I 

VTl = R2 + &:,,,,) = R2V:(h). (12) 
rn =O 

A corresponding quantity for geoid undulations would be: 

m=O 

The power spectral density of the topography is defined as 
(Turcotte 1987; E597): 

where ko is a wavenumber and A. = lfk, 'is the wavelength 
on which data are included in the expansions' (ibid.). Since 
data are given on a sphere, this linear wavelength is 2nR. 
The wavenumber k depends on the degree I, as follows: 

1 
2nR 

kl = - 

where the units of k ,  would be cycles km-' if R is expressed 
in km. Using (12), (14) and (15) we have: 

I 

&(k,) = 2nR3 (h:, + &$,J = 2nR3V:(h). 

The units of & would be m2 (cycle-' km) if we write (16) as 
2nR (km) R2(m)V;(h). 

The corresponding expression for the geoid undulation 
power spectral density would be: 

rn =O 

The units of S, would be m2 (cycle-' km) if we write (16) as 
2nR (km) R2(m) V:( A V ) .  

We now postulate the behaviour of the geoid power 
spectral density to be: 

where A, and &, are constants associated with the potential. 
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Table 1. Values of A ,  and /3, based 
on OSU86F potential coefficient 
model. 

Degree 
range Ap* BP 

5-30 3 . 0 6 ~  lo-' 3.25 
31-100 1.32 X 2.14 
31-180 6.52 x lo-' 2.62 

5-180 1.04X 2.54 
101-180 2.47 X 3.20 

* The units of A,, will yield S&,) in 
units of m2 cycle-' km if R in (15) is 
in kilometres. 

Using (15) we can write: 
1 -BP 

S,(k,) = A (-) 2nR = A;l+p (19) 

qk,) = A,~;!T = AT( &) = A ~ T .  (20) 

where A; is related to A,  and p,. Equation (19) is similar in 
form to equation (8). 

We may postulate an analogous behaviour for the 
topography: 

- BT 

The value of p, has been discussed previously in this paper. 

5 10 30 60 90 120100 
DEGREE 

I I I 1 . 00 -1.50 -u. 00 -3.50 -3.00 -2.50 -2.00 

LOG10 ( K L I  ( C Y  C L E S I K M I  
Figure 1. Log,,[S,(k,) ,  m2 cycle-' km] for the OSU86F potential coefficient model versus degree ( I )  or log,, (&!, cycle km-'). 
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Table 2. Value of A-, and BT based on the 
harmonic analysis of the TUG87 l o x  1" 
elevation data. 

AT ERT 
Degree 
range AT' BT AT* BT 

5-30 1429.0 1.83 452.3 1.88 
31-100 54.8 2.30 17.7 2.35 
31-180 119.5 2.17 44.8 2.21 

101-180 266.1 2.03 134.5 2.01 
5-180 155.4 2.13 59.2 2.16 

* The units of A, are the same as the units 
of A, in Table 1 .  

Turcotte (1987) suggests that a fl, equal to two is reasonable 
for the Earth based on the Balmino et al. (1973) 
computations. Vening-Meinesz (1951) had made a similiar 
suggestion based on a topographic expansion to degree 16 
made by Prey in 1922. He also found the behaviour valid for 
an expansion to degree 31 (Vening-Meinesz 1962). 

NUMERICAL TESTS 

Values of S, from the OSU86F potential coefficient model 
were used to estimate A, and fl,. In carrying out these 

0 
0 

computations the given potential coefficients were multiplied 
by the ratio (6378137/6371000)' so that the spectrum would 
refer to the radius of the mean Earth. The OSU86F model 
has been based on the combination of a low (I = 20) degree 
potential coefficient model and 30' x 30' mean free-air 
anomalies. These anomalies were based on surface gravity 
data and anomalies derived from satellite altimeter data. 

Given two S,(k,) values computed from equation (17), we 
have using (18): 

where k is computed from equation (15) for the two 
different degrees I, and 12. Average values for B, were 
computed for various degree ranges defined in Table 1. 
After the B, was determined a value of A, was calculated by 
computing an average of values computed from (19) for the 
degrees contained in the degree range. The results are 
shown in Table 1. 

A plot of S,(k,) is shown in Fig. 1 based on the OSU86F 
potential coefficient set. The straight line shown in this (and 
the other figures of this paper) is based on the A and p 
coefficients for the degree range 5-180. 

A similar analysis was carried out to estimate A, and 8,. 

DEGREE I 
I 

I I I I 
%.OO -4 .50 -u. 00 -3.50 -3.00 -2.50 -'2 

LOG10 [KL I  [ C Y C L E S / K M l  
, o o  

Figure 2. Log,, [S,.(k,), m2 cycle-' km] for the actual TUG87 topography versus degree ( I )  or log,, (k,, cycle km-I). 
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5 10 30 60 90 120 180 
DEGREE 

I 1 . 00 -b .50 4 . 0 0  -5.50 -3.00 -5.50 -2.00 

LOG 10 [KL) ( C Y  C L E S / K M l  
Figure 3. Log,,[&(k,), mz cycle-' km] for the equivalent rock topography implied by the TUG87 model versus degree (1) or log,,(k,, 
cycle km- ' ) . 

In this case we considered the harmonic expansion of the 
actual topography (AT) and the equivalent rock topography 
(ERT). Values of the parameters are given in Table 2. 

A plot &(k,) for the actual topography is shown in Fig. 2 
along with the values from the implied model for the degree 
range 5-180. A plot of &(k,) for the equivalent rock 
topography is shown in Fig. 3. Similar calculations were 
carried out using equation (10) for the topographic isostatic 
potential with D = 30 km. The results are shown in Table 3 
and Fig. 4. 

Table 3. Values of A, and 8, for 
the topographic isostatic potential 
based on the TUG87 elevation 
model with D = 30 km. 

Degree 
range A,* 8, 

5-30 4.19X 1.87 
31-100 1.71 X 2.67 
31-180 1.75 X 2.66 

101-180 3.96 X 2.51 
5-180 3.46X 2.54 

* The units of A ,  are the same as 
the units of A, in Table 1 .  

DISCUSSION 

The value of /3, changed considerably as different degree 
ranges were considered. If we take the 5-180 range, the 
value of 2.54 indicates a slower decay than implied by the 
studies discussed in the Introduction. However, if the 
degree range is 101-180, the /3, of 3.2 is in closer agreement 
to the value implied by the Kaula rule (i.e. 3) or the other 
studies based on the high degree analysis of altimetric data 
or terrestrial gravity data (i.e. /3, = 3.6). These results imply 
that the high degree spectrum decays faster than the 
spectrum at lower degrees. 

In the analysis of the topography (Table 2) there is no 
significant slope difference between the actual topography 
and equivalent rock topography. However, the magnitude 
of the power spectral density differs by about a factor of 3. 
The average /3 value of 2.2 for degree range 5-180 is quite 
similar to the values for the degree range 101-180. We do 
not see here the substantial change in /3 seen in the potential 
for these two degree ranges. The value of 2.2 is close to the 
value of 2 estimated by Vening-Meinesz (1951) and Turcotte 
(1987) from lower degree information. 

Comparing the slopes of the potential coefficient spectrum 
implied by the topographic isostatic model, and the actual 
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5 10 30 60 90120 180 
DEGREE 
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LOG1 0 ( K L )  [ C Y  C L E W K M )  
F i r e  4. Log&&,), m'cycle-' kml for the topographic isostatic potential (D = 30 km) versus degree (I) or log&,, cycle km-I). 

potential implied by the OSU86F model, we see (Tables 1 
and 3) excellent agreement for the degree ranges 31-180 
and 5-180. The magnitude of the topographic isostatic 
potential (as represented by AP) is 0.27 that of the actual 
potential for degree range 31-180. (The ratio is 0.33 for the 
degree range 5-180.) Therefore, the topographic isostatic 
model is able to account for the observed rate of decay of 
the potential spectrum, but for only a third of the 
magnitude. The remaining signal must come from 
unmodelled effects in the simple Airy model. Such effects 
would include crustal density irregularities, contributions 
from the mantle and defects in the Airy model assumption 
with respect to local isostatic behaviour that depend on such 
parameters as elasticity and age. 

The interpretation of the potential power rule has been 
the subject of several studies. Lambeck (1976) suggested 
that the power rule (up to degree 20) could be explained by 
randomly (both horizontally and vertically) distributed 
density anomalies. Kaula (1977) used a Monte Carlo 
technique to generate potential information using randomly 
selected density values of Gaussian distribution for various 
horizontal spacings, vertical spacings, number of layers, and 
a decay depth. Although a good fit to the decay exponent 
was found for some cases, the overall fit was not 
encouraging. Kaula suggests that more complex geophysical 
models are required. The current state of our knowledge of 
the spectra behaviour provides additional information that 
may be useful for geophysical inferences. The spectra at the 
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2 12-228. 

lower degrees are better determined than earlier. These 
values appear to be dependent on the density irregularities 
in the mantle. At the much higher degrees the spectra are 
strongly dependent on the topography and its isostatic 
compensation. The interpretation of the spectra presented 
here is beyond the scope of this paper. More accurate 
spectra, at the higher degrees, will be obtained as our global 
gravity coverage improves. In addition the application of the 
topographic models needs to be improved through the use 
of ice thickness information and more reliable topographic 
and bathymetric information. 
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