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Abstract The decidua has been known as maternal uterine tis-
sue, which plays essential roles in protecting the embryo from
being attacked bymaternal immune cells and provides nutritional
support for the developing embryo prior to placenta formation.
However, there are questions that still remain to be answered: (1)
How does the decidua supply nutrition and provide a physical
scaffold for the growing embryo, before placental vascular con-
nection is established? (2) How is the balance between
preventing an anti-embryo immune response and protecting both
embryo and mother from infections established? To understand
basic personas in decidual tissues, we review the structure of the
decidua composed of terminally differentiated uterine stromal
cells, blood vessels, and a number of repertoire of uterine local
immune cells, including the well-known uterine natural killer
(uNK) cells and recently discovered innate lymphoid cells
(ILCs). Decidual macrophages and uterine dendritic cells (DCs)
are supposed to modulate adaptive immunity via balancing cy-
tokines and promoting generation of regulatory T (Treg) cells.
During decidualization, vascular and tissue remodeling in the

uterus provide nutritional and physical support for the developing
embryo. Secretion of various cytokines and chemokines from
both the embryo and the decidual cells activates multiple signal-
ing network between the mother and the embryo upon implan-
tation. Defects in the decidual development during early preg-
nancy result in loss of pregnancy or complications in later gesta-
tional stage.
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Introduction

The decidua is a transient but important platform in the
uterine tissue, which comprises terminally differentiated
endometrial stromal cells, newly generated maternal vas-
cular cells, and maternal blood cells inside and outside the
vessels. Development of the decidua after attachment of
the blastocyst on uterine wall is a drastic tissue remodel-
ing, involving physical and humoral changes in the resi-
dential and recruited immune cells. Indispensability of the
decidual tissue for establishing implantation of the em-
bryo and maintaining pregnancy until the stage of placen-
ta formation was first indicated by its physical importance
when mice were challenged by blastocyst transfer into the
peritoneal cavity and failed [1], and when tubal decidual
formation was observed in some cases of human ectopic
implantation in the ovary or peritoneal cavity [2], and
when embryonic loss was observed by ovariectomy-
mediated progesterone withdrawal due to Bcollapse^ of
the rat decidua [3]. Thus, decidualization of uterine tissue
is essential to establish successful pregnancy, but how is it
generated, and how does it affect embryonic growth?
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The decidual parenchymal cells, hereinafter called as de-
cidual cells, are derived from uterine stromal fibroblast-like
cells in the endometrium. They are large, round, and multi-
nuclear polyploid cells, rich in glycogen and lipids, and pro-
duce a variety of functional markers such as prolactin and its
related family proteins, and insulin-like growth factor binding
proteins (IGFBPs). The mouse embryo at blastocyst stage
attaches to the uterine lumen on gestational day (gd) 4.0
post-coitum, and the primary decidual zone (PDZ) is immedi-
ately established at the endometrial layer closest to the im-
planted embryo (Fig. 1). This is considered to be the first
protective scaffold for the embryonic growth with avascular
and tight cellular composition [9]. By gd 5.5, PDZ is complet-
ed, while the secondary decidual zone (SDZ), surrounding the
embryo and PDZ, is developing into terminal differentiation
of the decidual stromal cells, starting from antimesometrial
toward mesometrial region. In contrast, mesometrial region
seen from gd 6.5 consists of highly dilated large vasculature,
and both mesometrial and antimesometrial decidual regions
decrease from gd 8.5 along with placenta formation [10].
Concomitant angiogenesis in the decidualizing endometrium
and spiral artery remodeling during early pregnancy both in
human and rodents strongly suggests that nutrition supplied
by maternal blood vessels is essential for early embryonic
growth before placental connection.

Development of the decidua and its molecular

mechanisms

Regulators for decidualization outside and inside uterine

stroma

Cyclic fluctuation of endometrial cellular differentiation and
subsequent apoptotic death in human uterus are under hormonal
control. In the absence of entopic embryo in the uterus, human
decidua can be formed routinely and then shed off (like leaves
on a deciduous tree, which is the origin of the word Bdecidua^).
In rodents, artificial decidualization can be observed as
deciduoma reaction after a mild physical stimulation of
pseudo-pregnant uterus without embryos. Compared to the
pregnant uterus, various deciduoma models in mice show more
expanded sizes of the uterus and slight differences in expression
of decidual markers such as alkaline phosphatase 2 and Wnt4
[11]. Signaling between the embryo and uterine luminal epithe-
lia, mediated by adhesion molecules such as integrins and car-
bohydrate moieties on glycoproteins, leading to luminal epithe-
lial apoptosis and subsequent interaction between the epithelium
and the proximal stromal cells, is also considered to be engaged
in initial decidual differentiation [12].

By use of artificial deciduoma in rodents stated above,
impaired decidualization has been demonstrated in mice
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Fig. 1 Anatomical localization of maternal immune cells in murine
decidua. Due to the difficulty in obtaining specimens from normal
pregnant women at the earliest stage of pregnancy, tissue distribution of
maternal immune cells in murine uterus at gestational day (gd) 5.5 and 7.5
is shown. The primary decidual zone (PDZ) is avascular and CD45+ cells
are scarcely found [4]. Secondary decidual zone (SDZ) at gd 5.5 and
antimesometrial decidua at gd 7.5 are rich in small blood vessels, whereas
mesometrial region at gd 7.5 is surrounded by lateral dilated large vessels
(not shown). In the mesometrial decidua, uNK cells are most abundantly
found [5], also see Fig. 2], DCs are confined in the entire decidua [6]. In

addition to uILC1 in the decidua, other uILCs are detected in mesometrial
region and myometrium [7], but the interaction of uILCs with vasculature
or other immune cells have not been reported. Except for the report on
suppressed infiltration of cytotoxic effector T cells in the decidua [8], T
cell subsets inside the murine decidua have not been well known.
Macrophages can be found in the region between trophoblast and uterine
stromal cells in association with vascular endothelial cells [4]. Note that
the numbers of representative cell types are not consistent with the actual
populations
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deficient of progesterone receptors (PR) or PR-related path-
ways (Bmp2, Wnt4, Hoxa10, and Hoxa11) [13–16], indicat-
ing that the endocrine system plays the major role in
decidualization [17]. Other pathways involved in the accep-
tance of blastocysts by local and systemic regulation in the
maternal uterine epithelium and endometrium are reviewed
elsewhere [18]. A mouse model deficient in interleukin-11
(IL-11) cytokine signaling (IL-11Rα−/−) [19] shows impaired
decidualization, accompanied by reduced uterine stromal cel-
lular proliferation [20]. Once proliferation and differentiation
of decidual cells are initiated, they proceed to multi-
nuclearization, i.e., DNA replication without cell division
(endo-reduplication/polyploidy), which allows expression of
multiple genes and secretion of the translated proteins with
less energy consumption, and is considered to be an important
hallmark of decidual maturation in rodents and humans [21,
22]. In the mouse model deficient in Death effector domain-
containing protein (Dedd) [23], bidirectional pathways of Akt
signaling and cyclin D3/Cdk4/Cdk6 have been shown to con-
tribute to decidual cellular multi-nuclearization. In the absence
of Dedd, protein stability of Akt [23, 24] and Cyclin D3/Cdk4/
Cdk6 complexes are reduced, corresponding to lower ratio of
multi-nuclearization in decidual cells. As demonstrated in hu-
man decidual and endometrial cell cultures [25], Akt signaling
is associated with decidual differentiation. Das SK et al. has
suggested that cyclin D3, in association with Cdk4, Cdk6, and
p21, is an essential cell cycle regulator in the endo-
reduplication of multi-nuclearizing murine decidual cells
[26]. The expression of cyclin D3 and p21 are also indicated
to be downstream of IL-11 signaling [27]. Intriguingly, while
Dedd−/− female mice cannot produce any progeny, and while
IL-11Rα−/− female mice are severely infertile, any single
knockout of either Akt1, Akt2, Akt3, or cyclin D3 does not
cause complete infertility, suggesting the importance of Dedd
as a master regulator in the upstream of these multiple pro-
teins’ network. The connection between endocrine system and
cytokine signaling or Dedd pathway has not been clarified.

Uterine angiogenesis and tissue remodeling

1. Vascular endothelial remodeling modulated via steroid
hormones

In menstrual cycles and before implantation occurs,
ovarian steroid hormones, 17β-estradiol (E2) and proges-
terone (P4), modulate the uterine vascular development
and functions, resulting in drastic changes of volume,
elasticity, and nutrient transportation of the entire uterus.
E2 has more effects on vascular permeability via suppres-
sion of adhesion molecules such as E-selectin, vascular
cell adhesion molecule-1 (VCAM-1), and intercellular
adhesion molecule-1 (ICAM-1) in human umbilical vein
endothelial cells (HUVEC) [28]. On the other hand, P4
has more angiogenic effects on HUVEC via inducing

proliferative factors from endometrial cells, such as vas-
cular endothel ia l growth factor A (VEGFA),
angiopoietin-2 (ANGPT2), and fibroblast growth factor
2 (FGF2) [29]. P4 may also directly suppress ICAM-1
expression in HUVEC [30]; however, this effect seems
to be minimal in vivo. VEGF is also expressed in endo-
metrial stroma at the secretory phase and in pregnant de-
cidual cells, both in mice and in humans [31, 32]. Angpt2
and other angiogenic factors are also shown to be regulat-
ed under intrauterine E2 [33]. Rapid angiogenesis itself
may cause loosened structure of vascular network, lead-
ing to local hyper-permeability, e.g., in a tumor lesion
[34]. The action of endocrine factors on vascular endothe-
lial and smooth muscle cells may affect vascular stability
to modify exchange of substances such as free fatty acids
loaded on plasma albumin and blood cells between blood
and stromal tissue, and regulate expression of surface
molecules to recruit uterine-specific immune cells.

2. Morphological dynamism in the uterine tissue
The decidual cells, not only secrete growth factors but

also release tissue inhibitor of matrix metalloproteinases
(TIMPs) to suppress trophoblast-derived matrix metallo-
proteinases (MMPs) [35, 36] and express contact-
dependent signaling molecules such as connexin 43
(Cx43) [37]. Although not all of the matrix proteins have
been shown to be specifically expressed in either the hu-
man or murine decidual cells, α2-macroglobulin, one of
potentMMP inhibitors, has been shown as downstream of
IL-11-invoked JAK-STAT3 pathway in rodents [38],
which is also implicated in human endometrial stromal
cells (hESCs) [39]. A murine model using conditional
knockout of Cx43 via PR-Cre recombination showed
the importance of uterine stromal Cx43 on vascular endo-
thelial proliferation at gd 7.5 [37]. The uterus deficient in
Cx43 shows insufficient deciduoma response accompa-
nied by reduced uterine vascular angiogenesis. This effect
is possibly related to the gap-junction communication be-
tween decidual cells which secretes VEGF and
angiopoietins, but the communication between decidua
and vascular endothelial cells remains to be investigated.

Classical immunology in the decidua

To challenge the immune privileged feature of the
decidua against embryonic graft, the first experimental
transplantation of a skin allograft was tested on ro-
dent decidua [40]. The allograft survived longer, how-
ever, in the end, the graft was rejected in the pre-
immunized pregnant rodent. In contrast to another
failure in transplantation of paternal skin allograft
tested in the rat choriodecidual junction [41], embryos
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surrounded by putatively paternal antigen-positive tro-
phoblasts are able to be accepted. Early studies also
investigated the existence of immunosuppressive sub-
stances from murine decidual culture in vitro [42] and
of hormone-dependent suppressor cells regardless of
implanted embryos [43]. However, these studies could
not identify the cell subset or molecules derived from
the decidua.

In the modern era, with the development of technologies in
flow cytometry and imaging analysis, a number of studies
have described the presence, distribution, and the functions
of maternal immune cells in the decidual tissue in the early
phase of gestation (Fig. 1, Table 1). The decidua contains a
large number of maternal immune cells, which supposedly
establish the balance between defense against pathogens and
a tolerance of the embryo. The major populations include
innate immune cells, i.e., uNK cells and macrophages.
However, small populations of ILCs and adaptive immune
cells cannot be ignored. Moreover, it is important for the fu-
ture maternal and fetal health that the decidua holding the
embryo can provide protective responses against pathogens,
without an excessive inflammation or that would harm the
embryo/fetus. Looking at the basic functions and characteris-
tics of these immune cells, tracking the outcomes of deficien-
cy or abnormality in each component of these immune sub-
sets, we may be able to shed light on their roles and impor-
tance in normal and pathological conditions.

Uterine NK cells

Natural killer (NK) cells are derived from pluripotent hema-
topoietic stem cells in the bone marrow and develop as lym-
phoid but without receptor gene rearrangement like in the case
of T cells. NK cells mediate innate cellular immunity against
pathogens and cancer cells. Mature NK cells possess both
activating and inhibitory receptors for class I MHC such as
Ly49 subtypes in mice and killer inhibitory receptors (KIRs)
in human [48]. They also have MHC-independent natural cy-
totoxicity receptors (NCRs). In humans, peripheral and uter-
ine NK cells represent two phenotypically distinct populations
(Table 2). The majority of human peripheral NK cells express
low density of CD56 (CD56dim) and high levels of the
FCγRIII (CD16+) indicating ADCC-mediated cytotoxic func-
tions, while the rest of them express high density of the CD56
(CD56bright) and are CD16-negative corresponding to low cy-
totoxicity. uNK cells constitute 60 to 70 % of all decidual
lymphocytes in the first trimester of human pregnancy [49].
In contrast to peripheral NK subsets, most decidual NK cells
are CD16−CD56bright. Further to the phenotypic differences,
uterine and peripheral NK cells exert different functions.
Peripheral CD16+CD56dimNK cells are granular and cytotox-
ic, while the minor peripheral NK subset does not contain
cytoplasmic granules and is not endowed with a cytotoxic
potential but displays an immuno-regulatory role via cytokine
production [50]. Decidual NK cells contain cytotoxic granules

Table 1 Composition of uterine
immune cells at post-implantation
stage in mice

Virgin gd 5.5 gd 6.5 gd 7.5∼9.5

uNK DBA−

10a∼20 %b

DBA−

<5 %b

DBA−

8 %a

DBA−

8 %a

DBA+

0 %f

DBA+

N.D.

DBA+

<2 %a, f

DBA+

20 %a

Mϕ 8 %b 20 %b 30 % f N.D.

DC 2∼3 %b,d 5∼6 %d 15 %f 15 %e

T <1 % f N.D. <1 % f N.D.

uILCs Very few ILCsc

uILC1 is dominant
N.D. N.D. Very few ILCsc

uILC3 is dominant

Uterine cellular composition among CD45+ leukocytes assessed by flow cytometry are shown. During post-
implantation stage of murine pregnancy (gestational day (gd) 5.5∼9.5), the ratios of different subsets change in
comparison to virgin uterus. uNK: CD3−CD122+ [44] or CD49b+CD11b− [45] cells. Mϕ: CD11b+F4/80+

monocyte-derived cells. DC: CD11c+ cells [45]. T: CD3+CD4+ and CD3+CD8+ Tcells. ILCs: defined as in the
text [46]. There are no DBA+ cells in non-pregnant uterus and low number of DBA+ cells at gd 6.5 [44], in
contrast to increased DBA+ from gd 7.5 [44]

N.D. no data is available
aReference [48]
bReference [55]
cReference [85]
dReference [117]
eReference [47]
f Source: Mori M et al., unpublished data
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[51] and selectively overexpress genes of secreted proteins
with known immunosuppressive activity [49], as well as
perforin and granzymes A and B [52]. In mice, two distinct
uNK cell subsets are distinguished by periodic acid-Schiff
(PAS) and Dolichos biflorus agglutinin (DBA) reactivity.
PAS+DBA− cells produce IFN-γ, which is implicated in ma-
ternal spiral arterial remodeling [53], whereas the PAS+DBA+

population produces angiogenic factors [54–56]. Yadi et al.
[44] describe two distinct subsets of CD3−CD122+ NK cells
in the mid-gestational mouse uterus: a small subset similar to
peripheral NK cells, and a larger DBA+ subset that expresses
activating receptor NKp46 and inhibitory receptor Ly49s, but
not NK1.1 or DX5. It must be mentioned that via maternal
blood which perfuses the placenta, both subsets of peripheral
blood NK cells could get in contact with fetal tissues. Uterine
NK cells have a low spontaneous cytotoxicity, which is in line
with the concerted presence of non-classical MHC molecules
on the trophoblast and expression of inhibitory receptors on
the NK cells, resulting in decreased degranulation [57].
However, in the presence of pathogens, the proportions of
activating and inhibitory receptors may shift to promote cyto-
toxicity [58]. At present, there is no evidence that the cytotox-
ic potential of NK cells has any direct effect on trophoblast,
while maternal MHC but not paternal MHC has been shown
to educate uNK cells via matching Ly49 receptors to produce
IFN-γ as a vascular-remodeling factor [59]. Murine uNK cell
precursors either originate from outside the uterus [60] or dif-
ferentiate from resident hematopoietic precursors [61] in the
presence of other immune cells. In SCID mice, uNK cell dif-
ferentiation in the decidua basalis was shown to be delayed
during the early placentation period due to a lack of functional
T and B cells [62]. The number of the resident NK cell pop-
ulation declines between gd 0.5 and 5.5 [45] and is considered
to be replaced by recruited extra-uterine precursors which dif-
ferentiate into uNK cells. DBA+ NK cells are scarce in the
decidua at gd 5.5, while from gd 6.5 an increasing number of
DBA+ and PAS+DBA−NK cells can be detected ([63], Fig. 2).

Interleukin-15 (IL-15) is a critical regulator of NK and
uNK cell differentiation [64, 65]. IL-15−/− females lack
uNK cells, as well as spiral artery remodeling [66, 67].
A recent study [68], however, compared the gene

expression profiles in implantation sites of the uterus dur-
ing decidualization on gd 7.5 between wild-type and uNK
cell-deficient (IL-15−/−) mice, and found no different ex-
pression of genes involved in decidualization or angio-
genesis, with the exception of Adamts9, which is an
anti-angiogenic factor, expressed at a higher rate in IL-
15−/− than in wild-type mice. Immune cell-deficient mu-
rine models showed the significance of NK cell contribu-
tion to implantation and normal pregnancy. A murine
alymphoid model, Rag2−/−Δγc, which lack T, B, and
NK cells systemically, have deficient early decidual an-
giogenesis, delayed early embryonic development, and
failure of spiral arterial modification at mid-gestation.
All these anomalies are corrected by reconstitution with
NK+T−B− grafts before mating [69]. Effects of cellular
contact of uNK cell with other lymphocytes or other
decidual-resident cells are largely unknown, but soluble
factors from uNK cells such as IFN-γ has been shown
to contribute for spiral artery remodeling [70] in NK-
deficient mouse models. In humans, uNK cells also gen-
erate an array of angiogenic growth factors, e.g., VEGF,
ANGPT-1, 2, transforming growth factor-β (TGF-β) [71],
and placental growth factor (PlGF) [72, 73]. As a conse-
quence of inadequate spiral artery remodeling, preeclamp-
sia and intrauterine growth restriction could be expected;
however, data from different laboratories are conflicting.
This is probably due to differences in the focus on periph-
eral and decidual NK cells and their subsets, and to diver-
sity of effects derived after preeclampsia and abortion,
which may trigger cytotoxic NK activation. A recent re-
port has shown that pregnant women with high Doppler
resistance index, indicating impaired spiral artery remod-
eling and higher risk of preeclampsia, possess non-
cytotoxic decidual NK cells as well as normal pregnant
women, but with decreased expression of KIR2DL/S1, 3,
5, receptors against canonical class I histocompatibility
locus antigen C (HLA-C), and LILRB1 against HLA-G
on trophoblast [74]. Controversially, in vivo depletion of
NK cells by anti-asialo-ganglio-N-tetraosylceramide
(asialo-GM1) antibody reduced abortion rates in the
abortion-prone CBA/J female mice mated with DBA/2J

Table 2 The major differences
between human peripheral NK
cells and uNK cells

Peripheral NK cells Uterine NK cells

(90 %) (10 %)

CD56dim CD56bright CD56bright

CD16+ CD16− CD16−

Cytotoxic Non-cytotoxic Low cytotoxicity

Granular Non-granular, cytokine producing Granular

LFA1+ CCR7+

Perforin+ granzyme+ Perforin+ granzyme+
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male mice [75]. This is considered to be due to the
double-face of cytotoxic and vascular-remodeling NK
cells, for similar NK depletion of CB17 SCID mice lack-
ing effector T and B cells showed increased abortion rate
[76]. This is probably due to lack of innate immunity
against indigenous bacteria. Thus, when NK cell are de-
pleted systemically, different cytotoxicity in two subsets
in uNK cell should be taken into account.

Herein, cytotoxic NK cells might play a role in pregnancy
pathologies. The increased resorption rates of pregnant
BALB/c mice induced by anti- progesterone-induced
blocking factor (PIBF) antibody were corrected by treating
the micewith anti NK-1.1 antibody [77]. In humans, increased
number of CD56+ cells were demonstrated in mid-luteal phase
endometrial biopsies from patients with idiopathic recurrent
miscarriage (RM) [78] but another study (Tuckerman et al.,
[79]) concluded that numbers of uNK cells in RM do not
predict subsequent pregnancy outcome. Among decidual lym-
phocytes from failed pregnancies, there were less perforin-

positive CD56+ cells than in deciduas from normal pregnan-
cies [80], suggesting an increased rate of degranulation taking
place in the former cases. In women with RM, a lowered
uterine artery resistance to blood flow was demonstrated by
Doppler ultrasonography together with an increased percent-
age of uNK cells during the mid-secretory phase, suggesting a
correlation between excessive blood vessel development and
the pregnancy failure [81]. Other studies have shown that not
the number of endometrial total NK cells but the dominance of
CD16−CD56bright uNK cell subset was significantly decreased
in favor of CD16+CD56dim uNK cells in recurrent aborters
[82]. Patients who miscarried chromosomally normal embry-
os had decreased percentage of CD16−CD56bright uNK cells
compared with those of normal pregnancy [83, 84]. These
data suggest that a part of RM with unknown etiology might
be explained by deficiency in CD16−CD56bright uNK cells, or
alternatively by excess infiltration of CD16+CD56dim NK
cells derived from perfusing blood [85]. However, the causal
association and precise mechanism have been unknown

A B

C DD

Fig. 2 Distribution of uNK cells at early gestational stage in mice.
Uterine sections from C57BL/6 female mice at gd 5.5 (a) and gd 6.5
(b−d) were stained with DBA lectin (A−C) or PAS (D). a At gd 5.5,
DBA+ NK cells are scarcely detected. b At gd 6.5, DBA+ NK cells are

increasingly detected in the mesometrial region. c Higher magnification
of b. d Higher number of PAS+ NK cells are detected in the continuous
section of c. Thin arrows: PAS+ cells, thick arrows: DBA+ cells. Bars, a,
b 500 μm, c, d 100 μm
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especially in humans. Taken all these together, further inves-
tigation on functions of uNK cells, rather than number or
surface markers, is required.

Innate lymphoid cells

Innate lymphoid cells (ILCs) play a role in protection against
pathogens, in lymphoid organogenesis, and in tissue remod-
eling. They are now divided to three subsets on the basis of
their phenotypic and functional characteristics [86–88]. Group
1 ILCs can be distinguished from cytotoxic NK cells by lack
of the transcription factor Eomes, yet they produce IFN-γ via
T-bet transcription factor, rendering ILC1s weakly cytotoxic.
Group 2 ILCs express a discriminative IL-33 receptor and also
express chemokine receptors CCR4 and CCR5 upon stimula-
tion. In response to IL-25, IL-33, parasites, or tissue injury,
they produce Th2 cytokines such as IL-4, IL-5, and IL-13,
acting in a regulatory fashion similar to Th2 cells. Group 3
ILCs require the transcription factor retinoic acid-related or-
phan receptor γt (RORγt) for their generation. They produce
IL-22 and also secrete IL-17 in certain circumstances. Though
they are non-cytotoxic, a subset of ILC3s expresses an NK
activating receptor NCR (NKp46/44). All ILCs share a com-
mon precursor expressing the ID2 transcription factor. ILCs
play a role in innate defenses against pathogens and in lym-
phoid tissue organization during fetal life [89], but their most
important role is to behave as an intermediary between innate
immune responses and T helper functions. Expression of both
NK receptors and production of Th1, Th2, Th17, and Th22
cytokines by ILCs suggest that they might play a role in es-
tablishing the balance between immunity and tolerance both
in innate and adaptive settings (Table 3). During pregnancy,
the most important role has been attributed to uNK cells as
described in the section above. In addition to this, IL-22-
producing non-NK ILCs are also present in the non-
pregnant uterine mucosa as well as in the decidua during the
second trimester [91]. Recently Doisne et al. have identified
uterine ILC subsets (uILCs) in human endometrium in the first
trimester and in murine uterus at the beginning of placenta
formation [7]. Three subpopulations, uILC2, uILC3, and
uterine-specific CD127− uILC1 were found in the murine
uterus at gd 9.5, but with different distribution within the
implantation site (Fig. 1 and [7]). Both in mouse uterus and
in human endometrium, uILC3 seems to be the dominant
subset during pregnancy, whereas uILC2 is scarcely detected,
and decidual uILC1 consists of CD127− cells similar to
intraepithelial lymphocytes (IEL) in the intestine [7] (Table 3).

Due to their relatively recent discovery, the role for these
cells in reproduction is yet to be established. Mouse models
lacking particular subsets of ILCs, without abrogated Th2 cell
differentiation seen in ST2- (IL-33R) deficient mice [46], e.g.,
irradiated wild-type mice of bone marrow chimera with
staggerer mutant (RORα sg/sg) mice, are considered as an

appropriate model to assess the intrinsic roles of ILC2.
RORγt-reporter mice in combination with RAG2−/− genotype
are useful to elucidate the roles for ILC3 [92]. Considering the
decidua-specific distribution of uILC1s (Fig. 1), PLZF-
deficient (lacking all the ILC subsets) mice is also an alterna-
tive optional model to investigate the roles of uILCs in the
decidua. However, none of these models have been tested for
quantitative reproductive capacity, although there has been no
report of breeding problems. Further investigation using the
ILC-deficient mouse models is demanded to elucidate the
specific roles for ILCs in reproduction.

Decidual macrophages

When pregnancy is established, circulating monocytes infiltrate
the decidua and develop into macrophages [93], together with
uterine resident myeloid cells, constituting 20 to 25 % of human
decidual leukocytes [94]. Mice lacking decidual macrophages
are not available. Even CSF-I-deficient osteopetronic (op/op)
mice show a small number of F4/80-positive cells in the decidua,
although seen only at gd 7.5 [95]. However, op/op female mice
crossed with op/op males are infertile at implantation stage and
any other combination involving op/+ females or op/+ males
result inmild subfertility [96], suggesting that a sufficient number
of macrophages is necessary to sustain the pregnancy. In op/op
females mated with op/+ males, implantation rate was decreased
to 60 % with lower number of implantation sites and lower
survival rate of implants until term pregnancy, resulting in
39 % fertility in comparison to op/+ females mated with op/+
or op/op males, showing > 92 % implantation rate and > 85 %
fertility.

Based on differential expression of the complement recep-
tor CD11c, two distinct subpopulations (CD11chi and

Table 3 Comparison of uterine ILC subsets to Th cells and uNK cells

uILC subsets Comparable
Th subsets

Comparable uNK
subsets

uILC1 (T-bet, (IFN-γ)) Th1 IFN-γ (DBA− uNK in mice)

uILC2 (IL-33R, IL-7Rα,
GATA3, IL-5)

Th2

uILC3 (RORγt,
IL-7Rα, IL-17, 22,
partially NCR+CD56+

in human)

Th17, Th22 Some DBA+IL22+ in mice?
NCR+CD16−CD56bright

in human?

To understand the complicated groups of uILCs, subsets are aligned with
regard to comparable functions of helper T cells and uNK cell cells.
uILC1s produce IFN-γ, but at a lower level compared to that of uNK
cells. Unlike ILC2s in other tissues, uILC2s constitutively express IL-5
[89]. uILC3s partially express IL-17 and IL-22 like Th17 or Th22 cells.
Interestingly, some DBA+ NK cells are reported to secrete IL-22 [5].
uILC3s in human possess NCRs in addition to CD56 expression, similar
to the supported presence of NCR+ NK cells within CD16−CD56bright

population [90]

Semin Immunopathol (2016) 38:635–649 641



CD11clo) have been identified in human decidua [96]. In the
first-trimester decidua, the majority of the macrophages are
CD11clo. These express genes associated with extracellular
matrix formation, muscle regulation, and tissue growth [97].
CD11chi macrophages, constituting approximately one third
of the decidual population, express genes associated with
antigen-presenting function, e.g., CD1a, CD1c, and CD1d,
and process antigens more efficiently than CD11clo macro-
phages [97].

Decidual macrophages contribute to the Bembryo-friendly^
immunological environment, which negates surveillance by
immunity and permit embryogenesis, in a similar manner to
tumor microenvironment that favors neoplastic growth. Based
on their cytokine pattern, they are categorized as M1 and M2,
respectively [98, 99]. M1macrophages secrete tumor necrosis
factor-α (TNF-α) and IL-12 [100], while M2 macrophages
are characterized by a decreased IL-12 production and express
IL-1 receptor antagonist [101]. Additionally, M2 macro-
phages express the macrophage mannose receptor (MMR)
that mediates host defense and plays a role in removal of
inflammatory by-products [102]. Human decidual macro-
phages have been shown to inhibit T-cell responses via pros-
taglandin E2 production [103, 104]. Furthermore, they pro-
duce a significant amount of immunosuppressant IL-10 [105,
106], which can reduce the abortion rate in CBA/J x DBA/2J
model, and tryptophan metabolites [107–109], which can ef-
fectively promote Treg generation. Taken all the above togeth-
er, it can be speculated that an M2 phenotype is anticipated
during normally developing pregnancy. However, there has
been no evidence showing that the decidual macrophages
have an immunosuppressive phenotype with M2-polarization.

Dendritic cells

Dendritic cells (DCs) constitute an essential player which
links innate immunity to adaptive immunity. Following anti-
gen capture at the periphery, they migrate to the regional
lymph nodes, where they present peptides to naïve T cells,
resulting in antigen-specific immune responses [110–113].
Within adaptive immunity, DCs also control polarization of
T helper cell differentiation by cytokine secretion; IL-12 from
lymphoid DCs induce development of Th1 cells, whereas no
convincing factor has been found to induce Th2 development,
and polarization to Th17 or Th22 seems not induced only by
DCs [114–116]. DCs as antigen-presenting cells are not only
essential for the induction of primary immune response but
also play a role in the induction of tolerance. Subtypes of DCs
in human decidua are described as immature non-activated
(CD209+), immature activated (DEC205+) andmature activat-
ed (CD83+) cells [117, 118]. Immature DCs, processing anti-
gens via DEC205 receptor, promote CD8+ T-cell proliferation
but suppress cytotoxic IFN-γ production, resulting in toler-
ance, whereas mature DCs induce T-cell immunity [117].

There are very few CD83+ DCs at the maternal-fetal inter-
face [118], but DCs in pregnant decidua are found CD209+,
suggesting that recruited monocyte-derived immature DCs are
kept non-activated. Furthermore, DCs present in the mouse
decidua are unable to migrate out of this tissue even upon
activation [119] (Fig. 1). Secreted factors in the conditioned
medium of murine decidual cell culture have been shown to
block in vivo antigen presentation by DCs and to inhibit their
capacity to induce IFN-γ, but not IL-10 production by primed
lymphocytes, suggesting that decidual factors contribute to the
development of Th2 dominance, through modulation of DCs
function [6].Myeloid DCs in the decidua produce lower levels
of IL-12 than their peripheral blood counterparts do and are
somewhat more prone to stimulating Th2 responses in human
[120]. These results therefore suggest that decidual DCs might
locally present antigen to decidual T cells in ways that mini-
mize Th1 responses.

Recent studies suggest that decidual DCs might play a role
in decidual tissue remodeling, e.g., DC-deficient mice showed
altered decidual angiogenesis [121, 122]. The data on the role
of decidual DCs in human pregnancy pathologies are scarce.
Only mild changes in decidual CD83+DC densities have been
described in human pregnancy complications [123, 124].
Askelund et al. reported on significantly higher number of
dendritic cells in deciduas from women with RM at 8-week
gestation compared to gestational age-matched normal con-
trols [124].

Regulatory T cells

CD4+CD25hiFoxP3+ [125] Treg cells are a component of
adaptive immunity, and they function as suppressors of the
immune response. By their capacity to downregulate immu-
nological reactions, Treg cells are involved in maintenance of
self-tolerance, tumor escape, and transplant tolerance, while
during pregnancy, under a certain condition, Treg cells can also
contribute to maternal tolerance of the fetus via producing IL-
10 [126, 127]. Aluvihare et al. suggested for the first time that
Treg cells might mediate maternal tolerance in mice during
pregnancy [128]. Indeed, adoptive transfer of Treg cells from
BALB/c-mated normal pregnant CBA/J mice prevented fetal
loss in the abortion-prone DBA/2J-mated CBA/J female mice,
while Treg cells from non-pregnant mice had no effect [129].
Treg cells participate in protection of the fetus by down-
regulating inflammatory responses. Treg cells inhibit cytokine
production in both CD4+ T cells and CD8+ T cells, cytotoxic
activity of NK cells, and dendritic function and maturation,
resulting in suppression of local inflammatory activation [127,
130, 131].

The lack of Treg cell-mediated modulation might result in
pregnancy failure, or pathologies, but careful distinguish be-
tween thymus-derived natural Treg (nTreg) cells and induced
Treg (iTreg) cells generated from peripheral CD4+ T cells
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should be concerned. Reduced frequency of decidual Treg cells
was reported in miscarriage with a normal embryo karyotype
[132]. In this study, Helios+ Treg cells were assessed within
CD4+FoxP3+ population; however, the definition of nTreg
cells as Helios+CD4+FoxP3+ is not satisfyingly in consensus.
In contrast, Helios− iTreg-deficient murine pregnancies are
characterized by an increased resorption rate and defective
remodeling of spiral arteries [133]. However, in this mouse
model, the total abortion rate was only 10 %; thus, indispens-
ability of iTreg cells is not clear. It should also to be noted that
there is no evidence that the lack of Treg cells can cause abor-
tion of embryos expressing paternal alloantigens, the deple-
tion of Treg cells in transgenic mice expressing an artificial
MHC II-restricted antigen could invoke fetal resorption at
mid-pregnancy.

Non-classical immune communication

Current immunology has revealed intercellular communica-
tion not only among lymphoid or myeloid cells but also in-
volving tissue stromal parenchymal or non-parenchymal cells,
which can modify the proportion and extracellular paracrine
signaling of lymphoid/myeloid cells by means vulnerable to
tissue microenvironment. Hereafter, we call this aspect as
Bnon-classical^ communication between the embryo and the
decidua.

Roles for the uterine stroma and the decidual cells

1. Secreted factors from the decidua
The decidual cells themselves can also play important

roles in modulation of immune cells functions. In addition
to the diversity of growth factors as decidual markers,
cultured endometrial cells secrete cytokines, e.g., IL-6,
TNF-α, as well as chemokines, e.g., IL-8, CXCL1, and
express the chemokine receptor CXCR4 during normal
pregnancy [35, 36]. Miscarriage is characterized by an
altered cytokine profile in the human decidua [134].
Uterine stromal fibroblasts produce chemokines, includ-
ing Cxcl9, Cxcl10, and Ccl5, the production of which is
epigenetically downregulated during decidual differentia-
tion upon implantation, by methylation of the promoter
regions of the chemokine genes without deactivation of
NF-kB or Stat1 signaling, [8]. Therefore, effector cytotox-
ic CD8+ T cells are not permitted to infiltrate into the
decidual region adjacent to the conceptus, even if memory
T cells against embryonic antigen were experimentally
primed on the day after implantation (Fig. 1). Such an
epigenetic suppression of chemokines does not take place
in the myometrial fibroblasts and stromal cells in non-
implantation sites, which suggests the involvement of
blastocyst-derived factors. A mouse model of MHC-

restricted rejection of fetus accompanied by Tcell infiltra-
tion is induced by IDO inhibitor 1-methyltryptophan
[135]. However, this compound, working as a competitor
with the substrate of IDO, tryptophan, may have a diver-
sity of adverse effects, which still raises questions about
alternative activation of immunity overcoming the decid-
ual suppression of chemokines suggested by Erlebacher’s
group [8]. Apart from cytokines, the dynamic changes in
expression levels and patterns of extracellular matrix pro-
teins during the tissue remodeling in early pregnancy [35,
36] might also induce changes in stromal affinity for uNK
cells, as suggested by the tissue distribution of uNK cells
(Fig. 1).

2. TLR expression on the decidual cells
There are ten types of human Toll-like receptors

(TLRs) with a diversity of specific pattern recognition
for pathogens. TLRs are expressed not only in immune
cells but also in tissue parenchymal cells such as adipo-
cytes, hepatocytes, and uterine stromal cells. Changes of
uterine TLR expression during the menstrual cycle may
suggest hormonal regulation [136] (Fig. 3). Although on-
ly a few studies have shown the existence of TLR2 and
TLR4 in human decidual cells [137], Krikun et al. have
reported that LPS stimulation induces secretion of IL-6
and IL-8 in human endometrial cell culture [138]. It can-
not be ruled out that if bacterial infection stimulates
TLR2/4 on decidual cells during pregnancy and down-
stream signaling induces cytokine production, endoge-
nous lipid ligands for TLR2/4 present on uterine stromal
cells modify the character of these cells during
decidualization. The mechanisms for the regulation of cy-
tokine secretion by stromal or decidual cells requires fur-
ther investigation.

Refrained contact from the embryo to maternal immune

cells

Importantly, dying or incompetent embryo such as that with
abnormal karyotype, seen in humans more frequently than in
mice, will be Brejected^ by the decidua, the development of
which requires calcium signaling via serine proteases secreted
from a competent embryo. When endometrial cells are ex-
posed to culture supernatant of incompetent embryos, im-
paired secretion of prolactin and IGFBP-1 is caused via endo-
plasmic reticulum (ER) stress and autophagy [139]. The
cytotrophoblasts of human embryos at peri-implantation stage
also secrete IL-1β (Fig. 3). In baboons, IL-1β has been shown
to promote decidual secretion of matrix metalloprotease [140].
Growth factors such as insulin-like growth factor II (IGF-II)
and heparin-binding epidermal growth factor (HB-EGF) are
indicated to regulate decidual cellular development, in line
with expression of IL-1RI and type 2 IGFR in the endometrial
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cells [140, 141]. Extravillous trophoblast cells, which invade
deep into the decidua, express non-canonical class I HLA-E
and HLA-G (Fig. 3) in addition to canonical HLAs, which
increase Foxp3 expression of Treg cells and generation of
CD45RA+ resting Treg cells [142]. However, this does not
necessary mean that these HLAs are indispensable to establish
uterine receptivity against embryos. Soluble factors from the
embryo but detected in maternal peripheral blood, such as
human chorionic gonadotropin (hCG), preimplantation factor
(PIF), and soluble form of HLA-G (sHLA-G), may have sys-
temic effects such as promoting ovarian progesterone produc-
tion, balancing cytokine and chemokine secretion in the pe-
riphery (Fig. 3) [143–146]. A genomics study revealed that
PIF, produced by the embryo post-fertilization, upregulates

CX3CL1 expression in the cultured decidual cells from first-
trimester pregnant women, and increases interleukin-1 recep-
tor-associated kinase 1-binding protein 1 (IRAK1BP1) ex-
pression in both decidual culture and human endometrial stro-
mal cells (hESCs) [147]. However, the gene or enzyme re-
sponsible for PIF production is unknown, sustaining studies
on PIF KO mice unavailable, which will be necessary to be
challenged in order to understand the importance of this
peptide.

Conclusions: toward clinical endpoints

Current diagnosis for infertility and failures in treatment

Defective decidua formation in early pregnancy may result in
infertility or in a later onset of complications such as pre-
eclampsia, recurrent abortion, and pre-term birth [18, 148,
149]. The definition of infertility by the World Health
Organization (WHO) is childlessness within 1 year of active
sexual intercourse [150]. Risk factors for female infertility and
subfertility including recurrent abortion are uterine disorders
such as endometriosis (10 % incidence) [151] and uterine
fibroids (70∼80 % women affected, but only a small propor-
tion with huge lesions suffer infertility due to physical
unreceptivity) [152], or ovarian problems, e.g., polycystic
ovarian syndrome (PCOS) in 4∼8 % women in reproductive
age [153] and premature ovarian failure in 0.8∼3.7 % women
of various races between 40 and 45 years old [154]. In some
cases, infertility is treatable such as surgical resection of fi-
broids, or metformin administration for PCOS patients with
insulin tolerance to reduce androgen’s suppressive effect on
luteal development. However, there are still 42 % of RM still
unaccounted for (excluding 41 % abnormal embryonic karyo-
type and recalculated from original literature [155]).
According to Japanese governmental reports, the number of
successful cases in assisted reproduction technologies (ART)
doubled between 2002 and 2012 (15,228 cases in 2002 and
37,953 cases in 2012) [156], while the number of total infertile
patients increased four times during the same period (85,664
women in 2002 and 326,426 women in 2012) [156].

Increased number of ART can be attributed to the progress
and advances in in vitro fertilization (IVF), intracytoplasmic
sperm injection (ICSI), and utilization of frozen eggs. Another
effort from immunological view has been made using intrave-
nous immunoglobulin (IVIg) administration to the patients
with autoimmune disease represented by anti-phospholipid
(aPL) syndrome, systemic lupus erythematosus (SLE), auto-
immune thyroid disease (AITD), and type 1 diabetes mellitus
[157]. However, this approach has been recognized as the
final choice for subgroups of infertile women who were not
rescued by other means, because of the high risk of adverse
effects and the swelling medical costs [157]. Furthermore,
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Fig. 3 Possible human decidua-embryo interaction indicated by in vitro
observation. Despite of difficulty in obtaining human specimen during
normal peri-implantation stage, a number of studies have utilized in vitro
co-culture system to investigate signaling communication between the
decidual cells and the embryo. Fertilized eggs secrete interleukin-1β
(IL-1β) and growth factors such as IGF-II and HB-EGF, which are indi-
cated to regulate decidual cellular development, in line with expression of
IL-1RI and type 2 IGFR in the endometrial cells. Signaling for decidual
expression of Toll-like receptors (TLRs) is unknown. Soluble factors
from the embryo but detected in maternal peripheral blood, such as hu-
man chorionic gonadotropin (hCG), preimplantation factor (PIF), and
soluble form of HLA-G (sHLA-G), may have systemic effects such as
promoting ovarian progesterone production, balancing cytokines and
chemokines secretion in the periphery. Decidual cells also express growth
factors such as G-CSF, and cytokines and chemokines such as IL-6, IL-8,
and CXCL1. At least some of them are considered to be under the control
of signaling from the embryos
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indeed aPL antibodies have affinity to the surface phospholip-
id exposed on cytotrophoblasts, and indeed IVIg treatment
can rescue the RM in AITD patients but in combination with
thyroid hormones [157], the mechanisms how autoantibodies
affect implantation and how IVIg rescues are unclear. In most
cases in autoimmune diseases, ovarian functions and other
endocrinal system are also affected. Typical remedywith com-
bination of IVIg and NSAIDs may just suppress cytokine
storms, but without understanding the basis it is hard to select
appropriate patients.

Better understanding the mechanisms via optimal animal

models

A number of molecules, e.g., leukemia inhibitory factor (LIF)
and lipid mediator prostaglandins, associated with Buterine
receptivity^ have been identified in PR and ER pathways
and Wnt signaling, via gene-deficient murine models [18].
Immunologists in the field of reproduction have utilized T,
B, NK-deficient Rag2−/−Δγc or T, NK-deficient tgε26 to elu-
cidate the role of immune cells in decidual vascular remodel-
ing failure. However, these immunodeficient mice did not
show complete pregnancy loss, with only modest changes in
uterine vascular remodeling or decidual cellularity, let alone
the high resorption rate and placental shrinkage in tgε26 mice
[158], probably due to the compensatory functions of other
minor immune cellular populations and of uterine stromal
cells, or to the adaptively enhanced vascular development,
and also to the absence of cytotoxic immune cells in the ma-
ternal side. Moreover, only in later placental stage of pregnan-
cy do these mice show increased resorption and abnormal
placenta, with an essential caveat of fetal genotype’s effects.
Thus, wild-type embryo transfer to these uteri will better clar-
ify the maternal cells roles. In contrast, decidual defects have
been reported in several gene-targeted mouse models
(Hoxa10, Hoxa11, Bmp2, Wnt4, Dedd, and IL11ra) [13–16,
19, 23]. Several mouse models deficient in cytokine signaling
such as Lif−/− or Stat3−/− show infertile phenotype [159, 160],
but the defects are already found in implantation rates before
decidualization, suggesting more fundamental and pleiotropic
roles for the signaling downstream. Intriguingly, uterine con-
ditional Trp53−/− mice present decidual senescence accompa-
nied with excessive terminal differentiation and multi-
nuclearization until later gestational period, which results in
preterm birth [161]. In order to shed more light on intrinsic
and mutual roles for maternal immune cells, uterine vascular
and stromal cells, it is necessary to generate new combination
of different mouse models. A mouse model with uterine de-
cidual deficiency named as above in combination with NK-
deficient models may more clearly explain the functions of
uNK cells on decidual development and vice versa, via cross-
ing the two mouse lines and via transferring wild-type NK
cells. Likewise, uterine vascular deficiencymodelsmight shed

light on the role for vascular factors in uNK cell functions.
However, embryonic or postnatal lethality of Vegfa−/−,
Angpt1−/−, and Angpt2−/− mice demands to assess uterine
conditional deletion of these genes, which has not been chal-
lenged for female reproductive functions. For instance, PR-
Cre x Vegfaflox will delete decidual cell-specific deletion of
VEGF-A, and VE-cadherin-Cre-ER x Vegfaflox is possible to
delete vascular endothelial VEGF-A production via tamoxifen
administration.

Rigorous studies on basic and clinical sides are required to
overcome conflicting evidences (which are partially due to the
lack of human samples at the peri-implantation stage), in order
to obtain a molecular clue for the causes of infertility, and to
invent novel diagnostic methods and treatments.
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