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Abstract

Dynamic decision-making under uncertainty has a long and distinguished history in opera-

tions research. Due to the curse of dimensionality, solution schemes that näıvely partition or

discretize the support of the random problem parameters are limited to small and medium-sized

problems, or they require restrictive modeling assumptions (e.g., absence of recourse actions).

In the last few decades, several solution techniques have been proposed that aim to alleviate the

curse of dimensionality. Amongst these is the decision rule approach, which faithfully models

the random process and instead approximates the feasible region of the decision problem. In

this paper, we survey the major theoretical findings relating to this approach, and we investigate

its potential in two applications areas.

Keywords. Robust Optimization, Stochastic Programming, Decision Rules, Optimization un-

der Uncertainty.

1 Introduction

Operations managers frequently take decisions whose consequences extend well into the future.

Inevitably, the outcomes of such choices are affected by significant uncertainty: changes in customer

taste, technological advances and unforeseen stakeholder actions all have a bearing on the suitability

of these decisions. It is well documented in theory and practice that disregarding this uncertainty

often results in severely suboptimal decisions, which can in turn lead to the underperformance or

1



complete breakdown of production processes. Yet, researchers and practitioners frequently neglect

uncertainty and instead focus on the expected or most likely market developments. At first glance,

this simplified view appears to be justified by the curse of dimensionality, which plagues dynamic

optimization problems under uncertainty. In this paper, we argue that modern approximation

schemes in stochastic and robust optimization offer an attractive tradeoff between optimality and

tractability, and they are mature enough to be used in practical applications. In particular, we will

review the decision rule approach, which has a long history in stochastic programming [24, 25] and

which has recently been rediscovered by the (distributionally) robust optimization community [8].

Dynamic decision problems under uncertainty have been studied, amongst others, by the

stochastic programming and the robust optimization communities. Stochastic programs model

the uncertain parameters of a decision problem as a random vector that follows a known distri-

bution. This distribution is typically approximated to gain tractability. While such discretization

schemes work well for problems with two time stages, especially when combined with a Bender’s

decomposition [22], näıve extensions of such schemes to multiple time stages suffer from the curse

of dimensionality. To alleviate this problem, the stochastic programming literature reports sophis-

ticated discretization schemes that allow to faithfully approximate the dynamic decision problem

in a tractable way [49, 65, 66, 67, 72]. Alternatively, if the stochastic process possesses the Markov

property (i.e., the random vectors of different time stages are pairwise independent), one can use

stochastic dual dynamic programming [63, 71] to ease the computational burden.

Traditionally, robust optimization replaces probability distributions with uncertainty sets as

fundamental building blocks. The goal is to determine a policy that performs best in view of the

most adverse parameter realization from within the uncertainty set. Two-stage robust optimization

problems are often solved with adaptations of Bender’s decomposition [5, 84, 73]. Alternatively,

two-stage robust optimization problems can be conservatively approximated by theirK-adaptability

formulations, which select K candidate second-stage decisions here-and-now (i.e., before the real-

ization of the uncertain parameter vector is observed) and implement the best of these decisions

after the realization is observed [11, 17, 48, 74]. Two-stage robust optimization problems can also

be formulated as copositive programs, which can be conservatively approximated via semidefinite

programming [47, 82]. Multi-stage robust optimization problems with T > 2 time stages, on the

other hand, are typically approximated conservatively through decision rules, which restrict the
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admissible recourse actions to affine [44, 53], segregated affine [27, 28, 41], piecewise affine [38, 39]

and algebraic as well as trigonometric polynomial [19] functions of the observed parameter values.

Decision rules have recently been extended to incorporate both continuous and discrete second-

stage decisions, either by partitioning the uncertainty set into hyperrectangles [14, 42, 78] or by

resorting to a semi-infinite solution scheme [13]. By themselves, decision rule approximations only

provide a conservative bound on the optimal value of the multi-stage problem. To estimate the

incurred suboptimality, decision rules are often combined with progressive bounds that emerge from

replacing the uncertainty set with a finite subset of the parameter realizations. Scenario subsets

that lead to good progressive bounds can be obtained from the Lagrange multipliers associated

with the optimal solution of the decision rule problem [12, 46]. The suboptimality of decision rules

in the multi-stage setting has been investigated in [53]. As an alternative to decision rules, a robust

variant of stochastic dual dynamic programming has recently been proposed in [37].

Stochastic programming and robust optimization have been successfully employed in diverse

application domains, ranging from network flow problems [4] and vehicle routing [43, 75] to railway

shunting and timetabling [55], energy systems [57, 58, 69, 81], the strategic [2] and operative

[3, 21, 54] aspects of operations management as well as healthcare [6, 51]. For a detailed review of

these applications, we refer the reader to [10, 35, 83].

The purpose of this paper is to provide an introductory survey of the decision rule approach,

complementing the recent review article [31]. To date, the theoretical developments of the decision

rule approach are scattered over several papers, and due to their technical terminology they have

attracted little attention outside the mathematical optimization community. We aim to present

the key findings of this field in a comprehensible and unified framework. To demonstrate the

effectiveness of the decision rule approach, we apply the method to two stylized case studies in

production planning and supply chain design. The case studies also demonstrate the value of a

faithful modeling of uncertainty in multi-stage decision-making.

The remainder of the paper is structured as follows. In Section 2, we formulate the decision

problems that we are interested in. We introduce linear decision rules in Section 3, and we generalize

the approach to non-linear decision rules in Section 4. Section 5 describes an extension to integer

here-and-now decisions. We close with two operations management case studies in Section 6.
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Notation For a square matrix A ∈ R
n×n we denote by Tr (A) the trace of A, that is, the sum

of its diagonal entries. For A,B ∈ R
m×n the inequalities A ≤ B and A ≥ B are understood

to hold component-wise, and A⊤ denotes the transpose of A. For any real number c we define

c+ = max{c, 0}. We define convX as the convex hull of a set X.

2 Decision-Making under Uncertainty

2.1 Problem Formulation

We study dynamic decision problems under uncertainty of the following general structure. A

decision maker first observes an uncertain parameter ξ1 ∈ R
k1 and then takes a decision x1(ξ1) ∈

R
n1 . Subsequently, a second uncertain parameter ξ2 ∈ R

k2 is revealed, in response to which the

decision maker takes a second decision x2(ξ1, ξ2) ∈ R
n2 . This sequence of alternating observations

and decisions extends over T stages, where at any stage t = 1, . . . , T the decision maker observes

an uncertain parameter ξt and selects a decision xt(ξ1, . . . , ξt). We emphasize that a decision taken

at stage t depends on the whole history of past observations ξ1, . . . , ξt, but it may not depend

on the future observations ξt+1, . . . , ξT . This feature reflects the non-anticipative nature of the

dynamic decision problem and ensures its causality. To simplify notation, we define the history

of observations up to time t as ξt = (ξ1, . . . , ξt) ∈ R
kt , where kt =

∑t
s=1 ks. Moreover, we let

ξ = (ξ1, . . . , ξT ) ∈ R
k denote the vector concatenation of all uncertain parameters, where k = kT .

We assume that the decision taken at stage t incurs a linear cost ct(ξ
t)⊤xt(ξ

t), where the vector

of cost coefficients depends linearly on the observation history, that is, ct(ξ
t) = Ctξ

t for some matrix

Ct ∈ R
nt×kt . We also assume that the decisions are required to satisfy a set of linear inequality

constraints to be detailed below. The decision maker’s objective is to select the functions or decision

rules x1(·), . . . , xT (·), which map observation histories to decisions, such that the expected total

cost is minimized while all inequality constraints are satisfied. Formally, this decision problem can
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be represented as follows.

minimize Eξ

(
T∑

t=1

ct(ξ
t)⊤xt(ξ

t)

)

subject to Eξ

(
T∑

s=1

Atsxs(ξ
s)
∣∣ ξt
)
≥ bt(ξ

t)

xt(ξ
t)≥ 0





∀ξ ∈ Ξ, t = 1, . . . , T

(P)

Here, Eξ(·) denotes expectation with respect to the random parameter ξ, while Ξ stands for the

range of all possible values that ξ can adopt. Below, we will refer to Ξ as the uncertainty set

and to any ξ ∈ Ξ as a scenario. We will henceforth assume that Ξ is a bounded polyhedron of

the form Ξ = {ξ ∈ R
k : Wξ ≥ h} for some W ∈ R

l×k and h ∈ R
l. Recall that the stage-t

decisions xt(ξ
t) in problem P are functions of ξt. Intuitively, this means that every observation

history ξt corresponding to some scenario ξ ∈ Ξ gives rise to nt ordinary decision variables. Since

the polyhedron Ξ typically contains infinitely many scenarios, problem P accommodates in fact

infinitely many decision variables.

The inequality constraints in problem P are expressed in terms of deterministic constraint

matrices Ats ∈ R
mt×ns and uncertainty-affected right-hand side vectors bt(ξ

t) ∈ R
mt . We assume

that bt(ξ
t) = Btξ

t for some matrices Bt ∈ R
mt×kt . We remark that the assumed linearity of ct(ξ

t)

and bt(ξ
t) in ξt is non-restrictive because we are free to redefine ξ such that it contains ct(ξ

t) and

bt(ξ
t) as subvectors. The assumption that Ξ is a polyhedron is restrictive. However, all results of

this paper naturally extend to convex uncertainty sets characterized through conic constraints (see,

e.g., [39, 45]). For ease of exposition, we focus on polyhedral uncertainty sets in this survey.

Note that the stage-t constraints in P are conditioned on the stage-t observation history ξt,

where Eξ(·|ξt) denotes the conditional expectation with respect to ξ given ξt. Hence, Eξ(·|ξt)
treats ξ1, . . . , ξt as deterministic variables and takes the expectation only with respect to the future

observations ξt+1, . . . , ξT . This implies that the stage-t constraints are parameterized in ξt in a

similar fashion like the stage-t decisions. Indeed, every ξt corresponding to some scenario ξ ∈ Ξ

gives rise to mt ordinary linear constraints. Since Ξ has typically infinite cardinality, problem P
thus accommodates infinitely many constraints. Intuitively, problem P can therefore be viewed as

an infinite-dimensional generalization of the standard linear program. We remark that conditional

expectation constraints are somewhat non-standard in the literature. However, as we will see in
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Section 3.2, conditional expectation constraints naturally appear in the dual of problem P, which

will play a central role in assessing the quality of decision rule approximations. For symmetry, it is

thus convenient to account for conditional expectation constraints already in P.

2.2 Expressiveness of Problem P

The general decision problem under uncertainty described in Section 2.1 provides considerable

modeling flexibility. Indeed, as we will show in this section, problem P encapsulates conventional

deterministic and stochastic linear programs, robust optimization problems and tight convex ap-

proximations of chance-constrained programs as special cases.

Deterministic linear programs If the uncertainty set contains only one single scenario, that

is, if Ξ = {ξ∗}, then problem P reduces to a deterministic linear program. In this case only

the decisions and constraints corresponding to ξ = ξ∗ are relevant, while all (conditional and

unconditional) expectations become redundant and can thus be eliminated. Introducing the finite

problem data

A =




A11 · · · A1T

...
. . .

...

AT1 · · · ATT


 , b =




b1(ξ
1
∗)

...

bT (ξ
T
∗ )


 and c =




c1(ξ
1
∗)

...

cT (ξ
T
∗ )


 ,

we can reformulate P as the standard linear program

minimize c⊤x

subject to Ax ≥ b, x ≥ 0,
(LP)

whose finite-dimensional decision vector can be identified with (x1(ξ
1
∗), . . . , xT (ξ

T
∗ )).

Remark 2.1 (Deterministic Decisions and Constraints). Deterministic (here-and-now) decisions

and constraints can conveniently be incorporated into the general problem P by requiring that ξ1

is equal to 1 for all ξ ∈ Ξ. This can always be enforced by appending the equation ξ1 = 1 to the

definition of Ξ. From now on, we will always assume that k1 = 1 and that any ξ = (ξ1, . . . , ξT ) ∈ Ξ

satisfies ξ1 = 1.
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Stochastic programs Problem P can be specialized to a standard linear multi-stage stochastic

program with recourse if we ensure that the stage-t constraints are not affected by the future

decisions xt+1(ξ
t+1), . . . , xT (ξ

T ). This is achieved by setting Ats = 0 for all t < s and has the effect

that the term inside the conditional expectation of the stage-t constraint becomes independent

of ξt+1, . . . , ξT . Since Eξ(·|ξt) treats ξt as a constant, the conditional expectation thus becomes

redundant and can be omitted. Therefore, problem P reduces to the following multi-stage stochastic

program in standard form [22, 50].

minimize Eξ

(
T∑

t=1

ct(ξ
t)⊤xt(ξ

t)

)

subject to

t∑

s=1

Atsxs(ξ
s)≥ bt(ξ

t)

xt(ξ
t)≥ 0





∀ξ ∈ Ξ, t = 1, . . . , T

(SP)

Robust optimization problems If the distribution governing the uncertainty ξ is unknown or

if the decision maker is very risk-averse, then it is not possible or unreasonable to minimize expected

costs. In these situations, a decision maker may want to minimize the worst-case costs, where the

worst case (maximum) is evaluated with respect to all possible scenarios ξ ∈ Ξ; see, e.g., [40] for

a formal justification. Traditionally, such worst-case (robust) optimization problems only involve

here-and-now decisions [7, 20]. Problem P allows us to formulate a multi-stage generalization of

robust optimization problems as follows.

minimize max
ξ∈Ξ

(
T∑

t=1

ct(ξ
t)⊤xt(ξ

t)

)

subject to

t∑

s=1

Atsxs(ξ
s)≥ bt(ξ

t)

xt(ξ
t)≥ 0





∀ξ ∈ Ξ, t = 1, . . . , T

(RO)
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In order to see that RO is a special case of P, we consider an epigraph reformulation of the

worst-case objective,

max
ξ∈Ξ

(
T∑

t=1

ct(ξ
t)⊤xt(ξ

t)

)
= min

τ∈R

{
τ : max

ξ∈Ξ

(
T∑

t=1

ct(ξ
t)⊤xt(ξ

t)

)
≤ τ

}

= min
τ∈R

{
τ :

T∑

t=1

ct(ξ
t)⊤xt(ξ

t) ≤ τ ∀ξ ∈ Ξ

}
, (2.1)

where τ ∈ R represents an auxiliary (deterministic) decision variable. Replacing the worst-case

objective in RO with (2.1) transforms the robust optimization problem RO into a variant of the

stochastic programming problem SP with a particularly simple objective function (given by τ). As

RO is a special case of SP and SP is a special case of P, we conclude that RO is indeed a special

case of P.

Chance-constrained programs Let Pξ be the distribution of ξ. We can then formulate a

multi-stage generalization of chance-constrained programs as

minimize Eξ

(
T∑

t=1

ct(ξ
t)⊤xt(ξ

t)

)

subject to Pξ

(
T∑

t=1

a⊤itxt(ξ
t) ≥ bi(ξ)

)
≥ 1− ǫi ∀i = 1, . . . , I,

xt(ξ
t)≥ 0 ∀ξ ∈ Ξ, t = 1, . . . , T,

(CC)

where ait ∈ R
nt , bi(ξ) ∈ R and ǫi ∈ (0, 1]. Here, the ith constraint requires that the inequality

∑T
t=1 a

⊤
itxt(ξ

t) ≥ bi(ξ) should be satisfied with probability at least 1 − ǫi. Chance constraints of

this type are useful for modeling risk preferences and safety constraints in engineering applications.

Note that a chance constraint with ǫi = 1 reduces to a robust constraint that must hold for all

ξ ∈ Ξ. Therefore, chance constraints with ǫi < 1 can be viewed as soft versions of the corresponding

robust constraints.

We now demonstrate that CC has a tight conservative approximation of the form P. To this

end, we introduce the loss functions Li(ξ) = bi(ξ) −
∑T

t=1 a
⊤
itxt(ξ

t). The ith chance constraint is

therefore equivalent to the requirement that the smallest (1− ǫi)-quantile of the loss distribution,

which we denote by VaRǫi(Li(ξ)), is non-positive. To obtain a conservative approximation for the
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chance constraint, we introduce the conditional value-at-risk (CVaR) of Li(ξ) at level ǫi, which is

defined as CVaRǫi(Li(ξ)) = minβi
{βi + 1

ǫi
Eξ([Li(ξ) − βi]

+)} [64]. Due to its favorable theoretical

and computational properties, CVaR has become a popular risk measure in finance. Rockafellar

and Uryasev [68] have shown that the optimal βi which solves the minimization problem in the

definition of CVaR coincides with VaRǫi(Li(ξ)) and that the CVaR at level ǫi coincides with the

conditional expectation of the right tail of the loss distribution above VaRǫi(Li(ξ)). Thus, the

following implication holds; see also Figure 1.

Figure 1. Relationship between VaRǫi(Li(ξ)) and CVaRǫi(Li(ξ)) for each constraint i, at

level ǫi.

CVaRǫi(Li(ξ)) ≤ 0 =⇒ VaRǫi(Li(ξ)) ≤ 0 ⇐⇒ Pξ(Li(ξ) ≤ 0) ≥ 1− ǫi

As pointed out by Nemirovski and Shapiro [62], the CVaR constraint on the left-hand side represents

the tightest convex approximation for the chance constraint on the right-hand side of the above

expression. By linearizing the term [Li(ξ)−βi]
+ in the definition of CVaR, the ith CVaR constraint

can be re-expressed as the following system of linear inequalities

βi +
1

ǫi
Eξ(zi(ξ)) ≤ 0, zi(ξ) ≥ bi(ξ)−

T∑

t=1

a⊤itxt(ξ
t)− βi, zi(ξ) ≥ 0, (2.2)

which involve the deterministic (first stage) variable βi ∈ R and a new stochastic (stage-T ) variable

zi(ξ) ∈ R. Replacing each chance constraint in CC with the corresponding system (2.2) of linear

inequalities thus results in a problem of type P with expectation constraints. Therefore, chance-

constrained problems of the type CC have tight conservative approximations within the class of

9



problems P.

We remark that the general decision problem P is flexible enough to cover also hybrid models

which combine various aspects of deterministic, stochastic, robust and chance-constrained programs

in the same model.

3 The Decision Rule Approach

In this section, we derive a tractable approximation to the decision problem P by restricting the

space of the decision rules xt(·), t = 1, . . . , T , to those that exhibit a linear dependence on the

observed problem parameters ξt. The second part of the section explains how we can efficiently

measure the optimality gap that we incur through this simplification.

3.1 Determining the Best Linear Decision Rule

Problem P generalizes a number of difficult optimization problems, including multi-stage stochastic

programs. It is therefore clear that problem P is severely computationally intractable itself. A

simple but effective approach to improve the tractability of problem P is to restrict the space of

the decision rules xt(·), t = 1, . . . , T , to those that exhibit a linear dependence on the observation

history ξt. Remember that we stipulated in Remark 2.1 that k1 = 1 and ξ1 = 1 for all ξ ∈ Ξ. This

implies that we actually optimize over all affine (i.e., linear plus a constant) decision functions

of the non-degenerate uncertain parameters ξ2, . . . , ξT if we optimize over all linear functions of

ξ = (ξ1, . . . , ξT ).

In the rest of the paper we will assume that the conditional expectations Eξ(ξ|ξt) are linear in the

sense that there exist matrices Mt ∈ R
k×kt such that Eξ(ξ|ξt) = Mtξ

t for all ξ ∈ Ξ. This assumption

is automatically satisfied, for instance, if the random parameters ξt are mutually independent. In

this case the conditional expectations reduce to simpler unconditional expectations, and thus we

find Eξ(ξ|ξt) = (ξ1, . . . , ξt, µt+1, . . . , µT ), where µt denotes the unconditional mean value of ξt. As

ξ1 = 1 for all ξ ∈ Ξ, we thus have

Eξ(ξ|ξt) = (ξ1, . . . , ξt, µt+1ξ1, . . . , µT ξ1) ∀ξ ∈ Ξ.

The last expression is manifestly linear in ξt. It is easy to verify that the conditional expecta-
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tions remain linear when the process of the random parameters ξt belongs to the large class of

autoregressive moving-average models.

For the further argumentation, we define the truncation matrix Pt ∈ R
kt×k through Ptξ = ξt.

Thus, Pt maps any scenario ξ to the corresponding observation history ξt up to stage t. If we model

the decision rule xt(ξ
t) as a linear function of ξt, it can thus be expressed as xt(ξ

t) = Xtξ
t = XtPtξ

for some matrix Xt ∈ R
nt×kt . Substituting these linear decision rules into P yields the following

approximate problem.

minimize Eξ

(
T∑

t=1

ct(ξ
t)⊤XtPtξ

)

subject to Eξ

(
T∑

s=1

AtsXsPsξ
∣∣ ξt
)
≥ bt(ξ

t)

XtPtξ≥ 0





∀ξ ∈ Ξ, t = 1, . . . , T

(Pu)

The objective function of Pu can be simplified and re-expressed in terms of the second order

moment matrix M = E(ξ ξ⊤) of the random parameters, which is not to be confused with the first

order conditional moment sensitivity matrices Mt that satisfy Eξ(ξ|ξt) = Mtξ
t. Interchanging

summation and expectation and using the cyclicity property of the trace operator, we obtain

Eξ

(
T∑

t=1

ct(ξ
t)⊤XtPtξ

)
=

T∑

t=1

Eξ(ξ
⊤P⊤

t C⊤
t XtPtξ)

=
T∑

t=1

Eξ(Tr[Ptξξ
⊤P⊤

t C⊤
t Xt])

=
T∑

t=1

Tr(PtMP⊤
t C⊤

t Xt).

Similarly, we can reformulate the conditional expectation terms in the constraints of Pu as

Eξ

(
T∑

s=1

AtsXsPsξ
∣∣ ξt
)

=

T∑

s=1

AtsXsPsMtPtξ .
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Thus, the linear decision rule problem Pu is equivalent to

minimize
T∑

t=1

Tr(PtMP⊤
t C⊤

t Xt)

subject to

(
T∑

s=1

AtsXsPsMtPt −BtPt

)
ξ≥ 0

XtPtξ≥ 0





∀ξ ∈ Ξ, t = 1, . . . , T.

(3.3)

Although problem (3.3) has only finitely many decision variables, that is, the coefficients of the

matrices X1, . . . , XT encoding the linear decision rules, it is still not suitable for numerical solution

as it involves infinitely many constraints parameterized by ξ ∈ Ξ. The following proposition, which

captures the essence of robust optimization, provides the tools for reformulating the ξ-dependent

constraints in (3.3) in terms of a finite number of linear constraints [7, 20].

Proposition 3.1. For any p ∈ N and Z ∈ R
p×k, the following statements are equivalent.

(i) Zξ ≥ 0 for all ξ ∈ Ξ = {ξ ∈ R
k : Wξ ≥ h},

(ii) ∃Λ ∈ R
p×l with Λ ≥ 0, ΛW = Z, Λh ≥ 0.

Proof. We denote by Z⊤
π the πth row of the matrix Z. Then, statement (i) is equivalent to

Zξ ≥ 0 for all ξ subject to Wξ ≥ h

⇐⇒ 0 ≤ min
ξ

{
Z⊤
π ξ : Wξ ≥ h

}
∀π = 1, . . . , p

⇐⇒ 0 ≤ max
Λπ

{
h⊤Λπ : W⊤Λπ = Zπ, Λπ ≥ 0

}
∀π = 1, . . . , p

⇐⇒ ∃Λπ with W⊤Λπ = Zπ, h
⊤Λπ ≥ 0, Λπ ≥ 0 ∀π = 1, . . . , p





(3.4)

The equivalence in the third line follows from linear programming duality. Interpreting Λ⊤
π as the

πth row of a new matrix Λ ∈ R
p×l shows that the last line in (3.4) is equivalent to assertion (ii).

Thus, the claim follows.
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Using Proposition 3.1, one can reformulate the inequality constraints in (3.3) to obtain

minimize

T∑

t=1

Tr(PtMP⊤
t C⊤

t Xt)

subject to

T∑

s=1

AtsXsPsMtPt −BtPt= ΛtW,Λth ≥ 0,Λt ≥ 0

XtPt = ΓtW, Γth ≥ 0, Γt ≥ 0





∀t = 1, . . . , T.

(P̃u)

The decision variables in P̃u are the entries of the matrices Xt ∈ R
nt×kt , Λt ∈ R

mt×l and Γt ∈ R
nt×l

for t = 1, . . . , T . Note that the objective function as well as all constraints are linear in these

decision variables. Thus, P̃u constitutes a finite linear program, which can be solved efficiently

with off-the-shelf solvers such as IBM ILOG CPLEX [1].

A major benefit of using linear decision rules is that the size of the approximating linear program

P̃u grows only moderately with the number of time stages. Indeed, the number of variables and

constraints is quadratic in k, l, m =
∑T

t=1mt, and n =
∑T

t=1 nt. Note that these numbers usually

scale linearly with T , and hence the size of P̃u typically grows only quadratically with the number

of decision stages.

We close this section with two remarks about alternative approximation methods to convert

problem P to a finite linear program that is amenable to numerical solution.

Remark 3.2 (Scenario tree approximation). Instead of approximating the functional form of the

decision rules xt(·), t = 1, . . . , T , we can can improve the tractability of problem P by replacing the

underlying process ξ1, . . . , ξT of random parameters with a discrete stochastic process. The resulting

process can be visualized as a scenario tree, which ramifies at all time points at which new problem

data is observed (Figure 2). Scenario tree approaches to stochastic programming have been studied

extensively over the past decades; see e.g. the survey paper [32] that accounts for the developments

up to the year 2000. More recent contributions are listed in the official stochastic programming

bibliography [77]. In contrast to the decision rule approach, scenario tree methods typically scale

exponentially with the number of decision stages. Figure 3 compares the scenario tree and the

decision rule approximations.

Remark 3.3 (Sample-Based Optimization). We derived a tractable approximation for problem P
in two steps. First, we restricted the decision rules xt(·), t = 1, . . . , T , to be linear functions of the
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Figure 2. Scenario tree with samples ξ̃s
1
, . . . , ξ̃s

9
.

observation histories ξt. Afterwards, we used linear programming duality to obtain a finite problem.

We can derive a different approximation for problem P if we enforce the semi-infinite constraints in

Pu only over a finite subset of samples
{
ξ̃s1, . . . , ξ̃

s
K

}
⊂ Ξ. It has been shown in [23, 79] that a modest

number K of samples suffices to satisfy the semi-infinite constraints in Pu with high probability.

The advantage of such sampling-based approaches is that they allow us to model more general

dependencies between the problem data (A, b, c) and the random parameters. However, we are not

aware of any methods to measure the optimality gap that we incur with sample-based methods.

3.2 Suboptimality of the Best Linear Decision Rule

The price that we have to pay for the favorable scaling properties of the linear decision rule ap-

proximation is a potential loss of optimality. Indeed, the best linear decision rule can result in

a substantially higher objective value than the best general decision rule (which is typically non-

linear). The difference ∆u = min P̃u −minP between the optimal values of the approximate and

the original decision problem can be interpreted as the approximation error associated with the

linear decision rule approximation. As P̃u is a restriction of the minimization problem P, ∆u is

necessarily non-negative. Modelers should estimate ∆u in order to assess the appropriateness of

the linear decision rule approximation for a particular problem instance: a small ∆u indicates that

implementing the solution of P̃u will incur a negligible loss of optimality, while a large ∆u may
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Figure 3. Comparison of the scenario tree (left) and the decision rule approximation
(right). Scenario trees replace the process ξ1, . . . , ξT of random parameters with a discrete
stochastic process. The decision rule approach retains the original stochastic process, but
it restricts the functional form of the decision rules xt(·), t = 1, . . . , T .

prompt us to be more cautious and to try to improve the approximation quality (e.g. by using more

flexible piecewise linear decision rules; see Section 4).

Generally speaking, there are two ways to measure the approximation error ∆u. We can derive

generic a priori bounds on the maximum value of ∆u that can be incurred over a class of instances,

or we can measure ∆u a posteriori for a specific problem instance.

A priori bounds on ∆u have a long history. In particular, linear decision rules have been proven

to optimally solve the linear quadratic regulator problem [9], while piecewise linear decision rules

optimally solve two-stage stochastic programs [36]. More recently, linear decision rules have been

shown to optimally solve a class of one-dimensional robust control problems [18] and two-stage

robust vehicle routing problems [43]. On the other hand, the worst-case approximation ratio for

linear decision rules applied to two-stage robust optimization problems with m linear constraints

has been shown to be of the order O(
√
m), see [16]. Similar results have been derived for two-stage

stochastic programs in [15].

Given their scarcity and their somewhat limited scope, it seems fair to say that a priori bounds

on ∆u are at most indicative of the expressive power of linear and piecewise linear decision rules.

It thus seems natural to consider a posteriori bounds on ∆u that exploit the specific structure

of individual instances of the problem P. Unfortunately, the direct computation of ∆u for a

specific instance of P would require the solution of P itself, which is intractable. In this section we
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demonstrate, however, that an upper bound on ∆u can be obtained efficiently by studying a dual

decision problem associated with P.

It is well known that any primal linear program minx{c⊤x : Ax ≥ b, x ≥ 0} has an associated

dual linear program maxy{b⊤y : A⊤y ≤ c, y ≥ 0}, which is based on the same problem data

(A, b, c), such that the following hold: the minimum of the primal is never smaller than the maxi-

mum of the dual (weak duality), and if either the primal or the dual is feasible then the minimum

of the primal coincides with the maximum of the dual (strong duality) [29]. There is a duality

theory for decision problems of the type P which is strikingly reminiscent of the duality theory for

ordinary linear programs. Following Eisner and Olsen [33], the dual problem corresponding to P
can be defined as

maximize Eξ

(
T∑

t=1

bt(ξ
t)⊤yt(ξ

t)

)

subject to Eξ

(
T∑

s=1

A⊤
stys(ξ

s)
∣∣ ξt
)
≤ ct(ξ

t)

yt(ξ
t)≥ 0





∀ξ ∈ Ξ, t = 1, . . . , T.

(D)

Note that the dual maximization problem D is stated in terms of the same problem data as the

primal minimization problem P. As for ordinary linear programs, dualization transposes the con-

straint matrices and swaps the roles of the objective function and right-hand side coefficients.

Dualization also reverts the temporal coupling of the decision stages in the sense that the sums

in the constraints of D now run over the first index of the constraint matrices. Thus, even if the

conditional expectations are redundant in the primal problem P (that is, if Ats = 0 for all s > t),

the conditional expectations are relevant in the dual problem D (because typically Ats 6= 0 for

s ≤ t). Therefore, in hindsight we realize that the inclusion of conditional expectation constraints

in P was necessary to preserve the symmetry of the employed duality scheme.

As in the case of ordinary linear programming, there exist weak and strong duality results for

problems P and D [33]. In particular, the minimum of P is never smaller than the maximum of D
(weak duality), and if some technical regularity conditions hold, then the minimum of P coincides

with the maximum of D (strong duality).

The symmetry between P and D enables us to solve D with the linear decision rule approach

that was originally designed for P. Indeed, if we model the dual decision rule yt(ξ
t) as a linear
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function of ξt, then it can be expressed as yt(ξ
t) = Ytξ

t for some matrix Yt ∈ R
mt×kt . Substituting

these dual linear decision rules into D yields an approximate problem Dl, which can be shown to

be equivalent to the following tractable linear program.

maximize

T∑

t=1

Tr(PtMP⊤
t B⊤

t Yt)

subject to
T∑

s=1

A⊤
stYsPsMtPt − CtPt= ΦtW, Φth ≤ 0, Φt ≤ 0

YtPt = ΨtW,Ψth ≥ 0,Ψt ≥ 0





∀t = 1, . . . , T.

(D̃l)

The decision variables in D̃l are the entries of the matrices Yt ∈ R
mt×kt , Φt ∈ R

nt×l and Ψt ∈ R
mt×l

for t = 1, . . . , T .

In analogy to the primal approximation error ∆u, the dual approximation error can be defined

as ∆l = maxD −max D̃l. As D̃l is a restriction of the maximization problem D, ∆l is necessarily

non-negative. It quantifies the loss of optimality of the best linear dual decision rule with respect

to the best general dual decision rule. Unfortunately, ∆l is usually unknown as its computation

would require the solution of the original dual decision problem D. However, the joint primal and

dual approximation error ∆ = min P̃u − max D̃l is efficiently computable; it merely requires the

solution of two tractable finite linear programs. Note that ∆ constitutes indeed an upper bound

on both ∆u and ∆l since

∆ = min P̃u −max D̃l

= min P̃u −minP +minP −maxD +maxD −max D̃l

= ∆u +minP −maxD +∆l

≥ ∆u +∆l,

where the last inequality follows from weak duality.

We conclude that for any decision problem of the type P the best primal and dual linear decision

rules can be computed efficiently by solving tractable finite linear programs. The corresponding

approximation errors are bounded by ∆, which can also be computed efficiently. Moreover, the

optimal values of the approximate problems P̃u and D̃l provide upper and lower bounds on the
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optimal value of the original problem P, respectively.

4 Non-linear Decision Rules

A large value of ∆ indicates that either the primal or the dual approximation (or both) are inade-

quate. If the loss of optimality of linear decision rules is unacceptably high, modelers will endeavor

to find a less conservative (but typically more computationally demanding) approximation. Ideally,

one would choose a richer class of decision rules over which to optimize.

In this section we show that the techniques developed for linear decision rules can also be used

to optimize efficiently over more flexible classes of non-linear decision rules. The underlying theory

has been developed in a series of recent publications [7, 27, 39, 41]. We will motivate the general

approach first through an example.

Example 4.1. Assume that a two-dimensional random vector ξ = (ξ1, ξ2) is uniformly distributed

on Ξ = {1} × [−1, 1]. This choice of Ξ satisfies the standard assumption that ξ1 = 1 for all ξ ∈ Ξ.

Any scalar linear decision rule is thus representable as x(ξ) = X1ξ1 + X2ξ2, where X1 denotes

a constant offset (since ξ1 is equal to 1 with certainty), while X2 characterizes the sensitivity of

the decision with respect to ξ2; see Figure 4 (left). To improve flexibility, one may introduce a

breakpoint at ξ2 = 0 and consider piecewise linear continuous decision rules that are linear in ξ2 on

the subintervals [−1, 0] and [0, 1], respectively. These decision rules are representable as

x(ξ) = X ′
1ξ1 +X ′

2 (min{ξ2, 0}) +X ′
3 (max{ξ2, 0}) , (4.5)

where X ′
1 denotes again a constant offset, while X ′

2 and X ′
3 characterize the sensitivities of the

decision with respect to ξ2 on the subintervals [−1, 0] and [0, 1], respectively; see Figure 4 (center).

We can now define a new set of random variables ξ′1 = ξ1, ξ
′
2 = min{ξ2, 0} and ξ′3 = max{ξ2, 0},

which are completely determined by ξ. In particular, the support for ξ′ = (ξ′1, ξ
′
2, ξ

′
3) is given by

Ξ′ = {ξ′ ∈ R
3 : ξ′1 = 1, ξ′2 ∈ [−1, 0], ξ′3 ∈ [0, 1], ξ′2ξ

′
3 = 0}. Note also that ξ′ is uniformly

distributed on Ξ′. We will henceforth refer to ξ′ as the lifted random vector as it ranges over a

higher-dimensional ‘lifted’ space. Moreover, the function

L(ξ) = (L1(ξ), L2(ξ), L3(ξ)) = (ξ1,min{ξ2, 0},max{ξ2, 0}),
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Figure 4. Illustration of the linear and piecewise linear decision rules in the original and the

lifted space. Note that the set Ξ′ = L(Ξ) is non-convex, represented by the thick line in the

right diagram. Since the decision rule x′(ξ′) is a linear function of the random parameters ξ′,

however, it is non-negative over Ξ′ if and only if it is non-negative over the convex hull of Ξ′,

which is given by the dark shaded region.

which maps ξ to ξ′, will be referred to as a lifting. By construction, the piecewise linear decision

rule (4.5) in the original space is equivalent to the linear decision rule x′(ξ′) = X ′
1ξ

′
1+X ′

2ξ
′
2+X ′

3ξ
′
3

in the lifted space; see Figure 4 (right). Moreover, due to the linearity of x′(ξ′) in ξ′, the decision

rule x′(ξ′) is non-negative over the non-convex set Ξ′ if and only if x′(ξ′) is non-negative over the

convex hull of Ξ′. Similarly, x′(ξ′) satisfies an arbitrary linear inequality (with constant coefficients

and with intercepts that are linear in ξ′) uniformly over the non-convex set Ξ′ if and only if x′(ξ′)

satisfies the same inequality uniformly over the convex hull of Ξ′. We can therefore replace the

non-convex support Ξ′ in the lifted space with its (polyhedral) convex hull, which can be represented

as an intersection of halfspaces as required in Section 2.1. Hence, all techniques developed for linear

decision rules can also be used for piecewise linear decision rules of the form (4.5). Recipes for

constructing more flexible piecewise linear decision rules are reported in [39, Section 4] and [41,

Section 4]. More general non-linear decision rules are discussed in [39, Section 5].

To solve a general decision problem of the type P in non-linear decision rules, we define a lifting

operator

L(ξ) = (L1(ξ1), . . . , LT (ξT )) ,

where each Lt(ξt) represents a continuous function from R
kt to R

k′t for some k′t ≥ kt. Using the
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lifting operator, we can construct a lifted random vector ξ′ = (ξ′1, . . . , ξ
′
T ) ∈ R

k′ , where ξ′t = Lt(ξt),

t = 1, . . . , T , and k′ = k′1 + · · ·+ k′T . The distribution of the lifted random vector ξ′ is completely

determined by that of the primitive random vector ξ, and the support of ξ′ can be defined as

Ξ′ = L(Ξ). As for the primitive uncertainties it proves useful to define observation histories

ξ′t = (ξ′1, . . . , ξ
′
t) ∈ R

k′t , k′t = k′1 + · · · + k′t, and truncation operators P ′
t : Rk′ → R

k′t which

map ξ′ to ξ′t, respectively. Our goal is to solve problem P in non-linear decision rules of the form

xt(ξ
t) = X ′

tP
′
tL(ξ), which constitute linear combinations of the component functions of the lifting

operator. The matrices X ′
t ∈ R

nt×k′t contain the coefficients of these linear combinations, while the

truncation operators P ′
t eliminate those components of L(ξ) that depend on the future uncertainties

ξt+1, . . . , ξT , thereby ensuring non-anticipativity. By construction, the non-linear decision rules

xt(ξ
t) = X ′

tP
′
tL(ξ) depending on the primitive uncertainties are equivalent to linear decision rules

x′t(ξ
′t) = X ′

tξ
′t depending on the lifted uncertainties. Note that ordinary linear decision rules in

the primitive uncertainties can be recovered by choosing a trivial lifting operator L(ξ) = ξ.

For the further argumentation we require that the lifting preserves the degeneracy of the first

random parameter, that is, ξ′1 = 1 for all ξ′ ∈ Ξ′. Moreover, we assume that there is a linear

retraction operator

R(ξ′) = (R1(ξ
′
1), . . . , RT (ξ

′
T )) ,

which allows us to express the primitive random vector ξ as a linear function of the lifted random

vector ξ′. To this end, we assume that each Rt represents a linear function from R
k′t to R

kt . The

best non-linear decision rule can then be computed by solving the following optimization problem.

minimize Eξ′

(
T∑

t=1

ct(PtR(ξ′))⊤X ′
tP

′
tξ

′

)

subject to Eξ′

(
T∑

s=1

AtsX
′
sP

′
sξ

′
∣∣ ξt
)
≥ bt(PtR(ξ′))

X ′
tP

′
tξ

′≥ 0





∀ξ′ ∈ Ξ′, t = 1, . . . , T

(P ′u)

Note that the observation histories in the objective function and in the right-hand side coefficients

have been expressed as ξt = Ptξ = PtR(ξ′). The optimization variables in P ′u are the entries

of the matrices X ′
t ∈ R

nt×k′t . The key observation is that the approximate problems P ′u and
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Pu have exactly the same structure. The only difference is that Ξ′ = L(Ξ) is typically not a

polyhedron because of the non-linearity of the lifting operator. In the following, we assume that

an exact representation (or outer approximation) of the convex hull of Ξ′ is available in the form

of l′ inequality constraints:

Ξ̂ := {ξ′ ∈ R
k′ : W ′ξ′ ≥ h′},

where conv Ξ′ = Ξ̂ (exact representation) or conv Ξ′ ⊂ Ξ̂ (outer approximation). Such representa-

tions can be determined efficiently for polyhedral supports, see [39]. The non-linear decision rule

problem P ′u can then be transformed into a tractable linear program in the same way as the linear

decision rule problem Pu was converted to P̃u, see Section 3.

minimize
T∑

t=1

Tr(P ′
tM

′R⊤P⊤
t C⊤

t X ′
t)

subject to

T∑

s=1

AtsX
′
sP

′
sM

′
tP

′
t −BtPtR= ΛtW

′,Λth
′ ≥ 0,Λt ≥ 0

X ′
tP

′
t = ΓtW

′, Γth
′ ≥ 0, Γt ≥ 0





∀t = 1, . . . , T

(P̃ ′u)

Here, the matrix R ∈ R
k×k′ is defined through Rξ′ = R(ξ′) for all ξ′ ∈ Ξ′, M ′ = Eξ′(ξ

′ξ′⊤) ∈ R
k′×k′

denotes the second order moment matrix associated with ξ′, and the conditional expectations are

assumed to satisfy Eξ′(ξ
′|ξ′t) = M ′

tξ
′t for some matrices M ′

t ∈ R
k′×k′t and all ξ′ ∈ Ξ′. The decision

variables in P̃ ′u are the entries of the matrices X ′
t ∈ R

nt×k′t , Λt ∈ R
mt×l′ and Γt ∈ R

nt×l′ for

t = 1, . . . , T .

Similarly, we can measure the suboptimality of non-linear decision rules by solving the following

dual approximate problem (see Section 3.2).

maximize

T∑

t=1

Tr(P ′
tM

′RP⊤
t B⊤

t Y
′
t )

subject to

T∑

s=1

A⊤
stY

′
sP

′
sM

′
tP

′
t − CtPtR= ΦtW

′, Φth
′ ≤ 0, Φt ≤ 0

Y ′
t Pt = ΨtW

′,Ψth
′ ≥ 0,Ψt ≥ 0





∀t = 1, . . . , T

(D̃l)

The decision variables of this problem are the entries of the matrices Y ′
t ∈ R

mt×k′t , Φt ∈ R
nt×l′ and

Ψt ∈ R
mt×l′ for t = 1, . . . , T . One can show that the finite-dimensional primal approximation P̃ ′u
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Figure 5. Relationship between the primal bounds P̃u

i
and the dual bounds D̃l

i
for an

exact representation of conv Ξ′ (i = 1) and an outer approximation of conv Ξ′ (i = 2).

is equivalent to the semi-infinite primal problem P ′u if Ξ̂ coincides with conv Ξ′, and P̃ ′u provides

an upper bound on the optimal value of P ′u if Ξ̂ is an outer approximation of conv Ξ′. Likewise,

the finite-dimensional dual approximation D̃′l is equivalent to the semi-infinite dual problem D′l

(not shown here) if Ξ̂ coincides with conv Ξ′, and D̃′l provides a lower bound on the optimal value

of D′l if Ξ̂ is an outer approximation of conv Ξ′. In particular, the finite-dimensional approximate

problems P̃ ′u and D̃′l still bracket the optimal value of the problem P in non-linear decision rules

if we employ an outer approximation Ξ̂ of the convex hull of Ξ′. The situation is illustrated in

Figure 5.

5 Incorporating Integer Decisions

Optimization problems often involve decisions that are modeled through integer variables. These

problems are still amenable to the decision rule techniques described in Sections 3 and 4 if the

integer variables do not depend on the uncertain problem parameters ξ. In order to substantiate

this claim, we consider a variant of problem P in which the right-hand side vectors of the constraints

may depend on a vector of integer variables z ∈ Z
d.

minimize Eξ

(
T∑

t=1

ct(ξ
t)⊤xt(ξ

t)

)

subject to z ∈ Z

Eξ

(
T∑

s=1

Atsxs(ξ
s)
∣∣ ξt
)

≥ bt(z, ξ
t)

xt(ξ
t) ≥ 0





∀ξ ∈ Ξ, t = 1, . . . , T

(PMI)
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As usual, we assume that bt(z, ξ
t) depends linearly on ξt, that is, bt(z, ξ

t) = Bt(z)ξ
t for some matrix

Bt(z) ∈ R
mt×kt . We further assume that Bt(z) depends linearly on z and that Z ⊂ R

d results from

the intersection of Zd with a convex compact polytope.

In order to apply the decision rule techniques from Sections 3 and 4 to PMI, we study the para-

metric program P(z), which is obtained from PMI by fixing the integer variables z. By construction,

P(z) is a decision problem of the type P, which is bounded above and below by the linear programs

P̃u(z) and D̃l(z) associated with the primal and dual linear decision rule approximations, respec-

tively. Thus, an upper bound on PMI is obtained by minimizing the optimal value of P̃u(z) over all

z ∈ Z. The resulting optimization problem, which we denote by P̃u
MI, represents a mixed-integer

linear program (MILP).

minimize

T∑

t=1

Tr(PtMP⊤
t C⊤

t Xt)

subject to z ∈ Z
T∑

s=1

AtsXsPsMtPt −Bt(z)Pt= ΛtW,Λth ≥ 0,Λt ≥ 0

XtPt = ΓtW, Γth ≥ 0, Γt ≥ 0





∀t = 1, . . . , T

(P̃u
MI)

Similarly, a lower bound on PMI is obtained by minimizing the optimal value of D̃l(z) over all

z ∈ Z. The resulting min-max problem has a bilinear objective function that is linear in the

integer variables z and in the coefficients of the dual decision rules Yt. In order to convert this

problem to an MILP, we follow the exposition in [53] and dualize D̃l(z). One can show that strong

duality holds whenever the original problem PMI is feasible. By construction, we thus obtain a

lower bound on PMI minimizing the dual of D̃l(z) over all z ∈ Z. The resulting optimization

23



problem, which we denote by P̃ l
MI, again represents an MILP.

minimize
T∑

t=1

Tr(PtMP⊤
t C⊤

t Xt)

subject to z ∈ Z
T∑

s=1

AtsXsPsMtPt + StPt = Bt(z)Pt

(
W − h e⊤1

)
MP⊤

t X⊤
t ≥ 0

(
W − h e⊤1

)
MP⊤

t S⊤
t ≥ 0





∀t = 1, . . . , T

(P̃ l
MI)

The optimization variables in P̃ l
MI are the matrices Xt ∈ R

nt×kt and St ∈ R
mt×kt , as well as the

binary variables z ∈ Z. Problem PMI is also amenable to the refined approximation methods based

on piecewise linear decision rules as discussed in Section 4. Further details can be found in [39].

Remark 5.1. We assumed that the integer decisions z in problem PMI do not impact the coefficients

ct(·) and A of the objective function and the constraints, respectively. It is straightforward to apply

the techniques presented in this section to a generalized problem where the objective function and

constraint coefficients depend linearly on z. Using a Big-M reformulation, the resulting primal and

dual approximate problems can again be cast as MILPs.

6 Case Studies

In the following, we apply the decision rule approach to two well-known operations management

problems, and we compare the method with alternative approaches to account for data uncertainty.

All of our numerical results are obtained using the IBM ILOG CPLEX 12 optimization package on

a dual-core 2.4GHz machine with 4GB RAM [1].

6.1 Production Planning

Our first case study concerns a medium-term production planning problem for a multiproduct plant

with uncertain customer demands and backlogging. We assume that the plant consists of a single

processing unit that is capable of manufacturing different products in a continuous single-stage

process. We first elaborate a formulation that disregards changeovers, and we afterwards extend

the model to sequence-dependent changeover times and costs.
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Figure 6. Temporal structure of the production planning model. The decisions with subscript
t may depend on all demands realized in weeks 1, . . . , t.

We wish to determine a production plan that maximizes the expected profit for a set of products

I and a weekly planning horizon T = {1, . . . , T}. To this end, we denote by pti the amount of

product i ∈ I that is produced during week t ∈ T \ {T}. The processing unit can manufacture

ri units of product i per hour, and it has an uptime of R hours per week. At the beginning of

each week t ∈ T , we observe the demand ξti that arises for product i during week t. We assume

that the demands ξ1i in the first week are deterministic, while the other demands ξti, t > 1, are

stochastic. Having observed the demands ξti, we then decide on the quantity sti of product i that

we sell during week t at a unit price Pti. We also determine the orders bti for product i that we

backlog during week t at a unit cost CB ti. We assume that the sales sti in week t must be served

from the stock produced in week t− 1 or before. Once the sales decisions sti for week t have been

made, the inventory level Iti for product i during week t is known. Each unit of product i held

during period t leads to inventory holding costs CI ti, and we require that the inventory levels Iti

satisfy the lower and upper inventory bounds Iti and Iti, respectively. Deterministic versions of

this problem have been studied in [26, 56]. For literature surveys on related production planning

problems, we refer to [34, 80]. The temporal structure of the problem is illustrated in Figure 6.
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We can formulate the production planning problem as follows.

maximize E

[
∑

t∈T

∑

i∈I

Ptisti(ξ
t)− CB tibti(ξ

t)− CI tiIti(ξ
t)

]

subject to
∑

i∈I

pti(ξ
t)/ri ≤ R

pti(ξ
t) ≥ 0 ∀i ∈ I





∀t ∈ T \ {T}

bti(ξ
t) = bt−1,i(ξ

t−1) + ξti − sti(ξ
t)

Iti(ξ
t) = It−1,i(ξ

t−1) + pt−1,i(ξ
t−1)− sti(ξ

t)



 ∀t ∈ T \ {1} , ∀i ∈ I

b1i(ξ
t) = b0i + ξ1i − s1i(ξ

1), I1i(ξ
t) = I0i − s1i(ξ

1)

bti(ξ
t) ≥ 0, sti(ξ

t) ≥ 0, Iti ≤ Iti(ξ
t) ≤ Iti ∀t ∈ T , ∀i ∈ I

We require the constraints to be satisfied for all realizations ξ ∈ Ξ of the uncertain customer

demands. The parameters b0i and I0i specify the initial backlog and inventory, respectively. One

can easily show that the production planning problem is an instance of the problem P studied

in Section 2.1. The same applies to variations of the problem where the prices and/or costs are

uncertain, as well as variations where the product demand is only known at the end of each week.

For the sake of brevity, we disregard these variants here.

So far, our production planning problem does not account for changeovers between consecutively

manufactured products. Frequent changeovers are undesirable as the involved clean-up, set-up

and start-up activities result in both delays and costs. To incorporate changeovers, we follow the

approach presented in [56] and introduce binary variables ctij , t ∈ T \{T} and i, j ∈ I, that indicate
whether a changeover from product i to product j occurs in week t. Likewise, we introduce binary

variables c′tij , t ∈ T \ {T} and i, j ∈ I, that indicate whether a changeover from product i to

product j occurs between weeks t− 1 and t. We set ctii = 0, that is, no changeover occurs during

the manufacturing of product i, and c′1ij = 0 for i, j ∈ I, that is, no changeover is required for the

first product in the first week. Since ctij and c′tij are binary, we must choose the changeovers for all

weeks as a here-and-now decision in our production planning model (see Section 5). Note, however,

that the actual production amounts pti, sales decisions sti and backlogged demands bti remain

wait-and-see decisions that can adapt to the realization of the uncertain customer demands ξt.
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Figure 7. The definition of the changeover variables ctij and c′tij is enforced through the
auxiliary variables ytj , otj and ftj , ltj .

Our interpretation of the changeover variables ctij and c′tij is enforced as follows.

∑

i∈I

ctij = ytj − ftj

∑

i∈I

ctji = ytj − ltj





∀j ∈ I, ∀t ∈ T \ {T} ,

∑

i∈I

c′tij = ftj

∑

i∈I

c′tji = lt−1,j





∀j ∈ I, ∀t ∈ T \ {1, T} ,

∑

i∈I

fti =
∑

i∈I

lti = 1 ∀t ∈ T \ {T} ,
ftj ≤ ytj

ltj ≤ ytj



 ∀j ∈ I, ∀t ∈ T \ {T} ,

otj ≤ M ytj

ftj ≤ otj ≤
∑

i∈I

yti

otj ≥ oti + 1−M(1− ctij) ∀i ∈ I





∀j ∈ I, t ∈ T \ {T} .

Here, M denotes a sufficiently large constant. The binary variables ytj , ftj and ltj indicate whether

product j is manufactured, manufactured first and manufactured last in week t, respectively, and

the continuous variables otj determine the production order in week t. The changeover variables

and constraints are illustrated in Figure 7.

To incorporate changeovers in our model, we replace the objective function with

E

[
∑

t∈T

∑

i∈I

Ptisti(ξ
t)− CB tibti(ξ

t)− CI tiIti(ξ
t)

]
−

∑

t∈T \{T}

∑

i,j∈I

CC ij

(
ctij + c′tij

)
,

where CC ij represents the costs of a changeover from product i to product j (with CC ii = 0).
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Product 1 Product 2 Product 3 Product 4 Product 5

di 10,000 25,000 30,000 30,000 30,000
Pti 0.25 0.40 0.65 0.55 0.45
CB ti 0.05 0.08 0.13 0.11 0.09
ri 800 900 1,000 1,000 1,200

Table 1. Parameters for the production planning instance. The product prices Pti and
backlogging costs CB ti are assumed to be time-invariant.

Likewise, we replace the first constraint of our production planning model with

∑

i∈I

pti(ξ
t)/ri +

∑

i,j∈I

τij(ctij + c′tij) ≤ R ∀t ∈ T \ {T} ,

where τij denotes the duration of a changeover from product i to product j (with τii = 0). One

readily verifies that the production planning problem with changeover constraints is an instance of

the problem PMI studied in Section 5.

6.1.1 Numerical Results

We consider an instance of the production planning problem with 5 products. The nominal demand

̺ti for product i in week t follows a cyclical pattern:

̺ti =

[
1 +

1

2
sin

(
π(t− 2)

26

)]
di ∀t ∈ T , ∀i ∈ I,

where di denotes the long-term average demand for product i. We model the actual demands ξti as

independent and uniformly distributed random variables with support [(1− θ)̺ti, (1 + θ)̺ti], where

θ denotes the level of uncertainty. We set the weekly uptime of the processing unit to R = 168h,

and we select inventory holding costs CI ti = 3.06 · 10−5 and inventory bounds (Iti, Iti) = (0, 106)

that are independent of the indices t and i. There are no initial inventories I0i or backlogs b0i,

and the remaining problem parameters are defined in Tables 1 and 2. The time horizon T and the

uncertainty level θ are kept flexible.

Consider the production planning problem without changeover constraints. Figure 8 compares

the decision rule approximation with classical scenario-based stochastic programming. The first

two graphs report the gaps between the primal and dual objective values if we employ linear and

piecewise linear decision rules for various time horizons T . The gap amounts to less than 15% for
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(CC ij , τij) Product 1 Product 2 Product 3 Product 4 Product 5

Product 1 (0,0.00) (760,2.00) (760,1.50) (750,1.00) (760,0.75)
Product 2 (745,1.00) (0,0.00) (750,2.00) (770,0.75) (740,0.50)
Product 3 (770,1.00) (760,1.25) (0,0.00) (765,1.50) (765,2.00)
Product 4 (740,0.50) (740,1.00) (745,2.00) (0,0.00) (750,1.75)
Product 5 (740,0.70) (740,1.75) (750,2.00) (750,1.50) (0,0.00)

Table 2. Parameters for the production planning instance (continued).
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5 10 15 20 25 30 35 40 45 50

5

10

15

20

25
SAA

Piecewise linear decision rules
Linear decision rules

Piecewise Linear Decision Rules

0 10 20 30 40 50

0.5

1

1.5

2

2.5

3

x 10
6

Dual approximation

Primal approximation

Linear Decision Rules

0 10 20 30 40 50

0.5

1

1.5

2

2.5

3

x 10
6

Dual approximation

Primal approximation

2 4 6 8

2

4

6

x 10
5

Time StagesTime StagesTime Stages

O
b
je

c
ti
v
e
 V

a
lu

e

T
im

e
 (
h
o
u
rs

)

O
b
je

c
ti
v
e
 V

a
lu

e

Figure 8. Objective values and runtimes for decision rules and scenario-based stochastic
programming. All graphs are based on the uncertainty level θ = 0.2.

linear decision rules, and it can be reduced to about 5% for piecewise linear decision rules with one

breakpoint. The first graph also shows a box-and-whisker plot of the objective values reported by

the scenario-based formulation for 100 statistically independent scenario trees with a branching fac-

tor of two. The third graph illustrates the runtimes required to solve the linear and piecewise linear

decision rule problems, as well as the runtimes required by the scenario-based formulation with a

branching factor of two, three and four. The figure clearly demonstrates that the employed scenario-

based approaches become computationally intractable for problems with many stages and/or a high

branching factor. We remark, however, that even a branching factor of four is very small for a prob-

lem with five random variables per time stage. Indeed, a branching factor of at least six is required

to avoid perfect correlations among the product demands. The problem formulation using decision

rules, on the other hand, can be solved for planning horizons of 52 weeks and more.

Consider now the production planning problem with changeover constraints. We want to com-

pare our stochastic problem formulation with a deterministic model that replaces the uncertain

customer demands ξti with their expected values ̺ti. To this end, we consider a time horizon of

52 weeks and solve both models in a rolling horizon implementation over a reduced time horizon

T = {1, . . . , 4}. At the beginning of each of the 52 weeks, we observe the random demands ξti.
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Figure 9. Comparison of piecewise linear decision rules (‘stochastic’, using one break-
point) with a deterministic production planning model in a backtest.

We then solve the deterministic and the stochastic model over four weeks. In both models, we

set the initial backlogs b0i and the initial stocks I0i to the corresponding values at the end of the

previous week, and we adapt the models to account for the initial changeovers c′1ij . We implement

the first-stage decisions of both models and repeat the process for the next set of demands ξt+1,i.

Figure 9 shows the average cumulative profit achieved by the deterministic and the stochastic model

over 100 repetitions of this backtest. The deterministic production planning model performs only

slightly worse than the stochastic formulation if the uncertainty level θ is small. For larger values

of θ, however, it becomes essential to properly account for the random nature of the customer

demands.

6.2 Supply Chain Design

Our second case study investigates the design of multi-echelon supply chains under demand un-

certainty. The supply chain produces a single product, and it consists of one production facility

and multiple warehouses and distribution centers. The product is manufactured at the production

facility, and it is shipped first to the warehouses and then to the distribution centers. Customer

demands only arise at the distribution centers, and we do not allow direct deliveries from the pro-

duction facility to the distribution centers. We assume that the locations of the production facility

and the distribution centers are given, whereas there are multiple candidate locations for the ware-

houses. We denote by I and J the index sets of candidate warehouse locations and distribution

centers, respectively. We want to build at most K warehouses, 0 < K < |I|, such that the resulting

supply chain minimizes the sum of investment and expected transportation costs.

We consider a steady-state version of the problem that disregards accumulation or depletion of
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Figure 10. Structure of the supply chain. Shaded nodes represent the existing produc-
tion site and distribution centers, and unshaded nodes represent candidate locations for
warehouses.

stocks. This simplification is motivated in [52, 70, 76], and it allows us to formulate the problem as

a two-stage stochastic program. In the first stage of this problem, we determine the location and

the capacities of the warehouses. To this end, we define binary variables xi ∈ {0, 1}, i ∈ I, with
the interpretation that xi = 1 if a warehouse is built at candidate location i and xi = 0 otherwise.

Likewise, we denote the capacity of the warehouse at location i ∈ I by ci. The capacity of each

individual warehouse must not exceed c, and the overall capacity of the warehouses is bounded

above by C. We assume that the construction of warehouse i incurs investment costs CI ici that

are proportional to its capacity ci.

At the beginning of the second stage, we observe the customer demands ξj arising at each

distribution center j ∈ J . Since our stochastic program only consists of two stages, we notationally

suppress the time stage at which the demands are realized. Once we have observed the customer

demands, we select the shipments fi from the production facility to each warehouse i ∈ I, as well as
the shipments gij from the warehouses i ∈ I to the distribution centers j ∈ J . We assume that the

shipments fi and gij incur linear transportation costs CF ifi and CG ijgij . Deterministic versions

of this supply chain design problem have been studied in [70, 76]. The vast literature on supply

chain design is surveyed, amongst others, in [30, 59, 60, 61]. Figure 10 illustrates the structure of

the supply chain considered in our problem.
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The resulting stochastic program can be formulated as follows.

minimize
∑

i∈I

CI ici + E



∑

i∈I

CF ifi(ξ) +
∑

i∈I

∑

j∈J

CG ijgij(ξ)




subject to
∑

i∈I

xi ≤ K,
∑

i∈I

ci ≤ C

ci ≤ c xi ∀i ∈ I
fi(ξ) ≤ ci,

∑

j∈J

gij(ξ) ≤ fi(ξ) ∀i ∈ I
∑

i∈I

gij(ξ) ≥ ξj ∀j ∈ J

xi ∈ {0, 1} , ci, fi(ξ), gij(ξ) ≥ 0 ∀i ∈ I, ∀j ∈ J

In this problem, we require the constraints to be satisfied for all realizations ξ ∈ Ξ of the uncertain

customer demands. The objective function minimizes the sum of investment and expected trans-

portation costs. The first constraint restricts the total number of warehouses that can be built,

as well as the overall capacity of the warehouses. The second constraint ensures that the individ-

ual warehouse capacity restrictions are met, and it imposes zero capacities at candidate locations

without a warehouse. The third constraint guarantees that the product shipments satisfy flow

conservation and the individual warehouse capacities. Finally, the penultimate constraint requires

that the customer demands are satisfied at each distribution center. One readily verifies that our

supply chain design problem is an instance of the problem PMI studied in Section 5.

6.2.1 Numerical Results

We consider an instance of the supply chain design problem where the production facility is in

London, while the distribution centers are located in the capitals of 40 European countries. We

want to build at most K = 5 warehouses in the capitals of the 10 most populous countries, and the

warehouse capacities must not exceed the individual and cumulative bounds c = 40 and C = 100,

respectively. We disregard investment costs (CI i = 0), and we set the transportation costs CF i

and CG ij to 90% and 100% of the geodesic distances between the corresponding cities.

We assume that the expected demand ̺j at each distribution center j ∈ J is given by the

quotient of the corresponding country’s population and the overall population of the 40 countries.

The actual demand ξj at distribution center j is uncertain, and the demand vector ξ follows a
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uniform distribution with polyhedral support

Ξ =



ξ ∈ R

|J |
+ : ξ ∈ [(1− θ) · 100̺, (1 + θ) · 100̺],

∑

j∈J

ξj = 100



 ,

where the parameter 0 ≤ θ ≤ 1 represents the level of uncertainty. Our support definition expresses

the view that the cumulative customer demands are known, but the geographical breakdown by

country is uncertain. In particular, the demand arising at the capital of country j ∈ J can vary

within θ · 100% of the expected demand ̺j .

Figure 11 and Table 3 illustrate the optimal supply chains for θ = 0 (deterministic demand),

θ = 0.5 and θ = 1. The figure shows that in the deterministic problem, most of the distribution

centers receive their stock from the closest warehouse in order to minimize transportation costs. If

the geographic breakdown of the demand is uncertain, however, such an assignment is no longer

feasible due to the limited warehouse capacities. Instead, each distribution center potentially

receives its stock from different warehouses, and the assignment of warehouses to distribution

centers depends on the demand realization ξ ∈ Ξ. This in turn has a profound impact on the

design of the optimal supply chain. If the customer demands are deterministic (θ = 0), then the

product flows between warehouses and distribution centers are known. In this case, the optimal

supply chain design places the warehouses close to the distribution centers in order to take advantage

of the cheaper transportation costs CF i between the production facility and the warehouses. If

the geographical breakdown of the customer demands is uncertain, however, such a decentralized

warehouse strategy would suffer from costly detours due to the limited warehouse capacities. To

illustrate this, consider the warehouse built in Ankara (for θ ∈ {0, 0.5}), which has the second

largest expected product demand. If the customer demands are subject to significant geographical

uncertainty (θ = 1), then there is a non-negligible chance that a large part of the demand is realized

in western European countries. Due to the overall capacity limitation C = 100, some products

would have to be shipped to Turkey before they are delivered to the distribution centers in Western

Europe, which would incur high transportation costs. To avoid such detours, the optimal supply

chain design adopts a centralized warehouse strategy if customer demands are uncertain.

We solved both instances of the stochastic supply chain design problem (θ ∈ {0.5, 1}) within 10

minutes using linear decision rules. The optimality gap was below 5% (θ = 0.5) and 13% (θ = 1).
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Location θ = 0 θ = 0.5 θ = 1

Berlin 30.3731 0 0
Ankara 11.3988 5.69941 0
Paris 0 19.7618 20

London 40 40 40
Rome 11.3066 0 0
Kiev 0 0 0

Madrid 6.92146 0 0
Warsaw 0 7.58782 0
Bucharest 0 0 0
Amsterdam 0 26.9509 40

Table 3. Installed warehouse capacities for the three uncertainty levels. The cities are ordered
according to their expected product demands.

Better results can be obtained by refining the decision rule approximation. The deterministic

problem was solved within a few seconds.
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Figure 11. Comparison of the supply chain networks for θ = 0 (top chart), θ = 0.5
(middle chart) and θ = 1 (bottom chart). White lines represent the transportation
links between the warehouses and the distribution centers for different realizations of the
uncertain demand.
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