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OF INDUSTRIAL CARBON DIOXIDE EMISSIONS

FOR 287 CHINESE CITIES IN 1998–2009
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UC Berkeley & National Bureau of Economic Research

Weizeng Sun

Jinan University & Tsinghua University

Jianfeng Wu

Fudan University

Siqi Zheng*

Hang Lung Center for Real Estate, Tsinghua University

Abstract. 85% of China’s GHG emissions are attributed to urban economic activities, and this share
is expected to rise given China’s fast urbanization process. This paper provides estimates of city-
level industrial CO2 emissions and their growth rates for all 287 Chinese prefecture-level and above
cities during the years 1998–2009. We decompose the CO2 emission changes into scale, composition
and technique effects. The decomposition results show that these three effects differ significantly
across the three tiers of cities in China. The scale effect contributes to rising CO2 emissions, while
the technique effect leads to declining CO2 emissions in all cities. The composition effect leads
to increasing CO2 emissions in the third-tier cities, while it reduces CO2 emissions in the first and
second-tier cities, due to the relocation of energy-intensive industries from the latter to the former type
of cities. Based on these decomposition results, we identify the separate channels through which the
inflow of FDI and the environmental regulations affect city-level CO2 emissions. The decomposition
framework in our paper can help policy makers and scholars to better understand Chinese cities’
trade-offs between economic growth and environmental goals.

Keywords. Chinese cities; Decomposition; Industrial carbon dioxide

1. Introduction

Urban energy use significantly contributes to climate change. According to the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change (IPCC), urban areas account for between 67% and
76% of global energy consumption and generate about three quarters of global carbon emissions (Creutzig
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et al., 2013). This share is even larger in China where 85% of carbon emissions are attributed to urban
economic activities, and this share will likely increase as China’s urban population is projected to grow
by 240 million over the next 35 years (Liu, 2015).

Industrialization and urbanization have gone hand in hand during China’s rapid economic development.
In the past three decades China has been the ‘The World’s Factory’ (e.g. 40% of the world’s clothes
are ‘Made in China’1), largely driven by the fast growth of export-oriented, labor- and energy-intensive
industries in cities. In urban areas the industrial sector emits much more carbon dioxide than the residential
sector. In 2011, China’s industrial sector consumed about 71% of the country’s total energy, while in the
USA, the manufacturing sector’s share reached a peak of 41% in 1951, and declined to 32% in 2013.2,3

While cities play an important role in shaping China’s CO2 emissions, the patterns and dynamics of
city-level CO2 emissions in China remain largely unexplored due to data unavailability. Some studies
examine the provincial level CO2 emissions across China, but they do not perform disaggregate analysis
at the city level (Wang et al., 2014; Xu and Lin, 2015). A city-level study by Zheng et al. (2010) estimates
household carbon emissions across 74 Chinese cities, and ranks those cities with respect to a standardized
household’s carbon emissions. They find that based on this criterion, even in the dirtiest city (Daqing), a
standardized household produces only one-fifth the emissions compared to those in America’s greenest
city (San Diego). However, such patterns may flip if we look at the industrial carbon emissions in those
cities. A recent report by the PBL Netherlands Environmental Assessment Agency estimates that the
emitted CO2 per GDP (corrected for purchasing power parity) in China reached 650 kg CO2/1000 USD,
which is almost twice as much as that of the USA (330 kg CO2/1,000 USD).4

The first purpose of our paper is to conduct an accounting style decomposition of city-level industrial
carbon dioxide emissions growth into three separate effects: the scale, composition and technique effects.
In line with Copeland and Taylor (2004), these three effects work together to determine the total energy
consumption, and thus CO2 emissions, for a city’s industrial sector. Scale refers to the output located in
a city while composition refers to a city’s industry mix and the vintage of its capital stock. Technique
represents energy consumption per unit of economic activity. We do such decomposition work for Chinese
prefecture-level and above cities during the period of 1998–2009. China has 287 prefecture-level and above
cities, which vary significantly in population size and productivity level. Following the city classification
method in OECD (2005), we group them into three tiers based on city size and economic development
stage: 4 first-tier cities (Beijing, Shanghai, Guangzhou and Shenzhen), 31 second-tier cities including
capital cities across all provinces in China and 252 third-tier cities (all the other prefecture-level cities).
This decomposition exercise helps us better understand how cities behave differently according to the
dynamics of their industrial carbon dioxide emissions.

The second goal of our paper is to gain a better understanding of the environmental consequences of
the influx of FDI and environmental regulations. We do this by examining their impacts on the scale,
composition and technique effects for the industrial CO2 emission growth path. The relationship between
FDI and a city’s (local and global) pollution is ambiguous, depending on two competing forces (Copeland
and Taylor, 2004). The first is the raw scale of capital investment such as heavy machines and construction
equipment in factories. This should lead to a positive effect of FDI on CO2 emissions (‘pollution haven’
hypothesis). On the other hand, FDI may help a city to upgrade the quality of its capital stock and such
technique effect may translate into lower energy consumption and CO2 emissions. The optimistic case
would be more likely if new capital is significantly cleaner than older durable capital. Therefore the
decomposition analysis will help us determine whether the scale or the technique effect dominates the
impact of FDI inflow on the industrial CO2 emissions trend in urban China.

Where firms locate is both a function of the natural advantages of different geographic areas and of
the regulatory policies and incentives offered by different local governments. Local governments who
are aware of this strategic dynamic must decide whether to enforce regulations and pay the price of
losing some mobile dirty jobs or to enjoy the environmental gains of deindustrializing. A strand of the
literature on environmental regulation has documented that differential enforcement of pollution regulation
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encourages industrial migration to areas featuring laxer regulation (Kahn, 1997; Becker and Henderson,
2000; Greenstone, 2002; Kahn and Mansur, 2013). In the richer first-tier and some of the second-tier
cities, Chinese local governments are starting to enforce stricter environmental regulations (Zheng and
Kahn, 2013). Based on our decomposition results, we are able to explore how typical environmental
regulations affect a city’s industrial pollution via these three channels – losing dirty firms (both scale and
composition effects) or encouraging incumbent firms to improve their technology (technique effect).

The remainder of this paper is organized as follows: Section 3.2.1.2 surveys the relevant literature.
Section 3.2.1.3 presents the decomposition analysis of CO2 emissions across cities in China. Section 4
investigates the impacts of FDI and environmental regulations on the changes in CO2 emissions and its
decomposed parts. Section 5 concludes.

2. Survey of Related Literature

2.1 Scale, Composition, Technique Effects and the Decomposition Methodology

A change in energy consumption, pollution and carbon dioxide emissions can be decomposed into three
channels: the scale effect, the composition effect and the technique effect (see Copeland and Taylor,
1994, 2003; Grossman and Krueger, 1995; Antweiler et al., 2001; Managi et al., 2009). The scale effect
measures the effect on pollution of an increase in the economy size that results from income-driven growth
in production. Other things being equal, a positive scale effect means that rising industrial output will
drive up CO2 emissions. Managi et al. (2009) find a positive effect of trade openness on CO2 emissions
for non-OECD countries, providing suggestive evidence of the scale effect from trade-driven increases
in industrial production. The second is the composition effect, which measures the impacts of a change
in industrial composition. This effect could be positive or negative, depending on the abundance of
resources and the strength of environmental policy of the economy. For instance, a shift in an economy
from relatively clean service industries towards relatively dirty ones such as steel and cement production
is considered a composition effect and will lead to an increase in energy consumption and CO2 emissions.
Moreover, the composition effect may also be positive if more stringent environmental regulations increase
costs and drive out polluting firms. A recent study by Zheng and Kahn (2013) shows that the rising costs
and tighter environmental standards – especially for carbon dioxide and sulfur dioxide emissions – in the
large Chinese cities have pushed those heavily polluting manufacturers to shut down their factories or to
relocate them to other places with laxer environmental regulations.

The third one is the technique effect, which relates to the change in the production technique of a given
industry. All else being equal, if the manufacturers in an industry adopt more efficient environmentally
friendly production methods and improve management quality, it will induce a negative technique effect,
thus reducing energy consumption and CO2 emissions per unit of economic activity within this industry.
Shapiro and Walker (2015) find that the observed decrease in nitrogen oxide emissions (NOx) in the USA
during the period of 1990–2008 is more attributable to falling pollution per unit of output within industries
at a more disaggregated level, suggesting the existence of a technique effect in those industries. A study
focusing on China by Zhang (2012) finds that the changes in input mix, sector energy intensity, fuel
mix and carbon intensity of fuels can offset the increasing trade-induced carbon emissions in twenty-six
sectors including agriculture, mining, manufacturing and service industries. His analysis provides some
evidence that the technique effect contributes to mitigating pollution emissions arising from the energy
consumption by trade-oriented sectors.

The decomposition of energy consumption, pollution and CO2 emission changes into scale, composition
and technique effects can be found in several studies. Some of them rely on the Divisia index method
(Lin and Chang, 1996; Viguier, 1999). Another avenue makes use of structural decomposition analysis
(SDA) based on input-output tables. This line of decomposition methods is based on regression analysis
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performed on aggregate data, and is often referred to as a ‘top-down’ approach. Twenty years ago,
Grossman and Krueger (1995) introduced scale, composition and technique effects into the trade and the
environment literature by developing a bottom-up approach, which relies on disaggregated emission and
economic activity data.

Many studies have applied this ‘bottom-up’ approach to investigate the air-pollution dynamics using
both cross-country and within-country data. For example, using data of sulfur dioxide concentrations
across 293 cities in 44 countries from the Global Environment Monitoring Project over the period 1971–
1996, Antweiler et al. (2001) decompose the pollution impacts of free trade into scale (GDP), composition
(capital-labor endowment ratios), and technique effects. They regress pollution concentrations on
representative variables of the above three effects. They attempt to distinguish between the pollution
impacts of income changes brought on by international trade from those created by factor accumulation.
Their empirical results show a positive scale effect, a negative technique effect and a negative composition
effect. The composition effect caused by trade is found to vary across countries depending on relative
income and factor endowments. Dean (2002) applies this decomposition framework to estimate the
effect of trade openness on water pollution at the provincial level in China from 1987 to 1995. She
estimates a two-equation model in which trade has both a direct effect on environmental quality through a
composition effect and an indirect effect through an induced technique effect. She finds that the inflow of
pollution-intensive industries aggravates environmental damage in China, but openness tends to reduce the
environmental costs through stronger regulation as trade-induced income increases. Shapiro and Walker
(2015) recently explained the decline of air pollution in the USA between 1990 and 2008 by utilizing this
bottom-up decomposition approach. Following this decomposition methodology, this paper examines the
change in CO2 emissions in the context of China for a large number of cities and with more disaggregated
sub-sectors in Section 3.2.1.3.

2.2 The Impact of FDI and Environmental Regulation on Industrial CO2 Emissions

The decomposition framework allows scholars to better understand the dynamics and the underlying
mechanisms of industrial CO2 emissions at a geographic level (national, state/provincial, or city). In
this paper we focus on two underlying forces, FDI and environmental regulation, and examine how
they affect the three decomposition effects, thus shaping CO2 emissions dynamics. Existing studies
show mixed empirical findings on their effects since they examine different samples in different study
periods. Moreover, current studies lack of a clean identification strategy to separate the different channels.
Our analysis attempts to improve upon the literature by explicitly looking at their impacts on all three
decomposition effects. We first survey the related literature.

2.2.1 FDI

Previous studies have highlighted the role played by the influx of FDI on local environmental quality
in China. Ex ante, there are two different possible channels associated with urban FDI inflows. One
possibility is that cities experiencing increased FDI inflows become dirtier as the scale of industrial
production increases and the composition of industries tilts towards dirtier heavy manufacturing. In a
system of cities where foreign investors can choose between many cities within a developing country,
they may seek out cities with laxer environmental regulation. This is a pollution haven effect (Copeland
and Taylor, 2004). The empirical analyses by He (2006, 2009) show that pollution (which should be
positively correlated with CO2 emissions) and FDI are positively correlated in China as FDI increases
industrial output and pushes up carbon emissions.

The other possibility is that FDI reduces energy consumption and thus CO2 emissions in a city because
such new capital from western countries helps to modernize the capital stock, leading to a technique
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effect. Zheng et al. (2010) use data across 35 major Chinese cities for the years 2003–2006 and report a
negative correlation between a city’s FDI influx and its ambient air pollution levels. Wang and Jin (2007)
find that foreign firms exhibit better environmental performance than state-owned and privately owned
firms as they adopt cleaner techniques in production.

Therefore we predict that the impact of the inflow of FDI on pollution varies across cities depending
on whether the technique effect can outpace its scale effect, and the direction of its composition effect.
We will use our decomposition results to explicitly test this hypothesis in Section 4.

2.2.2 Environmental Regulations

The current literature argues that local officials’ incentives and efforts to regulate pollution vary across
different regions and cities in China. Van Rooij and Lo (2010) show that the more developed cities in
coastal China have more stringent environmental regulations. Zheng et al. (2014) also find that people in
richer cities in China are willing to pay more for the clean environment and this incentivizes their local
leaders to pursue more stringent environmental regulations. In China, as in the rest of the world, regulators
rely on two types of environmental regulation: one is a standards-driven administrative intervention such as
stipulation of scrubber installment (Xu et al., 2009); the second relies on economic incentives including
pollution levy (Wang and Wheeler, 2005; Lin, 2013) and more recently local cap and trade markets
(Auffhammer and Gong, 2015).

Stringent environmental regulations will cause regulated firms to bear compliance costs, and this will
push them to either improve their production technology (technique effect), or locate to regions with
laxer regulations, known as the pollution haven hypothesis (scale and composition effects). The empirical
studies of US manufacturing provide evidence that manufacturing firms tend to move to less regulated
areas (Henderson, 1996; Berman and Bui, 2001a, 2001b; Greenstone, 2002). In China, mayors of big
coastal cities face incentives leading them to drive dirty firms out of their cities, whereas the city mayors
in under-developed areas welcome them because of the investment, job opportunities and fiscal revenue
brought by those energy-intensive manufacturers. The recent literature shows that the city mayors in
inland China face incentives to accept large firms’ heavy pollution in return for the generation of local tax
revenue, jobs and economic growth (see Yu et al., 2013; Jiang et al., 2014). Moreover, relocation of dirty
firms due to tight pollution regulation has been found to take place both across regions and within regions
in China. For instance, Guangdong province is subsidizing polluting firms in the Pearl River Delta to
relocate to the northern part of the province and Jiangsu province drives those firms to the north-Jiangsu
(Subei) area. These moves reflect the provincial governments’ strategy to green the big city by moving
dirty industrial activities further from the major population centers and to narrow income gaps across
cities by spreading wealth to the poor underperforming areas (Zheng and Kahn, 2013; Cai et al., 2016).
Again, our decomposition results will help us look into the above channels, which may be different across
different tiers of cities.

3 Decomposition of Carbon Dioxide Emissions in Chinese Cities

3.1 Decomposition Framework

Following the recent literature (e.g. Shapiro and Walker, 2015), we decompose the change in a city’s
industrial CO2 emissions into scale, composition and technique effects. Let xkit be the output measure
(we use value-added in this paper) for industry i in city k in year t, ekit be the CO2 emission intensity per
unit of output. Then, CO2 emissions for city k in year t, Pkt, is given by

Pkt =
∑

i
xki t · ekit (1)
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Let Xkt be the total output for all industries in city k in year t and θ kit the output share of industry i in city
k in year t. Then Equation (1) can be rewritten as follows:

Pkt = Xkt ·
∑

i
θki t · ekit (2)

or in vector notation:

P = Xθ ′e (3)

where θ and e are M × 1 vectors that include the each industrial activity’s output share and its pollution
intensity, respectively, and M is the number of industries in a given city.

By total differentiation of Equation (3), the change in CO2 emissions can be decomposed into the
following expression:

�Pkt = �Xkt ·
∑

i
θki t · ekit + Xk,t−1 ·

∑
i
�θki t · ekit + Xk,t−1 ·

∑
i
θki,t−1 · �ekit (4)

In Equation (4), the first term of RHS is the scale effect, measuring the impact of the increased size of total
output on CO2 emissions, holding industrial composition and emission intensities of all industries constant.
The second term is the composition effect, measuring how the change in the industrial composition affects
CO2 emissions, holding the scale and emission intensities constant. The last term is the technique effect,
capturing the effect of the changes in emission intensities on CO2 emissions, holding the scale and
composition effects constant.

3.2 Data Issues

To conduct the decomposition analysis, we need to econometrically estimate three key parameters in
Equation (4): Xkt, θ kit, ekit. In this paper, we consider 44 sub-sectors (See Appendix A) across 287
prefecture-level-and-above cities in China during the time period of 1998–2009.5 The finer level of
industrial disaggregation can help us to better understand the changes in industrial composition and how
such changes matter for our decomposition results (Sinton and Levine, 1994; Fisher-Vanden et al., 2004).
The terms Xkt and θ kit can be estimated by using the industrial production data from the database of
Annual Survey of Industrial Firms (ASIFs) (for the manufacturing sector)6 and from the China’s Urban
Statistical Yearbooks (for construction and service sectors).

3.2.1 Data Sources

We now list the data sources we use to construct our database of CO2 emissions by city and industry for
the 1998–2009 period in China. This emissions database is combined with production and energy data to
carry out our decomposition exercise.

3.2.1.1 Output data. In this analysis, we measure carbon dioxide emission intensity by CO2 emissions
per unit of value added instead of gross output. The reason is that double counting problem inherent in
the gross output measure may lead to inconsistent aggregation at the sector level (Ma and Stern, 2008).
The value added at the sub-sectoral levels in the manufacturing sector is calculated by aggregating the
firm-level value added data. The firm-level data are collected from the Annual Survey of Industrial Firms
(ASIFs) dataset released by National Bureau of Statistics (NBS) from 1998 to 2009. All the value added
data are converted to constant 1998 prices. The value added for the construction and service industries
and their related sub-sectors are collected from China’s Urban Statistical Yearbooks in the corresponding
years.

Journal of Economic Surveys (2016) Vol. 30, No. 3, pp. 460–481
C© 2016 John Wiley & Sons Ltd



466 AUFFHAMMER ET AL.

3.2.1.2 Energy consumption data. Energy consumption data come from the provincial energy balance
tables published by NBS in the corresponding years, which provides us with the quantities of various
types of energy consumptions at the provincial level for six relatively aggregated sectors.7 Those tables
report each sector-province’s energy consumption information for 20 types of energy, including 17 kinds
of fossil fuels, 2 secondary energy types (heating power and electricity), and 1 other energy category.8

In this analysis, we only consider the CO2 emissions generated from end-use energy consumption. For
example, we count the CO2 emissions from the consumption of goods and services which are produced
using electricity but we will not count the CO2 emissions from the generation of electricity itself.

3.2.1.3 CO2 emission factors. CO2 emission factors for different types of energy are collected from the
2006 IPCC Guidelines for National Greenhouse Gas Inventories. Following most of the literature, we use
these factors to convert energy consumption data into CO2 emissions figures.

3.2.2 Calculating the Scale and Composition Effects

The value-added of the whole industrial sector in city k in year t (Xkt) is calculated by aggregating the
value-added of all industries in city k in year t, Xkt = ∑

i xki t .The share of sub-sector i in city k in year t
(θ kit) is calculated as θki t = xkit

Xkt
.

3.2.3 Calculating the Technique Effect

The key task in this decomposition exercise is the estimation of the CO2 emission intensity (ekit) at the
more disaggregated sector level (44 sub-sectors) across 287 cities. First, we calculate total CO2 emissions
for the six more aggregated sectors at the provincial level by summing up the products of each fossil
fuel type’s consumption quantity and its corresponding CO2 emission factor across all types of fossil
fuels.9 Then, we obtain CO2 emission intensities at the provincial level for these six relatively aggregated
sectors by dividing a sector’s CO2 emissions in a province by the corresponding value added number.
Finally, we infer the city- and sub-sector-specific CO2 emission intensity by multiplying the provincial-
and sector-specific emission intensity with a ‘conversion factor’.

We construct our conversion factor based on the underlying assumption that TFP is negatively related
to energy use and thus emission intensity at the firm level. A broad set of studies support our assumption.
Based on the model of Melitz (2003), Kreickemeier and Richter (2014) illustrate that firm heterogeneity
can affect environmental performance. As pollution is incorporated as a joint output of production, more
efficient input use turns out to have lower emission intensity, so the firm heterogeneity argument implies
that firm productivity is negatively related to emissions intensity. Bloom et al. (2010) empirically show
that more productive firms associated with higher management quality are likely to increase the efficiency
of input uses, thus leading to lower greenhouse gas emissions. Another line of studies in the trade and
productivity literature argues that the correlation between TFP and energy use and emissions involves
technology adoption. Bustos (2011) studies new technology adoption by heterogeneous firms and refines
the Melitz model. According to her model, decreasing trade costs allow high productivity firms to upgrade
technology since they benefit more from lower variable costs. Cui et al.(2012) consider environmental
pollution and technology choice into a trade model with heterogeneous firms. Their model predicts that
only the productive firm has the profitable incentive to adopt emission saving technology and to export.
Based on the above studies, to keep it simple but without loss of generality, we construct the conversion
factor which is the inverse ratio of city- and sub-sector-specific TFP over the provincial-sector-specific
TFP. Martin (2011) and Shapiro and Walker (2015) also build their empirical analysis on a similar
assumption. The apparent advantage here is that we have all the TFP measures needed for calculating
those conversion factors coming from ASIFs dataset and China’s Urban Statistical Yearbooks.10
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Figure 1. Average Annual CO2 Emissions and Emission Intensity in 287 Cities during 1998 and 2009.

Figure 2. Annual Industrial CO2 Emissions Growth and CO2 Emission Intensity Growth in 287 Cities.

3.3 Decomposition Patterns

Based on the estimates of Xkt, θ kit, ekit, we employ Equation (4) to conduct the decomposition. We are
able to calculate the CO2 emission numbers (in levels), and its growth rates (in differences), as well as
the three decomposed effects within the differences, by sub-sector by city by year. We are also able to
aggregate those numbers to provincial and national levels.

Figure 1(a) illustrates the average annual industrial CO2 emissions in 287 cities during this 12-year
period. We can see significant spatial variation. Large cities, especially the four first-tier cities, emit the
most CO2. Figure 1(b) shows the average annual CO2 emissions per value added (in Yuan). This CO2

emission intensity also varies a lot across different cities. However, Figure 2 clearly shows that this
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Figure 3. Decomposition Results for Industrial CO2 Emissions at the National Level.

intensity has a clear declining trend over time in most cities, attributed to both composition and technique
effects. According to our calculation, two first-tier cities, Shanghai and Beijing, rank at the very top places
in terms of total CO2 emissions because of the size of their economies; Urumqi and Xining are among
the highest CO2 emission intensity cities due to the large share of heavy industries in their economies.
The annual industrial CO2 emissions per capita for all cities during the sample period is 2.5 tons, which is
3.4 times as many as the annual residential CO2 emissions per capita (Zheng et al., 2010). The industrial
sector dominates the urban CO2 emissions in China.

Figure 2 depicts the positions of the 287 cities in terms of their annual growth rates in both total
industrial CO2 emissions (X axis) and CO2 emission intensities (Y axis). The annual growth rate of
industrial CO2 emissions during this 12-year period is 9.3% for all cities, and 7.4%, 8.9% and 9.4%
for the first-tier, second-tier and third-tier cities, respectively. These figures are lower than a recent all
sector forecasting exercise by Auffhammer and Carson (2008) based on population projections, which
did not account for recent policy intervention and other potential local determinants. Our estimates at
the disaggregated city level show that, a large portion of cities locate in the fourth quadrant, enjoying a
decline in CO2 emission intensity (composition and technique effects) but experiencing rising industrial
CO2 emissions due to the sizable scale effect. The first-tier cities are all in the fourth quadrant, and they
are among the cities with the fastest declining CO2 emission intensity. Most of the second-tier cities
are also in the fourth quadrant, and they locate at the upper right of first-tier cities, which indicates a
relatively higher CO2 emission growth rate but a slower CO2 emission intensity decline compared to the
first-tier cities. A large share of the third-tier cities are also in the fourth quadrant, while a small number
of cities locate in the first quadrant with growth in both CO2 emission and its intensity. Shizuishan and
Yinchuan (both in Ningxia Province) are the top two cities in terms of total CO2 emission growth and
CO2 emission intensity growth because of their large share of energy-intensive industries; Beijing ranks
at the top in terms of total CO2 emissions decline, thanks to its successful and ongoing transformation to
service industries and the vast technical innovations.

Now we turn to our decomposition results. We first look at the national level numbers. Figure 3(a)
illustrates the decomposition results for total industrial CO2 emissions at the national level. We first look
at the changes between the initial and end years. Arrow 1© shows that, if we had held the composition of
industries and the production technology constant (�θ = 0, �e = 0) during this 12-year period, what the
size of the total industrial CO2 emissions would be (the column length between C and F). This scale effect
equals to a 221% increase (37 billion tons). Arrow 2© measures the composition effect. It is positive,

Journal of Economic Surveys (2016) Vol. 30, No. 3, pp. 460–481
C© 2016 John Wiley & Sons Ltd



THE DECOMPOSITION AND DYNAMICS OF INDUSTRIAL CARBON 469

Figure 4. The Decomposition Results of CO2 Emission across Three Tiers of Cities: 1998 versus 2009.
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but the size is small (1.3%, 22 million tons in total and 3.03 tons per value-added million Yuan) due to
the mix of negative composition effects in some cities but positive effects in other cities. The column
length between C and E is what the CO2 emissions would be if every industrial activity still used the
production techniques from 1998, which combines the scale and composition effects. Arrow 3© indicates
the technique effect, which reduces CO2 emissions. Its size is much larger than that of the composition
effect, with contributing to a 41% decrease (690 million tons in total and 97.5 tons per value-added million
Yuan) in CO2 emissions from China’s urban industrial sector.

Figure 3(b) plots these three effects at the national level in each of the 12 years. The solid line depicts
the pure scale effect (the would-be CO2 emissions in each year if all industries keep the same shares and
the same production technology as those in 1998). The middle dashed line plots what CO2 emissions
would be in each year if every industrial activity used the original production technique in 1998 (the
combination of both scale and composition effects). The gap between the middle dashed and the solid
lines shows that the composition effect has led to a smaller change in CO2 emissions between 1998 and
2007 with somewhat rising CO2 emissions in the last two years. The bottom dashed line depicts CO2

emissions when considering all three decomposed effects, so this measures the real CO2 emissions in
every year. The gap between this line and the middle dashed line reveals that the technique effect always
works to reduce carbon dioxide emissions over time.

For the purposes of this paper we are more interested in the city-level industrial CO2 emissions
dynamics. Figure 4(a) shows some interesting patterns in these dynamics. We find the three effects play
different roles at the three tiers of cities. The scale effect contributes to the rise of CO2 emissions in all
three tiers of cities. The absolute value of this effect is the largest for the first-tier cities and the smallest
for the third-tier cities. The technique effect universally leads to the reduction of CO2 emissions for all
three tiers, indicating that all cities have enjoyed the improvements in both production technology and
management quality. At the same time, the composition effect on CO2 emissions is mild. We find that the
composition effect contributes to the rising CO2 emissions in the third-tier cities, while it reduces CO2

emissions in the first-tier and second-tier cities. Figure 4(b) shows the dynamic change in CO2 emission
per capita across different tiers of cities between 1998 and 2009. We find that second-tier cities have higher
levels of CO2 emissions per capita than the other two. The decomposition patterns using CO2 emissions
per capita across these three groups of cities are quite similar to those using total CO2 emission illustrated
in Figure 4(a). Our decomposition results suggest that there may be a relocation of those energy-intensive
industries from the first-tier and second-tier cities to those third-tier medium- and small-sized cities. In
this sense, larger cities enjoy less CO2 emissions at the expense of the increasing emissions in medium-
and small-sized cities, so the domestic ‘pollution haven’ does exist. Yet this effect appears to be small.

We further examine CO2 emissions changes over time across these three tiers of cities, respectively
(See Appendix B). The results show that the increased CO2 emissions in the first-tier cities over the past
decade is more attributable to the scale effect, but the composition change towards cleaner industries and
the technique improvement helps to offset the otherwise much higher CO2 emissions. The second-tier
cities have experienced similar patterns of these three decomposed effects on the change in CO2 emissions
but the contribution of composition effect on emission reduction is smaller than in the first-tier cities.
In the third-tier cities only the technique effect works to reduce CO2 emissions, but both the scale and
composition effects work to increases emissions.

4. The Impacts of FDI and Environmental Regulations on Scale, Composition and
Technique Effects

Using the results from Section 3.2.1.3, we are able to examine the impacts of FDI and environmental
regulations on these three decomposed effects, and thus gain a better understanding of the underlying
mechanisms why such impacts are heterogeneous across cities.
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Table 1. Cross-City Variations in FDI, Industrial Electricity Price and Waste Water Treatment Fee.

(1) (2) (3) (4)

Industrial Industrial Environmental
electricity waste water Regulation

The ratio of price treatment fee Index (ERI)
FDI to GDP (RMB/KWH) (RMB/ton) (1998–2009)

First-tier cities 0.85% 0.46 1.14 0.37
Second-tier cities 0.58% 0.34 0.83 0.31
Third-tier cities 0.29% 0.35 0.52 0.26

4.1 FDI Measures and Proxies for Environmental Regulation Intensity

4.1.1 FDI and Its Instrumental Variable

We use the ratio of annual foreign direct investment (FDI) in a city’s total GDP as the proxy for a city’s
participation in global trade, which of course is a strong assumption. The city-level data sets on FDI and
GDP are from the China’s Urban Statistical Yearbooks in the corresponding years. Column (2) in Table 1
illustrates the average ratios of FDI in total GDP for three tiers of cities, respectively. The first-tier cities
have received much more FDI compared to the other two tiers of cities.

When examining the impact of FDI on energy and environmental indicators, a typical challenge a
researcher faces is the endogeneity arising from possible reverse causality. If those Chinese cities with
more energy-intensive industries impose more regulations and if FDI flows to less regulated areas, then
FDI will be pushed to less energy-intensive cities and the OLS estimate will be biased toward finding
that FDI lowers CO2 emissions. Conversely, if some cities are clean as they impose more regulation,
the OLS estimate will be biased toward finding that FDI increases CO2 emissions (Keller and Arik,
2002). Therefore, we use an IV strategy to overcome this endogeneity issue. Following Zheng et al.
(2010), we take advantage of the regional favoritism exhibited by China’s government to construct the
instrumental variables. Cities on the coast, especially those close to major ports, receive favorable ‘open-
door’ development policies from the central government and this encourages greater FDI to flow to these
cities. Therefore, we use a city’s distance to the closest major port as IV for our FDI measure. This
variable is time-invariant so we can only use this to explain the spatial variation in FDI inflows.

4.1.2 Proxies for Environmental Regulations

To measure local officials’ effort in regulating pollution associated with CO2 emissions, we develop an
Environmental Regulation Index (ERI) by combining two observable regulation tools at the city level.
One is related to the differentiated industrial electricity pricing across cities. In China, as a legacy of
communism, the central government has used its power to control energy prices (Tan and Frank, 2009).
However, recently the central government is increasingly willing to allow energy prices to fluctuate and
decentralize the energy pricing power to the local level, which enables local governments to use energy
prices as a policy tool to attract or regulate energy- and pollution-intensive industries. We collect the price
of electricity for industrial usage across provinces from China’s Price Yearbooks in the corresponding
years.11 As shown in Column (3) of Table 1, there is big variation in the electricity price across the three
tiers of cities. The other is the industrial sewage treatment fee that firms have to pay. Lan et al. (2011)
use this measure to proxy for the stringency of local governments’ pollution regulation. The data on
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industrial sewage investment is collected from China’s Urban Statistical Yearbooks in the corresponding
years. Column (4) in Table 1 illustrates the industrial sewage treatment fees in the unit of RMB/ton. The
data reveals that first-tier cities in China are likely to put more investment on industrial sewage treatment
than the other two groups of cities.

Calculating ERI begins with transforming two city-level environmental regulation indicators, electricity
price changes (EPC) and industrial waste water treatment fee (IWWTF), to two standardized and
comparable performance scores ranging from 0 to 1 (SCOREEPC and SCOREIWWTF), respectively. ERI for
city k is then calculated by averaging the two standardized scores of these two indicators in city k:

E RIk = (SC O REE PC,k + SC O REI W W T F,k)/2 (5)

In Equation (5), SCOREk = (Zk – L)/(H – L), in which H is the highest level of the indicator, L is the
lowest level of the indicator and Zk is the value of the indicator for city k.

Column (5) in Table 1 presents the ERI across cities. It is found that first-tier cities have higher ERI
values than that of the other two groups of cities, which is consistent with the statistics of the two individual
indicators in Column (3) and (4).

4.2 Estimation Results

We examine the effects of these local factors on the change in carbon dioxide emissions and its three
decomposed components using China’s city-level data between 1998 and 2009 via a reduced form
approach. Equation (6) is in the form of first-difference because the three decomposed effects are with
respect to the changes in CO2 emissions. The first-difference specification also enables us to drop out city-
level time-invariant unobservables. We also include regional fixed effects to control for region-specific
trend in CO2 emissions changes.

�Yk = α0 + α1 · � ln(F DIk) + α2 · E RIk + X · β + rk + εk (6)

We have four versions of the dependent variable �Yk, including the total changes in CO2 emissions from
1998 to 2009, as well as three decomposed components in city k; �FDIk is the change in the share of total
GDP for city k between 1998 and 2009; ERIk is city k’s environmental regulation index; X is vector of
control variables including the changes in GDP, share of secondary industry in GDP and share of tertiary
industry in GDP; rk is regional fixed effects12 and εk is the error term.

Table 2 reports the OLS estimation results and Table 3 provides those with FDI being instrumented
with the distance to the closest port. Firstly, we look at the estimated coefficients of the change in our
FDI measure (FDI to GDP ratio) using OLS. The coefficient is negative and significant at the 1% level,
suggesting that the inflow of FDI pulls down energy intensity and thus CO2 emissions. Specifically, a
10% increase in the FDI to GDP ratio contributes to a 1.74 percentage point decrease in CO2 emissions.
As for the three decomposed effects, the estimated coefficient of the change in the FDI measure the
technique effect is significantly negative, while the estimates on the other two effects are insignificant.
These suggest that the inflow of FDI works on pollution emission more through the technique effect
than the scale effect. This justifies why we find the optimistic result that FDI helps a city to reduce
CO2 emissions (and corresponding energy consumption). The underlying reasons may be that FDI brings
in cleaner capital, technology and better management skills. As the IV estimation results suggest (see
Table 3), the inflow of FDI reduces CO2 emissions, but with larger magnitudes in terms of its impact on the
total CO2 emission change and the change of the technique component compared with OLS estimates. A
10% increase in the FDI to GDP ratio leads to a 6.89 percentage point decrease in total CO2 emissions and
a 4.31 percentage point decrease in CO2 emissions due to the technique effect. This finding is consistent
with our statistical analysis in Table 1 that the cities with more FDI also impose more regulation on the
environment.
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Table 2. Effects of FDI and Environmental Regulations on CO2 Emissions and the Three Decomposed
Effects (OLS)

(1) (2) (3) (4)
�CO2 emissions Scale effect Composition effect Technique effect

�Log(FDI) –0.174*** –0.009 –0.005 –0.053**

(0.045) (0.036) (0.011) (0.022)
ERI –1.981*** –1.191*** –0.262** –0.527**

(0.473) (0.338) (0.114) (0.205)
�Log(GDP) 1.698*** 2.278*** –0.117** –0.422***

(0.210) (0.143) (0.0513) (0.093)
�Secondary Industry GDP Share 0.055*** 0.032*** 0.030*** –0.011

(0.010) (0.008) (0.00251) (0.016)
�Tertiary Industry GDP Share 0.002 0.0158* 0.005 –0.019***

(0.013) (0.009) (0.00318) (0.006)
Constant –0.217 –0.725*** 0.023 0.442***

(0.299) (0.212) (0.0714) (0.128)
Region fixed effects Yes Yes Yes Yes
Observations 186 186 186 186
R2 0.603 0.721 0.641 0.329

Note: Standard errors are reported in parentheses, which are clustered by province. *p < 0.10, **p < 0.05, ***p <
0.01.

Table 3. Effects of FDI and Environmental Regulations on CO2 Emissions and the Three Decomposed
Effects (Using IV for FDI)

(1) (2) (3) (4)
�CO2 emissions Scale effect Composition effect Technique effect

�Log(FDI) –0.689*** –0.076 0.024 –0.431*

(0.241) (0.435) (0.045) (0.231)
ERI –1.729*** –0.899** –0.269** –0.435

(0.623) (0.405) (0.113) (0.332)
�Log(GDP) 1.533*** 2.298*** –0.109** –0.502***

(0.281) (0.243) (0.053) (0.155)
�Secondary Industry GDP Share 0.057*** 0.055*** 0.030*** 0.001

(0.014) (0.020) (0.002) (0.010)
�Tertiary Industry GDP Share –0.010 0.019 0.005 –0.019**

(0.018) (0.016) (0.003) (0.009)
Constant 0.018 –0.425 –0.063 0.669**

(0.495) (0.482) (0.091) (0.300)
Region fixed effects Yes Yes Yes Yes
Observations 186 186 186 186
R2 0.591 0.738 0.627 0.420

Note: Standard errors are reported in parentheses, which are clustered by province. *p < 0.10, **p < 0.05, ***p <
0.01.
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Table 4. Effects of FDI and Environmental Regulations on CO2 Emissions in Different Cities (Using IV for
FDI)

(1) (2) (3) (4)
�CO2 emissions Scale effect Composition effect Technique effect

First- and second-tier cities
�Log(FDI) –1.173 –1.174 –0.090 0.140

(0.940) (0.815) (0.121) (0.192)
ERI –3.453* –1.394 0.116 –1.473***

(2.090) (1.768) (0.270) (0.503)
Third-tier cities
�Log(FDI) –0.656** –0.082 –0.024 –0.567**

(0.265) (0.349) (0.049) (0.226)
ERI –1.425** –1.050*** –0.291** –0.145

(0.643) (0.338) (0.115) (0.474)

Note: Standard errors are reported in parentheses, which are clustered by province. Other specifications are same with
those of Table 3. *p < 0.10, **p < 0.05, ***p < 0.01.

In Table 3, as expected, the Environmental Regulation Index has a negative impact on industrial
carbon emissions. If we look into the three decomposed effects, we can see that stringent environmental
regulation works through all three channels – the scale of production drops, the industrial composition
shifts towards cleaner industries, and the production technology and management quality also increase
(a significant negative technique effect). The magnitudes of the three coefficients suggest that the scale
effect dominates this process. The observed composition effect due to the enforcement of environmental
regulations is consistent with those in previous studies in the USA such as Berman and Bui (2001a,2001b)
and Henderson (1996). As the instrumental variable strategy here is less than perfect due to the lack of
time series variation in the instrument, these results should be taken as suggestive.

The estimated coefficients on the other control variables are also consistent with our expectations.
Cities with higher GDP growth experience a larger increase in CO2 emission mainly due to the increases
in economic scale, which dominates the changes from cleaner industry composition and more efficient
production technology. The growth in the share of secondary industry is found to increase the cities’ CO2

emission through scale and composition effect, while the growth of tertiary industry helps to decrease
CO2 emission by improving production technology.

We are also interested in whether the effect of FDI and environment regulation on CO2 emissions varies
across these three tiers of cities. We estimate Equation (6) separately for the first, second-tier cities and
third-tier cities, and the regression results are provided in Table 4. It shows that the change in FDI had
insignificant effect on CO2 emissions in the first and second-tier cities, while it tends to decrease CO2

emissions in the third tier cities mainly through the technique effect. A possible explanation is that the first-
and second-tier cities already have advanced technologies (in our study period) so the marginal effect of
FDI is weak; while its marginal effect is much larger in the third tier cities where production technologies
stand at a lower level. Stringent environmental regulation is found to contribute to the declining CO2

emission in all three groups of cities. This mitigation effect is mostly attributed to the technique effect
in the first- and second-tier cities, while to the scale and composition effects in the third-tier cities. Our
results indicate that the environmental regulation in the first- and second-tier cities helps to promote the
adoption of greener production technology, but it constrains the scale expansion and the receipt of dirty
industries (relocating from the first and- second-tier cities) in the third-tier cities.
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5. Conclusions

In 2007, China became the largest greenhouse gas emitter in the world. 85% of China’s GHG emissions
are attributed to urban economic activities, and this share will continue to increase with China’s rapid
urbanization process. This paper enriches our understanding of city-level industrial CO2 emissions in
China and its dynamics by decomposing CO2 emission changes into scale, composition and technique
effects over the past decade (all 287 prefecture-level-cities in 1998–2009).

The paper first reviews the literature on the decomposition analysis and several local determinants that
shape such dynamics. We then use city-level data in China to decompose the changes in industrial CO2

emissions into the scale, composition and technique effects. Our estimates show that the industrial CO2

emissions per capita are about 3.4 times larger than the residential CO2 emissions per capita in China’s
urban sector and the industrial CO2 emissions have been increasing by 9.3% annually during this 12-year
period. The decomposition analysis shows that the three effects play different roles in the three tiers
of cities. The scale effect contributes to the rise of CO2 emissions in all cities. On the other hand, the
technique effect universally leads to the reduction of CO2 emissions in all three tiers of cities, indicating
that all cities have enjoyed the improvements in both production technology and management quality
towards energy efficiency. The composition effect on CO2 emissions is mild – it contributes to the rising
CO2 emissions in the third-tier cities, while it reduces CO2 emissions in the first-tier and second-tier
cities. These patterns suggest that there may be a relocation of those energy-insensitive industries from
the first-tier and second-tier cities to those third-tier medium- and small-sized cities. In this sense, larger
cities enjoy less CO2 emissions at the expense of the increasing emissions in medium- and small-sized
cities.

Our decomposition results facilitate us to provide some suggestive evidence as to how FDI inflow and
environmental regulations drive the change in CO2 emissions and its decomposed three effects. It is found
that the inflow of FDI pulls down energy intensity and thus CO2 emissions by generating significant
technique effect (and the other two effects are insignificant), so it brings in cleaner production technology
and better management quality. The environmental regulations help cities to reduce their industrial CO2

emissions through all three channels –the economy scale shrinks, the industrial composition shifts towards
cleaner industries and the energy-efficient technologies and management skills also improve.

Our empirical results clearly indicate that shifting towards less-energy-intensive industries (composition
effect), exploiting ‘clean’ fuel inputs and fostering technology transfers (technique effect), matter for China
in curbing carbon dioxide emissions during its ongoing urbanization and industrial progress. The Chinese
government has pledged to wean its economy away from reliance on fossil fuels as it grows. In November
2014, China and the US unveiled new pledges on greenhouse gas emissions. The deal commits China to
reducing greenhouse gas emissions after a peak in 2030 (and ideally sooner). China also aims to have
non-fossil fuels make up 20% of its primary energy consumption by 2030. It is the first time China, the
world’s largest emitter by far in absolute terms (roughly 28% of the world’s CO2 emissions in 2014), has
agreed to set a ceiling, albeit an undefined one, on overall emissions. To achieve this goal, the central
government in China will come up with ways of incentivizing local officials to go green, and city mayors
will make their own trade-off between their economic growth (scale), and environmental goals (economic
restructure and technology improvements). The decomposition framework in our paper can help policy
makers and scholars to observe such trade-offs and the underlying rationales.
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Notes

1. Source: China Textile Industry Development Report 2010–2011. Published by China Textile &
Apparel Press, 2011.

2. ‘Consumption of Energy by Sector (2011)’, National Bureau of Statistic of China, accessed October
14, 2014, http://www.stats.gov.cn/tjsj/ndsj/2013/indexeh.htm

3. ‘Consumption & Efficiency’, U.S. Energy Information Administration, accessed October 14, 2014,
http://www.eia.gov/consumption/

4. See ‘Trends in Global CO2 Emissions 2014 Report’, available on http://edgar.jrc.ec.europa.eu/
news_docs/jrc-2014-trends-in-global-co2-emissions-2014-report-93171.pdf

5. We refer to the aggregation in two levels, industries and sector. In China, the whole economy is
often divided into three industries, the primary, secondary and service industries. The secondary
industry includes three sectors, Mining, Manufacturing, Electric Power-Gas-and-Water (EGW), and
Construction Sector. The service industry includes three sectors, Transportation, Storage, Post and
Telecommunication Services Sector (TSPTS), Wholesale, Retail, and Accommodation, Catering
Sector (WRTCS), and Others Service Sector. The sectors of Mining, Manufacturing, and EGW are
further disaggregated into 6, 30 and 3 sub-sectors, respectively.

6. See Brandt et al. (2012).
7. See footnote 5 for details.
8. Other energy includes those such as wind and solar energy that does not generate pollution emissions.
9. We convert the two secondary energy types, electricity and heating power, into the corresponding

fossil fuels that generate them on the basis of the provincial energy balance tables.
10. The calculation of TFP for manufacturing firms is done according to the method in Brandt et al.

(2012). For non-manufacturing firms we consider labor productivity as an alternative of TFP due to
data limitations.

11. China’s Price Yearbooks provide annual the price of electricity at the provincial level for different
kinds of usage such as industrial use and residential use.

12. Cities are divided into seven regions: North China, Northeast China, East China, Central China,
South China, Southwest China and Northwest China.
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Appendix A

List of 44 Sectors/Subsectors

No. Name of industry sector No. Name of industry sector

1 Agriculture, forestry, animal husbandry
and fishery, water conservation

23 Chemical fiber

2 Coal mining and dressing 24 Rubber production
3 Petroleum and natural gas mining 25 Rubber production
4 Ferrous metals mining and dressing 26 Nonmetal mineral production
5 Nonferrous metals mining and dressing 27 Smelting and pressing of ferrous metals
6 Nonmetal minerals mining and dressing 28 Smelting and pressing of nonferrous metals
7 Others mining and quarrying 29 Metal production
8 Agricultural and sideline products

processing
30 Equipment in common use

9 Food manufacturing 31 Special purpose equipment
10 Soft drinks manufacturing 32 Transport equipment
11 Tobacco processing 33 Electric equipment and machinery
12 Textile industry 34 Telecommunications, computer and other

electronic equipment
13 Garments and apparel industry 35 Instruments, meters, cultural and clerical

machinery
14 Leather, furs, down and related production,

shoes manufacturing
36 Handicraft article and other manufacturing

15 Timber processing, bamboo, cane palm
fiber and straw production

37 Waste resources and materials recovering

16 Furniture manufacturing 38 Production and supply of electricity and
heating power

17 Papermaking and paper production 39 Production and supply of gas
18 Printing and record medium reproduction 40 Production and supply of water
19 Cultural and educational, arts and crafts,

sports and entertainment
41 Construction sector

20 Petroleum processing, coking and nuclear
fuel processing

42 Transportation, storage and postal services
sector

21 Raw chemical materials and chemical
production

43 Wholesale, retail and accommodation,
catering sector

22 Medical and pharmaceutical production 44 Other service sectors

Note: #1 sector belongs to the primary industry, #2–7 are mining sectors, #8–37 are manufacturing sectors, #38–40
are electric power-gas-and-water sectors, #42–44 sectors belong to service industries.
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Appendix B

Decomposition Effects of CO2 Emissions for Three-Tier Cities from 1998 to 2009

Figure A1. Decomposition Effects of CO2 Emission for First-Tier Cities from 1998 to 2009.

Figure A2. Decomposition Effects of CO2 Emission for Second-Tier Cities from 1998 to 2009.
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Figure A3. Decomposition Effects of CO2 Emission for Third-Tier Cities from 1998 to 2009.
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