
The Decidability of Verification under PS 2.0

Parosh Aziz Abdulla1, Mohamed Faouzi Atig(�)1, Adwait Godbole2, S.
Krishna2, and Viktor Vafeiadis3

1 Uppsala University, Uppsala, Sweden
{parosh,mohamed faouzi.atig}@it.uu.se

2 IIT Bombay, Mumbai, India
{adwaitg,krishnas}@cse.iitb.ac.in
3 MPI-SWS, Kaiserslautern, Germany

viktor@mpi-sws.org

Abstract. We consider the reachability problem for finite-state multi-
threaded programs under the promising semantics (PS 2.0) of Lee et al.,
which captures most common program transformations. Since reachability
is already known to be undecidable in the fragment of PS 2.0 with only
release-acquire accesses (PS 2.0-ra), we consider the fragment with only
relaxed accesses and promises (PS 2.0-rlx). We show that reachability
under PS 2.0-rlx is undecidable in general and that it becomes decidable,
albeit non-primitive recursive, if we bound the number of promises.
Given these results, we consider a bounded version of the reachability
problem. To this end, we bound both the number of promises and of
“view-switches”, i.e., the number of times the processes may switch their
local views of the global memory. We provide a code-to-code translation
from an input program under PS 2.0 (with relaxed and release-acquire
memory accesses along with promises) to a program under SC, thereby
reducing the bounded reachability problem under PS 2.0 to the bounded
context-switching problem under SC. We have implemented a tool and
tested it on a set of benchmarks, demonstrating that typical bugs in
programs can be found with a small bound.

Keywords: Model-Checking · Memory Models · Promising Semantics

1 Introduction

An important long-standing open problem in PL research has been to define a
weak memory model that captures the semantics of concurrent memory accesses
in languages like Java and C/C++. A model is considered good if it can be
implemented efficiently (i.e., if it supports all usual compiler optimizations and
its accesses are compiled to plain x86/ARM/Power/RISCV accesses), and is
easy to reason about. To address this problem, Kang et al. [16] introduced the
promising semantics. This was the first model that supported basic invariant
reasoning, the DRF guarantee, and even a non-trivial program logic [30].

In the promising semantics, the memory is modeled as a set of timestamped
messages, each corresponding to a write made by the program. Each pro-
cess/thread records its own view of the memory—i.e., the latest timestamp for

c© The Author(s) 2021
N. Yoshida (Ed.): ESOP 2021, LNCS 12648, pp. 1–29, 2021.
https://doi.org/10.1007/978-3-030-72019-3 1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72019-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-72019-3_1

2 P. A. Abdulla et al.

each memory location that it is aware of. A message has the form (x, v, (f, t], V)
where x is a location, v a value to be stored for x, (f, t] is the timestamp interval
corresponding to the write and V is the local view of the process who made the
write to x. When reading from memory, a process can either return the value
stored at the timestamp in its view or advance its view to some larger timestamp
and read from that message. When a process p writes to memory location x, a
new message with a timestamp larger than p’s view of x is created, and p’s view
is advanced to include the new message. In addition, in order to allow load-store
reorderings, a process is allowed to promise a certain write in the future. A
promise is also added as a message in the memory, except that the local view of
the process is not updated using the timestamp interval in the message. This is
done only when the promise is eventually fulfilled. A consistency check is used
to ensure that every promised message can be certified (i.e., made fulfillable) by
executing that process on its own. Furthermore, this should hold from any future
memory (i.e., from any extension of the memory with additional messages). The
quantification prevents deadlocks (i.e., processes from making promises they are
not able to fulfil). However, the unbounded number of future memories, that
need to be checked, makes the verification of even simple programs practically
infeasible. Moreover, a number of transformations based on global value range
analysis as well as register promotion were not supported in [16].

To address these concerns, Lee et al. developed a new version of the promising
semantics, PS 2.0 [22] PS 2.0 simplifies the consistency check and instead of
checking the promise fulfilment from all future memories, PS 2.0 checks for
promise fulfilment only from a specially crafted extension of the current memory
called capped memory. PS 2.0 also introduces the notion of reservations, which
allows a process to secure a timestamp interval in order to perform a future
atomic read-modify-write instruction. The reservation blocks any other message
from using that timestamp interval. Because of these changes, PS 2.0 supports
register promotion and global value range analysis, while capturing all features
(process local optimizations, DRF guarantees, hardware mappings) of the original
promising semantics. Although PS 2.0 can be considered a semantic breakthough,
it is a very complex model: it supports two memory access modes, relaxed (rlx)
and release-acquire (ra), along with promises, reservations and certifications.

Let PS 2.0-rlx (resp. PS 2.0-ra) be the fragment of PS 2.0 allowing only
relaxed (rlx) (resp. release-acquire (ra)) memory accesses. A natural and funda-
mental question to investigate is the verification of concurrent programs under
PS 2.0. Consider the reachability problem, i.e., whether a given configuration
of a concurrent finite-state program is reachable. Reachability with only ra

accesses has already been shown to be undecidable [1], even without promises
and reservations. That leaves us only the PS 2.0-rlx fragment, which captures the
semantics of concurrent ‘relaxed’ memory accesses in programming languages
such as Java and C/C++. We show that if an unbounded number of promises is
allowed, the reachability problem under PS 2.0-rlx is undecidable. Undecidability
is obtained with an execution with only 2 processes and 3 context switches, where
a context is a computation segment in which only one process is active.

The Decidability of Verification under PS 2.0 3

Then, we show that reachability under PS 2.0-rlx becomes decidable if we
bound the number of promises at any time (however, the total number of promises
made within a run can be unbounded). The proof introduces a new memory
model with higher order words LoHoW, which we show equivalent to PS 2.0-rlx

in terms of reachable states. Under the bounded promises assumption, we use
the decidability of the coverability problem of well structured transition systems
(WSTS) [7,13] to show that the reachability problem for LoHoW with bounded
number of promises is decidable. Further, PS 2.0-rlx without promises and reser-
vations has a non-primitive recursive lower bound. Our decidability result covers
the relaxed fragment of the RC11 model [20,16] (which matches the PS 2.0-rlx

fragment with no promises). Given the high complexity for PS 2.0-rlx and the
undecidability of PS 2.0-ra, we next consider a bounded version of the reachabil-
ity problem. To this end, we propose a parametric under-approximation in the
spirit of context bounding [9,33,21,26,24,29,1,3]. The aim of context bounding
is to restrict the otherwise unbounded interaction between processes, and has
been shown experimentally in the case of SC programs to maintain enough
behaviour coverage for bug detection [24,29]. The concept of context bounding
has been extended for weak memory models. For instance, for RA, Abdula et
al. [1] proposed view bounding using the notion of view-switching messages and
a translation that keeps track of the causality between different variables. Since
PS 2.0 subsumes RA, we propose a bounding notion that extends view bounding.

Using our new bounding notion, we propose a source-to-source translation
from programs under PS 2.0 to context-bounded executions of the transformed
program under SC. The challenges in our translation differ a lot from that in [1],
as we have to provide a procedure that (i) handles different memory accesses rlx
and ra, (ii) guesses the promises and reservations in a non-deterministic manner,
and (iii) verifies that promises are fulfilled using the capped memory.

We have implemented this reduction in a tool, PS2SC. Our experimental
results demonstrate the effectiveness of our approach. We exhibit cases where
hard-to-find bugs are detectable using a small view-bound. Our tool displays
resilience to trivial changes in the position of bugs and the order of processes.
Further, in our code-to-code translation, the mechanism for making and certifying
promises and reservations is isolated in one module, and can easily be changed
to cover different variants of the promising semantics.

For lack of space, detailed proofs can be found in [5].

2 Preliminaries

In this section, we introduce the notation that will be used throughout.

Notations. Given two natural numbers i, j ∈ N s.t. i ≤ j, we use [i, j] to denote
{k | i ≤ k ≤ j}. Let A and B be two sets. We use f : A → B to denote that f is
a function from A to B. We define f [a �→ b] to be the function f ′ s.t. f ′(a) = b
and f ′(a′) = f(a′) for all a′ �= a. For a binary relation R, we use [R]∗ to denote
its reflexive and transitive closure. Given an alphabet Σ, we use Σ∗ (resp. Σ+)
to denote the set of possibly empty (resp. non-empty) finite words (also called

4 P. A. Abdulla et al.

simple words) over Σ. A higher order word over Σ is an element of (Σ∗)∗ (i.e.,
word of words). Let w = a1a2 · · · an be a simple word over Σ, we use |w| to
denote the length of w. Given an index i in [1, |w|], we use w[i] to denote the ith

letter of w. Given two indices i and j s.t. 1 ≤ i ≤ j ≤ |w|, we use w[i, j] to denote
the word aiai+1 · · · aj . Sometimes, we see a word as a function from [1, |w|] to Σ.

Fig. 1: Syntax of programs.

Program Syntax. The simple program-
ming language we use is described in Fig-
ure 1. A program Prog consists of a set
Loc of (global) variables or memory lo-
cations, and a set P of processes. Each
process p declares a set Reg (p) of (lo-
cal) registers followed by a sequence of la-
beled instructions. We assume that these
sets of registers are disjoint and we use
Reg := ∪pReg (p) to denote their union.
We assume also a (potentially unbounded)
data domain Val from which the registers and locations take values. All locations
and registers are assumed to be initialized with the special value 0 ∈ Val (if not
mentioned otherwise). An instruction i is of the form λ : s where λ is a unique
label and s is a statement. We use Lp to denote the set of all labels of the process
p, and L =

⋃
p∈P Lp the set of all labels of all processes. We assume that the

execution of the process p starts always with a unique initial instruction labeled
by λp

init.
A write instruction is of the form xo = $r assigns the value of register $r to

the location x, and o denotes the access mode. If o = rlx, the write is a relaxed

write, while if o = ra, it is a release write. A read instruction $r = xo reads
the value of the location x into the local register $r. Again, if the access mode
o = rlx, it is a relaxed read, and if o = ra, it is an acquire read. Atomic updates
or RMW instructions are either compare-and-swap (CASor,ow) or FADDor,ow .
Both have a pair of accesses (or, ow ∈ {rel, acq, rlx}) to the same location – a
read followed by a write. Following [22], FADD(x, v) stores the value of x into a
register $r, and adds v to x, while CAS(x, v1, v2) compares an expected value
v1 to the value in x, and if the values are same, sets the value of x to v2. The
old value of x is then stored in $r. A local assignment instruction $r = e assigns
to the register $r the value of e, where e is an expression over a set of operators,
constants as well as the contents of the registers of the current process, but not
referring to the set of locations. The fence instruction SC-fence is used to enforce
sequential consistency if it is placed between two memory access operations. For
simplicity, we will write assume(x = e) instead of $r = x; assume($r = e). This
notation is extended in the straightforward manner to conditional statements.

3 The Promising Semantics

In this section, we recall the promising semantics [22]. We present here PS 2.0

with three memory accesses, relaxed, release writes (rel) and acquire reads (acq).

The Decidability of Verification under PS 2.0 5

Read-modify-writes (RMW) instructions have two access modes - one for read
and one for write. We keep aside the release and acquire fences (and subsequent
access modes), since they do not affect the results of this paper.

Timestamps. PS 2.0 uses timestamps to maintain a total order over all the
writes to the same variable. We assume an infinite set of timestamps Time,
densely totally ordered by ≤, with 0 being the minimum element. A view is a
timestamp function V : Loc → Time that records the largest known timestamp
for each location. Let T be the set containing all the timestamp functions, along
with the special symbol ⊥. Let Vinit represent the initial view where all locations
are mapped to 0. Given two views V and V ′, we use V ≤ V ′ to denote that
V (x) ≤ V ′(x) for x ∈ Loc. The merge operation ⊔ between two views V and V ′

returns the pointwise maximum of V and V ′, i.e., (V ⊔V ′)(y) is the maximum of
V (y) and V ′(y). Let I denote the set of all intervals over Time. The timestamp
intervals in I have the form (f, t] where either f = t = 0 or f < t, with f, t ∈ Time.
Given an interval I = (f, t] ∈ I, I.frm and I.to denote f, t respectively.

Memory. In PS 2.0, the memory is modelled as a set of concrete messages

(which we just call messages), and reservations. Each message represents the
effect of a write or a RMW operation and each reservation is a timestamp interval
reserved for future use. In more detail, a message m is a tuple (x, v, (f, t], V)
where x ∈ Loc, v ∈ Val, (f, t] ∈ I and V ∈ T. A reservation r is a tuple (x, (f, t]).
Note that a reservation, unlike a message, does not commit to any particular value.
We use m.loc (r.loc), m.val, m.to (r.to), m.frm (r.frm) and m.View to denote
respectively x, v, t, f and V . Two elements (either messages or reservations) are
said to be disjoint (m1#m2) if they concern different variables (m1.loc �= m2.loc)
or their intervals do not overlap (m1.to ≤ m2.frm∨m1.frm ≥ m2.to). Two sets of
elementsM,M ′ are disjoint, denotedM#M ′, ifm#m′ for everym ∈ M,m′ ∈ M ′.
Two elements m1,m2 are adjacent denoted Adj(m1,m2) if m1.loc = m2.loc
and m1.to = m2.frm. A memory M is a set of pairwise disjoint messages and
reservations. Let M̃ be the subset of M containing only messages (no reservations).
For a location x, let M(x) be {m ∈ M | m.loc = x}. Given a view V and a

memory M , we say V ∈ M if V (x) = m.to for some message m ∈ M̃ for every
x ∈ Loc. Let M denote the set of all memories.

Insertion into Memory. Following [22], a memory M can be extended with a
message (due to the execution of a write/RMW instruction) or a reservation m
with m.loc = x, m.frm = f and m.to = t in a number of ways:

Additive insertion M
A
←֓ m is defined only if (1) M#{m}; (2) if m is a message,

then no message m′ ∈ M has m′.loc = x and m′.frm = t; and (3) if m is a

reservation, then there exists a message m′ ∈ M̃ with m′.loc = x and m′.to = f .

The extended memory M
A
←֓ m is then M ∪ {m}.

Splitting insertion M
S
←֓ m is defined if m is a message, and, if there exists

a message m′ = (x, v′, (f, t′], V) with t < t′ in M . Then M is updated to

M
S
←֓ m = (M\{m′} ∪ {m, (x, v′, (t, t′], V)}).

6 P. A. Abdulla et al.

Lowering Insertion M
L
←֓ m is only defined if there exists m′ in M that is identical

to m = (x, v, (f, t], V) except for m.View ≤ m′.View. Then, M is updated to

M
L
←֓ m = M\{m′} ∪ {m}.

Transition System of a Process. Given a process p ∈ P, a state σ of p is
defined by a pair (λ,R) where λ ∈ L is the label of the next instruction to be
executed by p and R : Reg → Val maps each register of p to its current value.
(Observe that we use the set of all labels L (resp. registers Reg) instead of Lp

(resp. Reg (p)) in the definition of σ just for the sake of simplicity.) Transitions

between the states of p are of the form (λ,R)
t
=⇒
p

(λ′, R′) with t is on one of

the following forms: ǫ, rd(o, x, v), wt(o, x, v), U(or, ow, x, vr, vw), and SC-fence. A

transition of the form (λ,R)
rd(o,x,v)
=====⇒

p
(λ′, R′) denotes the execution of a read

instruction of the form $r = xo labeled by λ where (1) λ′ is the label of the
next instructions that can be executed after the instruction labelled by λ, and
(2) R′ is the mapping that results from updating the value of the register $r in

R to v. The transition relation (λ,R)
t
=⇒
p

(λ′, R′) is defined in similar manner

for the other cases of t where wt(o, x, v) stands for a write instruction that
writes the value v to x, U(or, ow, x, vr, vw) stands for a RMW that reads the
value vr from x and write vw to it, SC-fence stands for a SC-fence instruction,
and ǫ stands for the execution of the other local instructions. Observe that
o, or, ow are the access modes which can be rlx or ra. We use ra for both

release and acquire. Finally, we use (λ,R)
t
−→
p

(λ′, R′), with t �= ǫ, to denote that

(λ,R)
ǫ
=⇒
p
σ1

ǫ
=⇒
p
· · ·

ǫ
=⇒
p
σn

t
=⇒
p
σn+1

ǫ
=⇒
p
· · ·

ǫ
=⇒
p
(λ′, R′).

Machine States. A machine state MS is a tuple ((J,R),VS,PS,M,G), where
J : P �→ L maps each process p to the label of the next instruction to be executed,
R : Reg → Val maps each register to its current value, VS = P → T is the process
view map, which maps each process to a view, M is a memory and PS : P �→ M

maps each process to a set of messages (called promise set), and G ∈ T is the
global view (that will be used by SC fences). We use C to denote the set of
all machine states. Given a machine state MS = ((J,R),VS,PS,M,G) and a
process p, let MS↓p denote (σ,VS(p),PS(p),M,G), with σ = (J(p),R(p)), (i.e.,
the projection of the machine state to the process p). We call MS↓p the process
configuration. We use Cp to denote the set of all process configurations.

The initial machine state MS init = ((Jinit,Rinit),VSinit,PSinit,Minit, Ginit) is
one where: (1) Jinit(p) is the label of the initial instruction of p; (2) Rinit($r) = 0
for every $r ∈ Reg; (3) for each p, VS(p) = Vinit as the initial view (that maps each
location to the timestamp 0); (4) for each p, the set of promises PSinit(p) is empty;
(5) the initial memory Minit contains exactly one initial message (x, 0, (0, 0], Vinit)
per location x; and (6) the initial global view maps each location to 0.

Transition Relation. We first describe the transition (σ, V, P,M,G) −→
p

(σ′, V ′, P ′,M ′, G′) between process configurations in Cp from which we induce
the transition relation between machine states.

The Decidability of Verification under PS 2.0 7

Process Relation. The formal definition of −→
p

is given in Figure 2. Below, we

explain these inference rules. Note that the full set of rules can be found in [5].

Read A process p can read from M by observing a message m = (x, v, (f, t],K) if
V (x) ≤ t (i.e., p must not be aware of a later message for x). In case of a relaxed
read rd(rlx, x, v), the process view of x is updated to t, while for an acquire read
rd(ra, x, v), the process view is updated to V [x �→ t] ⊔K. The global memory
M , the set of promises P , and the global view G remain the same.

Write. A process can add a fresh message to the memory (MEMORY : NEW) or
fulfil an outstanding promise (MEMORY : FULFILL). The execution of a write
(wt(rlx, x, v)) results in a message m with location x along with a timestamp in-
terval (−, t]. Then, the process view for x is updated to t. In case of a release write
(wt(ra, x, v)) the updated process view is also attached to m, and ensures that
the process does not have an outstanding promise on x. (MEMORY : FULFILL)
allows to split a promise interval or lower its view before fulfilment.

Update. When a process performs a RMW, it first reads a message m =
(x, v, (f, t],K) and then writes an update message with frm timestamp equal to
t; that is, a message of the form m′ = (x, v′, (t, t′],K ′). This forbids any other

Memory Helpers

(MEMORY : NEW)

(P,M)
m
−→

(

P ′,M
A
←֓ m

)

MEMORY FULFIL

←֓∈
{

S
←֓ ,

L
←֓

}

, P ′ = P ←֓ m,M ′ = M ←֓ m

(P,M)
m
−→ (P ′\{m},M ′)

Process Helpers

m = (x,−, (−, t],K) ∈ M V (x) ≤ t

o = rlx ⇒ V ′ = V [x �→ t]
o = ra ⇒ V ′ = V [x �→ t] ⊔K

V
o,m
−−→
rd

V ′

m = (x,−, (−, t],K) ∈ M,V (x) < t

o = rlx ⇒ K = ⊥, o = ra ⇒ P (x) = ∅ ∧K = V ′

(P,M)
m
−→ (P ′,M ′) V ′ = V [x �→ t]

(V, P,M)
o,m
−−→
wt

(V ′, P ′,M ′)

Process Steps

Read Write

σ
rd(o,x,v)
−−−−−−→

p
σ′

m = (x, v, (−,−], −), V
o,m
−−→
rd

V ′

(σ, V, P,M,G) −→
p

(σ′, V ′, P,M,G)

σ
wt(o,x,v)
−−−−−−→

p
σ′

m = (x, v, (−,−],−), (V, P,M)
o,m
−−→
wt

(V ′, P ′,M ′)

(σ, V, P,M,G) −→
p

(σ′, V ′, P ′,M ′, G)

SC-fence Promise

σ
SC-fence
−−−−−→

p
σ′

(σ, V, P,M,G) −→
p

(σ′, V ⊔G,P,M,G ⊔ V)

m = (−,−, (−,−],K),

M ′ = M
A
←֓ m, K ∈ M ′

(σ, V, P,M,G) −→
p

(

σ, V, P
A
←֓ m,M ′, G

)

Update

σ
U(or,ow,x,vr,vw)
−−−−−−−−−−−→

p
σ′′,mr = (x, vr, (−, t], −), mw = (x, vw, (t,−],−),

V
or,mr−−−−→

rd
V ′′, (V ′′, P,M)

ow,mw−−−−−→
wt

(V ′, P ′,M ′)

(σ, V, P,M,G) −→
p

(σ′, V ′, P ′,M ′, G)

Fig. 2: A subset of PS 2.0 inference rules at the process level.

8 P. A. Abdulla et al.

write to be placed between m and m′. The access modes of the reads and writes
in the update follow what has been described for the read and write above.

Promise, Reservation and Cancellation. A process can non-deterministically
promise future writes which are not release writes. This is done by adding a
message m to the memory M s.t. m#M and to the set of promises P . Later, a
relaxed write instruction can fulfil an existing promise. Recall that the execution
of a release write requires that the set of promises to be empty and thus it can not
be used to fulfil a promise. In the reserve step, the process reserves a timestamp
interval to be used for a later RMW instruction reading from a certain message
without fixing the value it will write. A reservation is added both to the memory
and the promise set. The process can drop the reservation from both sets using
the cancel step in non-deterministic manner.

SC fences. The process view V is merged with the global view G, resulting in
V ⊔G as the updated process view and global view.

Machine Relation. We are ready now to define the induced transition relation
between machine states. For machine states MS = ((J,R), V S, PS,M,G) and
MS ′ = ((J ′, R′), V S′, PS′,M ′, G′), we write MS −→

p
MS ′ iff (1) MS↓p −→

p

MS↓p and (J(p′), V S(p′), PS(p′)) = (J ′(p′), V S′(p′), PS′(p′)) for all p′ �= p.

Consistency. According to Lee et al. [22], there is one final requirement on
machine states called consistency, which roughly states that, from every encoun-
tered machine state, all the messages promised by a process p can be certified

(i.e., made fulfillable) by executing p on its own from a certain future memory
(called capped memory), i.e., extension of the memory with additional reservation.
Before defining consistency, we need to introduce capped memory.

Cap View, Cap Message and Capped Memory. The last element of a memory
M with respect to a location x, denoted by mM,x, is an element from M(x)
with the highest timestamp among all elements of M(x) and is defined as

mM,x = maxm∈M(x) m.to. The cap view of a memory M , denoted by V̂M , is the
view which assigns to each location x, the to timestamp in the message m

M̃,x
.

That is, V̂M = λx.m
M̃,x

.to. Recall that M̃ denote the subset of M containing

only messages (no reservations). The cap message of a memory M with respect

to a location x, is given by m̂M,x = (x,m
M̃,x

.val, (mM,x.to,mM,x.to+ 1], V̂M).

Then, the capped memory of a memory M , wrt. a set of promises P , denoted
by M̂P , is an extension of M , defined as: (1) for every m1,m2 ∈ M with
m1.loc = m2.loc, m1.to < m2.frm, and there is no message m′ ∈ M(m1.loc) such
that m1.to < m′.to < m2.to, we include a reservation (m1.loc, (m1.to,m2.frm])

in M̂P , and (2) we include a cap message m̂M,x in M̂P for every variable x unless
mM,x is a reservation in P .

Consistency. A machine state MS = ((J,R), V S, PS,M,G) is consistent if every

process p can certify/fulfil all its promises from the capped memory M̂PS(p), i.e.,

((J,R), V S, PS, M̂PS(p), G) [−→
p
]∗ ((J ′, R′), V S′, PS′,M ′, G′) with PS′(p) = ∅.

The Decidability of Verification under PS 2.0 9

The Reachability Problem in PS 2.0. A run of Prog is a sequence of the
form: MS0 [−−→

pi1

]∗MS1 [−−→
pi2

]∗MS2 [−−→
pi3

]∗ . . .[−−→
pin

]∗MSn where MS0 = MS init

is the initial machine state and MS1, . . . ,MSn are consistent machine states.
Then, MS0, . . . ,MSn are said to be reachable from MS init.

Given an instruction label function J : P → L that maps each process p ∈ P
to an instruction label in Lp, the reachability problem asks whether there exists
a machine state of the form ((J,R), V, P,M,G) that is reachable from MS init.
A positive answer to this problem means that J is reachable in Prog in PS 2.0.

4 Undecidability of Consistent Reachability in PS 2.0

The reachability problem is undecidable for PS 2.0 even for finite-state programs.
The proof is by a reduction from Post’s Correspondence Problem (PCP) [28]. A
PCP instance consists of two sequences u1, . . . , un and v1, . . . , vn of non-empty
words over some alphabet Σ. Checking whether there exists a sequence of indices
j1, . . . , jk ∈ {1, . . . , n} s.t. uj1 . . . ujk = vj1 . . . vjk is undecidable. Our proof works
with the fragment of PS 2.0 having only relaxed (rlx) memory accesses and
crucially uses unboundedly many promises to ensure that a process cannot skip
any writes made by another process. We construct a concurrent program with
two processes p1 and p2 over a finite data domain. The code of p1 is split into two
modes: a generation mode and a validation mode by a if and its else branch.
The if branch is entered when the value of a boolean location validate is 0 (its
initial value). We show that reaching the instructions annotated by // and // in
p1, p2 is possible iff the PCP instance has a solution. We give below an overview
of the execution steps leading to the annotated instructions.

– Process p1 promises to write letters of ui (one by one) to a location x, and
the respective indices i to a location index . The number of made promises
is arbitrary, since it depends on the length of the PCP solution. Observe
that the sequence of promises made to the variable index corresponds to the
guessed solution of the PCP problem.

– Before switching out of context, p1 certifies its promise using the if branch
which consists of a loop that non-deterministically chooses an index i and
writes i to index and ui to x. The promises of p1 are as yet not fulfilled; this
happens in the else branch of p1, when it writes the promised values.

– p2 reads from the sequences of promises written to x and index and copies
them (one by one) to variables y and index ′ respectively. Then, p2 sets
validate to 1 and reaches //.

– The else branch in p1 is enabled at this point, where p1 reads the sequence
of indices from index ′, and each time it reads an index i from index ′, it checks
that it can read the sequence of letters of vi from y.

– p1 copies the sequence of observed values from y and index ′ back to x and
index respectively. To fulfil the promises, it is crucial that the sequence of
read values from index ′ (resp. y) is the same as the sequence of promised
values to index (resp. x). Since y holds a sequence vi1 . . . vik , the promises

10 P. A. Abdulla et al.

are fulfilled if and only if this sequence is same as the promised sequence
ui1 . . . uik . This happens only when i1, . . . , ik is a PCP solution.

– At the end of promise fulfilment, p1 reaches //.

Our undecidability result is also tight in the sense that the reachability problem
becomes decidable when we restrict ourselves to machine states where the number
of promises is bounded. Further, our proof is robust: it goes through for PS 1.0
[16]. Let us call the fragment of PS 2.0 with only rlx memory accesses PS 2.0-rlx.

Theorem 1. The reachability problem for concurrent programs over a finite data

domain is undecidable under PS 2.0-rlx.

5 Decidable Fragments of PS 2.0

Since keeping ra memory accesses renders the reachability problem undecidable
[1] and so does having unboundedly many promises when having rlx memory
accesses (Theorem 1), we address in this section the decidability problem for
PS 2.0-rlx with a bounded number of promises in any reachable configuration.
Bounding the number of promises in any reachable machine state does not
imply that the total number of promises made during that run is bounded. Let
bdPS 2.0-rlx represent the restriction of PS 2.0-rlx to boundedly many promises
where the number of promises in each reachable machine state is smaller or equal
to a given constant. Notice that the fragment bdPS 2.0-rlx subsumes the relaxed
fragment of the RC11 model [20,16].We assume here a finite data domain.

To establish the decidability of the reachability of bdPS 2.0-rlx, we introduce
an alternate memory model for concurrent programs called LoHoW (for “lossy
higher order words”). We present the operational semantics of LoHoW, and show
that (1) PS 2.0-rlx is reachability equivalent to LoHoW, (2) under the bounded
promise assumption, reachability is decidable in LoHoW (hence, bdPS 2.0-rlx).

Introduction to LoHoW. Given a concurrent program Prog , a state of LoHoW
maintains a collection of higher order words, one per location of Prog , along
with the states of all processes. The higher order word HWx corresponding to
the location x is a word of simple words, representing the sub memory M(x)
in PS 2.0-rlx. Each simple word in HWx is an ordered sequence of “memory
types”, that is, messages or promises in M(x), maintained in the order of their
to timestamps in the memory. The word order between memory types in HWx

represents the order induced by time stamps between memory types in M(x).
The key information to encode in each memory type of HWx is: (1) is it a message
(msg) or a promise (prm) in M(x), (2) the process (p) which added it to M(x),
the value (val) it holds, (3) the set S (called pointer set) of processes that have
seen this memory type in M(x) and (4) whether the adjacent time interval to
the right of this memory type in M(x) has been reserved by some process.

Memory Types. To keep track of (1-4) above, a memory type is an element of
Σ∪Γ with, Σ = {msg, prm}×Val×P×2P (for 1-3) and Γ = {msg, prm}×Val×
P × 2P × P (for 4). We write a memory type as (r, v, p, S, ?). Here r represents

The Decidability of Verification under PS 2.0 11

either msg (message) or prm (promise) in M(x), v is the value, p is the process
that added the message/promise, S is a pointer set of processes whose local view
(on x) agrees with the to timestamp of the message/promise. If the type ∈ Γ , the
fifth component (?) is the process id that has reserved the time slot right-adjacent
to the message/promise. ? is a wildcard that may (or not) be matched.

Simple Words. A simple word ∈ Σ∗#(Σ ∪ Γ), and each HWx is a word
∈ (Σ∗#(Σ ∪ Γ))+. # is a special symbol not in Σ ∪ Γ , which separates the
last symbol from the rest of the simple word. Consecutive symbols of Σ in a
simple word in HWx represent adjacent messages/promises in M(x) and are
hence unavailable for a RMW. # does not correspond to any element from the
memory, and is used to demarcate the last symbol of the simple word.

Fig. 3: A higher order word HW (black) with four embedded simple words (pink).

Higher order words. A higher order word is a sequence of simple words. Figure
3 depicts a higher order word with four simple words. We use a left to right
order in both simple words and higher order words. Furthermore, we extend
in the straightforward manner the classical word indexation strategy to higher
order words. For example, the symbol at the third position of the higher order
word HW in Figure 3 is HW[3] = (msg, 2, p, {p, q}). A higher order word HW is
well-formed iff for every p ∈ P , there is a unique position i in HW having p in its
pointer set; that is, HW[i] is of the form (−,−,−, S, ?) ∈ Σ ∪ Γ s.t. p ∈ S. The
higher order word given in Figure 3 is well-formed. We will use ptr(p,HW) to
denote the unique position i in HW having p in its pointer set. We assume that
all the manipulated higher order words are well-formed.g

Fig. 4: Map from memories M(x),M(y) to higher order words HWx,HWy.

Each higher order word HWx represents the entire space [0,∞) of available
timestamps in M(x). Each simple word in HWx represents a timestamp interval
(f, t], while consecutive simple words represent disjoint timestamp intervals (while
preserving order). The memory types constituting each simple word take up
adjacent timestamp intervals, spanning the timestamp interval of the simple word.
The adjacency of timestamp intervals within simple words is used in RMW steps
and reservations. The last symbol in a simple word denotes a message/promise
which, (1) if in Σ, is available for a RMW, while (2) if in Γ , is unavailable for
RMW since it is followed by a reservation. Symbols at positions other than
the rightmost in a simple word, represent messages/promises which are not

12 P. A. Abdulla et al.

available for RMW. Figure 4 presents a mapping from a memory of PS 2.0-rlx to
a collection of higher order words (one per location) in LoHoW.

Initializing higher order words. For each location x ∈ Loc, the initial higher

order word HWinit
x is defined as , where P is the set of all processes

and p1 is some process in P. The set of all higher order words HWinit
x for all

locations x represents the initial memory of PS 2.0-rlx where all locations have
value 0, and all processes are aware of the initial message.

Simulating PS 2.0 Memory Operations in LoHoW. In the following, we
describe how to handle PS 2.0-rlx instructions in LoHoW. Since we only have
the rlx mode, we denote Reads, Writes and RMWs as wt(x, v), rd(x, v) and
U(x, vr, vw), dropping the modes.

Reads. To simulate a rd(x, v) by a process p in LoHoW, we need an index
j ≥ ptr(p,HWx) in HWx such that HWx[j] is a memory type with value v of the
form (−, v,−, S′, ?) (? denotes that the type is either from Σ or Γ). The read is
simulated by adding p to the set S′ and removing it from its previous set.

Fig. 5: Transformation of HWx on a read. (? denotes that type is from Σ or Γ)

Writes. A wt(x, v) by a process p (writing v to x) is simulated by adding a new
msg type in HWx with a timestamp higher than the view of p for x: (1) add the
simple word (msg, v, p, {p}) to the right of ptr(p,HWx) or (2) there is α ∈ Σ such
that the word w#α is in HWx to the right of ptr(p,HWx). Modify w#α to get
wα#(msg, v, p, {p})·. Remove p from its previous pointer set.

Fig. 6: Transformation of HWx on a write. (? denotes that type is from Σ or Γ).

RMWs. Capturing RMWs is similar to the execution of a read followed by
a write. In PS 2.0-rlx, a process p performing an RMW, reads from a mes-
sage with a timestamp interval (, t] and adds a message to M(x) with times-
tamp interval (t,−]. Capturing RMWs needs higher order words. Consider a

U(x, vr, vw) step by process p. Then, there is a simple word in
HWx having (−, vr,−, S) as the last memory type whose position is to the right
of ptr(p,HWx). As usual, p is removed from its pointer set, #(−, vr,−, S) is
replaced with (−, vr,−, S\{p})# and (−, vw, p, {p}) is appended, resulting in

extending to .

Promises, Reservations and Cancellations. Handling promises made by a process p
in PS 2.0-rlx is similar to handling wt(x, v): we add the simple word
in HWx to the right of the position ptr(p,HWx), or append (prm, v, p, {}) at the

The Decidability of Verification under PS 2.0 13

end of a simple word with a position larger than ptr(p,HWx). The memory type
has tag prm (a promise), and the pointer set is empty (since making a promise
does not lift the view of the promising process). Splitting the time interval of a
promise is simulated in LoHoW by inserting a new memory type right before the
corresponding promise memory type (prm,−, p, S), while fulfilment of a promise
by a process p results in replacing (prm, v, p, S) with (msg, v, p, S ∪ {p}).

In PS 2.0-rlx, a process p makes a reservation by adding the pair (x, (f, t])
to the memory, given that there is a message/promise in the memory with
timestamp interval (−, f]. In LoHoW this is captured by “tagging” the rightmost
memory type (message/promise) in a simple word with the name of the process
that makes the reservation. This requires us to consider the memory types from
Γ = {msg, prm}×Val×P × 2P ×P where the last component stores the process
which made the reservation. Such a memory type always appears at the end of a
simple word, and represents that the next timestamp interval adjacent to it has
been reserved. Observe that nothing can be added to the right of a memory type
of the form (msg, v, p, S, q). Thus, reservations are handled as follows.

(Res) Assume the rightmost symbol in a simple word as (msg, v, p, S). To capture
the reservation by q, (msg, v, p, S) is replaced with (msg, v, p, S, q).

(Can) A cancellation is done by removing the last component q from
(msg, v, p, S, q) resulting in (msg, v, p, S).

Certification In PS 2.0-rlx, certification for a process p happens from the capped
memory, where intermediate time slots (other than reserved ones) are blocked,
and any new message can be added only at the maximal timestamp. This is
handled in LoHoW by one of the following: (1) Addition of new memory types is
allowed only at the right end of any HWx, or (2) If the rightmost memory type
in HWx is of form (−, v,−,−, q) with q �= p (a reservation by q), then the word
#(msg, v, q, {}) is appended at end of HWx.

Memory is altered in PS 2.0-rlx during certification phase to check for promise
fulfilment, and at the end of the certification phase, we resume from the memory
which was there before. To capture this in LoHoW, we work on a duplicate
of (HWx)x∈Loc in the certification phase. Notice that the duplication allows
losing non-deterministically, empty memory types : these are memory types whose
pointer set is empty, as well as redundant simple words, which are simple words
consisting entirely of empty memory types. This copy of HWx is then modified
during certification, and is discarded once we finish the certification phase.

5.1 Formal Model of LoHoW

In the following, we formally define LoHoW and state the equivalence of the
reachability problem in PS 2.0-rlx and LoHoW. For a memory type m = (r, v, p, S)
(orm = (r, v, p, S, q)), we usem.value to denote v. For a memory type (r, v, p, S, ?)
and a process p′ ∈ P, we define the following: add(m, p′) ≡ (r, v, p, S ∪ {p′}, ?)
and del(m, p′) ≡ (r, v, p, S \ {p′}, ?). This corresponds to the addition/deletion of
the process p′ to/from the set of pointers of m. Extending the above notation,

14 P. A. Abdulla et al.

given a higher order word HW, a position i ∈ {1, . . . , |HW|}, and p ∈ P , we
define the following: add(HW, p, i) ≡ HW[1, i−1] · add(HW[i], p) ·HW[i+1, |HW|],
add(HW, p, i) ≡ HW[1, i−1] ·add(HW[i], p) ·HW[i+1, |HW|], and mov(HW, p, i) ≡
add(del(HW, p), p, i). This corresponds to the addition/deletion/relocation of the
pointer p to/from the word HW[i].

Insertion into higher order words. A higher order word HW can be extended
in position 1 ≤ j ≤ |HW| with a memory type m = (r, v, p, {p}) as follows:

• Insertion as a new simple word is defined only if HW[j − 1] = # (i.e., the
position j is the end of a simple word). Let HW′ = del(HW, p) (i.e., removing p
from its previous set of pointers). Then, the insertion of m results in

HW
N
←֓
j

m ≡ HW
′[1, j] ·#(r, v, p, {p})

︸ ︷︷ ︸

new simple word

·HW′[j + 1, |HW|]

• Insertion at the end of a simple word is defined only if HW[j − 1] = # and
HW[j] ∈ Σ (i.e., the last memory type in the simple word should be free from
reservations). Let HW′ = del(HW, p). For HW′ = w1 ·#m′ ·w2, and |w1 ·#m′| = j
the insertion of m results in

HW
E
←֓
j

m ≡ w1 ·m
′ ·#(r, v, p, {p})

︸ ︷︷ ︸

m extends m′

·w2

• Splitting a promise is defined only if m′ = HW[j] has form (prm,−, p,−, ?) (i.e.,
the memory type at position j is a promise). Let HW′ = del(HW, p). Then,

HW
SP
←֓
j

m ≡

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

HW
′[1, j − 2] · (r, v, p, {p}) · #m

′

︸ ︷︷ ︸
m splits m′

·HW′[j + 1, |HW|] if HW′[j − 1] = #

HW
′[1, j − 1] · (r, v, p, {p}) · m

′

︸ ︷︷ ︸
m splits m′

·HW′[j + 1, |HW|] if HW′[j − 1] �= #

Observe that in both cases we insert the new type m just before position j.

• Fulfilment of a promise is defined only if m′ = HW[j] is of the form (prm, v, p, S)
or (prm, v, p, S, q). Let HW′ = del(HW, p). Then, the extended higher order

HW
FP
←֓
j

m ≡ HW
′[1, j − 1] · (msg, v, p, S ∪ {p}, ?)

︸ ︷︷ ︸

m′ is fulfilled by p

·HW′[j + 1, |HW′|]

where ? is q if m′ = (prm, v, p, S, q) ∈ Γ and is omitted if m′ = (prm, v, p, S) ∈ Σ.

Making/Canceling a reservation. A higher order word HW can also be
modified by p by making/cancelling a reservation at a position 1 ≤ j ≤ |HW|. We
define the operation Make(HW, p, j) (Cancel(HW, p, j)) that reserves (cancels)
a time slot at j. Make(HW, p, j) (resp. Cancel(HW, p, j)) is only defined if
HW[j] is of the form (r, v, q, S) (resp. (r, v, q, S, p)) and HW[j − 1] = #. Then,
we have Make(HW, p, j) ≡ HW[1, j − 1] · (r, v, q, S, p) · HW[j + 1, |HW|] and
Cancel(HW, p, j) ≡ HW[1, j − 1] · (r, v, q, S) · HW[j + 1, |HW|].

The Decidability of Verification under PS 2.0 15

Process configuration in LoHoW. A configuration of p ∈ P in LoHoW consists
of a pair (σ,HW) where (1) σ is the process state maintaining the instruction
label and the register values (see Subsection 3), and HW is a mapping from the

set of locations to higher order words. The transition relations
std

−−→
p

and
cert

−−−→
p

between process configurations are given in Figure 7; the transition relation
cert

−−−→
p

is used only in the certification phase while
std

−−→
p

is used to simulate the standard

phase of PS 2.0-rlx. A read operation in both phases (standard and certification)
is handled by reading a value from a memory type which is on the right of the
current pointer of p. A write operation, in the standard phase, can result in the
insertion, on the right of the current pointer of p, of a new memory type at the
end of a simple word or as a new simple word. The memory type resulting from
a write in the certification phase is only allowed to be inserted at the end of the
higher order word or at the reserved slots (using the rule splitting a reservation).
Write can also be used to fulfil a promise or to split a promise (i.e., partial
fulfilment) during the both phases. Making/canceling a reservation will result
in tagging/untagging a memory type at the end of a simple word on the right
of the current pointer of p. The case of RMW is similar to a read followed by a
write operations (whose resulting memory type should be inserted to the right of
the read memory type). Finally, a promise can only be made during the standard
phase and the resulting memory type will be inserted at the end of a simple word
or as a new word on the right of the current pointer of p.

Fig. 7: A subset of LoHoW inference rules at the process level.

Losses in LoHoW. Let HW and HW′ be two higher order words in (Σ∗#(Σ ∪
Γ))+. Let us assume that HW = u1#a1u2#a2 . . . uk#ak and HW′ =
v1#b1v2#b2 . . . vm#bm, with ui, vi ∈ Σ∗ and ai, bj ∈ Σ ∪ Γ . We extend the

16 P. A. Abdulla et al.

subword relation ⊑ to higher order word as follows: HW ⊑ HW′ iff there is a
strictly increasing function f : {1, . . . , k} → {1, . . . ,m} s.t. (1) ui ⊑ vf(i) for all
1 ≤ i ≤ k, (2) ai = bf(i), and (3) we have the same number of memory types
of the form (prm,−,−,−) or (prm,−,−,−,−) in HW and HW′. The relation ⊑
corresponds to the loss of some special empty memory types and redundant
simple words (as explained earlier). The relation ⊑ is extended to mapping from
locations to higher order words as follows: HW ⊑ HW′ iff HW(x) ⊑ HW′(x)
for all x ∈ Loc.

LoHoW states. A LoHoW state st is a tuple ((J,R),HW) where J : P �→ L

maps each process p to the label of the next instruction to be executed, R :
Reg → Val maps each register to its current value, and HW is a mapping from
locations to higher order words. The initial LoHoW state stinit is defined as
((Jinit,Rinit),HWinit) where: (1) Jinit(p) is the label of the initial instruction of p;
(2) Rinit($r) = 0 for every $r ∈ Reg; and (3) HWinit(x) = HWinit

x for all x ∈ Loc.
For two LoHoW states st = ((J,R),HW) and st

′ = ((J′,R′),HW′) and

a ∈ {std, cert}, we write st
a
−→
p

st
′ iff one of the following cases holds: (1)

((J(p),R),HW)
a
−→
p

((J′(p),R′),HW′) and J(p′) = J′(p′) for all p′ �= p, or (2)

(J,R) = (J′,R′) and HW ⊑ HW′.

Two phases LoHoW states. A two-phases state of LoHoW is S =
(π, p, ststd, stcert) where π ∈ {cert, std} is a flag describing whether the LoHoW

is in “standard” phase or “certification” phase, p is the process which evolves
in one of these phases, while ststd, stcert are two LoHoW states (one for each
phase). When the LoHoW is in the standard phase, then ststd evolves, and when
the LoHoW is in certification phase, stcert evolves. A two-phases LoHoW state
is said to be initial if it is of the form (std, p, stinit, stinit), where p ∈ P is any
process. The transition relation → between two-phases LoHoW states is defined
as follows: Given S = (π, p, ststd, stcert) and S ′ = (π′, p′, st′

std
, st′

cert
), we have

S → S ′ iff one of the following cases holds:

– During the standard phase. π = π′ = std, p = p′, stcert = st
′
cert

and

ststd
std

−−→
p

st
′
std

. This corresponds to simulating a standard step of process p.

– During the certification phase. π = π′ = cert, p = p′, ststd = st
′
std

and

stcert
cert

−−−→
p

st
′
cert

. This simulates a certification step of process p.

– From the standard phase to the certification phase. π = std, π′ =
cert, p = p′, ststd = st

′
std

= ((J,R),HW), and st
′
cert

is of the form
((J,R),HW′) where for every x ∈ Loc, HW′(x) = HW(x)#(msg, v, q, {}) if
HW(x) is of the form w ·#(−, v,−,−, q) with q �= p, and HW′(x) = HW(x)
otherwise. This corresponds to the copying of the standard LoHoW state to
the certification LoHoW state in order to check if the set of promises made by
the process p can be fulfilled. This transition rule can be implemented by a
sequence of transitions which copies one symbol at a time, from HW to HW′.

The Decidability of Verification under PS 2.0 17

– From the certification phase to standard phase. π = cert, π′ = std,
ststd = st

′
std

, stcert = st
′
cert

, and stcert is of the form ((J,R),HW) withHW(x)
does not contain any memory type of form (prm,−, p,−, ?) for all x ∈ Loc (i.e.,
all promises made by p are fulfilled).

The Reachability Problem in LoHoW. Given an instruction label function
J : P → L that maps each p ∈ P to a label in Lp, the reachability problem
in LoHoW asks whether there exists a two phases LoHoW state S of the form
(std,−, ((J,R),HW), ((J ′, R′),HW′)) s.t. (1) HW(x) and HW′(x) do not con-
tain any memory type of the form (prm,−, p,−, ?) for all x ∈ Loc, and (2) S is
reachable in LoHoW (i.e., S0 [−→]∗ S ′ where S0 is an initial two-phases LoHoW

states). A positive answer to this problem means J is reachable in Prog in LoHoW.
The following theorem states the equivalence between LoHoW and PS 2.0-rlx in
terms of reachable instruction label functions.

Theorem 2. An instruction label function J is reachable in a program Prog in

LoHoW iff J is reachable in Prog in PS 2.0-rlx.

5.2 Decidability of LoHoW with Bounded Promises

The equivalence of the reachability in LoHoW and PS 2.0-rlx, coupled with Theo-
rem 1 shows that reachability is undecidable in LoHoW. To recover decidability,
we look at LoHoW with only bounded number of the promise memory type in
any higher order word. Let K-LoHoW denote LoHoW with a number of promises
bounded by K. (Observe that K-LoHoW corresponds to bdPS 2.0-rlx.)

Theorem 3. The reachability problem is decidable for K-LoHoW.

As a corollary of Theorem 3, the decidability of reachability follows for
bdPS 2.0-rlx. The proof makes use of the framework of Well-Structured Transi-

tion Systems (WSTS) [7,13]. Next, we state that the reachability problem for
K-LoHoW (even for K = 0) is highly non-trivial (i.e., non-primitive recursive).
The proof is done by reduction from the reachability problem for lossy channel
systems, in a similar to the case of TSO [8] where we insert SC-fence instructions
everywhere in the process that simulates the lossy channel process (in order to
ensure that no promises can be made by that process).

Theorem 4. The reachability problem for K-LoHoW is non-primitive recursive.

6 Source to Source Translation

In this section, we propose an algorithmic approach for state reachability in
concurrent programs under PS 2.0. We first recall the notion of view altering
reads [1], and that of bounded contexts in SC [29].

View Altering Reads . A read from the memory is view altering if it changes the
view of the process reading it. This means that the view in the message being

18 P. A. Abdulla et al.

read from was greater than the process view on some variable. The message
which is read from in turn is called a view altering message. A run in which the
total number of view altering reads (across all threads) is bounded (by some
parameter) is called a view-bounded run. The underapproximate analysis for
PS 2.0-ra without promises and reservations [1] considered view bounded runs.
Essential Events . An essential event in a run ρ of a program under PS 2.0 is
either a promise, a reservation or a view altering read by some process in the run.
Bounded Context . A context is an uninterrupted sequence of actions by a single
process. In a run having K contexts, the execution switches from one process
to another K − 1 times. A K bounded context run is one where the number of
context switches are bounded by K ∈ N. The K bounded context reachability
problem in SC checks for the existence of a K bounded context run reaching
some chosen instruction. Now we define the notion of bounding for PS 2.0.

The Bounded Consistent Reachability Problem. A run ρ of a concurrent
program under PS 2.0, MS0 [−−→

pi1

]∗ MS1 [−−→
pi2

]∗ MS2 [−−→
pi3

]∗ . . . [−−→
pin

]∗ MSn

is called K bounded iff the number of essential events in ρ is ≤ K. The K
bounded reachability problem for PS 2.0 checks for the existence of a run ρ
of Prog which is K-bounded. Assuming Prog has n processes, we propose an
algorithm that reduces the K bounded reachability problem to a K + n bounded
context reachability problem of a program �Prog� under SC.

Translation Overview. We now provide a brief overview of the data structures
and procedures utilized in our translation; the full details and correctness are in
[5]. Let Prog be a concurrent program under PS 2.0 with set of processes P and
locations Loc. Our algorithm relies on a source to source translation of Prog to a
bounded context SC program �Prog�, as shown in Figure 8 and operates on the
same data domain (need not be finite). The translation (i) adds a new process
(Main) that initializes the global variables of �Prog�, (2) for each process p ∈ P
adds local variables, which are initialized by the function InitProc.

Fig. 8: Source-to-source translation map

This is followed by the code block 〈CSO〉p,λ0 (Context Switch Out) that
optionally enables the process to switch out of context. For each λ labeled

The Decidability of Verification under PS 2.0 19

instruction i in p, the map �λ : i�p transforms it into a sequence of instructions
as follows : the code block 〈CSI〉 (Context Switch In) checks if the process is
active in the current context; then it transforms each statement s of instruction
i into a sequence of instructions following the map �s�p, and finally executes
the code block 〈CSO〉p,λ. 〈CSO〉p,λ facilitates two things: when the process is
at an instruction label λ, (1) allows p to make promises/reservations after λ,
s.t. the control is back at λ after certification; (2) it ensures that the machine
state is consistent when p switches out of context. Translation of assume, if
and while statements keep the same statement. Translation of read and write
statements are described later. Translation of RMW statements are omitted for
ease of presentation.

The set of promises a process makes has to be constrained with respect to the
set of promises that it can certify To address this, in the translation, processes
run in two modes : a ‘normal’ mode and a ‘check’ (consistency check) mode. In
the normal mode, a process does not make any promises or reservations. In the
check mode, the process may make promises and reservations and subsequently
certify them before switching out of context. In any context, a process first enters
the normal mode, and then, before exiting the context it enters the check mode.
The check mode is used by the process to (1) make new promises/reservations and
(2) certify consistency of the machine state. We also add an optional parameter,
called certification depth (certDepth), which constrains the number of steps a
process may take in the check mode to certify its promises. Figure 9 shows the
structure of a translated run under SC.

Fig. 9: Control flow: In each context, a process runs first in normal mode n and
then in consistency check mode cc. The transitions between these modes is

facilitated by the CSO code block of the respective process. We check assertion
failures for K + n context-bounded executions (j ≤ K + n).

To reduce the PS 2.0 run into a bounded context SC run, we use the bound
on the number of essential events. From the run ρ in PS 2.0, we construct a K
bounded run ρ′ in PS 2.0 where the processes run in the order of generation of
essential events. So, the process which generates the first essential event is run
first, till that event happens, then the second process which generates the second
essential event is run, and so on. This continues till K + n contexts : the K
bounds the number of essential events, and the n is to ensure all processes are run
to completion. The bound on the number of essential events gives a bound on the
number of timestamps that need to be maintained. As observed in [1], each view
altering read requires two timestamps; additionally, each promise/reservation
requires one timestamp. Since we have K such essential events, 2K time stamps
suffice. We choose Time = {0, 1, 2, . . . , 2K} as the set of timestamps. Now we
briefly give a high level overview of the translation.

20 P. A. Abdulla et al.

Data Structures. The message data structure represents a message generated
as a write or a promise and has 4 fields (i) var , the address of the memory
location written to; (ii) the timestamp t in the view associated with the message;
(iii) v, the value written; and (iv) flag , that keeps track of whether it is a message
or a promise; and, in case of a promise, which process it belongs to. The View

data structure stores, for each memory location x, (i) a timestamp t ∈ Time, (ii)
a value v written to x, (iii) a Boolean l ∈ {true, false} representing whether
t is an exact timestamp (which can be used for essential events) or an abstract

timestamp (which corresponds to non-essential events).

Global Variables. The Memory is an array of size K holding elements of type
message . This array is populated with the view altering messages, promises and
reservations generated by the program. We maintain counters for (1) the number
of elements in Memory ; (2) the number of context switches that have occurred;
and (3) the number of essential events that have occurred.

Local Variables. In addition to its local registers, each process has local variables
including (1) a local variable view which stores a local instance of the view
function (this is of type View), (2) a flag denoting whether the process is running
in the current context, and (3) a flag checkMode denoting whether the process
is in the certification phase. We implement the certification phase as a function
call, and hence store the process state and return address, while entering it.

6.1 Translation Maps

In what follows we illustrate how the translation simulates a run under PS 2.0.
At the outset, recall that each process alternates, in its execution, between two
modes: a normal mode (n in Figure 9) at the beginning of each context and the
check mode at the end of the current context (cc in Figure 9), where it may
make new promises and certify them before switching out of context.

Context Switch Out (CSOp,λ). We describe the CSO module; Algorithm 1
of Figure 10 provides its pseudocode. CSOp,λ is placed after each instruction λ
in the original program and serves as an entry and exit point for the consistency
check phase of the process. When in normal mode (n) after some instruction λ,
CSO non-deterministically guesses whether the process should exit the context
at this point, and sets the checkMode flag to true and subsequently, saves its
local state and the return address (to mark where to resume execution from, in
the next context). The process then continues its execution in the consistency
check mode (cc) from the current instruction label (λ) itself. Now the process
may generate new promises (see Algorithm 1 of Figure 10) and certify these as
well as earlier made promises. In order to conclude the check mode phase, the
process will enter the CSO block at some different instruction label λ′. Now
since the checkMode flag is true, the process enters the else branch, verifies that
there are no outstanding promises of p to be certified. Since the promises are
not yet fulfilled, when p switches out of context, it has to mark all its promises
uncertified. When the context is back to p again, this will be used to fulfil the
promises or to certify them again before the context switches out of p again.

The Decidability of Verification under PS 2.0 21

Then it exits the check mode phase, setting checkMode to false. Finally it loads
the saved state, and returns to the instruction label λ (where it entered check
mode) and exits the context. Another process may now resume execution.

Fig. 10: Algorithms for CSO and Write

Write Statements. The translation of a write instruction �x := $r�o, where
o ∈ {rlx, ra} of a process p is given in Algorithm 2 of Figure 10. This is the
general pseudo code for both kinds of memory accesses, with specific details
pertaining to the particular access mode omitted. Let us first consider execution
in the normal mode (i.e., checkMode is false). First, the process updates its local
state with the value that it will write. Then, the process non-deterministically
chooses one of three possibilities for the write, it either (i) does not assign a fresh
timestamp (non-essential event), (ii) assigns a fresh timestamp and adds it to
memory, or (iii) fulfils some outstanding promise.

Let us now consider a write executing when checkMode is true, and highlight
differences with the normal mode. In case (i), non essential events exclude
promises and reservations. Then, while in certification phase, since we use a
capped memory, the process can make a write if either (1) the write interval can
be generated through splitting insertion or (2) the write can be certified with
the help of a reservation. Basically the writes we make either split an existing
interval (and add this to the left of a promise), or forms a part of a reservation.
Thus, the time stamp of a neighbour is used. In case (ii) when a fresh time stamp
is used, the write is made as a promise, and then certified before switching out of
context. The analogue of case (iii) is the certification of promises for the current
context; promise fulfilment happens only in the normal mode. To help a process
decide the value of a promise, we use the fact that CBMC allows us to assign a

22 P. A. Abdulla et al.

non-deterministic value of a variable. On top of that, we have implemented an
optimization that checks the set of possible values to be written in the future.

Read Statements. The translation of a read instruction �$r := x�o, o ∈
{rlx, ra} of process p is given in Algorithm 3 of Figure 11.

Fig. 11: Algorithm for Read

The process first guesses, whether it
will read from a view altering message in
the memory of from its local view. If it
is the latter, the process must first verify
whether it can read from the local view ;
for instance, reading from the local view
may not be possible after execution of a
fence instruction when the timestamp
of a variable x gets incremented from
the local view t to t′ > t. In the case of
a view altering read, we first check that
we have not reached the context switch-
ing/essential event bound. Then the new
message is fetched from Memory and we
check the view (timestamps) in the ac-
quired message satisfy the conditions
imposed by the access type ∈ {ra, rlx}. Finally, the process updates its view
with that of the new message and increments the counters for the context switches
and the essential events. Theorem 5 proves the correctness of our translation.

Theorem 5. Given a program Prog under PS 2.0, and K ∈ N, the source to

source translation constructs a program �prog� whose size is polynomial in Prog

and K such that, there is a K-bounded run of Prog under PS 2.0 reaching a set

of instruction labels, if and only if there is a K+n-bounded context run of �prog�
under SC that reaches the same set of instruction labels.

7 Implementation and Experimental Results

In order to check the efficiency of the source-to-source translation, we implement
a prototype tool, PS2SC which is the first tool to handle PS 2.0. PS2SC takes as
input a C program and a bound K and translates it to a program Prog ′ to be run
under SC. We use CBMC v5.10 as the backend verifier for Prog ′. CBMC takes
as input L, the loop unrolling parameter for bounded model checking of Prog ′. If
PS2SC returns unsafe, then the program has an unsafe execution. Conversely, if
it returns safe then none of the executions within the subset violate any assertion.
K may be iteratively incremented to increase the number of executions explored.
PS2SC has a functionality of partial-promises allowing subsets of processes to
promise, providing an effective under-approximation technique.

We now report the results of experiments we have performed with PS2SC. We
have two objectives: (1) studying the performance of PS2SC on thin-air litmus
tests and benchmarks utilizing promises, and (2) comparing PS2SC with other

The Decidability of Verification under PS 2.0 23

model checkers when operating in the promise-free mode. In the first case we
show that PS2SC is able to uncover bugs in litmus tests and examples with few
reads and writes to the shared memory. When this interaction and subsequent
non-determinism of PS 2.0 increases, we also enable partial promises. For the
second case we compare PS2SC with three model checkers CDSChecker [25],
GenMC [18] and Rcmc [17] that support the promise-free subset of PS 2.0.
Our observations highlight the ability to detect hard to find bugs with small
K for unsafe benchmarks. We do not consider compilation time for any tool
while reporting the results. For PS2SC, the time reported is the time taken by
the CBMC backend for analysis. The timeout used is 1hr for all benchmarks.
All experiments are conducted on a machine with 3.00 GHz Intel Core i5-3330
CPU and 8GB RAM running an Ubuntu-16 64-bit operating system. We denote
timeout by ‘TO’, and memory limit exceeded by ‘MLE’.

Table 1: Litmus Tests

Benchmarks Utilizing Promises. In the following,
we report the performance of PS2SC on litmus tests
and parametrized tests.

Litmus Tests. We test PS2SC on litmus-tests adapted
from [16,22,11,23]. These examples are small programs
that serve as barebones thin-air tests for the C11 mem-
ory model. Consistency tests based on the Java Memory
Model are proposed in [23], which were experimented
on by [27] with their MRDer tool. Like MRDer, PS2SC
is able to verify most of these tests within 1 minute
which shows its ability to handle typical programming
idioms of PS 2.0 (see Table 1).

Table 2: Above: testcases with
local reads, Below: global

reads

Parameterized Tests. In Table 2, we consider
unsafe examples adapted from the Fibonacci-
based benchmarks of SV-COMP 2019 [10]. In
these examples a process is required to generate
a promise (speculative write) with value as the
ith fibonacci number. This promise is certified
using process-local reads. Thus though the pa-
rameter i increases the interaction of the promis-
ing process with the memory remains constant.
The CAS variant requires the process to make
use of reservations. We note that PS2SC uncov-
ers the bugs effectively in these cases. In cases
where promise-certificate requires reads from ex-
ternal processes, the amount of shared-memory
interaction increases with i. In this case, we use partial promises.

How to recover tractable analysis? We note that though the above example
consists of several processes interacting with the memory, the bug can be un-
covered even if only a single process is allowed to make promising writes. We
run PS2SC in the partial-promises mode. We considered the case where only a

24 P. A. Abdulla et al.

single process generates promises, and PS2SC was able to uncover the bug. The
results obtained are in Table 2, where PS2SC[1p] denotes that only one process is
permitted to perform promises. We then repeat our experiments on other unsafe
benchmarks - including ExponentialBug from Fig. 2 of [15] - and have similar
observations. To summarize, we note that the huge non-determinism of PS 2.0

can be fought by using the modular approach of partial-promises.

Comparing with Other Tools. In this section, we compare performance of
PS2SC in promise-free mode with CDSChecker [25], GenMC [18] and Rcmc

[17] (which do not support promises). The main objective of this section is to
provide evidence for the practicability of the essential-event-bounding technique.
The results of this section indicate that the source-to-source translation with K-
essential-event bounding is effective at uncovering hard to find bugs in non-trivial
programs. Additionally, we observe that in most examples considered, we had
K ≤ 10. We provide here a subset of the experimental results and the remaining
in the full version of the paper [5]. In the tables that follow we provide the value
of K (for PS2SC) and the value of L (loop-unrolling bound) for all tools.

Table 3: Parameterized benchmarks

Parameterized Bench-

marks. In Table 3,
we experiment on
two parametrized
benchmarks:
ExponentialBug

(Fig. 2 of [15]) and Fibonacci (from SV-COMP 2019). In ExponentialBug(N)
N is the number writes made to a variable by a process. We note that in
ExponentialBug(N) the number of executions grows as N !, while the processes
have to follow a specific interleaving to uncover the hard to find bug. In
Fibonacci(N), two processes compute the value of the nth fibonacci number in
a distributed fashion.

Table 4: Concurrent data structures

Concurrent data struc-

tures based benchmarks.

In Table 4, we consider
benchmarks based on
concurrent data struc-
tures. The first of these
is a concurrent locking algorithm originating from [14]. The second,
LinuxLocks(N) is adapted from evaluations of CDSChecker [25]. We note
that if not completely fenced, it is unsafe. We fence all but one lock access. Both
these results show the ability of our tool to uncover bugs with a small value of K.

Variations of mutual exclusion protocols. We consider variants of mutual exclu-
sion protocols from SV-COMP 2019. The fully fenced versions of the protocols
are safe. We modify these protocols by introducing bugs and comparing the
performance of PS2SC for bug detection with the other tools. These benchmarks
are parameterized by the number of processes. In Table 5, we unfence a single

The Decidability of Verification under PS 2.0 25

process of the Peterson and Szymanski protocols making them unsafe. These
are benchmarks petersonU(i) and szymanskiU(i) where i is the number of
processes.

Table 5: Mutual exclusion benchmarks with a single
unfenced process

In petersonB(i), we
keep all processes fenced
but introduce a bug into
the critical section of a
process (write a value to a
shared variable and read
a different value from it).
We note that the other
tools do not scale, while
PS2SC is able to detect the bug within one minute, showing that essential
event-bounding is an effective under-approximation technique for bug-finding.

Remark. Through all these experiments, we observe that SMC tools and our tool
try to tackle the same problem by using orthogonal approaches to finding bugs.
Hence, through the experiments above we are not trying to pitch one approach
against the other, but rather trying to highlight the differences in their features.
We have exhibited examples where our tool is able to uncover hard-to-find bugs
faster than the others with relatively small values of K.

8 Related Work and Conclusion

Most of the existing verification work for C/C++ concurrency models concern
the development of stateless model checking coupled with dynamic partial order
reduction (e.g., [6,17,18,26,25]) and do not handle the promising semantics.
Context-bounding has been proposed in [29] for programs running under SC. This
work has been extended in different directions and has led to efficient and scalable
techniques for the analysis of concurrent programs (see e.g., [24,21,33,32,12,34]).
In the context of weak memory models, context-bounded analyses have been
proposed for TSO/PSO [9,31] and POWER [3].

The decidability of the verification problems for programs running under
weak memory models has been addressed for TSO [8], RA [1], SRA [19], and
POWER [2]. We believe that our proof techniques can be easily adapted to work
with different variants of the promising semantics [16] (see [4]). For instance, in
the code-to-code translation, the mechanism for making and certifying promises
and reservations is isolated in one module, which can be easily changed to cover
different variants of the promising semantics. Furthermore, the undecidability
proof still goes through for [16]. Moreover, providing a tool for the verification
of (among other things) litmus tests, will provide a valuable environment which
can be used in further improvements of the promising semantics. To the best of
our knowledge, this the first time that this problem is investigated for PS 2.0-rlx

and PS2SC is the first tool for automated verification of programs under PS 2.0.
Finally, studying the decidability problem for related models that solve the
thin-air problem (e.g., Paviotti et al. [27]) is interesting and kept as future work.

26 P. A. Abdulla et al.

References

1. Abdulla, P.A., Arora, J., Atig, M.F., Krishna, S.N.: Verification of programs under
the release-acquire semantics. In: McKinley, K.S., Fisher, K. (eds.) Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019. pp. 1117–1132.
ACM (2019)

2. Abdulla, P.A., Atig, M.F., Bouajjani, A., Derevenetc, E., Leonardsson, C., Meyer,
R.: Safety verification under power. In: NETYS 2020. Lecture Notes in Computer
Science, Springer (2020), to appear

3. Abdulla, P.A., Atig, M.F., Bouajjani, A., Ngo, T.P.: Context-bounded analysis
for POWER. In: Legay, A., Margaria, T. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems - 23rd International Conference, TACAS
2017, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 10206, pp. 56–74. Springer (2017)

4. Abdulla, P.A., Atig, M.F., Godbole, A., Krishna, S.N., Vafeiadis, V.: Verifica-
tion of c11 programs with relaxed accesses (2019), https://www.cse.iitb.ac.in/

~krishnas/ps1.pdf

5. Abdulla, P.A., Atig, M.F., Godbole, A., Krishna, S.N., Vafeiadis, V.: The decidability
of verification under promising 2.0. CoRR abs/2007.09944 (2020), https://arxiv.
org/abs/2007.09944

6. Abdulla, P.A., Atig, M.F., Jonsson, B., Ngo, T.P.: Optimal stateless model checking
under the release-acquire semantics. Proc. ACM Program. Lang. 2(OOPSLA),
135:1–135:29 (2018)

7. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Inf. Com-
put. 127(2), 91–101 (1996)

8. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification
problem for weak memory models. In: Hermenegildo, M.V., Palsberg, J. (eds.)
Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2010, Madrid, Spain, January 17-23, 2010. pp.
7–18. ACM (2010)

9. Atig, M.F., Bouajjani, A., Parlato, G.: Getting rid of store-buffers in TSO analysis.
In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Verification - 23rd Inter-
national Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings.
Lecture Notes in Computer Science, vol. 6806, pp. 99–115. Springer (2011)

10. Beyer, D.: Automatic verification of C and java programs: SV-COMP 2019. In:
Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems - 25 Years of TACAS: TOOLympics, Held as
Part of ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, Part
III. Lecture Notes in Computer Science, vol. 11429, pp. 133–155. Springer (2019)

11. Chakraborty, S., Vafeiadis, V.: Grounding thin-air reads with event structures. Proc.
ACM Program. Lang. 3(POPL), 70:1–70:28 (2019)

12. Emmi, M., Qadeer, S., Rakamaric, Z.: Delay-bounded scheduling. In: Ball, T.,
Sagiv, M. (eds.) Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2011, Austin, TX, USA, January
26-28, 2011. pp. 411–422. ACM (2011)

13. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor.
Comput. Sci. 256(1-2), 63–92 (2001)

https://www.cse.iitb.ac.in/~krishnas/ps1.pdf
https://www.cse.iitb.ac.in/~krishnas/ps1.pdf
https://arxiv.org/abs/2007.09944
https://arxiv.org/abs/2007.09944

The Decidability of Verification under PS 2.0 27

14. Hehner, E.C.R., Shyamasundar, R.K.: An implementation of P and V. Inf. Process.
Lett. 12(4), 196–198 (1981)

15. Huang, J.: Stateless model checking concurrent programs with maximal causal-
ity reduction. In: Grove, D., Blackburn, S. (eds.) Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
Portland, OR, USA, June 15-17, 2015. pp. 165–174. ACM (2015)

16. Kang, J., Hur, C., Lahav, O., Vafeiadis, V., Dreyer, D.: A promising semantics for
relaxed-memory concurrency. In: Castagna, G., Gordon, A.D. (eds.) Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017. pp. 175–189. ACM (2017)

17. Kokologiannakis, M., Lahav, O., Sagonas, K., Vafeiadis, V.: Effective stateless
model checking for C/C++ concurrency. Proc. ACM Program. Lang. 2(POPL),
17:1–17:32 (2018)

18. Kokologiannakis, M., Raad, A., Vafeiadis, V.: Model checking for weakly consistent
libraries. In: McKinley, K.S., Fisher, K. (eds.) Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019. pp. 96–110. ACM (2019)

19. Lahav, O., Boker, U.: Decidable verification under a causally consistent shared mem-
ory. In: Donaldson, A.F., Torlak, E. (eds.) Proceedings of the 41st ACM SIGPLAN
International Conference on Programming Language Design and Implementation,
PLDI 2020, London, UK, June 15-20, 2020. pp. 211–226. ACM (2020)

20. Lahav, O., Vafeiadis, V., Kang, J., Hur, C., Dreyer, D.: Repairing sequential
consistency in C/C++11. In: Cohen, A., Vechev, M.T. (eds.) Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017, Barcelona, Spain, June 18-23, 2017. pp. 618–632. ACM (2017)

21. Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to
sequential analysis. Formal Methods Syst. Des. 35(1), 73–97 (2009)

22. Lee, S., Cho, M., Podkopaev, A., Chakraborty, S., Hur, C., Lahav, O., Vafeiadis, V.:
Promising 2.0: global optimizations in relaxed memory concurrency. In: Donaldson,
A.F., Torlak, E. (eds.) Proceedings of the 41st ACM SIGPLAN International
Conference on Programming Language Design and Implementation, PLDI 2020,
London, UK, June 15-20, 2020. pp. 362–376. ACM (2020)

23. Manson, J., Pugh, W., Adve, S.V.: The java memory model. In: Palsberg, J.,
Abadi, M. (eds.) Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2005, Long Beach, California, USA,
January 12-14, 2005. pp. 378–391. ACM (2005)

24. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: Ferrante, J., McKinley, K.S. (eds.) Proceedings of
the ACM SIGPLAN 2007 Conference on Programming Language Design and
Implementation, San Diego, California, USA, June 10-13, 2007. pp. 446–455. ACM
(2007)

25. Norris, B., Demsky, B.: Cdschecker: checking concurrent data structures written
with C/C++ atomics. In: Hosking, A.L., Eugster, P.T., Lopes, C.V. (eds.) Pro-
ceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA 2013, part of SPLASH
2013, Indianapolis, IN, USA, October 26-31, 2013. pp. 131–150. ACM (2013)

26. Norris, B., Demsky, B.: A practical approach for model checking C/C++11 code.
ACM Trans. Program. Lang. Syst. 38(3), 10:1–10:51 (2016)

27. Paviotti, M., Cooksey, S., Paradis, A., Wright, D., Owens, S., Batty, M.: Modular
relaxed dependencies in weak memory concurrency. In: Müller, P. (ed.) Programming

28 P. A. Abdulla et al.

Languages and Systems - 29th European Symposium on Programming, ESOP 2020,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings. Lecture Notes in
Computer Science, vol. 12075, pp. 599–625. Springer (2020)

28. Post, E.L.: A variant of a recursively unsolvable problem. Bull. Amer. Math. Soc.
52, 264–268 (1946)

29. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In:
Halbwachs, N., Zuck, L.D. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems, 11th International Conference, TACAS 2005, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2005,
Edinburgh, UK, April 4-8, 2005, Proceedings. Lecture Notes in Computer Science,
vol. 3440, pp. 93–107. Springer (2005)

30. Svendsen, K., Pichon-Pharabod, J., Doko, M., Lahav, O., Vafeiadis, V.: A separation
logic for a promising semantics. In: Ahmed, A. (ed.) Programming Languages and
Systems - 27th European Symposium on Programming, ESOP 2018, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2018,
Thessaloniki, Greece, April 14-20, 2018, Proceedings. Lecture Notes in Computer
Science, vol. 10801, pp. 357–384. Springer (2018)

31. Tomasco, E., Nguyen, T.L., Fischer, B., Torre, S.L., Parlato, G.: Using shared
memory abstractions to design eager sequentializations for weak memory models.
In: Cimatti, A., Sirjani, M. (eds.) Software Engineering and Formal Methods -
15th International Conference, SEFM 2017, Trento, Italy, September 4-8, 2017,
Proceedings. Lecture Notes in Computer Science, vol. 10469, pp. 185–202. Springer
(2017)

32. Torre, S.L., Madhusudan, P., Parlato, G.: Context-bounded analysis of concurrent
queue systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems, 14th International Conference, TACAS
2008, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings.
Lecture Notes in Computer Science, vol. 4963, pp. 299–314. Springer (2008)

33. Torre, S.L., Madhusudan, P., Parlato, G.: Reducing context-bounded concurrent
reachability to sequential reachability. In: Bouajjani, A., Maler, O. (eds.) Computer
Aided Verification, 21st International Conference, CAV 2009, Grenoble, France,
June 26 - July 2, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5643,
pp. 477–492. Springer (2009)

34. Torre, S.L., Madhusudan, P., Parlato, G.: Model-checking parameterized concurrent
programs using linear interfaces. In: Touili, T., Cook, B., Jackson, P.B. (eds.)
Computer Aided Verification, 22nd International Conference, CAV 2010, Edinburgh,
UK, July 15-19, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6174,
pp. 629–644. Springer (2010)

The Decidability of Verification under PS 2.0 29

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.

0/), which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	The Decidability of Verification under PS 2.0
	1 Introduction
	2 Preliminaries
	3 The Promising Semantics
	4 Undecidability of Consistent Reachability in PS 2.0
	5 Decidable Fragments of PS 2.0
	5.1 Formal Model of LoHoW
	5.2 Decidability of LoHoW with Bounded Promises

	6 Source to Source Translation
	6.1 Translation Maps

	7 Implementation and Experimental Results
	8 Related Work and Conclusion
	References

