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INTRODUCTION

Associated with each convergence space is a well-ordered, descending chain of
pretopologies defined on the same base set, beginning with the pretopological modi-
fication and terminating with the topological modification: this chain is called the
decomposition series of the space, and the ordinal number of terms in the series is
called its length. Roughly speaking, the length of this series describes how “‘non-
topological” a convergence space is; for a sequential topological space, the series
length of its first countable modification describes how far removed the original
space is from being a Frechet space. The decomposition series is considered in the
following papers: [1], [4], [7], [8], and [11]. This paper attempts to bring together
some results from these and other papers and to initiate the study of this series as
a mathematical concept of interest in its own right.

The paper is divided into two sections; the first treats the behavior of the decom-
position series relative to such basic constructions as products, quotients, disjoint
sums, and subspaces, while the second is concerned with the length of the series. In
the second section, we first obtain certain conditions under which the series length
will be bounded, and then proceed to show that some important classes of con-
vergence spaces, such as locally compact regular and minimal regular spaces, can have
arbitrarily long decomposition series.

1. BASIC CONSTRUCTIONS

The reader is asked to refer to [4] and [6] for the notation, terminology, and other
background material on convergence spaces. We will use the abbreviations “u.f.””
for ultrafilter and ‘“‘c.s.” for convergence structure; ‘“‘space” will always mean
convergence space.

In the discussion of the decomposition series in [4] the definition was given by
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considering the various iterations of the interior operator. For present purposes, it is
more convenient to work with the closure operator, so we shall rephrase our definition
accordingly.

Given an ordinal number o = 1, let I'* be the o-th iteration of the closure operator.
Using the natural one-to-one correspondence between closure operators and
pretopologies, let n°q be the pretopology on S associated with I'*. The neighborhood
filter 77%(x) for n*q at x is the set of all subsets A of S such that x e Co I'* Co 4,
where Co denotes “set complement”. In the natural order of the lattice C(S) of all
convergence structures on S, a < f implies n*q = n’q; the chain {n°q :a = 1} is
called the decomposition series of (S, g). The serjes terminates with the least ordinal a
such that I'* is idempotent, and this ordinal, call it y,, will be called the length of the
series. The initial term g, also written ng, is called the pretopological modification
of g. The last term n*7q is a topology, the finest topology coarser than g; this topology,
which we denote by Ag, is called the topological modification of ¢g. Note that y, < 1
iff ng = Aq. :

There are two reasonable ways to define the o-th iteration of the closure of
afilter #. In addition to I't% defined in [6] and [7] (which, in case a is a limit ordinal,
is given recursively by N{I'*# : B < a}), we shall make use in this paper of A%,
defined to be the filter generated by the set {I';F : F € &). Note that AZ# = TI',., 7,
AYF = I'y for all finite ordinals n, and AjF < I';# for all ordinals a.

A continuous onto function is called a map. A map f: (S, q) — (T, p) is said to
be open if, whenever .# is an u.f. which converges to y in Tand x € f ~*(y), then there
is an u.f. # which maps on .# and converges to x in S. A map f : (S, q) - (T, p)
is said to be proper if, whenever .# is anu.f. which converges to y in Tand & is an u.f.
on S which maps on .#, then there is a point x in f ~*(y) such that & converges to x
in S.

The first theorem summarizes some known results concerning the behavior of the
decomposition series relative to the maps described above; the first assertion is proved
in [4], the second and third in [7].

Theorem 1.1. (a) If f : (S, q) = (T, p) is a map, then f : (S, n*q) — (T, n*p) is a map
Sor all q.

(®) If £ : (S, q) = (T, p) is an open map, then f: (S, n°q) - (T, n°p) is an open
map for all a.

() If £ : (S : g) - (T, p) is an open map, or a proper map, then y, < y,.

Corollary 1.2. If g and p are c.s. on S such that Aq = ’/lp and q £ p, then ~}’,, £ 7p

Proof. If y, > 7,, then there is ordinal number o such that n*p = 1p, and n'q *
+ Jg. But Theorem 1.1 (a) implies that the identity map from (S, Ap) to (S, 7°g) is
continuous, and thus Ap = n%g, a contradiction.
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If (S, q)is a space and T'a subset of S, then let g be the c.s. on T defined as follows:
A filter F g;-converges to x in T'iff the filter on S generated by & g-converges to x.
Then (T, g,) is called a subspace of (S, g).

Proposition 1.3. Let (T, p) be a subspace of (S, q), @ an ordinal number =1,
A a subset of T. Then:

(a) I'yd =TnT,A, and I'yd = T T3A;
(b) If (T, p) is a closed (open) subspace of (S, q), then I'(A) = (I';4) N T.
Proof. (a) The assertion I't4 < (I'4) n Tis clear foralla = 1. Letx € ([,4) N T;

then there is an u.f. & which contains A and g-converges to x € T. The restriction
of & to T p-converges to x, and x e I' 4.

(b) Induction on «. Assume that the equality holds for ¢ < o If o — 1 exists,
and x € I';A, then there is an u.f. & on S such that T ;‘1A e #,and & g-converges
to x e T. Because T'is closed, ', 'A < T; thus # has a restriction #to T, and #
p-converges to x, establishing (I’ZA) N T < I'JA If ais a limit ordinal and x € I';4,
then, by the induction hypothesis,

xeTn(U{lgd:0<a}) =U{TnTjd:0 <a} =U{Ijd:0 < a} =TI34.

In case Tis open, a similar induction proof can be employed.

Corollary 1.4. Let (T, p) be a subspace of (S, q). Then:
(a) (T, n(p)) is a subspace of (S, n(q)).
(b) In general, (Aq)r < Ap; if T is open or closed, then (iq); = Ap.

(¢) If Tis either open or closed, then y, < v,

In the example that follows, we show that a space with a short decomposition
series can have a subspace with an arbitrarily long decomposition series. Examples
of Ty spaces with arbitrarily long series are given in the next section:

Example 1.5. Given an ordinal «, let (T, p) be any T; space such that yp = a.
Let A be an infinite set disjoint from T, and let S be the union of 4 and T. Define ¢
to be the finest c.s. on S such that:

(a) If & is a free u.f. on A, then & g-converges to each point in S.

(b) If # is any free u.f. which contains T, then & g-converges to y iff y € Tand &
p-converges to y, or else y € A. It is easy to verify that y, = 2, and that (T, p) is a sub-
space of (S, g).

A map f:(S, g) > (T, p) is called a retraction if (T, p) is a subspace of (S, q),
and f reduces to the identity map when restricted to T.
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Theorem 1.6. If f : (S, q) = (T, p) is a retraction, then f: (S, n*q) — (T, n°p) is
a retraction for all «, and Vp < y,.

Proof. f:(S, n"q) - (T, n"p) is continuous by Theorem 1.1; in particular, if
(T, p,) is a subspace of (S, n°q), then fy : (T, p,) — (T, n°p) is continuous, and fr is
the identity on T. Thus p, 2 2°p. f A = S, I') A = TnI;A < I';A, since finer
spaces yield smaller closures. This result, along w1th Proposmon 1.3, 1mphes (red) n
N T = I"3A, and so (T, n°p) is a subspace of (S, n°q). From this fact, the assertions
of the theorem readily follow.

Let {(S;, q;) : i I} be a family of pairwise disjoint spaces. The disjoint sum (8, g)
of this family is obtained by taking S to be the union of the S;’s with g defined as
follows: A filter # g-converges to x in S iff # contains the set S; to which x belongs,
and the restriction of & to S; g,-converges to x.

Theorem 1.7. If (S, q) is the disjoint sum of -the family
{(Si,q)):iel}, then y,=sup{y,:iel}.

Proof. Since (S;, ¢;) is a closed subspace of (S, q), v, = {7,, : i €I}. To eastablish
the desired equality, it would suffice to show that, for each B < S, y,B = sup {7,{Bn
N S,):iel}, where y,B is the least ordinal number f8 such that I'’B = I'**'B.
Let B, = B S;,andleta = sup {y,B; : iel},andlet § = y,B.Itis clear thatoc < B;
we will assume that o« < g and obtam a contradiction. If « > f, then there is x
in I'; "' B such that x ¢ I';B, and hence there is an u.f. # g-converging to x which
contains I';B. Let x € S;; then the restriction &; of & of S; g-converges to x. By
Proposition 1.3(b), I'tB; = I'.''B;. Since (I':B)n S; = I':B;, I';B;e #;, and so
x e I':7'B;. But x ¢ I'; B;, which implies y,,B; > «, a contradiction.

Starting with spaces (S, q) and (T, p) let (R, r) = (S, q) x (T, p) be the product
space. Consider the following diagram:

(S,9) > (S, ng) > ... > (S,n%q) > ... > (S, 1q)

T 1 1
(R’ r) e (R, 7”") A 4 (R’ n“r) — L. (R’ ,{r)
l { i

{
(T.p) > (Lap) > ... » (T a*p) > ... = (T, Ap)

where the vertical arrows are the respective projection maps, P, and P,, and each
horizontal arrow is the identity map. Since the projection maps are open, it follows
from Theorem 1.1 that y, = sup {y,, 7,}. :

The pair (S, q), (7, p) is said to be pretopologically coherent if (R, nr) = (S, ng) x
x (T, np). Sufficient conditions for pretopological coherence are given in [2] along
with examples of pairs of spaces which are not pretopologically coherent. Let us say
that a pair (S, q), (T, p) is totally coherent if the entire decomposition series of the
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two spaces is productive in the sense that (R, n*r) = (S, n°q) x (T, n°p), for all
ordinal numbers a.

Let P be some convergence space property; a space (S, q) is said to be almost P if
there is a c¢.s. p on S with property P such that p-convergence and g-convergence
coincide on ultrafilters. It was shown in [2] that, given a space (S, ¢) which is not
almost pretopological, there is a topology p on S such that the pair (S, g), (S, p) is
not pretopologically coherent. Our next theorem establishes a similar result for total
coherence.

Theorem 1.8. (2) I (S, q) and (T, p) are almost topological spaces, then the pair
(S, 9), (T, p) is totally coherent.

(b) If (S, q) is a space which is not almost topological, then there is a topology
p an S such that the pair (S, q), (S, p) is not totally coherent, provided (S, Aq) is
Hausdorff.

Proof. (a) Under the given assumptions, total coherence is equivalent to pre-
topological coherence, and the result follows from Theorem 2, [2].

(b) If (S, g) is not almost pretopological, then by Theorem 2, [2] there is a topolo-
gy p on S such that the pair (S, q), (S, p) is not pretopologically coherent, and hence
not totally coherent. We shall therefore assume that (S, g) is almost pretopological
but not almost topological. Thus there is an u.f. # such that # = ¥7,,(x) but #
does not g-converge to x, for some x in S. Since (S, g) is almost pretopological,
F % v (x). Let p be the topology on S with neighborhood filters specified as follows:
YV (x)=F nx; ¥, (y) =y for y + x. Let (R, r) = (S, q) x (S, p), and let 4 =
= {(y, ¥y)e R:y * x}. Using the fact that (S, q) is Hausdorff, we see that A4 is
r-closed, and hence Ar-closed. But (x, x) is in the closure of A relative to (S, Aq) x
x (S, Ap), and so the pair (S, g), (S, p) is not totally coherent.

2. THE LENGTH OF THE SERIES

We begin this section by estalishing necessary and sufficient conditions for the
decomposition series of a convergence space to have length < o, where « is an arbitrary
ordinal number. First, we need two lemmas.

Lemma 2.1. Let (S, q) be a convergence space, A = S, F an u.f. on S.If IAe 7,
then there is an u.f. # containing A such that & z A5

Proof. Induction on . Let « = 1. For each y e I';/4' — A, let #, be an u.f. con-
taining 4 which converges to y. For each subset B of 4, let B* = {ye rA-A:
:Be '}, and let B~ = B U B*. Since (B, U B,)” = B U B and (B, n B,)" =
= B{ N B}, the set {B < A:B" € #} is a filter base which generates an u.f. .4,
and it is easy to see that # satisfies the condition & = I',.4.
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Next, assume that the result is valid for f < «. First consider the case where o — 1
exists. If I'; "' A e #, then the result follows from the induction hypothesis. Otherwise,
riA—1T Z“A € #. In this case, let B =T ;‘1A, and repeat the argument just given
for @ = 1 to obtain an u.f. # such that Be 5 and & = I' s#. Then apply the in-
duction hypothesis to obtain an u.f. 4 such that A€ S and # = A;"lf . Then
F Zz AyF, as desired.

Finally, assume that « is a limit ordinal. Each y in I'4 is in FﬁA for some f§ > «a,
and so there is an u.f. 2, on I“‘,’;A which converges to y, and by the induction hypo-
thesis, there is an u.f. 5, on 4 such that »#", = Ag%y. For each subset B of A4, let
B* ={yel;A — A:Be,}, and let B” = Bu B* As in the argument for
o = 1, one can show that the set {B cA:B e 97} generates an u.f. # with the
desired properties.

Lemma 2.2. If . is an u.f. on a space (S, q), then X = AR iff & 2 ¥V {(x).

Proof. Let X = I' .#; then each G in .# belongs to an u.f. #; which contains G
and g-converges to x. Thus J = ({F;: Ge S} 2 ¥ (x). If F 2 ¥ (), then each
set in # belongs to an u.f. which g-converges to x, and so X = I'.#. To obtain the
result for o, repeat the argument with g replaced by n°q.

Theorem 2.3. The following statements about a space (S, q) are equivalent.

(@) v £

(b) If Fisanuf. on S and % Z AJ*'F, then X 2 ALS;

(c) If Fisan uf. on S and x an adherent point of ALS, then S 2 ¥ i(x).

Proof. Asin [6], we will use o, % to denote the set of adherent points of &.

(a) = (b) is obvious.

(b) = (c). Let .# be an u.f. with x in «, A%#. Then there is an u.f. & converging

to x such that # = Ag#. Thus % =2 I',F = A:“.f, and by (b), * = A, 7. The result
then follows from Lemma 2.2.

(¢) = (a). We will show that I'; = I';*". Let x € I'**'4 for some A < S. Then
there is an u.f. # containing I';A such that & converges to x. By Lemma 2.1, there
is an u.f. J containing 4 such that & = AL4. Thus, x € a, AZ#, and by (c), S =
= ¥7y(x). Thus # n"g-converges to x, and x € I';A.

There follow three corollaries which are of interest in the theory of regular con-
vergence spaces. A space is regular if it is Hausdorff and has the property: I'#
converges to x whenever % converges to x.

Corollary 2.4. If (S, q) is a compact regular space, then 7, < 1.
Proof. Let .# be an u.f. on S, x an adherent point of I'#. J must converge to
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a unique point y since the space is compact and Haudsorff, and regularity guarantees
that x = y. Thus # 2 ¥7(x), and the conclusion follows from Theorem 2.3.

A minimal regular space (S, ¢) is one which is regular and has the property that
no strictly coarser regular c.s. exists on the same underlying set. In Theorem 2.4 of
[6], it is shown that the following property characterizes minimal regular spaces:
F g-converges to x iff {x} = a,I't %, where w is the first infinite ordinal number.

Corollary 2.5. A minimal regular space (S, q) is compact iff (S, Aq) is Hausdorff.

Proof. If (S, q) is compact, then by Corollary 2.4 nq is a compact topological
space, and so 7g = Aq. To check that nq is Hausdorff, suppose that there is an u.f. &
finer than ¥"(x) v ¥ (), for x, y in S. Then the w.f.’s X and y are both finer than
r.#. But I'# must converge to a unique point since (s, q) is compact regular,
S0 X = y.

Conversely, assume that Ag is Hausdorff, and suppose that there is an u.f. &
which fails to converge in S. Let & = N{I% :n = 1,2,...}. If ,.# = 0, then, for
any x, (4 N X) = {x}, and it follows that # A % must g-converge to x, a contradic-
tion. Thus there are at least two points, say x and y, in «,#, and thus x, y are in
a, A% . But Lemma 2.2 implies that & is finer than both ¥°?*(x) and ¥"2*(y),
which contradicts the assumption that Aq is Hausdorff.

Corollary 2.4 was previously established in [10] using the Stone-Cech compacti-
fication of-a convergence space described in [9].

A space (S, g) is said to be: (1) first countable if each filter which g-converges to x
contains a countable-base filter which g-converges to x; (2) Frechet if, for each
A€ S, I'/Ais the set of all limits of countable-base filters which contain A; (3)
sequential if a subset A of S is closed whenever it contains all limits of countable-base
filters which contain 4. The relationship between these three concepts in the realm of
topological spaces is pointed out in [3], and a partial extension of these notions to
a convergence space setting is given in [5].

Starting with an arbitrary space (S, ¢), let ¢° be the c.s. on S defined as follows:
F q°-converges to x iff & is finer than a countable-base filter which g-converges to x.
Since ¢° is easily seen to be the coarsest first countable c.s. finer than g, we shall refer
to (S, g°) as the first countable modification of (S, q). The next proposition was
partially proved in [5]; the remainder of the proof is straightforward.

Proposition 2.6. The following statements about a pretopological (topological)
space (S, q) are equivalent.

(a) (S, q) is Frechet (sequential).

(b) (S, q) is the pretopological (topological) modification of a first countable
space.

(c) 4 = na® (g = 4¢°).
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If (S, q) is a sequential topological space, then 7y, is the ordinal number which is
identified in [1] as o(S, q); it is noted in [1] that this ordinal is <w;, the least un-
countable ordinal. This result also follows from a theorem by Novak [8] which we
rephrase as follows.

Theorem 2.7. Let (S, q) be a convergence space, a the least ordinal of regular
cardinality g. Assume that, for each subset A of S, there is for each x € I' /4 a subset
B of A of cardinality <o such that x € I' B. Then n*q = Aq.

Corollary 2.8. If (S, q) is a Frechet space, then y, < o,.

On the other hand, no upper bound can be placed on the length of the decomposi-
tion series of a sequential space, as can be seen from the example in [8] which follows
Theorem 1.

There are first countable (hence, Frechet) spaces for which the series length is
exactly @,. One example is the first countable modification of the space S, constructed
in [1]; a second example is obtained later in this section.

Proposition 2.9. If (S, q) is a space such that ¥ (x) has the countable intersection
property for each x in S, then y, < .

Proof. If the conclusion were false, then there would be a subset 4 of S and
a point x in I'?*'4 — I'?A. For each integer n 2 1, choose V, in ¥7,(x) such that
V,nI7A =0, and let V=V, eV,(x). Then VN I'yA = 0, a contradiction.

Since a compact regular space (S, g) has y, < 1, one might suppose that spaces
which closely approximate such spaces might also have series of bounded length.
For compact Hausdorff, locally compact regular, and minimal regular spaces this is

not the case, as we shall now proceed to show.

Example 2.10. Let S be a set of cardinality o, where « is a regular infinite cardinal
number. Let ¢ be an ordinal number whose cardinality is <«. Partition S into sets
{82:0 < ¢ < o}, where each set S? has cardinality a. Let 4 be a well ordered index
set of cardinality o which contains a greatest element, and partition each S? into sets
{84 : Be A}, where each set S§ has cardinality o. Also, let the elements of S¢ be
indexed as follows: S¢ = {x}: fe A}. For each fe 4, let T, = {x4:0 < ¢ £ o}.
Let r be the finest c.s. on S subject to the following conditions:

(r1) Each free u.f. which contains S§ r-converges to x4**, for ¢ < o.
(r2) Each free u.f. which contains S7 r-converges to a fixed point z in S°.

(r3) For each B, let Ty be well-ordered as follows: x; < x4 iff 4 £ p. A filter which
contains Ty r-converges to y in Ty iff the restriction of & fo T, converges to y
in the order topology on Tj. Cleatly (S, r) is locally compact. (S, r) is also regular
in the following strong sense: if # r-converges to x, then IL# = % N x.
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Next, let y be an arbitrary point in S distinct from z, and let p be the finest c¢.s. on S
which satisfies the following conditions:

(p1) If # r-converges to x, then & p-converges to x.

(p2) If # is a free u.f. which fails to r-converge, then # p-converges to y.

The first condition implies p < r, the second that p is compact and Hausdorff.
Finally, let g be the finest c.s. on S subject to the following condition:

(q1) # g-converges to x iff # p-converges to x and {x} = o, ['p3.7.

By these constructions, p £ g £ r. Note that these three convergence structures
differ only in convergence to the point y. The i-th closure of S° relative to any of the
three spaces is either S* or S* U {y}; the o-th closure of S° in all three cases is S.
Thus each of the three spaces has a decomposition series of length at least o.

Theorem 2.11. For each of the following three classes of spaces, there is no upper
bound on the length of the decomposition series: compact Hausdorff, locally compact
regular, minimal regular.

Proof. It remains only to show that the space (S, q) of the preceding example is
minimal regular. This proof is somewhat lengthy, so we will just outline the main
steps. Recall the characterization of minimal regularity given previously in this
section.

(a) If # r-converges to x, then I''F = I''F = I'%# for all ordinal numbers ¢.

(b) If # is an u.f. and F g-converges to x, then {x} = a3 F.

(c) If # is an uf. and {x} = 0%, then # g-converges to x. This is the hardest
part of proof. A key step is the following: if & p-converges to z and & fails

to r-converge to z, where z ¢ «,I';#, then & contains a set F which has a finite
intersection with each r-compact subset of S.

(d) (S, g) is minimal regular.
If o« = N, and ¢ is a countable ordinal, then (S, r) is a first countable space with

a decomposition series of length at least ¢. By taking a disjoint sum of such spaces,
for 6 < w,, we obtain (by Theorem 1.7) a first countable space of series length w,.

Question. Is there a bound on the length of the decomposition series for a locally
compact minimal regular space?
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