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THE DECOMPOSITION THEOREM,

PERVERSE SHEAVES

AND THE TOPOLOGY OF ALGEBRAIC MAPS

MARK ANDREA A. DE CATALDO AND LUCA MIGLIORINI

Abstract. We give a motivated introduction to the theory of perverse sheaves,
culminating in the decomposition theorem of Beilinson, Bernstein, Deligne and
Gabber. A goal of this survey is to show how the theory develops naturally
from classical constructions used in the study of topological properties of alge-
braic varieties. While most proofs are omitted, we discuss several approaches
to the decomposition theorem and indicate some important applications and
examples.
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1. Overview

The theory of perverse sheaves and one of its crowning achievements, the de-
composition theorem, are at the heart of a revolution which has taken place over
the last thirty years in algebra, representation theory and algebraic geometry.

The decomposition theorem is a powerful tool for investigating the topological
properties of proper maps between algebraic varieties and is the deepest known fact
relating their homological, Hodge-theoretic and arithmetic properties.

In this §1, we try to motivate the statement of this theorem as a natural out-
growth of the investigations on the topological properties of algebraic varieties
begun with Lefschetz and culminating in the spectacular results obtained with the
development of Hodge theory and étale cohomology. We gloss over many crucial
technical details in favor of rendering a more panoramic picture; the appendices in
§5 offer a partial remedy to these omissions. We state the classical Lefschetz and
Hodge theorems for projective manifolds in §1.1 and Deligne’s results on families
of projective manifolds in §1.2. In §1.3, we briefly discuss singular varieties and
the appearance and role of mixed Hodge structures and intersection cohomology.
In §1.4, we state the decomposition theorem in terms of intersection cohomology
without any reference to perverse sheaves. The known proofs, however, use in an
essential way the theory of perverse sheaves, which, in turn, is deeply rooted in the
formalism of sheaves and derived categories. We offer a “crash course” on sheaves
in §1.5. With these notions and ideas in hand, in §1.6 we state the decomposition
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THE DECOMPOSITION THEOREM AND PERVERSE SHEAVES 537

theorem in terms of intersection complexes (rather than in terms of intersection
cohomology groups). We also state two important related results: the relative hard
Lefschetz and semisimplicity theorems. §1.7 reviews the generalization to singular
maps of the now classical properties of the monodromy representation in coho-
mology for a family of projective manifolds. §1.8 discusses surface and threefold
examples of the statement of the decomposition theorem. §1.9 overviews the mixed
Hodge structures arising from the decomposition theorem. We provide a timeline
for the main results mentioned in this overview in §1.10.

We have tried, and have surely failed in some ways, to write this survey so
that most of it can be read by nonexperts and so that each chapter can be read
independently of the others. For example, a reader interested in the decomposition
theorem and in its applications could read §1, the first half of §4 and skim through
the second half on geometrization, while a reader interested in the proofs could
read §1 and §3. Perhaps, at that point, the reader may be motivated to read more
about perverse sheaves.

§2 is an introduction to perverse sheaves. In this survey, we deal only with
middle perversity, i.e. with a special case of perverse sheaves. It seemed natural
to us to start this section with a discussion of intersection cohomology. In §2.3, we
define perverse sheaves and discuss their first properties, as well as their natural
categorical framework, i.e. t-structures. In §2.4, we introduce the perverse filtration
in cohomology and its geometric description via the Lefschetz hyperplane theorem.
§2.5 reviews the basic properties of the cohomology functors associated with the
perverse t-structure. §2.6 is about the Lefschetz hyperplane theorem for intersection
cohomology. In §2.7, we review the properties of the intermediate extension functor,
of which intersection complexes are a key example.

In §3, we discuss the three known approaches to the decomposition theorem: the
original one, due to A. Beilinson, J. Bernstein, P. Deligne and O. Gabber, via the
arithmetic properties of varieties over finite fields, the one of M. Saito, via mixed
Hodge modules, and ours, via classical Hodge theory. Each approach highlights
different aspects of this important theorem.

§4 contains a sampling of applications of the theory of perverse sheaves and, in
particular, of the decomposition theorem. The applications range from algebraic
geometry to representation theory and to combinatorics. While the first half of
§4, on toric and on semismall maps, is targeted to a general audience, the second
half, on the geometrization of Hecke algebras and of the Satake isomorphism, is
technically more demanding. Due to the fact that the recent and exciting devel-
opment [152] in the Langlands program makes use of a result that deals with the
decomposition theorem with “large fibers,” we have included a brief discussion of
B.C. Ngô’s support theorem in §4.6.

The appendix §5 contains a brief definition of quasi-projective varieties (§5.1),
of pure and mixed Hodge structures, the statement of the hard Lefschetz theorem
and of the Hodge-Riemann relations (§5.2), a description of the formalism of de-
rived categories (§5.3), a discussion of how the more classical objects in algebraic
topology relate to this formalism (§5.4), a discussion of the nearby and vanishing
cycle functors (§5.5), as well as their unipotent counterparts (§5.6), two descriptions
of the category of perverse sheaves (§5.7) and, finally, a formulary for the derived
category (§5.8).
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Unless otherwise stated, a variety is an irreducible complex algebraic variety and
a map is a map of varieties. We work with sheaves of rational vector spaces, so
that the cohomology groups are rational vector spaces.

1.1. The topology of complex projective manifolds: Lefschetz and Hodge
theorems. Complex algebraic varieties provided an important motivation for the
development of algebraic topology from its earliest days. On the other hand, alge-
braic varieties and algebraic maps enjoy many truly remarkable topological proper-
ties that are not shared by other classes of spaces and maps. These special features
were first exploited by Lefschetz ([124]) (who claimed to have “planted the harpoon
of algebraic topology into the body of the whale of algebraic geometry” [125], p.13),
and they are almost completely summed up in the statement of the decomposition
theorem and of its embellishments.

The classical precursors to the decomposition theorem include the theorems of
Lefschetz, Hodge, Deligne, and the invariant cycle theorems. In the next few para-
graphs, we discuss the Lefschetz and Hodge theorems and the Hodge-Riemann rela-
tions. Together with Deligne’s Theorem 1.2.1, these precursors are in fact essential
tools in the three known proofs (§3) of the decomposition theorem.

Let X be a nonsingular complex n-dimensional projective variety embedded in
some projective space X ⊆ PN , and let D = H ∩ X be the intersection of X
with a generic hyperplane H ⊆ PN . Recall that we use cohomology with rational
coefficients. A standard textbook reference for what follows is [92]; see also [175, 44].

The Lefschetz hyperplane theorem states that the restriction map Hi(X) →
Hi(D) is an isomorphism for i < n− 1 and is injective for i = n− 1.

The cup product with the first Chern class of the hyperplane bundle gives a map-
ping

⋃
c1(H) : Hi(X) → Hi+2(X) which can be identified with the composition

Hi(X) → Hi(D) → Hi+2(X), the latter being a “Gysin” homomorphism.
The hard Lefschetz theorem states that for all 0 ≤ i ≤ n the i-fold iteration of

the cup product operation is an isomorphism

(
⋃

c1(H))i : Hn−i(X)
≃−→ Hn+i(X).

The Hodge decomposition is a canonical decomposition

Hi(X,C) =
⊕

p+q=i

Hp,q(X).

The summand Hp,q(X) consists of cohomology classes on X which can be rep-
resented by a closed differential form on X of type (p, q) (i.e., one whose local
expression involves p dz’s and q dz’s).

For every fixed index 0 ≤ i ≤ n, define a bilinear form SH on Hn−i(X) by

(a, b) �−→ SH(a, b) :=

∫

X

(c1(H))i ∧ a ∧ b = deg ([X] ∩ ((c1(H))i ∪ a ∪ b)),

where [X] denotes the fundamental homology class of the naturally oriented X.
The hard Lefschetz theorem is equivalent to the nondegeneracy of the forms SH.
The Hodge-Riemann bilinear relations (§5.2, (38)) establish their signature prop-

erties.

1.2. Families of smooth projective varieties. If f : X → Y is a C∞ fiber
bundle with smooth compact fiber F , let Hj(F ) denote the local system on Y
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whose fiber at the point y ∈ Y is Hj(f−1(y)). We have the associated Leray
spectral sequence

(1) Ei,j
2 = Hi(Y ;Hj(F )) =⇒ Hi+j(X)

and the monodromy representation

(2) ρi : π1(Y, y0) → GL(Hi(F )).

Even if Y is simply connected, the Leray spectral sequence can be nontrivial, for
example, the Hopf fibration f : S3 → S2.

We define a family of projective manifolds to be a proper holomorphic submer-
sion f : X → Y of nonsingular varieties that factors through some product Y ×PN

and for which the fibers are connected projective manifolds. The nonsingular hy-
persurfaces of a fixed degree in some projective space give an interesting example.
By a classical result of Ehresmann, such a map is also a C∞ fiber bundle.

The results that follow are due to Deligne [56, 59]. Recall that a representation
is said to be irreducible if it does not admit a nontrivial invariant subspace, i.e. if
it is simple in the category of representations.

Theorem 1.2.1 (Decomposition and semisimplicity for families of projec-
tive manifolds). Suppose f : X → Y is a family of projective manifolds. Then

(1) The Leray spectral sequence (1) degenerates at the E2-page and induces an
isomorphism

Hi(X) ∼=
⊕

a+b=i

Ha(Y ;Hb(F )).

(2) The representation (2) is semisimple: it is a direct sum of irreducible rep-
resentations.

Part (1) gives a rather complete description of the cohomology of X. Part (2) is
remarkable because the fundamental group of Y can be infinite.

Remark 1.2.2. Theorem 1.2.1, part (1) is stated using cohomology. Deligne proved
a stronger, sheaf-theoretic statement; see Theorem 5.2.2.

Remark 1.2.3. For singular maps, the Leray spectral sequence is very seldom de-
generate. If f : X → Y is a resolution of the singularities of a projective variety Y
whose cohomology has a mixed Hodge structure which is not pure, then f∗ cannot
be injective, and this prohibits degeneration in view of the edge-sequence.

The following is the global invariant cycle theorem. We shall come back to this
later in §1.7, where we give some generalizations, and in §1.10, where we give some
references.

Theorem 1.2.4. Suppose f : X → Y is a family of projective manifolds. Then

Hi(Fy0
)π1(Y,y0) = Im {Hi(X) −→ Hi(Fy0

)},
i.e. the monodromy invariants are precisely the classes obtained by restriction from
the total space of the family.

Although the classical Lefschetz-Hodge theorems described in §1.1 and the re-
sults described in this section appear to be very different from each other, the
decomposition theorem forms a beautiful common generalization which holds also
in the presence of singularities.
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1.3. Singular algebraic varieties. The Lefschetz and Hodge theorems fail if X
is singular. There are two somewhat complementary approaches to generalize these
statements to singular projective varieties. They involve mixed Hodge theory [59,
60] and intersection cohomology [86, 87] (see also [19]).

In mixed Hodge theory the topological invariant studied is the same as that in-
vestigated for nonsingular varieties, namely, the cohomology groups of the variety,
whereas the structure with which it is endowed changes. See [69] for an elemen-
tary and nice introduction. The (p, q)-decomposition of classical Hodge theory is
replaced by a more complicated structure: the rational cohomology groups Hi(X)
are endowed with an increasing filtration W (the weight filtration) W0 ⊆ W1 ⊆
. . . ⊆ W2i = Hi(X), and the complexifications of the graded pieces Wk/Wk−1 have
a (p, q)-decomposition of weight k, that is, p + q = k. Such a structure, called
a mixed Hodge structure, exists canonically on any algebraic variety and satisfies
several fundamental restrictions on the weights, such as:

(1) if X is nonsingular, but possibly noncompact, then the weight filtration on
Hi(X) starts at Wi, that is, WrH

i(X) = 0 for r < i;
(2) if X is compact, but possibly singular, then the weight filtration on Hi(X)

ends at Wi, that is, WrH
i(X) = WiH

i(X) = Hi(X) for r ≥ i.

Example 1.3.1. Let X = C∗; then H1(X) ≃ Q has weight 2 and the classes
in H1(X) are of type (1, 1). Let X be a rational irreducible curve with a node
(topologically, this is a pinched torus, or also the two-sphere with the north and
south poles identified); then H1(X) ≃ Q has weight 0 and the classes in H1(X) are
of type (0, 0).

In intersection cohomology theory, by contrast, it is the topological invariant
which is changed, whereas the (p, q)-structure turns out to be the same. The inter-
section cohomology groups IHi(X) (§2.1) can be described using geometric “cycles”
on the possibly singular variety X, and this gives a concrete way to compute simple
examples. There is a natural homomorphism Hi(X) → IHi(X) which is an iso-
morphism when X is nonsingular. The groups IHi(X) are finite dimensional; they
satisfy the Mayer-Vietoris theorem and the Künneth formula. These groups are not
homotopy invariant but, in compensation, they have the following additional fea-
tures: they satisfy Poincaré duality, the Lefschetz theorems and, if X is projective,
they admit a pure Hodge structure.

Example 1.3.2. Let X be the nodal curve of Example 1.3.1. Then IH1(X) = 0.

Example 1.3.3. Let E ⊆ PN
C be a nonsingular projective variety of dimension n−1,

and let Y ⊆ CN+1 be its affine cone with vertex o. The intersection cohomology
groups can be easily computed (see [19] and also Example 2.2.1):

IHi(Y ) = 0 for i ≥ n, IHi(Y ) ≃ Hi(Y \ {o}) for i < n.

There is a twisted version of intersection (co)homology with values in a local
system L defined on a Zariski dense nonsingular open subset of the variety X.
Intersection cohomology with twisted coefficients is denoted IH∗(X,L), and it ap-
pears in the statement of the decomposition theorem.

1.4. Decomposition and hard Lefschetz in intersection cohomology. The
decomposition theorem is a result about certain complexes of sheaves on varieties.
In this section, we state a provisional, yet suggestive, form that involves only inter-
section cohomology groups.
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Theorem 1.4.1 (Decomposition theorem for intersection cohomology
groups). Let f : X → Y be a proper map of varieties. There exist finitely many
triples (Ya, La, da) made of locally closed, smooth and irreducible algebraic subvari-
eties Ya ⊆ Y , semisimple local systems La on Ya and integer numbers da, such that
for every open set U ⊆ Y there is an isomorphism

(3) IHr(f−1U) ≃
⊕

a

IHr−da(U ∩ Y a, La).

The triples (Ya, La, da) are essentially unique, independent of U , and they are
described in [48, 51]. Setting U = Y we get a formula for IH∗(X) and therefore,
if X is nonsingular, a formula for H∗(X). If f : X → Y is a family of projective
manifolds, then (3) coincides with the decomposition in Theorem 1.2.1, part (1). On
the opposite side of the spectrum, if f : X → Y is a resolution of the singularities
of Y , i.e. X is nonsingular and f is an isomorphism outside a closed subvariety of
Y , then we can deduce that the intersection cohomology groups IH∗(Y ) are direct
summands of H∗(X).

If X is singular, then there is no analogous direct sum decomposition formula for
H∗(X). Intersection cohomology turns out to be precisely the topological invariant
apt to deal with singular varieties and maps. The notion of intersection cohomology
is needed even when X and Y are nonsingular, but the map f is not a submersion.

Remark 1.4.2 (The splitting is not canonical). The decomposition map (3) is
not uniquely defined. This is analogous to the elementary fact that a filtration
on a vector space can always be given in terms of a direct sum decomposition,
but the filtration does not determine in a natural way the summands as subspaces
of the given vector space. In the case when X is quasi-projective, one can make
distinguished choices which realize the summands as mixed Hodge substructures of
a canonical mixed Hodge structure on IH∗(X) (see [54, 45] and §1.9, 5).

If L is a hyperplane line bundle on a projective variety Y , then the hard Lefschetz
theorem for the intersection cohomology groups of Y holds; i.e., for every integer
k ≥ 0, the i-th iterated cup product

(4) c1(L)i : IHdim Y−i(Y )
≃−→ IHdimY+i(Y )

is an isomorphism. Recall that intersection cohomology is not a ring; however, the
cup product with a cohomology class is well defined and intersection cohomology
is a module over cohomology.

The analogue of Theorem 5.2.1(3) (hard Lefschetz, Lefschetz decomposition and
Hodge-Riemann relations) holds for the intersection cohomology groups IH∗(Y ) of
a singular projective variety Y .

1.5. Crash course on sheaves and derived categories. The statement of The-
orem 1.4.1 involves only the notion of intersection cohomology. We do not know
of a general method for proving the decomposition (3) without first proving the
analogous decomposition, Theorem 1.6.1, at the level of complexes of sheaves.

The language and theory of sheaves and homological algebra, specifically derived
categories and perverse sheaves, plays an essential role in all the known proofs of
the decomposition theorem, as well as in its numerous applications.

In this section, we collect the few facts about sheaves and derived categories
needed in order to understand the statement of the decomposition Theorem 1.6.1.
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542 MARK ANDREA A. DE CATALDO AND LUCA MIGLIORINI

We amplify and complement this crash course in the appendices in §5 and in section
§2 on perverse sheaves. Standard references are [19, 82, 87, 116, 108].

1. Complexes of sheaves. Most of the constructions in homological algebra
involve complexes. For example, if Z is a C∞ manifold, in order to compute the
cohomology of the constant sheaf RZ , we replace it by the complex of sheaves of
differential forms, and then we take the complex of global sections, i.e. the de Rham
complex. More generally, to define the cohomology of a sheaf A on a topological
space Z, we choose an injective, or flabby, resolution, for instance the one defined
by Godement,

0 �� A �� I0
d0

�� . . . di−1
�� Ii

di

�� Ii+1 �� . . .

then consider the complex of abelian groups

0 �� Γ(I0)
d0

�� . . . di−1
�� Γ(Ii)

di

�� Γ(Ii+1) �� . . .

and finally take its cohomology. The derived category is a formalism developed in
order to work systematically with complexes of sheaves with a notion of morphism
which is far more flexible than that of morphism of complexes; for instance, two
different resolutions of the same sheaf are isomorphic in the derived category. Let
Z be a topological space. We consider sheaves of Q-vector spaces on Z. A bounded
complex of sheaves K is a diagram

. . . �� Ki−1 di−1
�� Ki di

�� Ki+1 �� . . .

with Ki = 0 for |i| ≫ 0 and satisfying di ◦ di−1 = 0 for every i. The shifted
complexK[n] is the complex withK[n]i = Kn+i and differentials dK[n] = (−1)ndK .
Complexes of sheaves form an Abelian category and we may form the cohomology
sheaf Hi(K) = Ker(di)/Im(di−1), which is a sheaf whose stalk at a point x ∈ Z is
the cohomology of the complex of stalks at x.

2. Quasi-isomorphisms and resolutions. A morphism K → L of com-
plexes of sheaves is a quasi-isomorphism if it induces isomorphisms Hi(K) ∼= Hi(L)
of cohomology sheaves, i.e. if the induced map at the level of the stalks of the
cohomology sheaves is an isomorphism at each point z ∈ Z. An injective (flabby,
fine) resolution of a complex K is a quasi-isomorphism K → I, where I is a com-
plex with injective (flabby, fine) components. Such a resolution always exists for
a bounded below complex. The cohomology groups H∗(Z,K) of K are defined to
be the cohomology groups of the complex of global sections Γ(I) of I. As soon as
one identifies sheaves with the complexes of sheaves concentrated in degree 0, this
definition of the groups H∗(Z,K) extends the definition of the cohomology groups
of a single sheaf given above to the case of bounded (below) complexes.

A quasi-isomorphismK → L induces isomorphisms on the cohomology,Hi(U,K)
∼= Hi(U,L) of any open set U ⊂ Z, and these isomorphisms are compatible with
the maps induced by inclusions and with Mayer-Vietoris sequences.

3. The derived category. The derived category D(Z) is a category whose
objects are the complexes of sheaves, but whose morphisms have been cooked up in
such a way that every quasi-isomorphism S → T becomes an isomorphism in D(Z)
(i.e., it has a unique inverse morphism). In this way, quite different complexes of
sheaves that realize the same cohomology theory (such as the complex of singular
cochains and the complex of differential forms on a C∞ manifold) become isomorphic
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in D(Z). The definition of the morphisms in the derived category is done by first
identifying morphisms of complexes which are homotopic to each other, and then
by formally adding inverses to quasi-isomorphisms. The second step is strongly
reminiscent of the construction of the rational numbers as the field of fractions of
the ring of integers, and the necessary calculus of fractions is made possible in view
of the first step. An analogous notion is that of a bounded derived category Db(Z),
where the objects are the bounded complexes of sheaves. The bounded derived
category sits inside the derived category and the embedding Db(Z) ⊆ D(Z) is full,
and similarly, for complexes bounded below (i.e., Hi(K) = 0, ∀i ≪ 0) and the
corresponding category D+(Z) ⊆ D(Z), etc.

4. Derived functors. The main feature of the derived category is the possibil-
ity of defining derived functors. We discuss the case of cohomology and the case of
the push-forward via a continuous map. If I is a bounded below complex of injec-
tive (flabby, or even fine) sheaves on Z, the cohomology Hi(Z, I) is the cohomology
of the complex of abelian groups

. . . �� Γ(Z, Ii−1) �� Γ(Z, Ii) �� Γ(Z, Ii+1) �� · · · ,

which can be considered as an object, denoted RΓ(Z, I), of the bounded below
derived category of a point D+(pt). However, if the complex is not injective, as
the example of the constant sheaf on a C∞ manifold shows, this procedure gives
the wrong answer, as the complexes of global sections of two quasi-isomorphic
complexes are not necessarily quasi-isomorphic. Every bounded below complex
K admits a bounded below injective resolution K → I, unique up to a unique
isomorphism in D+(Z). The complex of global sections RΓ(Z,K) := Γ(Z, I) (a
flabby resolution can be used as well and, if there is one, also a fine one) is well
defined up to a unique isomorphism in the derived category D+(pt) ⊆ D(pt). For
our limited purposes, note that we always work with bounded complexes whose
resolutions can be chosen to be bounded; i.e., we can and do work within Db(Z),
etc.

A similar construction arises when f : W → Z is a continuous mapping: if I is a
bounded below complex of injective sheaves on W , then the push-forward complex
f∗(I) is a complex of sheaves on Z that satisfies

(5) Hi(U, f∗(I)) ∼= Hi(f−1(U), I)

for any open set U ⊆ Z. However if a bounded below complex C on W is not
injective, then (5) may fail, and C ∈ D+(W ) should first be replaced by an injective
resolution before pushing forward. The resulting complex of sheaves on Z is well
defined up to a canonical isomorphism in D+(Z), is denoted Rf∗C and is called the
(derived) direct image of C. Its cohomology sheaves are sheaves on Z, are denoted
Rif∗C and are called the i-th direct image sheaves. Note that if f maps W to a
point, then Rf∗C = RΓ(W,C) and Rif∗C = Hi(W,C).

When f : W → Z is a continuous map of locally compact spaces, a similar
process, which starts with the functor direct image with proper supports f!, yields
the functor derived direct image with proper supports Rf! : D+(W ) → D+(Z).
There is a map of functors Rf! → Rf∗, which is an isomorphism if f is proper.
Under quite general hypotheses, always satisfied by algebraic maps of algebraic
varieties, given a map f : W → Z, there are the inverse image and extraordinary
inverse image functors f∗, f ! : Db(Z) → Db(W ). See §5.3 for a list of the properties
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of these four functors Rf∗, Rf!, f
∗ and f !, as well as for their relation to Verdier

duality.
5. Constructible sheaves. (See [87].) From now on, suppose Z is a complex

algebraic variety. A subset V ⊂ Z is constructible if it is obtained from a finite
sequence of unions, intersections, or complements of algebraic subvarieties of Z. A
local system on Z is a locally constant sheaf on Z with finite-dimensional stalks. A
local system on Z corresponds to a finite-dimensional representation of the funda-
mental group of Z. A complex of sheaves K has constructible cohomology sheaves
if there exists a decomposition Z =

∐
α Zα into finitely many constructible subsets

such that each of the cohomology sheaves Hi(K) is locally constant along each Zα

with finite-dimensional stalks. This implies that the limit

(6) Hi
x(K) := lim

→
Hi(Ux,K)

is attained by any “regular” neighborhood Ux of the point x (for example, one
may embed (locally) Z into a manifold and take Ux = Z ∩ Bǫ(x) to be the inter-
section of Z with a sufficiently small ball centered at x). This also implies that
Hi(Z,K) is finite dimensional. Constructibility prevents the cohomology sheaves
from exhibiting Cantor-set-like behavior.

Most of the complexes of sheaves arising naturally from geometric constructions
on varieties are bounded and have constructible cohomology sheaves.

From now on, in this survey, unless otherwise stated, bounded complexes with
constructible cohomology sheaves are simply called constructible complexes.

The constructible bounded derived category DZ is defined to be the full subcat-
egory of the bounded derived category Db(Z) whose objects are the constructible
complexes. This subcategory is stable under the Verdier duality functor; i.e., the
dual of a constructible complex is a bounded constructible complex, it is stable
under Hom, tensor products, vanishing and nearby cycle functors, and it is well-
behaved with respect to the functors Rf∗, Rf!, f

∗, f ! associated with an algebraic
map f : W → Z, i.e., Rf∗, Rf! : DW → DZ and f∗, f ! : DZ → DW .

6. Perverse sheaves, intersection complexes. A perverse sheaf is a con-
structible complex with certain restrictions (see §2.3) on the dimension of the sup-
port of its stalk cohomology and of its stalk cohomology with compact supports
(i.e., the analogue with compact supports of (6)). These restrictions are called the
support and co-support conditions, respectively.

Let U ⊂ Z be a nonsingular Zariski open subset and let L be a local sys-
tem on U . The intersection complex ([87]) ICZ(L) is a complex of sheaves on Z,
which extends the complex L[dimZ] on U and is determined, up to unique iso-
morphism in DZ , by support and co-support conditions that are slightly stronger
than the ones used to define perverse sheaves; see equations (12) and (13) in §2.1.
In particular, intersection complexes are perverse sheaves. Up to a dimensional
shift, the cohomology groups of the intersection complex ICZ(L) are the inter-
section cohomology groups of Z twisted by the system of local coefficients L:
Hi(Z, ICZ(L)) = IHdimZ+i(Z,L).

The category of perverse sheaves is Abelian and Artinian (see §5.3): every per-
verse sheaf is an iterated extension of finitely many simple perverse sheaves. The
simple perverse sheaves on Z are the intersection complexes ICY (L) of irreducible
subvarieties Y ⊂ Z and irreducible local systems L defined on a nonsingular Zariski
open subset of Y .
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7. Perverse cohomology sheaves, perverse spectral sequence. The (or-
dinary) constructible sheaves, thought of as the constructible complexes which are
concentrated in degree 0, form an Abelian full subcategory of the constructible
derived category DZ . An object K of DZ is isomorphic to an object of this subcat-
egory if and only if Hi(K) = 0 for every i �= 0. There is a similar characterization
of the category of perverse sheaves: every constructible complex K ∈ DZ comes
equipped with a canonical collection of perverse sheaves on Z, the perverse coho-
mology sheaves pHi(K), i ∈ Z. The perverse sheaves are characterized, among the
constructible complexes, by the property that pHi(K) = 0 for every i �= 0.

Just as there is the Grothendieck spectral sequence

El,m
2 = H l(Z,Hm(K)) =⇒ H l+m(Z,K),

abutting to the standard (or Grothendieck) filtration, there is the perverse spectral
sequence

El,m
2 = H l(Z, pHm(K)) =⇒ H l+m(Z,K),

abutting to the perverse filtration, and similarly, for the cohomology groups with
compact supports H∗

c (Z,K).
Let f : W → Z be a map of varieties and C ∈ DW . We have H∗(W,C) =

H∗(Z,Rf∗C) and H∗
c (W,C) = H∗

c (Z,Rf!C). The perverse Leray spectral sequence
and filtration for H∗(W,C) and H∗

c (W,C) are defined to be the perverse spectral
sequence and filtrations for H∗(Z,Rf∗C) and H∗

c (Z,Rf!C), respectively.

Remark 1.5.1. If U is a nonempty, nonsingular and pure dimensional open subset
of Z on which all the cohomology sheaves Hi(K) are local systems, then the re-
strictions to U of pHm(K) and Hm−dimZ(K)[dimZ] coincide. In general, the two
differ: in Example 1.8.4, we have pH0(Rf∗QX [2]) ≃ ICY (R

1)⊕TΣ. This illustrates
the nontriviality of the notion of a perverse cohomology sheaf.

1.6. Decomposition, semisimplicity and relative hard Lefschetz theorems.
Having dealt with some preliminaries on sheaves and derived categories, we now
state

Theorem 1.6.1 (Decomposition and semisimplicity theorems). Let f : X →
Y be a proper map of complex algebraic varieties. There exists an isomorphism in
the constructible bounded derived category DY :

(7) Rf∗ICX ≃
⊕

i∈Z

pHi(Rf∗ICX)[−i].

Furthermore, the perverse sheaves pHi(Rf∗ICX) are semisimple; i.e., there is a
decomposition into finitely many disjoint locally closed and nonsingular subvarieties
Y =

∐
Sβ and a canonical decomposition into a direct sum of intersection complexes

of semisimple local systems

(8) pHi(Rf∗ICX) ≃
⊕

β

ICSβ
(Lβ).

The decomposition theorem is usually understood to be the combination of (7)
and (8), i.e., the existence of a finite collection of triples (Ya, La, da) as in Theorem
1.4.1 such that we have a direct sum decomposition

(9) Rf∗ICX ≃
⊕

a

ICYa
(La)[dimX − dimYa − da].
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Recalling that IH∗(X) = H∗−dimX(X, ICX), the cohomological shifts in the for-
mula above are chosen so that they match the ones of Theorem 1.4.1, which is in
fact a consequence of (9). The local systems La are semisimple, and the collection
of triples (Ya, La, da) is essentially unique.

The direct sum decomposition (7) is finite and i ranges in the interval [−r(f),
r(f)], where r(f) is the defect of semismallness of the map f (see §3.3.2, part 2,
and [51]). In view of the properness of f and of the fact that ICX is a self-dual
complex (i.e., it coincides with its own dual), Poincaré-Verdier duality (cf. §5.8,
duality exchanges) implies the existence of a canonical isomorphism

(10) pH−i(f∗ICX) ≃ pHi(f∗ICX)∨.

This important symmetry between the summands in (7) should not be confused
with the somewhat deeper relative hard Lefschetz theorem, which is discussed be-
low.

Remark 1.6.2 (The splitting is not canonical). The splittings (7) and (9) are
not uniquely determined. See Remark 1.4.2.

It seems worthwhile to list some important and immediate consequences of The-
orem 1.6.1.

(1) The isomorphism (7) implies immediately that the perverse Leray spectral
sequence

El,m
2 := H l(Y, pHm(Rf∗ICX)) =⇒ IHdimX+l+m(X,Q)

is E2-degenerate.
(2) If f : X → Y is a resolution of the singularities of a variety Y , i.e., if X is

nonsingular and f is proper and an isomorphism away from a proper closed
subset of Y , then one of the summands in (7) is ICY and we deduce that
the intersection cohomology of Y is (noncanonically) a direct summand
of the cohomology of any of its resolutions. Such resolutions exist, by a
fundamental result of H. Hironaka.

(3) If f : X → Y is a proper submersion of nonsingular varieties, then, in view
of Remark 1.5.1, the decomposition (9) can be rewritten as

Rf∗QX ≃
⊕

Rif∗QX [−i]

and one recovers Deligne’s theorem ([56]) for families of projective mani-
folds (a weaker form of which is the E2-degeneration of the Leray spectral
sequence for such maps as stated in Theorem 1.2.1, part (1)). The semisim-
plicity statement of Theorem 1.6.1 corresponds then to Theorem 1.2.1, part
(2).

As the name suggests, the relative hard Lefschetz theorem stated below is the
relative version of the classical hard Lefschetz theorem seen in §1.1; i.e., it is a
statement that occurs in connection with a map of varieties, which, when applied
to the special case of the map of a projective manifold to a point, yields the classical
hard Lefschetz theorem. The relative version is closely linked to the decomposition
theorem as it expresses a symmetry among the summands in (7).

The symmetry in question arises when considering the operation of cupping
with the first Chern class of a hyperplane line bundle on the domain of the map
f : X → Y . The hyperplane bundle on projective space is the holomorphic line
bundle whose sections vanish precisely on linear hyperplanes. A hyperplane bundle
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on a quasi-projective variety X is the restriction to X of the hyperplane line bundle
for some embedding X ⊆ PN .

The first Chern class of a line bundle η on X yields, for every i ≥ 0, maps
ηi : Rf∗ICX → Rf∗ICX [2i] and, by taking the perverse cohomology sheaves, we
obtain maps of perverse sheaves ηi : pH−i(Rf∗ICX) −→ pHi(Rf∗ICX).

Theorem 1.6.3 (Relative hard Lefschetz theorem). Let f : X → Y be a
proper map of varieties with X quasi-projective and let η be the first Chern class of
a hyperplane line bundle on X. Then we have isomorphisms

(11) ηi : pH−i(Rf∗ICX)
≃−→ pHi(Rf∗ICX).

If f is also a proper submersion, then we simply recover the classical hard Lef-
schetz theorem on the fibers of the map. As mentioned above, if we apply this result
to the special case f : X → pt, where X is a projective manifold, then we obtain
the classical hard Lefschetz theorem. If X is a possibly singular projective variety,
then we obtain the hard Lefschetz theorem in intersection cohomology (§1.4).
Remark 1.6.4. Theorems 1.6.1 and 1.6.3 also apply to Rf∗ICX(L) for certain classes
of local systems L (see [9, 156]).

Example 1.6.5. Let X = P1
C × C and Y be the space obtained by collapsing the

set P1
C × {o} to a point. This is not a complex algebraic map, and (8) does not

hold.

Example 1.6.6. Let f : (C2 \{0})/Z =: X → P1 be the fibration in elliptic curves
associated with a Hopf surface. Hopf surfaces are compact complex manifolds.
Since π1(X) ≃ Z, we have b1(X) = 1 so that X is not algebraic. In particular,
though the map f is a proper holomorphic submersion, it is not an algebraic map
and Deligne’s theorem, and hence the decomposition theorem, does not apply. In
fact, Rf∗QX does not split, for if it did, then b1(X) = 2.

1.7. Invariant cycle theorems. The following theorem, in its local and global
form, follows quite directly from the decomposition theorem. It generalizes previous
results, which assume that X is smooth. For references, see the end of §1.10.

In a nutshell, the global invariant cycle Theorem 1.2.4 can be restated as assert-
ing that if f : X → Y is a family of projective manifolds, then the monodromy
invariants H∗(Fy)

π1(Y,y) on the cohomology of a fiber are precisely the image of the
restriction map H∗(X) → H∗(Fy) from the total space of the family. (Clearly, the
image of the restriction map is made of invariant classes, and the deep assertion is
that every invariant class is global, i.e., it comes from X.) In view of the general-
ization given in Theorem 1.7.1 below, we conveniently restate this as the fact that
the natural “edge” map

Hi(X) −→ H0(Y,Rif∗QX)

is surjective.

Theorem 1.7.1 (Global and local invariant cycle theorems). Let f : X → Y
be a proper map. Let U ⊆ Y be a Zariski open subset on which the sheaf Rif∗(ICX)
is locally constant. Then the following assertions hold.

(1) (Global) The natural restriction map

IHi(X) −→ H0(U,Rif∗ICX)

is surjective.
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(2) (Local) Let u ∈ U and Bu ⊆ U be the intersection with a sufficiently small
Euclidean ball (chosen with respect to any local embedding of (Y, u) into a
manifold) centered at u. Then the natural restriction/retraction map

Hi(f−1(u), ICX) ≃ Hi(f−1(Bu), ICX) −→ H0(Bu, R
if∗ICX)

is surjective.

1.8. A few examples. In this section we discuss the statement of the decompo-
sition theorem in the following three examples: the resolution of singularities of
a singular surface, the resolution of the affine cone over a projective nonsingular
surface, and a fibration of a surface onto a curve. More details can be found in [53].

Example 1.8.1. Let f : X → Y be a resolution of the singularities of a singular
surface Y . Assume that we have a single singular point y ∈ Y with f−1(y) = E a
finite union of curves on X. Since X is nonsingular, ICX = QX [2] and we have an
isomorphism

Rf∗QX [2] ≃ ICY ⊕ T,

where T is a skyscraper sheaf at y with stalk T = H2(E).

Example 1.8.2. Let S ⊆ PN
C be an embedded projective nonsingular surface and

Y ⊆ AN+1 be the corresponding threefold affine cone over S. Let f : X → Y be
the blowing up of Y at the vertex y. This is a resolution of the singularities of Y ,
it is an isomorphism outside the vertex of the cone and the fiber over the vertex is
a copy of S. We have an isomorphism

Rf∗QX [3] ≃ T−1[1]⊕ (ICY ⊕ T0)⊕ T1[−1],

where the Tj are skyscraper sheaves at y with stalks T1 ≃ T−1 ≃ H4(S) and
T0 ≃ H3(S).

Example 1.8.3. Let S ⊆ P3 be the nonsingular quadric. The affine cone Y over
S admits a resolution as in Example 1.8.2. This also admits resolutions f : X ′ →
Y , obtained by blowing up a plane passing through the vertex. In this case the
exceptional fiber is isomorphic to P1 and we have Rf∗QX′ [3] = ICY .

Example 1.8.4. Let f : X → Y be a projective map with connected fibers from
a smooth surface X onto a smooth curve Y . Let Σ ⊆ Y be the finite set of critical
values and let U = Y \ Σ be its complement. The map f is a C∞ fiber bundle
over U with typical fiber a compact oriented surface of some fixed genus g. Let
R1 = (R1f∗QX)|U be the rank 2g local system on U with stalk the first cohomology
of the typical fiber. We have an isomorphism

Rf∗QX [2] ≃ QY [2]⊕ (ICY (R
1)⊕ TΣ)⊕QY ,

where TΣ is a skyscraper sheaf over Σ with stalks Ts ≃ H2(f
−1(s))/〈[f−1(s)]〉 at

s ∈ Σ.

In all three examples the target space is a union Y = U ∐ Σ and we have two
corresponding types of summands. The summands of type T consist of classes which
can be represented by cycles supported over the exceptional set Σ. This is precisely
the kind of statement which lies at the heart of the decomposition theorem. There
are classes which can be represented by intersection cohomology classes of local
systems on Y and classes which can be represented by intersection cohomology
classes of local systems supported over smaller strata, and the cohomology of X
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is the direct sum of these two subspaces. Suggestively speaking, it is as if the
intersection cohomology relative to a stratum singled out precisely the classes which
cannot be squeezed in the inverse image by f of a smaller stratum.

1.9. The decomposition theorem and mixed Hodge structures. The proof
of the hard Lefschetz theorem in intersection cohomology appears in [9]. Therefore,
at that point in time, intersection cohomology was known to enjoy the two Lef-
schetz theorems and Poincaré duality ([9, 86, 87]). The question concerning a pos-
sible Hodge structure in intersection cohomology, as well as other Hodge-theoretic
questions, was very natural at that juncture (cf. [9], p.165).

The work of M. Saito [156, 157] settled these issues completely with the use
of mixed Hodge modules. The reader interested in the precise statements and
generalizations is referred to Saito’s papers (for brief summaries, see [70] and §3.2).

In this section, we summarize some of the mixed Hodge-theoretic properties
of the intersection cohomology of complex quasi-projective varieties that we have
reproved using classical Hodge theory (see §3.3).

The proofs can be found in [51, 54, 55, 45]. More precisely, the results for
projective varieties and the maps between them (in this case, all Hodge structures
are pure) are found in [51, 54] and the extension to quasi-projective varieties and
the proper maps between them is found in [45], which builds heavily on [55].

Let us fix the setup. Let f : X → Y be a proper map of quasi-projective varieties.
The intersection cohomology groups IH∗(X) and IH∗

c (X) are naturally filtered by
the perverse Leray filtration P∗, where PpIH

∗(X) ⊆ IH∗(X) and PpIH
∗
c (X) are

the images in cohomology and in cohomology with compact supports of the direct
sum of terms i′ with i′ ≤ p in the decomposition theorem (7). Up to renumbering,
this is the filtration abutment of the perverse Leray spectral sequence met in the
crash course §1.5, and it can be defined and described geometrically regardless of
the decomposition theorem (7); see §2.4. We abbreviate mixed Hodge structures
as mHs.

(1) The intersection cohomology groups IH∗(Y ) and IH∗
c (Y ) carry natural

mHs. If f : X → Y is a resolution of the singularities of Y , then these
mHs are canonical subquotients of the mHs on H∗(X) and on H∗

c (X),
respectively. If Y is a projective manifold, then the mHs is pure and it
coincides with the classical one (Hodge decomposition). If Y is nonsingu-
lar, then the mHs coincide with Deligne’s mHs on cohomology (see §5.2).
The intersection bilinear pairing in intersection cohomology is compatible
with the mHs; i.e., the resulting map IHn−j(Y ) −→ (IHn+j

c )∨(−n) is an
isomorphism of mHs. The natural map Hj(Y ) −→ IHj(Y ) is a map of
mHs; if Y is projective, then the kernel is the subspace Wj−1 of classes of
Deligne weight ≤ j − 1.

(2) If Y is a projective variety and η is a hyperplane line bundle on Y , then the
hard Lefschetz theorem in intersection cohomology of §1.4 holds. In fact,
the obvious transpositions from cohomology to intersection cohomology of
the statements in §5.2, Theorem 5.2.1 hold.

(3) The subspaces Pp of the perverse Leray filtrations in IH∗(X) and in IH∗
c (X)

are mixed Hodge substructures of the mHs mentioned in 1. The graded
spaces of these filtrations (i.e., Pp/Pp+1) for IH

∗(X) and for IH∗
c (X) inherit

the natural quotient mHs, and they coincide (up to a shift in cohomological
degree) with the cohomology and cohomology with compact supports of
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the perverse cohomology sheaves pHp(Rf∗ICX). We call these spaces the
perverse cohomology groups.

(4) The splitting of the perverse cohomology groups associated with the canon-
ical splitting (8) of the decomposition theorem takes place in the category
of mHs.

(5) There exist splittings (7) for the decomposition theorem which induce iso-
morphisms of mHs in cohomology and in cohomology with compact sup-
ports. (Note that this statement is stronger than the one above: while these
splittings take place in IH∗(X) and in IH∗

c (X), the previous ones take place
in the perverse cohomology groups which are subquotients of IH∗(X) and
of IH∗

c (X).)
(6) The mHs we introduce coincide with the ones obtained by M. Saito using

mixed Hodge modules.

1.10. Historical and other remarks. In this section we offer a few remarks
that describe the timeline for some of the results mentioned in this survey. We
make no pretense to historical completeness. For an account of the development of
intersection cohomology, see the historical remarks in [85] and the survey [120].

By the late 1920s, S. Lefschetz had “proofs” of the Lefschetz hyperplane and hard
Lefschetz theorems in singular cohomology (see [121] for an interesting discussion of
Lefschetz’s proofs). Lefschetz’s proof of the hard Lefschetz theorem is incomplete.

The Hodge decomposition theorem of cohomology classes into (p, q)-harmonic
parts appears in W. Hodge’s book [99]. This is where one also finds the first
complete proof of the hard Lefschetz theorem (see also [178]). The proof of the
(p, q) decomposition in [99] is not complete, and the missing analytical step was
supplied by H. Weyl ([179]).

S.S. Chern gave a proof of the hard Lefschetz theorem in the 1950s (see [92])
which still relies on Hodge theory and exploits the action of sl2(C) on the differential
forms on a Kähler manifold.

In the 1950s, R. Thom outlined a Morse-theoretic approach to the hyperplane
theorem which was worked out in detail by A. Andreotti and T. Frankel [3] (see
[144]) and by R. Bott [22].

The Hodge decomposition is the blueprint for the definition of pure and mixed
Hodge structures given by P. Griffiths and by P. Deligne, respectively. The subject
of how this decomposition varies in a family of projective manifolds and eventually
degenerates has been studied, starting in the late 1960s, by P. Griffiths and his
school. The degeneration of the Leray spectral sequence for families of projective
manifolds was proved by P. Deligne in 1968.

In 1980, Deligne [62] gave a new proof and a vast generalization of the hard
Lefschetz theorem by proving this result for varieties over finite fields and then
inferring from this fact the result over the complex numbers. (One usually says
that one “lifts the result from positive characteristic to characteristic zero”; see
below.) In particular, the hard Lefschetz theorem is proved for varieties defined
over an algebraically closed field. By a result of M. Artin, the Lefschetz hyperplane
theorem also holds in this generality.

Poincaré duality for intersection cohomology is proved in [86]. The Lefschetz
hyperplane theorem in intersection cohomology is proved in [87] and amplified in
[85]. The hard Lefschetz theorem for the intersection cohomology of projective
varieties is proved in [9]. In the 1980s, M. Saito ([156, 157]) proved that in the
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projective case these groups admit a pure Hodge structure (i.e., a (p, q)-Hodge
decomposition), reproved that they satisfy the hard Lefschetz theorem and proved
the Hodge-Riemann bilinear relations. In the 2000s, we reproved these results in
[48, 51].

The decomposition theorem (3) for the intersection cohomology groups had been
conjectured in 1980 by S. Gelfand and R. MacPherson. Note that they did not
mention perverse sheaves. In fact, the decomposition theorem (9) only needs the
notion of intersection cohomology in order to be formulated.

The decomposition, semisimplicity and relative hard Lefschetz theorems in §1.6
were proved by A. Beilinson, J. Bernstein, P. Deligne and O. Gabber in 1982 ([9]).
They first proved it for proper maps of varieties and defined the algebraic closure
of finite fields, and then they lifted the result to characteristic zero, i.e., for proper
maps of complex algebraic varieties. In fact, they prove the result for the proper
direct image of complexes of geometric origin (see Definition §3.1.14 in §3.1.5), and
the intersection complex ICX is a special and important example of a complex
of geometric origin. They also proved the invariant cycle results summarized in
Theorem 1.7.1. Finally, they proved the hard Lefschetz theorem (4) for intersec-
tion cohomology as a special case of their relative hard Lefschetz theorem. The
equivariant versions of these results are proved in [14].

At that juncture, it was natural to ask: 1) for a proof of the decomposition
theorem, semisimplicity and relative hard Lefschetz theorems for complex varieties
that uses transcendental methods; about the existence of Hodge structures in in-
tersection cohomology (pure in the compact case, mixed in the general case); 2)
about Hodge-Riemann relations in intersection cohomology (in analogy with the
ones for the singular cohomology of projective, or Kähler, manifolds; see Theorem
5.2.1 in §5.2); 3) about possible extensions of the decomposition theorem, etc. to
intersection complexes with twisted coefficients underlying a polarized variation of
pure Hodge structures; 4) about suitable extensions to quasi-projective varieties
and mixed Hodge structures, and finally 5) about generalizations of all these re-
sults to the Kähler case (e.g., for proper holomorphic maps f : X → Y , where X
is a complex analytic space which admits a proper surjective and generically finite
map onto it, e.g., a resolution of singularities, from a complex Kähler manifold).

All these questions have been answered in the work of M. Saito [156, 157] in the
1980s.

The case of ICX (i.e., untwisted coefficients) and of quasi-projective varieties
has been reproved by us using classical Hodge theory (see §1.9).

Finally, let us discuss the invariant cycle theorems. For families of projective
manifolds, the global case was proved by P. Deligne, in [59], 4.1.1. The local
case, conjectured and shown to hold for families of curves by P. Griffiths in [91],
Conjecture. 8.1, was proved by P. Deligne in [62]. For Hodge-theoretic approaches
to the local case, see [40, 168, 73, 96]. The “singular” case, i.e., Theorem 1.7.1, is
proved in [9], p.164; see also [156].

2. Perverse sheaves

Perverse sheaves have become an important tool in the study of singular spaces
as they enjoy many of the local and global properties of the constant sheaf that
hold on nonsingular spaces, but that fail on singular ones. They are fundamental
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mathematical objects whose importance goes beyond their role in the proof of the
decomposition theorem.

Here are some of the highlights of the theory of perverse sheaves. The reader
can consult [9, 116, 68]. Recall that we are dealing with Q-coefficients and with
middle-perversity only. We refer to §1.5 and §5 for more details and amplifications.

Historically, perverse sheaves arose naturally from the theory of D-modules, i.e.,
the sheaf-theoretic reformulation of linear systems of partial differential equations:
The “solution sheaf” of a holonomic D-module with regular singularities is a per-
verse sheaf, and this (Riemann-Hilbert correspondence) defines a functor from the
category of holonomic D-modules with regular singularities to perverse sheaves.

Even though the D-modules side of the story is a necessary complement to the
more topological-oriented approach presented here, for lack of competence, we do
not treat it in this paper. A partial list of references is [20, 13, 113, 114, 115, 139,
140, 15].

Let Y be a complex algebraic variety. Like the category of constructible sheaves,
the category PY of perverse sheaves is a full subcategory of the constructible derived
category DY . The category PY is Abelian, Noetherian and Artinian (i.e., every
perverse sheaf is a finite iterated extension of simple perverse sheaves). The simple
perverse sheaves on Y are the intersection complexes ICW (L) associated with an
irreducible and closed subvariety W ⊆ Y and an irreducible local system L (on a
Zariski-dense open nonsingular subvariety of W ). Since PY is an Abelian category,
any morphism in PY admits a (“perverse”) kernel and (“perverse”) cokernel. Given
a complex K ∈ DY , there are the (“perverse”) cohomology sheaves pHi(K) ∈
PY . A theorem of A. Beilinson’s states that the bounded derived category of PY

is again DY . Many operations work better in the category of perverse sheaves
than in the category of sheaves, e.g., the duality and vanishing cycles functors
preserve perverse sheaves. The Lefschetz hyperplane theorem holds for perverse
sheaves. Specialization over a curve takes perverse sheaves to perverse sheaves.
The intersection cohomology of a projective variety satisfies the Hodge-Lefschetz
theorems and Poincaré duality.

2.1. Intersection cohomology. The intersection cohomology complex of a com-
plex algebraic variety Y is a special case of a perverse sheaf, and every perverse
sheaf is a finite iterated extension of intersection complexes. It seems appropriate
to start a discussion of perverse sheaves with this most important example.

Given a complex n-dimensional algebraic variety Y and a local system L on
a nonsingular Zariski-dense open subvariety U ⊆ Y , there exists a constructible
complex of sheaves ICY (L) ∈ DY , unique up to canonical isomorphism in DY ,
such that IC(L)|U ∼= L and:

(12) dim
{
y ∈ Y | Hi

y(IC(L)) �= 0
}
< −i, if i > −n,

(13) dim
{
y ∈ Y | Hi

c,y(IC(L)) �= 0
}
< i, if i < n,

where, for any complex S of sheaves,

Hi
c,y(S) = lim

←
Hi

c(Uy, S)

is the local compactly supported cohomology at x. (As explained in the “crash
course” §1.5, if S is constructible, then the above limit is attained by any regular
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neighborhood Uy of y.) The intersection complex ICY (L) is sometimes called the
intermediate extension of L. Its (shifted) cohomology is the intersection cohomology
of Y with coefficients in L, i.e., IHn+∗(Y, L) := H∗(Y, ICY (L)). The reader can
consult [86, 87] and [19, 68].

Even though intersection cohomology lacks functoriality with respect to alge-
braic maps (however, see [5]), the intersection cohomology groups of projective
varieties enjoy the same properties of Hodge-Lefschetz-Poincaré type as the singu-
lar cohomology of projective manifolds. Poincaré duality takes the form IHk(Y ) ≃
IH2n−k(Y )∨ and follows formally from the canonical isomorphism ICY ≃ IC∨

Y

stemming from Poincaré-Verdier duality; in particular, there is a nondegenerate
geometric intersection pairing

IHi(Y )× IH2n−i(Y ) −→ Q, (a, b) �−→ a · b;
on the other hand there is no cup product. As to the other properties, i.e., the
two Lefschetz theorems, the Hodge decomposition and the Hodge-Riemann bilinear
relations, see §1.9 and §3.3.

2.2. Examples of intersection cohomology.

Example 2.2.1. Let En−1 ⊆ PN be a projective manifold, Y n ⊆ AN+1 be the
associated affine cone. The link L of Y at the vertex o of the cone, i.e., the
intersection of Y with a sufficiently small Euclidean sphere centered at o, is an
oriented compact smooth manifold of real dimension 2n− 1 and is an S1-fibration
over E. The cohomology groups of L are

H2n−1−j(L) = Hj(L) = P j(E), 0 ≤ j ≤ n− 1,

Hn−1+j(L) = Pn−j(E), 0 ≤ j ≤ n,

where P j(E) ⊆ Hj(E) is the subspace of primitive vectors for the given embedding
of E, i.e., the kernel of cupping with the appropriate power of the first Chern class
of OE(−E). The Poincaré intersection form on H∗(L) is nondegenerate, as usual,
and also because of the Hodge-Riemann bilinear relations (38) on E.

The intersection cohomology groups of Y are

IHj(Y ) ≃ P j(E) = Hj(L), 0 ≤ j ≤ n− 1, IHj(Y ) = 0, n ≤ j ≤ 2n.

The intersection cohomology with compact supports of Y are

IH2n−j
c (Y ) ≃ Hj(L), 0 ≤ j ≤ n− 1, IH2n−j

c (Y ) = 0, n ≤ j ≤ 2n.

We thus see that, in this case, the Poincaré duality isomorphism IHj(Y ) ≃
IH2n−j

c (Y )∨ stems from the classical Poincaré duality on the link.

In the remaining part of this section, we complement some examples of inter-
section complexes and groups with some further information expressed using the
language of perverse sheaves which we discuss in the next few sections.

Example 2.2.2. Let Y be the projective cone over a nonsingular curve C ⊆ PN

of genus g. The cohomology groups are

H0(Y ) = Q, H1(Y ) = 0, H2(Y ) = Q, H3(Y ) = Q2g, H4(Y ) = Q.

The intersection cohomology groups are:

IH0(Y ) = Q, IH1(Y ) = Q2g, IH2(Y ) = Q, IH3(Y ) = Q2g, IH4(Y ) = Q.
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Note the failure of Poincaré duality in cohomology and its restoration via intersec-
tion cohomology. There is a canonical resolution f : X → Y of the singularities of
Y obtained by blowing up the vertex of Y . The decomposition theorem yields a
splitting exact sequence of perverse sheaves on Y :

0 �� ICY
�� f∗QX [2] �� H2(C)[0] �� 0.

Example 2.2.3. We now revisit Example 1.6.5. Let f : X → Y be the space
obtained by contracting to a point v ∈ Y , the zero section C ⊆ P1 ×C =: X. This
example is analogous to the one in Example 2.2.2, except that Y is not a complex
algebraic variety. The cohomology groups are

H0(Y ) = Q, H1(Y ) = 0, H2(Y ) = Q, H3(Y ) = Q2g, H4(Y ) = Q.

The stratified space Y has strata of even codimension, and we can define its inter-
section complex, etc. The intersection cohomology groups are:

IH0(Y ) = Q, IH1(Y ) = Q2g, IH2(Y ) = 0, IH3(Y ) = Q2g, IH4(Y ) = Q.

Note the failure of Poincaré duality in cohomology and its restoration via in-
tersection cohomology. There is a natural epimorphism of perverse sheaves τ :
f∗QX [2] −→ H2(C)[0]. There are nonsplitting exact sequences in PY :

0 −→ Ker τ −→ f∗QX [2] −→ H2(C)[0] −→ 0,

0 −→ ICY −→ Ker τ −→ Qv[0] −→ 0.

The complex f∗QX [2] is a perverse sheaf on Y obtained by a two-step extension
procedure involving intersection complexes (two of which are skyscraper sheaves).
The intersection cohomology complexes ICY and Qv of Y and v ∈ Y appear in
this process, but not as direct summands. The conclusion of the decomposition
theorem does not hold for this map f .

Example 2.2.4. Let Y be the projective cone over the quadric P1 ×P1 ≃ Q ⊆ P3.
The odd cohomology is trivial. The even cohomology is as follows:

H0(Y ) = 0, H2(Y ) = Q, H4(Y ) = Q2, H6(Y ) = Q.

The intersection cohomology groups are the same as the cohomology groups, ex-
cept that IH2(Y ) = Q2. Note the failure of Poincaré duality in homology and its
restoration via intersection homology. There are at least two different and interest-
ing resolutions of the singularities of Y : the ordinary blowup of the vertex o ∈ Y ,
f : X → Y which has fiber f−1(o) ≃ Q, and the blowup of any line on the cone

through the origin f ′ : X ′ → Y which has fiber f ′−1
(o) ≃ P1. The decomposition

theorem yields (cf. Example 1.8.2)

f∗QX [3] = ICY ⊕Qo[1]⊕Qo[−1], f ′
∗QX′ [3] = ICY .

Example 2.2.5. Let E be the rank two local system on the punctured complex
line C∗ defined by the automorphism of e1 �→ e1, e2 �→ e1 + e2. It fits into the
nontrivial extension

0 �� QC∗ �� E
φ �� QC∗ �� 0.

Note that E is self-dual. If we shift this extension by [1], then we get a nonsplit
exact sequence of perverse sheaves in PC∗ . Let j : C∗ → C be the open immersion.
The complex ICC(E) = R0j∗E[1] is a single sheaf in cohomological degree −1 with
generic stalk Q2 and stalk Q at the origin 0 ∈ C. In fact, this stalk is given by the
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space of invariants which is spanned by the single vector e1. We remark, in passing,
that given any local system L on C∗, we have that ICC(L) = R0j∗L[1]. There is the
monic map QC[1] → ICC(E). The cokernel K ′ is the nontrivial extension, unique
since Hom(QC,Q{0}) = Q is one dimensional,

0 �� Q{0} �� K ′ �� QC[1] �� 0.

Note that while the perverse sheaf ICC(E), being an intermediate extension (§2.7),
has no subobjects and no quotients supported at {0}, it has a subquotient supported
at {0}, namely the perverse sheaf Q{0}. We shall meet this example again later
in Example 2.7.1, in the context of the nonexactness of the intermediate extension
functor.

Example 2.2.6. Let ∆ ⊆ Cn be the subset ∆ = {(x1, . . . , xn) ∈ Cn :
∏

xi = 0}.
The datum of n commuting endomorphisms T1, . . . , Tn of a Q-vector space V defines
a local system L on (C∗)n = Cn \∆ whose stalk at some base point p is identified
with V , and Ti is the monodromy along the path “turning around the divisor
xi = 0.” The vector space V has a natural structure of a Zn = π1((C

∗)n, p)-
module. The complex which computes the group cohomology H•(Zn, V ) of V
can be described as follows: Let e1, . . . , en be the canonical basis of Qn, and, for
I = (i0, . . . , ik), set eI = ei0 ∧ . . . ∧ eik . Define a complex (C, d) by setting

Ck =
⊕

0<i0<...<ik<n

V ⊗ eI , d(v ⊗ eI) =
∑

Ni(v)⊗ ei ∧ eI ,

with Ni := Ti − I. Since (C∗)n has no higher homotopy groups, we have the

quasi-isomorphism (j∗L)0
qis≃ (C, d). Let

C̃k =
⊕

0<i0<...<ik<n

NIV ⊗ eI ,

where NI := Ni0 ◦ . . . ◦Nik . It is clear that (C̃, d) is a subcomplex of (C, d). There

exists a natural isomorphism (ICCn(L))0 ≃ (C̃, d). The particularly important case
in which L underlies a polarized variation of Hodge structures has been investigated
in depth in [38] and [117].

2.3. Definition and first properties of perverse sheaves. Let K ∈ DY be a
constructible complex on the variety Y . Recall that the support of a sheaf is the
closure of the set of points where the sheaf has nontrivial stalks. We say that K
satisfies the support condition if

dim {SuppH−i(K)} ≤ i, ∀ i ∈ Z.

We say that K satisfies the co-support condition if the Verdier dual K∨ (§5.3)
satisfies the conditions of support.

By Verdier duality, we have Hi
y(K

∨) ≃ H−i
c,y(K)∨, so that we may write the

support and co-support conditions as follows:

(14) dim
{
y ∈ Y | Hi

y(K) �= 0
}
≤ −i, ∀ i ∈ Z,

(15) dim
{
y ∈ Y | Hi

c,y(K) �= 0
}
≤ i, ∀i ∈ Z.
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Definition 2.3.1. A perverse sheaf on Y is a constructible complex K in DY that
satisfies the conditions of support and co-support. The category PY of perverse
sheaves is the full subcategory of DY whose objects are the perverse sheaves.

A complex K is perverse iff K∨ is perverse. The defining conditions of intersec-
tion complexes in §2.1 are a stricter version of the support and co-support conditions
given above. It follows that intersection complexes are special perverse sheaves.

c c c c c

x x x x x

c c c

x x x

c c

x x

c

x

c c c c c c c

x x x x x x x

c c c c c c

x x x x x x

c c c c c

x x x x x

c c c c

x x x x

c c c

x x x

c c

x x
•

✻

✲

degree

codim Yα

0
1
2
3
4
5
6

-1
-2
-3
-4
-5
-6

0 1 2 3 4 0 1 2 3 4 5 6

Figure 1. Support conditions for IC (left) and for a perverse
sheaf (right)

Figure 1 illustrates the support and co-support conditions for intersection cohomol-
ogy on a variety of dimension 4 (left) and a perverse sheaf on a variety of dimension
6 (right). The symbol “c” means that compactly supported stalk cohomology can
be nonzero at that place, while the symbol “x” means that stalk cohomology can
be nonzero at that place. Note that the • symbol shows that, for a perverse sheaf,
there is a place at which both compactly supported and ordinary cohomology can
be nonzero. As explained in §5.7.1, the natural map Hi

c,y(−) → Hi
y(−) governs the

splitting behaviour of the perverse sheaf.
Denote by PY the full subcategory of DY whose objects are perverse sheaves.

Denote by pD≤0
Y (pD≥0

Y , resp.) the full subcategory of DY with objects the complexes

satisfying the conditions of support (co-support, resp.). Clearly, pD≤0
Y ∩ pD≥0

Y = PY .
These data give rise to the middle perversity t-structure on DY (see §5.3).
Theorem 2.3.2. The datum of the conditions of (co-)support together with the

associated full subcategories (pD≤0
Y , pD≥0

Y ) yields a t-structure on DY , called the

middle perversity t-structure, with heart pD≤0
Y ∩ pD≥0

Y , the category of perverse
sheaves PY .

The resulting truncation and cohomology functors are denoted, for every i ∈ Z:

pτ≤i : DY −→ pD≤i
Y , pτ≥i : DY −→ pD≥i

Y ,

pH0 = pτ≥0
pτ≤0,

pHi = pH0 ◦ [i] : DY −→ PY .
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In particular, any complex K ∈ DY has “perverse cohomology sheaves” pHi(K) ∈
PY .

The key point in the proof is to show the existence of pτ≥0 and pτ≤0. The
construction of these perverse truncation functors involves only the four functors
f∗, f∗, f!, f

! for open and closed immersions and standard truncation. See [9] or
[116]. Complete and brief summaries can be found in [52, 53].

Middle-perversity is well-behaved with respect to Verdier duality: the Verdier
duality functorD : PY → PY is an equivalence and we have canonical isomorphisms

pHi ◦D ≃ D ◦ pH−i, pτ≤i ◦D ≃ D ◦ pτ≥−i,
pτ≥i ◦D ≃ D ◦ pτ≤−i.

It is not difficult to show, by using the perverse cohomology functors (see §2.5),
that PY is an Abelian category. As is customary when dealing with Abelian cat-
egories, when we say that A ⊆ B (A is included in B), we mean that there is a
monomorphism A → B. The Abelian category PY is Noetherian (i.e., every in-
creasing sequence of perverse subsheaves of a perverse sheaf must stabilize) so that,
by Verdier duality, it is also Artinian (i.e., every decreasing sequence stabilizes).
The category of constructible sheaves is Abelian and Noetherian, but not Artinian.

A. Beilinson [7] has proved that, remarkably, the bounded derived category of
perverse sheaves Db(PY ) is equivalent to DY . There is a second, also remarkable,
equivalence due to M. Nori. Let Db(CSY ) be the bounded derived category of
the category of constructible sheaves on Y (the objects are bounded complexes of
constructible sheaves). There is a natural inclusion of categories Db(CSY ) ⊆ DY

(recall that the objects of DY are bounded complexes of sheaves whose cohomology
sheaves are constructible). M. Nori [153] has proved that the inclusion Db(CSY ) ⊆
DY is an equivalence of categories. This is a striking instance of the phenomenon
that a category can arise as a derived category in fundamentally different ways:
DY ≃ Db(PY ) ≃ Db(CSY ).

Perverse sheaves, just like ordinary sheaves, form a stack ([9], 3.2); i.e., suitably
compatible systems of perverse sheaves can be glued to form a single perverse sheaf,
and similarly for compatible systems of morphisms of perverse sheaves. This is not
the case for the objects and morphisms of DY ; e.g., a nontrivial extension of vector
bundles yields a nonzero morphism in the derived category that restricts to zero
on the open sets of a suitable open covering, i.e., where the extension restricts to
trivial extensions.

Example 2.3.3. Let Y be a point. The standard and perverse t-structures co-
incide. A complex K ∈ Dpt is perverse iff it is isomorphic in Dpt to a complex
concentrated in degree zero iff Hj(K) = 0 for every j �= 0.

Example 2.3.4. If Y is a variety of dimension n, then the complex QY [n] trivially
satisfies the conditions of support. If n = dimY = 0, 1, then QY [n] is perverse.
On a surface Y with isolated singularities, QY [2] is perverse iff the singularity is
unibranch, e.g., if the surface is normal. If (Y, y) is a germ of a threefold isolated
singularity, then QY [3] is perverse iff the singularity is unibranch and H1(Y \y) = 0.

Example 2.3.5. The direct image f∗QX [n] via a proper semismall map f : X →
Y , where X is a nonsingular n-dimensional nonsingular variety, is perverse (see
Proposition 4.2.1); e.g., a generically finite map of surfaces is semismall. For an
interesting, nonsemisimple, perverse sheaf arising from a nonalgebraic semismall
map, see Example 2.2.3.
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Perverse sheaves are stable under the following functors: intermediate extension,
nearby and vanishing cycle (see §5.5).

Let i : Z → Y be the closed immersion of a subvariety of Y . One has the functor
i∗ : PZ → PY . This functor is fully faithful; i.e., it induces a bijection on the
Hom-sets. It is customary, e.g. in the statement of the decomposition theorem, to
drop the symbol i∗.

Let Z be an irreducible closed subvariety of Y and L be an irreducible (i.e.,
without trivial local subsystems, i.e., simple in the category of local systems) local
system on a nonempty Zariski open subvariety of the regular part Zreg of Z. Recall
that a simple object in an abelian category is one without trivial subobjects. The
complex ICZ(L) is a simple object of the category PY . Conversely, every simple
object of PY has this form. This follows from the following proposition [9], which
yields a direct proof of the fact that PY is Artinian.

Recall that by an inclusion A ⊆ B, we mean the existence of a monomorphism
A → B, so that by a chain of inclusions, we mean a chain of monomorphisms.
The following caveat may be useful, as it points out that the usual set-theoretic
intuition about injectivity and surjectivity may be misleading when dealing with
perverse sheaves, or with Abelian categories in general. Let j : C∗ → C be the
open immersion. We have a natural injection of sheaves j!QC∗ → QC. On the other
hand, one can see that the induced map of perverse sheaves j!QC∗ [1] → QC[1] is
not a monomorphism; in fact, it is an epimorphism.

Proposition 2.3.6 (Composition series). Let P ∈ PY . There exists a finite
decreasing filtration

P = Q1 ⊇ Q2 ⊇ . . . ⊇ Qλ = 0,

where the quotients Qi/Qi−1 are simple perverse sheaves on Y . Every simple per-
verse sheaf is of the form ICZ(L), where Z ⊆ Y is an irreducible and nonsingular
subvariety and L is an irreducible local system on Z.

As usual, in this kind of situation, e.g., the Jordan-Hölder theorem for finite
groups, the filtration is not unique, but the constituents of P , i.e., the nontrivial
simple quotients, and their multiplicities are uniquely determined.

2.4. The perverse filtration. The theory of t-structures coupled with Verdier’s
formalism of spectral objects (cf. [58], Appendix), endows the cohomology groups
H∗(Y,K) with the canonical perverse filtration P defined by P pH∗(Y,K) :=
Im {H∗(Y, pτ≤−pK) → H∗(Y,K)}, which is, up to renumbering, the abutment
of the perverse spectral sequence Hp(Y, pHq(K)) =⇒ H∗(Y,K). See §1.5, (7). A
similar result holds for cohomology with compact supports.

In [55], we give a geometric description of the perverse filtration on the coho-
mology and on the cohomology with compact supports of a constructible complex
on a quasi-projective variety. The paper [45] gives an alternative proof with the
applications to mixed Hodge theory mentioned in §1.9; the paper [46] proves similar
results for the standard filtration on cohomology with compact supports.

The description is in terms of restriction to generic hyperplane sections and it is
somewhat unexpected, especially if one views the constructions leading to perverse
sheaves as transcendental and hyperplane sections as more algebro-geometric. If
f : X → Y is a map of quasi-projective varieties and C ∈ DX , then our results
yield a similar geometric description of the perverse Leray filtration on H∗(X,C)
and on H∗

c (X,C) induced by the map f .
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We now describe the perverse filtration on the cohomology groups H∗(Y,K)
when Y is affine. Let Y∗ = {Y ⊇ Y−1 ⊇ . . . ⊇ Y−n} be a sequence of closed
subvarieties; we call this data an n-flag. Basic sheaf theory endows H∗(Y,K) with
the flag filtration F , abutment of the spectral sequence associated with the filtration
by closed subsets Y∗ ⊆ Y : Ep,q

1 = Hp+q(Yp, Yp−1,K|Yp
) =⇒ H∗(Y,K). We have

F pH∗(Y,K) = Ker {H∗(Y,K) → H∗(Yp−1,K|Yp−1
)}. For an arbitrary n-flag, the

perverse and flag filtrations are unrelated. If Y is affine of dimension n and the
n-flag is obtained using n hyperplane sections in sufficiently general position, then

(16) P pHj(Y,K) = F p+jHj(Y,K).

2.5. Perverse cohomology. The functor pH0 : DY → PY sends a complex K to
its iterated truncation pτ≤0

pτ≥0K. This functor is cohomological. In particular,
given a distinguished triangle K ′ → K → K ′′ → K ′[1], one obtains a long exact
sequence

· · · �� pHj(K ′) �� pHj(K) �� pHj(K ′′) �� pHj+1(K ′) �� · · · .
Kernels and cokernels in PY can be seen via perverse cohomology. Let f : K →

K ′ be an arrow in PY . View it in DY , cone it and obtain a distinguished triangle

K
f �� K ′ �� Cone(f) �� K[1].

Take the associated long exact sequence of perverse cohomology

0 �� pH−1(Cone(f)) �� K
f �� K ′ �� pH0(Cone(f)) �� 0.

One verifies that PY is abelian by setting

Ker f := pH−1(Cone(f)), Coker f := pH0(Cone(f)).

Example 2.5.1. Consider the natural map a : QY [n] → ICY . SinceQY [n] ∈ pD≤0
Y ,

and ICY does not admit nontrivial subquotients, the long exact sequence of perverse
cohomology sheaves yields the following short exact sequences:

pHl<0(Cone(a)) ≃ pHl<0(QY [n]),

0 → pH0(Cone(a)) −→ pH0(QY [n]) −→ ICY → 0.

If Y is a normal surface, then QY [2] is perverse and we are left with the short exact
sequences in PY :

0 �� pH0(Cone(a)) �� QY [2]
a �� ICY

�� 0.

By taking the long exact sequence associated with Hj , one sees that pH0(Cone(a))
reduces to a skyscraper sheaf supported at the singular points of Y in cohomolog-
ical degree zero and a stalk computed by the cohomology of the link of Y at y :
H−1(ICY )y = H1(Ly). Note that, in general, the short exact sequence does not
split; i.e., QX [2] is not necessarily a semisimple perverse sheaf.

Example 2.5.2 (Blowing up with smooth centers). LetX → Y be the blowing
up of a manifold Y along a codimension r + 1 submanifold Z ⊆ Y . One has an
isomorphism in DY :

f∗QX ≃ QY [0]⊕
r⊕

j=1

QZ [−2j].
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If r + 1 is odd (the even case is analogous and left to the reader), then
pH0(f∗QX [n]) = QY [n],

pHj(f∗QX [n]) = QZ [dimZ], 0 < |j| ≤ r/2.

We have three sets of summands, i.e., (j > 0, j = 0, j < 0). Poincaré-Verdier
duality exchanges the first and third sets and fixes the second. The relative hard
Lefschetz theorem identifies the first set with the third.

Example 2.5.3 (Families of projective manifolds). Let f : X → Y be a family
of d-dimensional projective manifolds and let n := dimX. Theorem 1.2.1 is the
cohomological consequence of a stronger sheaf-theoretic result (cf. [56]): there is a
direct sum decomposition in DY :

f∗QX ≃
2d⊕

j=0

Rjf∗QX [−j].

We have
pHj(f∗QX [n]) = Rd+jf∗QX [dimY ], j ∈ Z.

If we apply Poincaré duality and the hard Lefschetz theorem to the fibers of f , we
obtain the following isomorphisms (where the second one is obtained by cupping
with c1(H)j , where H is a hyperplane bundle on X):

pHj(f∗QX [n]) ≃ pH−j(f∗QX [n])∨, ∀j ∈ Z,

pH−j(f∗QX [n]) ≃ pHj(f∗QX [n]), ∀j ≥ 0.

2.6. t-exactness and the Lefschetz hyperplane theorem. The following pro-
totypical Lefschetz-type result is a consequence of the left t-exactness of affine maps
(cf. §5.3).
Proposition 2.6.1. Let f : X → Y be a proper map, C ∈ pD≥0

X . Let Z ⊆ X be a
closed subvariety, U := X \ Z. The diagram of maps

U
j ��

h ���
��

��
��

X

f

��

Z
i��

g
����

��
��

�

Y

is commutative. Assume that h is affine. Then

pHj(f∗C) �� pHj(g∗i
∗C)

is an isomorphism for j ≤ −2 and is a monomorphism for j = −1.

Proof. By applying f! = f∗ to the distinguished triangle j!j
!C → C → i∗i

∗C
[1]→ we

get the distinguished triangle

h!j
∗C �� f∗C �� g∗i∗C

[1] �� .

Since h is affine, h! is left t-exact, so that
pHj(h!j

∗C) = 0 ∀j < 0.

The result follows by taking the long exact sequence of perverse cohomology. �

Taking C = ICY and f to be the map to a point, and observing that i∗ICY [−1] =
ICZ , gives the following Lefschetz hyperplane theorem ([87], Theorem 7.1) in in-
tersection cohomology.
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Theorem 2.6.2 (Lefschetz hyperplane theorem for intersection cohomol-
ogy). Let Y be an irreducible projective variety of dimension n and Z ⊆ Y be a
general hyperplane section. The restriction

IH l(Y ) −→ IH l(Z)

is an isomorphism for l ≤ n− 2 and monic for l = n− 1.

Remark 2.6.3. One has the dual result for the Gysin map in the positive cohomo-
logical degree range. Similar conclusions hold for the cohomology groups of any
perverse sheaf on Y (see [7], Lemma 3.3).

Another related special case of Proposition 2.6.1, used in [9] and in [51] as one
step towards the proof of the relative hard Lefschetz theorem, arises as follows. Let
P ⊇ X ′ → Y ′ be a proper map, let P∨ be the dual projective space to P, whose
points parametrize the hyperplanes in P, let Z := {(x′, H) | x′ ∈ H} ⊆ X := X ′×P∨

be the universal hyperplane section, Y := Y ′×P∨. In this case, ICZ = i∗ICX [−1].
We have

Theorem 2.6.4 (Relative Lefschetz hyperplane theorem). The natural map

pHj(f∗ICX) −→ pHj+1(g∗ICZ)

is an isomorphism for j ≤ −2 and monic for j = −1.

2.7. Intermediate extensions. A standard reference is [9]. Let j : U → Y be a
locally closed embedding Y and i : U \U =: Z → Y . Given a perverse sheaf Q on U ,
the intermediate extension (often called the “middle extension”) j!∗ : PU → PU is

a simple operation that produces distinguished perverse extensions to U and hence
to Y .

Intersection complexes are intermediate extensions: let L be a local system on
a nonsingular open and dense subvariety U of an irreducible d-dimensional variety
Y ; then ICY (L) = j!∗L[d].

Let Q ∈ PU . The natural map j!Q −→ j∗Q induces the natural map in perverse
cohomology a : pH0(j!Q) → pH0(j∗Q). The intermediate extension of Q ∈ PU is
the perverse sheaf

j!∗Q := Im (a) ∈ PU ⊆ PY .

There is the following canonical factorization in the abelian categories PU ⊆ PY :

pH0(j!Q)
epic �� j!∗Q

monic �� pH0(j∗Q).

The intermediate extension j!∗Q admits several useful characterizations. For ex-
ample:

(1) it is the unique extension of Q ∈ PU to PU ⊆ PY with neither subobjects
nor quotients supported on Z;

(2) it is the unique extension Q̃ of Q ∈ PU to PU ⊆ PY such that i∗Q̃ ∈ pD≤−1
Z

and i!Q̃ ∈ pD≥1
Z .

There are an additional characterization of and a precise formula involving stan-
dard truncation and derived push-forwards for the intermediate extension functor
(cf. [9], 2.1.9 and 2.1.11) both of which involve stratifications. This formula im-
plies that: i) if j : U → Y is an open immersion of irreducible varieties and U is
nonsingular of dimension d, then j!∗L[d] is canonically isomorphic to ICY (L); ii) if
Y is a nonsingular curve, then j!∗L[1] = ICY (L) = R0j∗L[1].
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We leave to the reader the task to formulate in precise terms and verify that the
intermediate extension of an intermediate extension is an intermediate extension.

An intersection cohomology complex, being an intermediate extension, does not
admit subobjects or quotients supported on proper subvarieties of its support.

The intermediate extension functor j!∗ : PU → PY is not exact in a funny way.

Let 0 → P
a→ Q

b→ R → 0 be exact in PU . Recall that j! is right t-exact and that
j∗ is left t-exact. We have the following display with exact rows.

. . . �� j!P ��

epic

��

j!Q
epic ��

epic

��

j!R ��

epic

��

0

j!∗P

monic

��

j!∗Q

monic

��

j!∗R

monic

��
0 �� j∗P

monic �� j∗Q �� j∗R �� . . .

It is a simple diagram-chasing exercise to complete the middle row functorially
with a necessarily monic j!∗(a) and a necessarily epic j!∗(b). It follows that the
intermediate extension functor preserves monic and epic maps. What fails is the
exactness “in the middle”: in general, Ker j!∗(b) /Im j!∗(a) �= 0.

Example 2.7.1. Let E[1] be the perverse sheaf on C∗ discussed in Example 2.2.5;
recall that it fits in the nonsplit short exact sequence of perverse sheaves:

0 −→ Q[1]
a−→ E[1]

b−→ Q[1] −→ 0.

Let j : C∗ → C be the open immersion. We have the following commutative
diagram of perverse sheaves with exact top and bottom rows.

0 �� j!Q[1] ��

epic

��

j!E[1] ��

epic

��

j!Q[1] ��

epic

��

0

QC[1]
monic

j!∗(a)
��

monic

��

R0j∗E[1]
epic

j!∗(b)
��

monic

��

QC[1]

monic

��
0 �� j∗Q[1] �� j∗E[1] �� j∗Q[1] �� 0.

The middle row, i.e., the one of middle extensions, is not exact in the middle. In
fact, inspection of the stalks at the origin yields the nonexact sequence

0 �� Q
≃ �� Q

0 �� Q �� 0.

This failure prohibits exactness in the middle. The inclusion Imj!∗(a) ⊆ Kerj!∗(b)
is strict: K := Ker j!∗(b) is the unique nontrivial extension, Hom(Q{0},QC[2]) = Q,

0 �� QC[1] �� K �� Q{0} �� 0.

The reader can check, e.g., using the self-duality of E, that K∨ = K ′ (K ′ as in Ex.
2.2.5).

Property 1, characterizing intermediate extensions, is used in the construction
of composition series for perverse sheaves in Proposition 2.3.6. It follows that j!∗Q
is a simple perverse sheaf on Y iff Q is a simple perverse sheaf on U .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE DECOMPOSITION THEOREM AND PERVERSE SHEAVES 563

Example 2.7.2 (Intersection cohomology complexes with different sup-
ports). Let Z1, Z2 ⊆ Y be irreducible closed subvarieties with Z1 �= Z2 (note that
we are allowing Z1 ∩ Z2 �= ∅). Let ICZi

(Li), i = 1, 2, be intersection cohomology
complexes. Then (cf. [87], Theorem 3.5)

Hom(ICZ1
(L1), ICZ2

(L2)) = 0.

In fact, the kernel (cokernel, resp.) of any such map would have to be either zero,
or supported on Z1 (Z2, resp.), in which case it is easy to complete the construction
by virtue of characterization 1 given above.

Here is a nice application of what has been said above. Let f : X → Y be a proper
and semismall map of irreducible proper varieties; see §4.2. The decomposition
theorem yields a (canonical in this case) splitting

f∗ICX =
⊕

ICZa
(La).

Poincaré duality on ICX yields a canonical isomorphism e : f∗ICX ≃ (f∗ICX)∨,
which, by Example 2.7.2, is a direct sum map. It follows that the direct summands
IH∗(Za, La) ⊆ IH∗(X) are mutually orthogonal with respect to the Poincaré pair-
ing.

3. Three approaches to the decomposition theorem

3.1. The proof of Beilinson, Bernstein, Deligne and Gabber. The original
proof [9] of the decomposition theorem for proper maps of complex algebraic vari-
eties uses in an essential way the language of the étale cohomology of l-adic sheaves
and the arithmetic properties of varieties defined over finite fields.

In this section we try to introduce the reader to some of the main ideas in [9].
Let us first give a very brief and rough summary of these ideas. The theory

of weights, i.e., of the eigenvalues of the Frobenius automorphisms on the stalks
of l-adic sheaves on varieties defined over finite fields, leads to the notion of pure
complexes. There are many pure complexes: O. Gabber proved that the intersection
cohomology complex of a variety is a pure perverse sheaf. The push-forward via
a proper map of algebraic varieties defined over a finite field of a pure complex
is a pure complex. After passing to an algebraic closure of a finite field, a pure
complex splits as a direct sum of shifted intersection complexes with coefficients in
lisse irreducible sheaves (a lisse l-adic sheaf is the l-adic analogue of a local system).
We thus obtain the decomposition theorem for the proper push-forward of a pure
complex, e.g., the intersection complex of a variety, at least after passing to the
algebraic closure of the finite field.

Associated with a map of complex algebraic varieties there are companion maps
of varieties defined over finite fields. There is the class of constructible complexes
of geometric origin over complex varieties. A complex of geometric origin over a
complex variety admits l-adic counterparts on the companion varieties defined over
the finite fields. The intersection complex is of geometric origin.

The decomposition result over the algebraic closures of the finite fields is shown
to imply the analogous result in (i.e., it lifts to) the complex algebraic setting and
we finally obtain the decomposition theorem in the complex setting.

The idea that results over finite fields can be used to prove results over the com-
plex numbers is rooted in the classical result that a system of rational polynomial
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equations has a solution over an algebraic number field if it has a solution modulo
an infinite number of prime numbers.

There are several appearances of this idea in the literature, often in connection
with a beautiful discovery. Here are a few: P. Deligne and D. Mumford’s proof [66]
that the moduli space of curves of a given genus is irreducible in any characteristic,
S. Mori’s proof [147] of Hartshorne’s conjecture, P. Deligne and L. Illusie’s algebraic
proof [64] of the Kodaira vanishing theorem and of the degeneration of the Hodge
to de Rham spectral sequence (see the nice survey [105]).

A precursor of the techniques used in lifting the decomposition theorem from
finite fields to the complex numbers is P. Deligne’s proof ([62]) of the hard Lefschetz
theorem.

We do not discuss further the “lifting” technique, and we refer the reader to
[9], §6.

The goal of the remaining part of this section is to introduce the reader to con-
structible Ql-sheaves (§3.1.1), weights, pure complexes and their structure (§3.1.2,
§3.1.3), to discuss the decomposition, semisimplicity and hard Lefschetz theorems
in the context of pure complexes over finite fields and over their algebraic closures
(§3.1.4), and to state the decomposition theorem, etc., for complexes of geometric
origin on complex algebraic varieties (§3.1.5).

We hope that our stating separately the results over finite fields, over their alge-
braic closures and over the complex numbers may help the reader better understand
the whole picture and perhaps justifies the tediousness of these repetitions.

Let us fix some notation. A variety over a field is a separated scheme of finite
type over that field. For a quick summary on quasi-projective varieties (which is
all we need here), see §5.1. Let Fq be a finite field, let F be a fixed algebraic closure
of Fq and let Gal(F/Fq) be the Galois group. This group is profinite, isomorphic to
the profinite completion of Z, and it admits as topological generator the geometric
Frobenius Fr := ϕ−1, where ϕ : F → F, t �→ tq is the arithmetic Frobenius (see
Remark 3.1.1). Let l �= charFq be a fixed prime number, let Zl be the ring of l-adic
integers, i.e., the projective limit of the system Z/lnZ (abbreviated by Z/ln), let Ql

be the l-adic numbers, i.e., the quotient field of Zl, and let Ql be a fixed algebraic
closure of Ql. Recall that Zl is uncountable and that Ql ≃ C, noncanonically.

3.1.1. Constructible Ql-sheaves. Let X0 be an algebraic variety defined over a finite
field Fq. We refer to [9, 62], and to the introductory [75], §12, for the definitions

of the category and Db
c(X0,Ql) of constructible complexes of Ql-sheaves. These

categories are stable under the usual operations f∗, f∗, f!, f
!, derived Hom and

tensor product, duality and vanishing and nearby cycles. With some homological
restrictions on Tor groups, the standard and the middle perverse t-structure are
also defined, and one obtains the category P(X0,Ql) of perverse sheaves on X0. If
X is the F-variety obtained from X0 by extending the scalars to F, then we obtain
in the same way the categories Db

c(X,Ql) and P(X,Ql) which are also stable under
the usual operations mentioned above.

The construction of these categories and functors and the verification of their
fundamental properties requires a massive background (a large part of Grothendieck
et al. S.G.A. seminars is devoted to this task) and has led P. Deligne to complete
the proof of the Weil Conjectures ([61]), one of the crowning achievements of 20th

century mathematics.
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For the purpose of this survey, let us just say that we will mostly think of
Db

c(X0,Ql), etc., by analogy with the perhaps more geometric constructible derived
categories DX associated with complex varieties. There is one important difference:
the action of the Frobenius automorphism.

3.1.2. Weights and purity. In positive characteristic, the étale cohomology of alge-
braic varieties presents a feature that is absent in characteristic zero: the eigenvalues
of Frobenius, i.e., weights.

Let X0 be a variety over the finite field Fq. Suppression of the index −0 denotes

extension of scalars from Fq to F = Fq. For example, if F0 is a Ql-sheaf on X0,
then we denote its pull-back to X by F .

To give a Ql-sheaf F0 on the one-point variety SpecFq is equivalent to giving

a finite-dimensional continuous Ql-representation of the Galois group Gal(F/Fq).

The pull-back F to SpecF is the sheaf given by the underlying Ql-vector space of
the representation (i.e., we “forget” the representation; this is because the Galois
group Gal(F/F) is trivial). This is called the stalk of F0 at the point.

It is important to keep in mind that the sheaf F0 on SpecFq must be thought
of as the pair given by the vector space and the representation, while its pull-back
F to SpecF is just the datum of the vector space. This partially explains why the
decomposition theorem holds over the algebraic closure F, but not necessarily over
the finite field Fq, where the splittings have to be compatible with the Frobenius
action.

There are restrictions on the representations arising in this context: e.g., in the
case of a Ql-sheaf of rank one on SpecFq, keeping in mind that the Galois group is

compact, continuity implies that Fr ∈ Gal(F/Fq) must act by units in Zl ⊆ Ql.

Remark 3.1.1. It is often useful to keep in mind the following roughly approximated
picture when thinking about the extension F/Fq: think of the one-point variety
SpecFq as being a circle S1; think of the extension F/Fq as being the universal
covering space R → S1 with deck group given by translations by integers; think of
the Galois group as being the deck group; given an l-adic sheaf F0 on the one-point
variety SpecFq, think of the action of Frobenius on the stalk of this sheaf as the
Z-action on a sheaf on R, the pull-back of a sheaf on S1.

For every n ≥ 1, the finite set X0(Fqn) of closed points in X0 which are defined
over the degree n extension Fq ⊆ Fqn is precisely the set of closed points (we are
using the Zariski topology) of X which are fixed under the action of the n-th iterate,
Frn : X → X, of the geometric Frobenius Fr : X → X. Recall that if, for example,
X0 is defined by a system of polynomials {Pi(T )} in Fq[T1, . . . , TN ], then a closed
point of X0 defined over Fqn can be identified with an N -tuple (a1, . . . , aN ) ∈ FN

qn

which is a solution of the system of polynomial equations Pi(T ) = 0.
Let x ∈ X0(Fqn) be such an Frn-fixed point. The Ql-sheaf F0 restricted to x

has stalk the Ql-vector space Fx on which Frn acts as an automorphism.

Definition 3.1.2 (Punctually pure). The Ql-sheaf F0 on X0 is punctually pure
of weight w (w ∈ Z) if, for every n ≥ 1 and every x ∈ X0(Fqn), the eigenvalues
of the action of Frn on Fx are algebraic numbers such that all of their complex
algebraic conjugates have absolute value qnw/2.

For example, on SpecFq, the sheaf Ql has weight 0, while the Tate-twisted Ql(1)
has weight −2. If X0 is a nonsingular projective curve of genus g, then the étale
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cohomology group H1
et(X0,Ql) can be viewed as an l-adic sheaf on SpecFq with

weight 1.
The eigenvalues of Frobenius are naturally elements of Ql. While Ql ≃ C, there

is no natural isomorphism between them. However, since Q ⊆ Ql, it makes sense
to request that the eigenvalues are algebraic numbers (i.e., their being algebraic is
independent of the choice of an isomorphism Ql ≃ C). Once a number is algebraic,
the set of its algebraic conjugates is well defined independently of a choice of an
isomorphism Ql ≃ C, and this renders meaningful the request on the absolute
values. This is a strong request: 1 +

√
2 and 1 −

√
2 are algebraic conjugates;

however, they have different absolute values.

Definition 3.1.3 (Mixed sheaf, weights). A Ql-sheaf F0 on X0 is mixed if it
admits a finite filtration with punctually pure successive quotients. The weights of
a mixed F0 are the weights of the nonzero quotients.

Definition 3.1.4 (Mixed and pure complexes). The category Db
m(X0,Ql) of

mixed complexes is the full subcategory of Db
c(X0,Ql) given by those complexes

whose cohomology sheaves are mixed. A complex K0 ∈ Db
m(X0,Ql) is pure of

weight w if the cohomology sheaves Hi(K0) are punctually pure of weights ≤ w+ i
and the same is true for its Verdier dual K∨

0 .

The following theorem is proved in [9] (see §3.3.1 and §6.2.3) and is a key step
towards the proof of the decomposition theorem given in [9]. Note that the special
case when X0 is nonsingular and projective and Y0 = SpecFq yields a proof of the
main result in [61], i.e., the completion of the proof of the Weil conjectures.

Theorem 3.1.5 (Purity for proper maps or relative Weil conjectures). Let
K0 be pure of weight w and f0 : X0 → Y0 be a proper map of Fq-varieties. Then
f0∗K0 is pure of weight w.

3.1.3. The structure of pure complexes. In this section we state the Gabber purity
theorem and discuss the special splitting features of pure complexes.

The following result of O. Gabber [78] was never published. A proof appears in
[9], Corollaire 5.4.3, and it is summarized in [29]. This result makes it clear that
the class of pure complexes contains many geometrically relevant objects.

Recall that lisse Ql-sheaves are the Ql-analogues of local systems in the classical
topology.

Theorem 3.1.6 (Gabber purity theorem). The intersection cohomology com-
plex ICX0

of a connected pure d-dimensional variety X0 is pure of weight d. More
generally, if L is a pure lisse Ql-sheaf of weight w on a connected, pure d-dimension-
al subvariety j : Z0 → X0, then ICZ0

(L) := j!∗L[d] is a pure perverse sheaf of weight
w + d.

The following result ([9], Corollaire 5.3.4) generalizes Gabber’s Purity theorem
and is another key step in the proof in [9] of the decomposition, semisimplicity and
relative hard Lefschetz theorems over the complex numbers.

Theorem 3.1.7 (Mixed and simple is pure). Let P0 ∈ Pm(X0,Ql) be a simple
mixed perverse Ql-sheaf. Then P0 is pure.

The following theorem summarizes the basic splitting properties of pure com-
plexes. The proofs can be found in [9], Théorèmes 5.4.1, 5.4.5 and 5.4.6, and
Corollaire 5.3.8.
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Theorem 3.1.8 (Purity and decompositions). (1) Let K0 ∈ Db
m(X0,Ql)

be pure of weight w. Each pHi(K0) is a pure perverse sheaf of weight w+ i.
There is an isomorphism in Db

c(X,Ql), namely

K ≃
⊕

i

pHi(K)[−i].

(2) Let P0 ∈ Pm(X0,Ql) be a pure perverse Ql-sheaf on X0. The pull-back P to
X splits in P(X,Ql) as a direct sum of intersection cohomology complexes
associated with lisse irreducible sheaves on subvarieties of X.

Remark 3.1.9. The splittings above do not necessarily hold over X0.

If K0 ∈ Db
c(X0,Ql), then the cohomology groups H∗(X,K) on X are finite-

dimensional Ql-vector spaces with a continuous Gal(F/Fq)-action and one can speak
about the weights of H∗(X,K), so that the notions of weights and purity extend
to this context. In particular, this applies to the Ext-groups below.

We would like to give the reader a feeling of why weigths are related to split-
ting behaviours. These behaviors are governed by the Ext groups. Let K0, L0 ∈
Db

m(X0,Ql). The natural map Ext1(K0, L0) → Ext1(K,L) factors through the
space of Frobenius invariants Ext1(K,L)Fr, which is of pure of weight zero. If K0

has weights ≤ w and L0 has weights ≥ w′, then Ext1(K,L) has weights ≥ 1+w′−w.
If w′ = w, then Ext1(K,L) has weights ≥ 1, so that Ext1(K,L)Fr is trivial. The
upshot is that given the right weights, a nontrivial extension class over Fq must be-
come trivial over F and splittings may ensue (but only over the algebraic closure).

3.1.4. The decomposition over F. With Theorem 3.1.8 in hand, it is immediate to
prove the following theorem, which is one of the main results in [9].

Theorem 3.1.10 (Decomposition theorem and semisimplicity over F). Let
f0 : X0 → Y0 be a proper morphism of Fq-varieties, K0 ∈ Db

c(X0,Ql) be pure and
f : X → Y and K be the corresponding data over F. There is an isomorphism in
Db

c(Y,Ql), namely

(17) f∗K ≃
⊕

i

pHi(f∗K)[−i],

where each pHi(f∗K) splits as a direct sum of intersection cohomology complexes
associated with lisse irreducible sheaves on subvarieties of Y . In particular, f∗K is
semisimple; i.e., the unshifted summands pHi(K) are semisimple perverse sheaves
on Y .

We now turn our attention to the relative hard Lefschetz theorem, also proved in
[9]. Let f0 : X0 → Y0 be a morphism of Fq-varieties, η0 be the first Chern class of
a line bundle η0 on X0. This defines a natural transformation η0 : f0∗ → f0∗[2](1).
Here (1) is the Tate twist, lowering the weights by two; the reader unfamiliar with
this notion may ignore the twist and still get a good idea of the meaning of the
statements. By iterating, we obtain maps ηi0 : f0∗ → f0∗[2i](i), i ≥ 0. In particular,
it defines natural transformations ηi0 : pH−i(f0∗(−)) → pHi(f0∗(−))(i).

Theorem 3.1.11 (Relative hard Lefschetz over Fq and F). Let P0 be a pure
perverse sheaf on X0. Assume that X0 is quasi-projective and that η0 is a hyperplane
bundle. Then the iterated cup product operation induces isomorphisms

ηi0 : pH−i(f0∗P0)
≃−→ pHi(f0∗P0)(i), ∀i ≥ 0.
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The same holds over F (with the understanding that P should come from a P0).

Remark 3.1.12. The case Y0 = pt, P0 = ICX0
, yields the hard Lefschetz theorem

for intersection cohomology (over F0 and over F). Using the same technique “from
F to C” in [9], §6, one sees that Theorem 3.1.11 implies the hard Lefschetz theo-
rem for the intersection cohomology of complex projective varieties. An important
precursor of the relative Hard Lefschetz theorem is P. Deligne’s algebraic proof in
[62] of the classical hard Lefschetz theorem.

3.1.5. The decomposition theorem for complex varieties. The technique “from F

to C” is used in [9], §6 to deduce the results of this section on complex algebraic
varieties, from the results of the previous §3.1.4 on varieties defined over finite fields.

LetX be a complex variety. Consider the categoriesDX of bounded constructible
complexes of sheaves of complex vector spaces and its full subcategory of complex
perverse sheaves PX . Recall that every perverse sheaf admits a finite filtration with
simple quotients called the constituents of the perverse sheaf.

Definition 3.1.13 (Perverse sheaves of geometric origin). A perverse sheaf
P ∈ PX is said to be of geometric origin if it belongs to the smallest set such that
(a) it contains the constant sheaf Cpt on a point, and such that it is stable under
the following operations:
(b) for every map f , take the simple constituents of pHi(T (−)), where T = f∗, f∗,
f!, f

!,
(c) take the simple constituents of pHi(−⊗−), pHi(RHom(−,−)).

As a first example on a variety Z one may start with the map g : Z → pt,
take g∗Cpt = CZ , and set P to be any simple constituent of one of the perverse
complexes pHi(CZ). If f : Z → W is a map, one can take a simple constituent of
pHj(f∗P ) as an example on W . Another example consists of taking a simple local
system of geometric origin L on a connected and smooth Zariski open subvariety
j : U → X and setting P := j!∗L[dimU ]. Using either construction, we verify
immediately that the intersection cohomology complex of a variety is of geometric
origin.

Definition 3.1.14 (Semisimple complexes of geometric origin). A perverse
sheaf P on X is said to be semisimple of geometric origin if it is a direct sum of sim-
ple perverse sheaves of geometric origin. A constructible complex K ∈ DX is said
to be semisimple of geometric origin if there is an isomorphism K ≃ ⊕

pHi(K)[−i]
in DX and each perverse cohomology complex pHi(K) is semisimple of geometric
origin.

We can now state the decomposition theorem and the relative hard Lefschetz
theorems as they are stated and proved in [9]. If X is irreducible, then ICX is
simple of geometric origin so that the two theorems below apply to K = ICX . The
proofs can be found in [9], Théorèmes 6.2.5, 6.2.10. Note that while the results
proved there are for sheaves of C-vector spaces, one can deduce easily the variant
for sheaves of Q-vector spaces.

Theorem 3.1.15 (Decomposition theorem over C). Let f : X → Y be a proper
morphism of complex varieties. If K ∈ DX is semisimple of geometric origin, then
so is f∗K.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE DECOMPOSITION THEOREM AND PERVERSE SHEAVES 569

Theorem 3.1.16 (Relative hard Lefschetz theorem over C). Let f : X → Y
be a projective morphism, P a perverse sheaf on X which is semisimple of geometric
origin, η the first Chern class of an f -ample line bundle on X. Then the iterated
cup product operation induces an isomorphism

ηi : pH−i(f∗P )
≃−→ pHi(f∗P ), ∀ i ≥ 0.

3.2. M. Saito’s approach via mixed Hodge modules. The authors of [9] (cf.
p.165) left open two questions: whether the decomposition theorem holds for the
push-forward of the intersection cohomology complex of a local system underlying
a polarizable variation of pure Hodge structures and whether it holds in the Kähler
context. (Not all local systems as above are of geometric origin.)

In his remarkable work on the subject, M. Saito answered the first question in
the affirmative in [156] and the second question in the affirmative in the case of ICX

in [158]; we refer the reader to M. Saito’s paper for the precise formulations in the
Kähler context. In fact, he developed in [157] a general theory of compatibility of
mixed Hodge structures with the various functors, and in the process he completed
the extension of the Hodge-Lefschetz theorems from the cohomology of projective
manifolds to the intersection cohomology of projective varieties.

There are at least two important new ideas in his work. The former is that
the Hodge filtration is to be obtained by a filtration at the level of D-modules. A
precursor of this idea is Griffiths’ filtration by the order of the pole. The latter is
that the properties of his mixed Hodge modules are defined and tested using the
vanishing cycle functor.

Saito’s approach is deeply rooted in the theory of D-modules and, due to our
ignorance on the subject, it will not be explained here. We refer to Saito’s papers
[156, 157, 158]. For a more detailed overview, see [32]. The papers [160] and [70]
contain brief summaries of the results of the theory. See also [137].

Due to the importance of these results, we would like to discuss very informally
Saito’s achievements in the hope that even a very rough outline can be helpful to
some. For simplicity only, we restrict ourselves to complex algebraic varieties (some
results hold for complex analytic spaces).

Saito has constructed, for every variety Y , an abelian category MHM(Y ) of mixed
Hodge modules on Y . The construction is a tour-de-force which uses induction on
dimension via a systematic use of the vanishing cycle functors associated with germs
of holomorphic maps. It is in the derived categoryDb(MHM(Y )) that Saito’s results
on mixed Hodge structures can be stated and proved. If one is interested only in
the decomposition and relative hard Lefschetz theorems, then it will suffice to work
with the categories MH(Y,w) below.

One starts with the abelian and semisimple category of polarizable Hodge mod-
ules of some weight MH(Y,w). Philosophically they correspond to perverse pure
complexes in Ql-adic theory. Recall that, on a smooth variety, the Riemann-Hilbert
correspondence, assigns to a regular holonomic D-module a perverse sheaf with
complex coefficients. Roughly speaking, the simple objects are certain filtered reg-
ular holonomic D-modules (M, F ). The D-module M corresponds, via an easy
extension of the Riemann-Hilbert correspondence, to singular varieties, to the in-
tersection cohomology complex of the complexification of a rational local system
underlying a polarizable simple variation of pure Hodge structures of some weight
(we omit the bookkeeping of weights).
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Mixed Hodge modules correspond philosophically to perverse mixed complexes
and are, roughly speaking, certain bifiltered regular holonomic D-modules
(M,W, F ) with the property that the graded objects GrWi M are polarizable Hodge
modules of weight i. The resulting abelian category MHM(Y ) is not semisimple.
However, the extensions are not arbitrary, as they are controlled by the vanish-
ing cycle functor. The extended Riemann-Hilbert correspondence assigns to the
pair (M,W ) a filtered perverse sheaf (P,W ) and this data extends to a functor of
t-categories

r : Db(MHM(Y )) −→ DY ,

with the standard t-structure on Db(MHM(Y )) and the perverse t-structure on DY .
Beilinson’s equivalence theorem [7], i.e., DY ≃ Db(PY ), is used here, and in the
rest of this theory, in an essential way. In fact, there is a second t-structure, say
τ ′, on Db(MHM(Y )) corresponding to the standard one on DY ; see [157], Remarks
4.6.

The usual operations on D-modules induce a collection of operations on
Db(MHM(Y )) that correspond to the usual operations on the categories DY , i.e.,
f∗, f∗, f!, f

!, tensor products, Hom, Verdier duality, nearby and vanishing cycle
functors (cf. [157], Th. 0.1).

In the case when Y is a point, the category MHM(pt) is naturally equivalent
to the category of graded polarizable rational mixed Hodge structures (cf. [157],
p.319); here “graded” means that one has polarizations on the graded pieces of
the weight filtration. At the end of the day, the W and F filtrations produce two
filtrations on the cohomology and on the cohomology with compact supports of a
complex in the image of r and give rise to mixed Hodge structures compatible with
the usual operations. The functor r is exact and faithful, but not fully faithful (the
map on Hom sets is injective, but not surjective), not even over a point: in fact,
a pure Hodge structure of weight 1 and rank 2, e.g., H1 of an elliptic curve, is
irreducible as a Hodge structure, but not as a vector space.

The constant sheaf QY is in the image of the functor r and Saito’s theory recovers
Deligne’s functorial mixed Hodge theory of complex varieties [59, 60]. See [157], p.
328 and [159], Corollary 4.3.

As mentioned above, mixed Hodge modules are a Hodge-theoretic analogue of
the arithmetic mixed perverse sheaves discussed in §3.1. A mixed Hodge module
(M,W, F ) ∈ MHM(Y ) is said to be pure of weight k if GrWi M = 0, for all i �= k.
In this case it is, by definition, a polarizable Hodge module so that a mixed Hodge
module which is of some pure weight is analogous to an arithmetic pure perverse
sheaf.

Saito proves the analogue of the arithmetic Corollary 3.1.5, i.e., if f is proper,
then f∗ preserves weights. Though the context and the details are vastly different,
the rest of the story unfolds by analogy with the arithmetic case discussed in §3.1.
A complex in Db(MHM(Y )) is said to be semisimple if it is a direct sum of shifted
mixed Hodge modules which are simple and pure of some weight (= polarizable
Hodge modules, i.e., associated with a simple variation of polarizable pure Hodge
structures).

In what follows, note that the faithful functor r commutes, up to natural equiv-
alence, with the usual operations: e.g., r(Hj(M)) = pHj(r(M)), f∗(r(M)) =
r(f∗(M)).
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Theorem 3.2.1 (Decomposition theorem for polarizable Hodge modules).
Let f : X → Y be proper and M ∈ Db(MHM(X)) be semisimple. Then the direct
image f∗M ∈ Db(MHM(Y )) is semisimple. More precisely, if M ∈ MHM(X) is
semisimple and pure, then

f∗M ≃
⊕

j∈Z

Hj(f∗M)[−j],

where the Hj(f∗M) ∈ MHM(Y ) are semisimple and pure.

Theorem 3.2.2 (Relative hard Lefschetz for polarizable Hodge modules).
Let f : X → Y be projective, M ∈ MHM(X) be semisimple and pure and η ∈
H2(X,Q) be the first Chern class of an f -ample line bundle on X. Then the
iterated cup product map is an isomorphism

ηj : H−j(f∗M)
≃−→ Hj(f∗M)

of semisimple and pure mixed Hodge modules.

The proof relies on an inductive use, via Lefschetz pencils, of S. Zucker’s [180]
results on Hodge theory for degenerating coefficients in one variable.

The intersection cohomology complex of a polarizable variation of pure Hodge
structures is the perverse sheaf associated with a pure mixed Hodge module (=
polarizable Hodge module). This fact is not as automatic as in the case of the
constant sheaf, for it requires the verification of the conditions of vanishing-cycle-
functor-type involved in the definition of the category of polarizable Hodge modules.
One may view this fact as the analogue of Gabber’s purity theorem 3.1.6.

M. Saito thus establishes the decomposition and the relative hard Lefschetz
theorems for coefficients in the intersection cohomology complex ICX(L) of a po-
larizable variation of pure Hodge structures, with the additional fact that one has
mixed Hodge structures on the cohomology of the summands on Y and that the
(noncanonical) splittings on the intersection cohomology group IH(X,L) are com-
patible with the mixed Hodge structures of the summands. He has also established
the hard Lefschetz theorem and the Hodge-Riemann bilinear relations for the in-
tersection cohomology groups of projective varieties.

Saito’s results complete the verification of the Hodge-Lefschetz package for the
intersection cohomology groups of a variety Y , thus yielding the wanted general-
ization of the classical results in §1.1 to singular varieties.

The perverse and the standard truncations in DY correspond to the standard and
to the above-mentioned τ ′ truncations in Db(MHM(Y )), respectively. See [157], p.
224 and Remarks 4.6. It follows that the following spectral sequences associated
with complexes K ∈ r(Db(MHM(Y ))) ⊆ DY are spectral sequences of mixed Hodge
structures:

(1) the perverse spectral sequence;
(2) the Grothendieck spectral sequence;
(3) the perverse Leray spectral sequence associated with a map f : X → Y ;
(4) the Leray spectral sequence associated with a map f : X → Y .

Remark 3.2.3. C. Sabbah [155] and T. Mochizuki [146] have extended the range of
applicability of the decomposition theorem to the case of intersection cohomology
complexes associated with semisimple local systems on quasi-projective varieties.
They use, among other ideas, M. Saito’s D-modules approach.
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3.3. A proof via classical Hodge theory. Let us summarize some of our joint
work on the subject of the decomposition theorem.

• Our paper [51] gives a geometric proof of the decomposition theorem for the
push-forward f∗ICX of the intersection cohomology complex via a proper
map f : X → Y of complex algebraic varieties and complements it with
a series of Hodge-theoretic results in the case when Y is projective. In
particular, we endow the intersection cohomology groups of a projective
variety with a pure Hodge structure. These results are stated in the case
when X is nonsingular and projective as in Theorem 3.3.1 below. The
statements in the case when X is projective, but possibly singular, are
essentially identical to the ones in Theorem 3.3.1, except that one is required
to replace QX [n] with ICX (see [51]).

• In the paper [54], we show how to choose, when X and Y are projective,
splitting isomorphisms in the decomposition theorem so that they are com-
patible with the various Hodge structures found in [51].

• The extension to the quasi-projective context of the results in [51, 54] is
contained in [45], which builds on [55]. Since these papers deal with non-
compact varieties, the statements involve mixed Hodge structures. These
results are listed in §1.9.

Most of the results mentioned above have been obtained earlier and in greater
generality by M. Saito in [156, 157] by the use of mixed Hodge modules. While our
approach uses heavily the theory of perverse sheaves, it ultimately rests on classical
and mixed Hodge theory.

The proof of the decomposition theorem in [51] is geometric in the sense that:

• it identifies the refined intersection forms on the fibers of the map f as the
agent responsible for the splitting behavior of f∗ICX and

• it provides a geometric interpretation of the perverse Leray filtration on
IH∗(X).

Since the mixed Hodge-theoretic results are surveyed in §1.9, in this section we
mostly concentrate on outlining the proof of the decomposition theorem given in
[51].

In the following two sections §3.3.1 and §3.3.2, we list the results contained in
[51] and give an outline of the proofs in the key special case of a projective map
f : X → Y of irreducible projective varieties with X nonsingular of dimension n.

We fix embeddings X ⊆ P and Y ⊆ P′ into some projective spaces. We denote
by P∨ the projective space “dual” to P, i.e., the projective space of hyperplanes
in P. Let η and L be the corresponding hyperplane line bundles on X and Y ,
respectively, and let L′ := f∗L. We denote with the same symbol a line bundle, its
first Chern class and the operation of cupping with it.

3.3.1. The results when X is projective and nonsingular. The following theorem
summarizes some of the main results in [51] when X is projective and nonsingular.
The results hold in the singular case as well, provided we replace QX [n] with ICX .
However, since the proof of the singular case relies on the proof of the nonsingular
case, and this latter presents all the essential difficulties (see [52]), we prefer to
discuss the nonsingular case only. Most of the results that follow hold in the case
when X and Y are quasi-projective (see §1.9 and [45]). Recall that since X is
nonsingular of dimension n, then ICX ≃ QX [n].
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Theorem 3.3.1. Let f : X → Y be a proper map of projective varieties, with X
nonsingular of dimension n. The following statements hold.

(1) (Decomposition theorem) f∗QX [n] splits as a direct sum of shifted in-
tersection cohomology complexes with twisted coefficients on subvarieties of
Y (cf. §1.6.(7).(8)).

(2) (Semisimplicity theorem) The summands are semisimple, i.e., the lo-
cal systems (8) giving the twisted coefficients are semisimple. They are
described below, following the refined intersection form theorem.

(3) (Relative hard Lefschetz theorem)
Cupping with η yields isomorphisms

ηi : pH−i(f∗QX [n]) ≃ pHi(f∗QX [n]), ∀ i ≥ 0.

(4) (Hodge structure theorem) The perverse t-structure yields the perverse
filtration

P pH(X) = Im {H(Y, pτ≤−pf∗QX [n]) → H(Y, f∗QX [n])}
on the cohomology groups H(X). This filtration is by Hodge substructures
and the perverse cohomology groups

Ha−n(Y, pHb(f∗QX [n]) ≃ P−bHa(X)/P−b+1Ha(X) = Ha
b (X),

i.e., the graded groups of the perverse filtration, inherit a pure Hodge struc-
ture.

(5) (Hard Lefschetz theorems for perverse cohomology groups) The
collection of perverse cohomology groups H∗(Y, pH∗(f∗QX [n]) satisfies the
conclusion of the hard Lefschetz theorem with respect to cupping with η on
X and with respect to cupping with an L on Y , namely:

The cup product H∗(Y, pH−i(f∗QX [n])) → H∗+2i(Y, pHi(f∗QX [n])) with
ηi is an isomorphism for all i ≥ 0.

The cup product with Ll : H−l(Y, pHi(f∗QX [n])) → H l(Y, pHi(f∗QX [n]))
is an isomorphism for all l ≥ 0 and all i.

(6) (The perverse filtration on H∗(X)) The perverse filtration on the groups
Hr(X) is given by the following equation (where it is understood that a
linear map with a nonpositive exponent is defined to be the identity and
that kernels and images are inside of Hr(X)):

P pHr(X) =
∑

a+b=n−(p+r)

KerL′a+1 ∩ ImL′−b.

(7) (Generalized Lefschetz decomposition and Hodge-Riemann bilin-
ear relations) Let i, j ∈ Z and consider the perverse cohomology groups

of (4). Define P−j
−i := Ker ηi+1 ∩ KerLj+1 ⊆ Hn−i−j

−i (X) if i, j ≥ 0 and

P−j
−i := 0, otherwise. There is a Lefschetz-type direct sum decomposition

(the (η, L)-decomposition) into pure Hodge substructures

Hn−i−j
−i (X) =

⊕

l,m∈Z

η−i+lL−j+mP j−2m
i−2l .

Define, for i, j ≥ 0, bilinear forms on Hn−i−j
−j (X):

SηL
ij (α, β) :=

∫

X

ηi ∧ Lj ∧ α ∧ β.
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These forms are well defined and, using the hard Lefschetz theorems (5),

they can be suitably defined for every i, j ∈ Z. The bilinear forms Sη,L
ij

are nondegenerate and orthogonal with respect to the (η, L)-decomposition.
Up to the sign (−1)i+j−m−l+1, these forms are a polarization (see §5.2,
especially (38)) of each (η, L)-direct summand.

(8) (Generalized Grauert contractibility criterion) Fix y ∈ Y and j ∈ Z.
The natural class map, obtained by composing the push-forward in homology
with Poincaré duality

Hn−j(f
−1(y)) −→ Hn+j(X),

is naturally filtered in view of the decomposition theorem. The resulting
graded class map

Hn−j,j(f
−1(y)) −→ Hn+j

j (X)

is an injection of pure Hodge structures polarized in view of the generalized
Hodge-Riemann relations (7).

(9) (Refined intersection form theorem) The refined intersection form

Hn−j(f
−1(y)) −→ Hn+j(f−1(y))

(see §5.4, Refined intersection forms) is naturally filtered in view of the
decomposition theorem, and the resulting graded refined intersection form

Hn−j,k(f
−1(y)) −→ Hn+j

k (f−1(y))

is zero for j �= k and an isomorphism for j = k.

3.3.2. An outline of the proof of Theorem 3.3.1. We start by sketching the proof in
the nontrivial toy model of a semismall map ([50]), as many important steps appear
already in this case. We refer to §4.2 for basic definitions and facts concerning this
remarkable class of maps.

1. The case of semismall maps.
There is no loss of generality in assuming that the map f is surjective. Since a

semismall map is generically finite, we have n = dimX = dimY . We proceed by
induction on n = dimY and prove all the results of Theorem 3.3.1.

By the semismallness assumption, we have that pHj(f∗QX [n]) = 0 for every
j �= 0, so that the relative hard Lefschetz theorem is trivial and so is the perverse
filtration. The first point to show is that, from the point of view of the Hodge-
Lefschetz package, L′ = f∗L behaves as if it were a hyperplane line bundle, even
though it is not (it is trivial along the fibers of the map f): all the theorems in
§5.2.1 hold with L′ replacing η.

The hard Lefschetz theorem for L′. By induction, we assume that the statements
in Theorem 3.3.1 hold for all semismall maps between varieties of dimension less
than n. Let D ⊆ Y be a generic hyperplane section. The map f−1(D) → D is
still semismall. Since f∗QX [n] is perverse, in the range i ≥ 2 the Lefschetz theorem
on hyperplane sections for perverse sheaves (see §2.6) reduces the hard Lefschetz
theorem for L′i on X to that for L′i−1 on f−1(D). In the critical case i = 1, the
cup product with L′ factors as Hn−1(X) → Hn−1(f−1(D)) → Hn+1(X), where
the first map is injective and the second is surjective. As explained in the “induc-
tive approach to hard Lefschetz” paragraph of §5.2, the inductive Hodge-Riemann
relations for the restriction of L′ to f−1(D) give the hard Lefschetz theorem for the
cup product with L′.
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The approximation trick. We must prove the Hodge-Riemann relations for the
space of primitives Pn

L′ = KerL′ : Hn(X) → Hn+2(X) (for use in the case when
dimX = n+1). The hard Lefschetz theorem discussed above implies that dimPn

L′ =
bn − bn−2 and that the decomposition Hn(X) = Pn

L′ ⊕ L′Hn−2(X) is orthogonal
with respect to the Poincaré pairing, just as if L′ were a hyperplane bundle. In
particular, the restriction of the Poincaré pairing S(α, β) =

∫
X
α ∧ β to Pn

L′ is

nondegenerate. The bilinear form S̃(α, β) := S(α,Cβ) (C is the Weil operator; see
§5.2) is still nondegenerate. The class L′ is on the boundary of the ample cone:
for any positive integer r, the class L′ + 1

r η is ample, and we have the classical

Hodge-Riemann relations on the subspace Pn
Lr

:= Ker (L′ + 1
rη) ⊆ Hn(X): the

remark made above on the dimension of Pn
L′ implies that any class α ∈ Pn

L′ is the

limit of classes αr ∈ Pn
Lr
, so that the restriction of S̃ to Pn

L′ is semidefinite; since it
is also nondegenerate, the Hodge-Riemann bilinear relations follow.

Decomposition and semisimplicity. To prove the decomposition and semisim-
plicity theorems, we proceed one stratum at a time; higher-dimensional strata are
dealt with inductively by cutting transversally with a generic hyperplane section
D on Y , so that one is reduced to the semismall map f−1(D) → D, where the
dimension of a positive-dimensional stratum on Y has decreased by one unit on
D. The really significant case left is that of a zero-dimensional relevant stratum
S. As explained in §4.2.1, the splitting of the perverse sheaf f∗QX [n] into a di-
rect sum of intersection cohomology complexes with twisted coefficients on sub-
varieties of Y is equivalent to the nondegeneracy of the refined intersection form
I : Hn(f

−1(y))×Hn(f
−1(y)) −→ Q, for y ∈ S.

In order to establish the nondegeneracy of the refined intersection forms I, we
turn to mixed Hodge theory (§5.2) and use the following result of P. Deligne (cf.
[60], Proposition 8.2.6):

(Weight miracle). If Z ⊆ U ⊆ X are inclusions with X a nonsingular compact
variety, U ⊆ X a Zariski dense open subvariety and Z ⊆ U a closed subvariety of X,
then the images in Hj(Z,Q) of the restriction maps from X and from U coincide.

Thanks to the weight miracle, Hn(f
−1(y)) injects in Hn(X) as a Hodge sub-

structure. Since, for a general section D, we have f−1(y) ∩ f−1(D) = ∅, we see
that Hn(f

−1(y)) is contained in Pn
L′ . The restriction of the Poincaré pairing to

Hn(f
−1(y)) is thus a polarization and is hence nondegenerate. The same is thus

true for the refined intersection form I.
As noted already in Theorem 4.2.7, the local systems involved have finite mon-

odromy; hence they are obviously semisimple. This concludes our discussion of the
semismall case.

2. The general case: extracting the semismall “soul” of a map.
The proof is by induction on the pair of indices (dimY, r(f)), where r(f) =

dimX ×Y X − dimX is the defect of semismallness of the map f . To give an idea
of the role played by r(f), let us say that in the decomposition theorem §1.6(7), the
direct sum ranges precisely in the interval [−r(f), r(f)]. The inductive hypothesis
takes the following form: all the statements of Theorem 3.3.1 hold for all proper
maps g : X ′ → Y ′ with either r(g) < r(f), or with r(g) = r(f) and dimY ′ < dimY .
Let n := dimX. The induction starts with the verification of Theorem 3.3.1 in the
case when Y is a point, in which case the results boil down to the classical result
of Hodge-Lefschetz theory outlined in §1.1 and listed more succinctly in Theorem
5.2.1.
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2a. The universal hyperplane section and relative hard Lefschetz the-
orem.

Let g : X ′ ⊆ X × P∨ → Y ′ = Y × P∨ be the universal hyperplane section.
If r(f) > 0, then r(g) < r(f) and, by induction, Theorem 3.3.1 holds for g. As
in the classical case (cf. §5.2.1), the relative Lefschetz hyperplane Theorem 2.6.4
implies the relative hard Lefschetz theorem for f except for i = 1, where we have
the factorization of the cup product map with η:

pH−1(f∗QX [n])
ρ �� pH0(g∗QX′ [n− 1])

γ �� pH1(f∗QX [n]).

The first map is a monomorphism and the second is an epimorphism. We argue as
in the proof of the hard Lefschetz theorem via the semisimplicity of monodromy:
we use an argument similar to the identification of the monodromy invariants of a
Lefschetz pencil with the image of the cohomology of a variety into the cohomol-
ogy of a hyperplane section, and we couple it with the semisimplicity (inductive
assumption!) of pH0(g∗QX′ [n− 1]) to show that:

Proposition 3.3.2. The image of pH−1(f∗QX [n]) in pH0(g∗QX′ [n+ 1]) is a split
summand applied isomorphically onto pH1(f∗QX [n]) by γ.

The relative hard Lefschetz theorem for f follows and, by applying Deligne’s
Lefschetz splitting criterion, Theorem 5.3.1, we conclude that f∗QX [n] ≃⊕

i
pHi(f∗QX [n])[−i].

From the statements known for g by induction, we get that pHi(f∗QX [n]) is a
direct sum of intersection cohomology complexes of semisimple local systems for all
i �= 0. Moreover, for all i �= 0, the associated perverse cohomology groups verify the
hard Lefschetz theorem and the Hodge-Riemann relations with respect to cupping
with L.

What is left to investigate is the zero perversity complex pH0(f∗QX [n]). Again
in analogy with the classical case, we can “shave off” another piece which comes
from the hyperplane section and dispose of it by using the inductive hypothesis. In
fact, the analogue of the primitive Lefschetz decomposition theorem 5.2.1(2) holds:
by setting, for every i ≥ 0, P−i := Ker {ηi+1 : pH−i(f∗QX [n]) → pHi+2(f∗QX [n])}
we have canonical direct sum decompositions:

(18) pH−i(f∗QX [n]) =
⊕

r≥0

ηrP−i−2r, pHi(f∗QX [n]) =
⊕

r≥0

ηi+rP−i−2r.

The only remaining pieces for which we have to prove the statements of Theorem
3.3.1 are the perverse sheaf P0 and its cohomology H∗(Y,P0), which, in view of the
primitive decomposition, is a summand of the perverse cohomology groupH∗+n

0 (X).
(The analogy with the classical study of algebraic varieties by means of hyperplane
sections is as follows: the new cohomology classes, i.e., the ones not coming from a
hyperplane section, appear only in the middle dimension Pn = Ker {η : Hn(X) →
Hn+2(X)}. In this game, “middle dimension” is recentered at zero.) We are left
with proving:

(1) The Hodge package of §5.2.1 holds for H∗(Y,P0) with respect to cupping
with L.

(2) P0 is a direct sum of twisted intersection cohomology complexes.
(3) The twisting local systems are semisimple.
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2b. The Hodge package for P0.
The main intuition behind the proof of the statements (1) and (2) above, which

was inspired also by the illuminating discussion of the decomposition theorem con-
tained in [133], is that H∗(Y,P0) is the “semismall soul of the map f”; that is,
it behaves as the cohomology of a (virtual) nonsingular projective variety with a
semismall map to Y . In order to handle the group H∗(Y,P0), we mimic the proof
of the decomposition theorem for semismall maps.

One of the main difficulties in [51] is that, in order to use classical Hodge theory,
we have to prove at the outset that the perverse Leray filtration is Hodge-theoretic,
i.e., that the subspaces P pH∗(X) ⊆ H∗(X) (cf. §3.3.1(4)) are Hodge substructures
of the natural Hodge structure onH∗(X). The geometric description of the perverse
filtration in [55] (see §2.4) implies that this fact holds for every algebraic map,
proper or not, to a quasi-projective variety, and the proof in [55] is independent of
the decomposition theorem. It follows that the geometric description of the perverse
filtration in [55] can therefore be used to yield a considerable simplification of the
line of reasoning in [51] for it endows, at the outset, the perverse cohomology groups
Ha

b (X) with a natural Hodge structure, compatible with the primitive Lefschetz
decompositions stemming from (18), and with respect to which the cup product
maps L : H∗(Y,Pi) → H∗+2(Y,Pi) and η : P kH∗(X) → P k−2H∗+2(X) are Hodge
maps of type (1, 1).

We start by proving (1), i.e., the Hodge package forH∗(Y,P0). The argument for
the hard Lefschetz isomorphism Li : H−i(Y,P0) ≃ Hi(Y,P0) is completely anal-
ogous to the one used for a semismall map: the Lefschetz theorem on hyperplane
sections for the perverse sheaf P0 and the inductive hypothesis (for a generic hyper-
plane section D ⊆ Y , we have f ′ : f−1(D) → D and P0 restricts, up to a shift, to
the analogous complex P ′0 for f ′) yield immediately the theorem in the range i ≥ 2
and also yield a factorization of L : H−1(Y,P0) → H1(Y,P0) as the composition of
the injective restriction to D and the surjective Gysin map. Again by the inductive
hypotheses, the Poincaré pairing polarizes KerL : H0(D,P ′0) → H2(D,P ′0), and,
as in the classical case, this proves the remaining case i = 1.

The most delicate point is to prove that the Riemann-Hodge relations hold for
P 00 := Ker {L : H0(Y,P0) → H2(Y,P0)}. The Poincaré pairing induces a bilinear
form S on Hn(X) = H0(f∗QX [n]) and on its subquotient H0(Y,P0). This is be-
cause we have the following orthogonality relation: P 1H(X) ⊆ P 0H(X)⊥. More
is true: S is nondegenerate on P 0Hn(X)/P 1Hn(X) = Hn

0 (X) and the (η, L)-
decomposition is orthogonal so that the restriction of S to the summand P 00 is
nondegenerate. The Hodge-Riemann relations are then proved with an “approx-
imation trick” similar, although more involved, to the one used in the semismall
case. We consider the subspace Λ = limr Ker(L′ + 1

rη) ⊆ Hn(X). Clearly, we have

Λ ⊆ KerL′ and the hard Lefschetz theorem implies that KerL′ ⊆ P 0Hn(X). The

nondegenerate form S̃ is semidefinite on Λ/Λ ∩ P 1Hn(X). It follows that it is a
a polarization. A polarization restricted to a Hodge substructure is still a polar-
ization. The Hodge-Riemann relations for P 00 follow from the inclusion of Hodge
structures P 00 ⊆ Λ/Λ ∩ P 1Hn(X).

2c. Semisimplicity.
We need to prove that P0 splits as a direct sum of intersection cohomology

complexes of semisimple local systems. As in the case of semismall maps, higher-
dimensional strata are disposed of by induction on the dimension of Y and by
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cutting with generic hyperplane sections of Y . One is left to prove the critical case
of a zero-dimensional stratum. Again by the splitting criterion of Remark 5.7.5,
we have to prove that, for any point y in the zero-dimensional stratum, denoting
by i : y → Y the closed imbedding, ι : H0(i!P0) → H0(i∗P0) is an isomorphism.
Given the decomposition (18), H0(i!P0) is a direct summand of Hn(f

−1(0)) and
H0(i∗P0) is a direct summand of Hn(f−1(0)), so that the map ι is the restriction
to these summands of the refined intersection form (§5.4) on f−1(0). Although
in general, the map Hn(f

−1(0)) → Hn(X) is not injective, the weight miracle is
used to prove that the map H0(i!P0) → Hn

0 (X) is an injection with image a pure
Hodge substructure of the Hodge structure we have on Hn

0 (X) (by virtue of the
geometric description of the perverse filtration [55] mentioned above). Since this
image lands automatically in the L′-primitive part, we conclude that the descended
intersection form polarizes this image; hence ι is an isomorphism and we have the
desired splitting into intersection cohomology complexes.

We still have to establish the semisimplicity of the local systems in (8) (and hence
of the ones appearing in P0). This is accomplished by exhibiting them as quotients
of local systems associated with smooth proper maps and are hence semisimple by
the semisimplicity for smooth proper maps, Theorem 5.2.2.

This concludes the outline of the proof of Theorem 3.3.1.

4. Applications of perverse sheaves and of the

decomposition theorem

In this section, we give, without any pretense of completeness, a sample of re-
markable applications of the theory of perverse sheaves and of the decomposition
theorem.

We focus mostly on the complex case, although most of the discussion goes
through over a field of positive characteristic, with constructible Q-sheaves replaced
by l-adic ones.

In this chapter, we use the machinery of derived categories and functors and some
results on perverse sheaves. The notions introduced in our crash course may not
be sufficient to follow the (few) proofs included. We refer to §5.3, to the references
quoted there, and to §2. In particular, we adopt the simplified notation f∗, f! for
the derived functors Rf∗, Rf!.

4.1. Toric varieties and combinatorics of polytopes. The purpose of this sec-
tion is to state and explain the content of Theorem 4.1.6 on how the combinatorics
of rational polytopes in Euclidean space relates to the intersection cohomology
groups of the associated toric varieties. Theorem 4.1.6 is stated in §4.1.1 and we
work out two examples in §4.1.2, where the decomposition theorem is seen in action
in situations where, we hope, the minimal background we provide in this section is
sufficient to follow the arguments.

For the basic definitions concerning toric varieties, we refer to [77, 154]. The
recent survey [23] contains many historical details, motivation, a discussion of open
problems and recent results, and an extensive bibliography.

We will adopt the point of view of polytopes, which we find more appealing to
intuition.

Recall that a d-dimensional normal projective complex varietyX is a toric variety
if it has an action of the complex torus T = (C∗)d with finitely many orbits. In this
case, there is a moment map µ : X → Rd whose image is a d-dimensional convex
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polyhedron P , whose vertices have rational coordinates, and which determines the
toric variety X up to isomorphism. The mapping µ determines an order-preserving
one-to-one correspondence between the orbits of T and the faces of P as follows. For
each orbit O ⊆ X the image µ(O) ⊆ P is the interior F 0 of a face F ⊆ P . Moreover,
dimC(O) = dimR(F ) and the fibers of µ : O → F 0 are diffeomorphic to the compact
torus (S1)dimF . For i = 0, . . . , d−1, let fi be the number of i-dimensional faces of P .
We denote by XP the projective toric variety associated with P . A d-dimensional
simplex Σd is the convex envelope of d+1 affinely independent points v0, . . . , vd in
Rd. XΣd

is a possibly weighted d-dimensional projective space. A polytope is said
to be simplicial if its faces are simplices. We say that a toric variety is Q-smooth

when it has only finite quotient singularities. A map of varieties f : X̃ → X, both
of which are toric, is called a toric resolution if it is birational, equivariant with

respect to the torus action, and X̃ is Q-smooth.
The following is well known:

Proposition 4.1.1. A toric variety XP is Q-smooth if and only if P is simplicial.

4.1.1. The h-polynomial. Let P be a simplicial d-dimensional polytope with number
of faces encoded by the “face vector” (f0, . . . , fd−1). Define the associated “h-
polynomial”

(19) h(P, t) = (t− 1)d + f0(t− 1)d−1 + . . .+ fd−1.

The simplicial toric variety XP has a decomposition as a disjoint union of locally
closed subsets, each isomorphic to the quotient of an affine space by a finite commu-
tative group. This decomposition can be used to compute the rational cohomology
groups H∗(XP ,Q), and we have the following proposition; see [77], Section 5.2 for
a detailed proof.

Proposition 4.1.2. Let P be a simplicial rational polytope, with “h-polynomial”

h(P, t) =
∑d

0 hk(P )tk. Then

H2k+1(XP ,Q) = 0 and dimH2k(XP ,Q) = hk(P ).

Poincaré duality and the hard Lefschetz theorem imply the following.

Corollary 4.1.3. We have the following relations:

hk(P ) = hd−k(P ) for 0 ≤ k ≤ d, hk−1(P ) ≤ hk(P ) for 0 ≤ k ≤ ⌊d/2⌋.

Corollary 4.1.3 amounts to a set of nontrivial relations among the face numbers
fi and gives necessary conditions for a sequence (a0, . . . , ad−1) ∈ Nd to be the
face vector of a simplicial polytope. Exploiting more fully the content of the hard
Lefschetz theorem, it is possible to characterize completely the sequences in Nd

which occur as the face vectors of some simplicial polytope; see [23], Theorem 1.1.
The polynomial

(20) g(P, t) = h0 + (h1 − h0)t+ . . .+ (h[d/2] − h[d/2]−1)t
[d/2]

has, by Corollary 4.1.3, positive coefficients and uniquely determines h. The coef-
ficient gl = hl − hl−1 is the dimension of the primitive cohomology (§5.2) of XP in
degree l.
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Example 4.1.4. Let Σd be the d-dimensional simplex. We have f0 = d + 1 =(
d+1
1

)
, . . . , fi =

(
d+1
i+1

)
and

h(Σd, t) = (t− 1)d +

(
d+ 1

1

)
+ . . .+

(
d+ 1

i+ 1

)
(t− 1)d−i−1 + . . .+

(
d+ 1

d

)

= 1 + t+ . . .+ td,

so that hi = 1 and g(Σd, t) = 1, consistently with the fact that XΣd
= Pd.

Let C2 be the square, convex envelope of the four points (±1, 0), (0,±1). We
have f0 = 4, f1 = 4, h(C2, t) = (t−1)2+4(t−1)+4 = t2+2t+1, and g(C2, t) = 1+t.
In fact, XC2

= P1 × P1.
Similarly, for the octahedron O3, the convex envelope of (±1, 0, 0), (0,±1, 0),

(0, 0,±1), we have f0 = 6, f1 = 12, f2 = 8, h(O3, t) = t3 + 3t2 + 3t + 1 and
g(O3, t) = 2t+ 1. This is in accordance with the Betti numbers of XO3

= (P1)3.

If the polytope is not simplicial, so that the toric variety is not Q-smooth, neither
Poincaré duality nor the hard Lefschetz theorem necessarily hold for the cohomol-
ogy groups. Furthermore, as shown in [138], the ordinary cohomology group of
a singular toric variety is not a purely combinatorial invariant, but depends also
on some geometric data of the polytope, e.g., the measures of the angles between
the faces of the polytope. The situation drastically simplifies when considering
intersection cohomology groups. In fact, Poincaré duality and the hard Lefschetz
theorem hold for intersection cohomology, so that the “generalized” h-polynomial

h(P, t) =
∑d

0 hk(P )tk, where hk(P ) := dim IH2k(XP ,Q), satisfies the conclusions
of Corollary 4.1.3. Furthermore, it turns out that the polynomial h(P, t) is a com-
binatorial invariant, i.e., it can be defined only in terms of the partially ordered set
of faces of the polytope P . Note that when the polytope P is simplicial, so that the
toric variety XP is Q-smooth, then H∗(XP ,Q) = IH∗(XP ,Q). Hence, in this case,
by Proposition 4.1.2, the generalized h-polynomial defined below coincides with the
one defined earlier and we can denote the two in the same way.

We now give the combinatorial definitions of the h and g polynomials for a not
necessarily simplicial polytope.

Definition 4.1.5. Suppose P is a polytope of dimension d and that the polynomials
g(Q, t) and h(P, t) have been defined for all convex polytopes Q of dimension less
than d. We set

h(P, t) =
∑

F<P

g(F, t)(t− 1)d−1−dimF ,

where the sum is extended to all proper faces F of P including the empty face ∅,
for which g(∅, t) = h(∅, t) = 1 and dim ∅ = −1. The polynomial g(P, t) is defined
from h(P, t) as in (20).

We note that these definitions coincide with the previous ones given in (19) and
(20) if P is simplicial, since g(Σ, t) = 1; see Example 4.1.4. In fact, we have the
following.

Theorem 4.1.6 ([74]). Let P be a rational polytope. Then

h(P, t) =
∑

F<P

g(F, t)(t− 1)d−1−dimF =
∑

dim IH2k(XP ,Q)tk.
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Given a subdivision P̃ of the polytope P , there is a corresponding map XP̃ →
XP . The toric orbits of XP provide a stratification for f . The fibers over toric
orbits, which properties can be read off from the combinatorics of the subdivision,
are unions of toric varieties glued along toric subvarieties; for a discussion, see [101].
It is well known (cf. [77], Section 2.6) that any polytope becomes simplicial after a
sequence of subdivisions.

Theorem 4.1.6 on the dimension of the intersection cohomology groups of a toric
variety can be proved by exploiting the decomposition theorem for a resolution
defined by a subdivision of the polytope P . A sketch of a proof along these lines
has been given by R. MacPherson in several talks in 1982. J. Bernstein and A.
Khovanskii also developed proofs, which have not been published.

4.1.2. Two worked-out examples of toric resolutions. We describe MacPherson’s
approach to Theorem 4.1.6 via the decomposition theorem in the special cases of
subdivision of the cube of dimensions 3 and 4. The general case can be proved
along these lines.

Let Ci be the i-dimensional cube. It is not simplicial if i > 2, and the k-
dimensional faces of Ci are k-dimensional cubes Ck. The three-dimensional cube
C3 has 8 faces of dimension 0 and 12 faces of dimension 1, which are of course
simplicial; there are 6 faces of dimension 2, for which we have already computed
g(C2, t) = 1 + t. It follows that
(21)
h(C3, t) = (t−1)3+8(t−1)2+12(t−1)+6(1+t) = 1+5t+5t2+t3 and g(C3, t) = 1+4t.

Similarly, the four-dimensional cube C4 has 16 faces of dimension 0, 32 faces of
dimension 1, which are all simplicial, 24 faces of dimension 2, which are equal to
C2, and finally 8 faces of dimension 3, which are equal to C3. Thus

h(C4, t) = (t− 1)4 + 16(t− 1)3 + 32(t− 1)2 + 24(1 + t)(t− 1) + 8(1 + 4t)(22)

= t4 + 12t3 + 14t2 + 12t+ 1.

The 3-dimensional cube C3 has a simplicial subdivision C ′
3 which does not add

any vertex and divides every two-dimensional face into two simplices by adding its
diagonal; see the picture in [77], p.50. The resulting map f : XC′

3
→ XC3

is an
isomorphism outside the six singular points of XC3

, and the fibers over these points
are isomorphic to P1. The f -vector of C ′

3 has f0 = 8, f1 = 18 and f2 = 12 and
h-polynomial h(C ′

3, t) = t3 + 5t2 + 5t + 1 which equals the h-polynomial h(C3, t)
computed above. This equality reflects the fact that f is a small resolution in the
sense of Remark 4.2.4 below, so that Hi(XC′

3
) = IHi(XC3

).

We discuss the decomposition theorem for the map f : X
C̃3

→ XC3
, where C̃3 is

obtained by the following decomposition of C3: for each of the six two-dimensional
faces Fi, we add its barycenter PFi

as a new vertex, and we join PFi
with each vertex

of Fi. We obtain in this way a simplicial polytope C̃3 with 14 vertices, 36 edges

and 24 two-dimensional simplices. Its h-polynomial is h(C̃3, t) = t3+11t2+11t+1.
The map f is an isomorphism away from the six points p1, . . . , p6 corresponding
to the two-dimensional faces of C3. The fibers Di over each point pi comprise the
toric variety corresponding to C2, i.e., P

1 × P1; in particular, H4(Di) = Q and
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pH±1(f∗QX
C̃3
[3]) ≃ ⊕

Qpi
. The decomposition theorem for f reads as follows:

f∗QX
C̃3
[3] ≃ ICC3

⊕ (
⊕

i

Qpi
[1]) ⊕ (

⊕

i

Qpi
[−1])

and

H l(X
C̃3

) ≃ IH l(XC3
) for l �= 2, 4,

dimH l(X
C̃3

) = dim IH l(XC3
) + 6 for l = 2, 4.

It follows that
∑

dim IH2k(XC3
)tk =

∑
dimH2k(X

C̃3
)tk − 6t − 6t2 = h(C̃3, t) −

6t− 6t2 = t3 + 5t2 + 5t+ 1 = h(C3, t), as already computed.
Finally, as a more challenging example, we consider the four-dimensional cube

C4. We subdivide it by adding as new vertices the barycenters of the 8 three-
dimensional faces and of the 24 two-dimensional faces. It is not hard to see
that the f -vector of the resulting simplicial polytope C̃4 is (48, 240, 384, 192) and

h(C̃4, t) = t4 + 44t3 + 102t2 + 44t + 1. The geometry of the map f : X
C̃4

→ XC4

which is relevant to the decomposition theorem is the following. The 24 two-
dimensional faces correspond to rational curves Oi, closures of one-dimensional
orbits Oi, along which the map f is locally trivial and looks, on a normal slice,
just as the map X

C̃3
→ XC3

examined in the example above. The fiber over each

of the 8 points pi corresponding to the three-dimensional faces is isomorphic to
X

C̃3
. Each point pi is the intersection of the six rational curves Oij corresponding

to the six faces of the three-dimensional cube associated with pi. The last crucial
piece of information is that the local systems arising in the decomposition theorem
are in fact trivial. Roughly speaking, this follows from the fact that the fibers of
the map f along a fixed orbit depend only on the combinatorics of the subdivision
of the corresponding face. We thus have pH±1(f∗QX

C̃4
[4])|Oi

≃ ⊕
i QOi

[1] and

pH±2(f∗QX
C̃4
[4]) ≃ ⊕

i H
6(f−1(pi)) ≃ ⊕

i H
6(C̃3)pi

≃ ⊕
i Qpi

. The decomposi-

tion theorem reads:

f∗QX
C̃4
[4] ≃ ICC4

⊕ (
⊕

i

Vpi
) ⊕ (

⊕

i

(ICOi
[1]⊕ ICOi

[−1]))

⊕ (
⊕

i

(Qpi
[2]⊕Qpi

[−2])).

The vector spaces Vpi
are subspaces of H4(f−1(pi)) and contribute to the zero

perversity term pH0(f∗QX
C̃4
[4]). In order to determine their dimension, we compute

the stalk

H0(f∗QX
C̃4
[4])pi

= H4(f−1(pi)) = H4(C̃3).

As we saw above, dimH4(C̃3) = 11. By the support condition H0(ICC4
) = 0 and,

since ICOi
= QOi

[1], we get

11 = dimH0(f∗QX
C̃4
[4])pi

= dimVpi
⊕ (

⊕

Oj∋pi

H−1(ICOj
)) = dimVpi

+ 6,

since only six curves Oj pass through pi. Hence dimVpi
= 5 and finally

f∗QX
C̃4
[4] ≃ ICC4

⊕ (

8⊕

i=1

(Q⊕5
pi

⊕Qpi
[2]⊕Qpi

[−2])⊕ (

24⊕

i=1

(QOi
⊕QOi

[2])).
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By taking the cohomology we get:
∑

dim IH2k(XC4
)tk=

∑
dim H2k(X

C̃4
)tk−8(t+5t2+t3)−24(t+2t2+t3)

= t4+44t3+102t2+44t+1−8(t+5t2+t3)−24(t+2t2+t3)

= t4+12t3+14t2+12t+1=h(C4, t),

as computed in (22).

4.2. Semismall maps. Semismall maps occupy a very special place in the applica-
tions of the theory of perverse sheaves to geometric representation theory. Surpris-
ingly, many maps which arise naturally from Lie-theoretic objects are semismall.
In a sense which we will try to illustrate in the discussion of the examples below,
the semismallness of a map is related to the semisimplicity of the algebraic object
under consideration. We limit ourselves to proper and surjective semismall maps
with a nonsingular domain.

In the case of semismall maps, the decomposition theorem takes the particularly
simple form of Theorem 4.2.7. Corollary 4.2.8, on the semisimplicity of the algebra
of endomorphisms of the direct image, is a simple consequence.

As we have shown in [48], the proof of Theorem 4.2.7 is reduced to the proof of
the nondegeneration of certain bilinear forms defined on the homology groups of
the fibers via intersection theory. We discuss this point of view in §4.2.1.

We discuss two examples of semismall maps: the resolution of the nilpotent cone
(§4.2.2) and the resolution of the n-th symmetric product of a nonsingular surface
via a Hilbert scheme of n points on the surface (§4.2.3). In the first case, the
decomposition theorem leads to a simplified description of the Springer correspon-
dence; this correspondence (see Theorem 4.2.14) gives a geometric realization of
the Weyl group of a semisimple linear algebraic group and its representations. In
the second case, we recall the basic geometric facts about Hilbert schemes that led
to the remarkably explicit Theorem 4.2.16.

A stratification for f is a decomposition of Y into finitely many locally closed
nonsingular subsets such that f−1(Sk) → Sk is a topologically locally trivial fibra-
tion. The subsets Sk are called strata.

The following easy observation makes perverse sheaves enter this picture.

Proposition 4.2.1. Let X be a connected nonsingular n-dimensional variety, and
f : X → Y be a proper surjective map of varieties. Let Y =

∐n
k=0 Sk be a stratifi-

cation for f . Let yk ∈ Sk and set dk := dimf−1(yk) = dimf−1(Sk)− dimSk. The
following are equivalent:

(1) f∗QX [n] is a perverse sheaf on Y ;
(2) dimX ×Y X ≤ n;
(3) dimSk + 2dk ≤ dimX, for every k = 0, . . . , n.

Definition 4.2.2. A proper and surjective map f satisfying one of the equivalent
properties in Proposition 4.2.1 is said to be semismall.

Definition 4.2.3. Let X,Y, Sk and dk be as in Proposition 4.2.1. A stratum Sk is
said to be relevant if dimSk + 2dk = dimX.

A semismall map f : X → Y must be finite over an open dense stratum in Y in
view of property (3). Hence, semismall maps are generically finite. The converse is
not true, e.g., the blowing up of a point in C3. Note that, since dimY = dimX, a
relevant stratum has even codimension.
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Remark 4.2.4. If the stronger inequalities dimSk + 2dk < dimX are required to
hold for every nondense stratum, then the map is said to be small. In this case,
f∗QX [n] satisfies the support and co-support conditions for intersection cohomology
((12),(13) of §2.1). Hence, if Yo ⊆ Y denotes a nonsingular dense open subset over
which f is a covering, then we have that f∗QX [n] = ICY (L), where L is the local
system f∗QX|Yo

.

Example 4.2.5. Surjective maps between surfaces are always semismall. A sur-
jective map of threefolds is semismall iff no divisor D ⊆ X is contracted to a point
on Y .

A great wealth of examples of semismall maps is furnished by contractions of
(holomorphic) symplectic varieties, which we now describe. A nonsingular quasi-
projective complex variety is called holomorphic symplectic if there is a holomorphic

2-form ω ∈ Γ(X,Ω2
X) which is closed and nondegenerate; that is, dω = 0 and ω

dimX
2

does not vanish at any point. The following is proved in [109]:

Theorem 4.2.6. Let X be a quasi-projective holomorphic symplectic variety, and
f : X → Y a projective birational map. Then f is semismall.

Some important examples of semismall maps which are contractions of holomor-
phic symplectic varieties will be considered in §4.2.2 and §4.2.3.

The decomposition theorem for a semismall map takes a particularly simple
form: the only contributions come from the relevant strata S and they consist of
nontrivial summands ICS(L), where the local systems L turn out to have finite
monodromy.

Let S be a relevant stratum, y ∈ S and let E1, . . . , El be the irreducible dimS-
dimensional components of f−1(y). The monodromy of the Ei’s defines a group
homomorphism ρS of the fundamental group π1(S, y) to the group of permuta-
tions of the Ei’s, and, correspondingly, a local system of Q-vector spaces LS . The
semisimplicity of LS then follows immediately from the fact that the monodromy
factors through a finite group. With this notation, let us give the statement of the
decomposition theorem in the case of semismall maps:

Theorem 4.2.7 (Decomposition theorem for semismall maps). Let Irel be
the set of relevant strata, and, for each S ∈ Irel, let LS be the corresponding local
system with finite monodromy defined above. There is a canonical isomorphism in
PY :

(23) f∗QX [n] ≃
⊕

S∈Irel

ICS(LS).

Let Irr(π1(S)) be the set of irreducible representations of π1(S, y). For χ ∈
Irr(π1(S)), we denote by Lχ the corresponding local system on S. We have an
isotypical decomposition in the category π1(S)-Mod of representations of π1(S):

ρS ≃
⊕

χ∈Irr(π1(S))

χ⊗ V χ
S ,

where V χ
S is a vector space whose dimension is the multiplicity of the repre-

sentation χ in ρS . Correspondingly, we have a decomposition of local systems
LS =

⊕
χ∈Irr(π1(S)) Lχ ⊗ V χ

S , and, for each term ICS(LS) in (23), an isotypical
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decomposition

(24) ICS(LS) ≃
⊕

χ∈Irr(π1(S))

ICS(Lχ)⊗ V χ
S .

The second special feature of semismall maps concerns the endomorphism alge-
bra EndDY

(f∗QX [n]); see [39, 41] for details.
By Schur’s lemma, for χ and Lχ as above, we have that

EndDY
(IC(Lχ)) = EndDS

(Lχ) = Endπ1(S)−Mod(χ)

is a division ring Rχ. The intersection cohomology sheaves IC(Lχ) are simple
objects in the category of perverse sheaves and Theorem 4.2.7 can be restated by
saying that f∗QX [n] is a semisimple perverse sheaf. We thus have the following.

Corollary 4.2.8 (Semisimplicity of the endomorphism algebra). Let f :
X → Y be a semismall map. Then the endomorphism algebra EndDY

(f∗QX [n])
is semisimple, that is, isomorphic to a direct sum of matrix algebras over division
rings. In fact, we have:

(25) EndDY
(f∗QX [n]) ≃

⊕

S∈Irel

EndDY
(ICS(LS)) ≃

⊕

S∈Irel
χ∈Irr(π1(S))

Rχ ⊗ End(V χ
S ).

Furthermore, if HBM
2n (X×Y X) is given the structure of an algebra coming from

the composition of correspondences, then there is an isomorphism of algebras (see
[41], Lemma 2.23)

(26) EndDY
(f∗QX [n]) ≃ HBM

2n (X ×Y X).

The endomorphism algebra contains in particular the idempotents giving the
projection of f∗QX [n] on the irreducible summand of the canonical decomposition
(23). Since, again by semismallness, HBM

2n (X ×Y X) is the top-dimensional Borel
Moore homology, it is generated by the irreducible components of X ×Y X. The
projectors are therefore realized by algebraic correspondences.

This has been pursued in [50], where we prove, in accordance with the general
philosophy of [41], a “motivic” refinement of the decomposition theorem in the
case of semismall maps. In particular, it is possible to construct a (relative) Chow
motive corresponding to the intersection cohomology groups of singular varieties
which admit a semismall resolution.

4.2.1. Semismall maps and intersection forms. Let f : X → Y be a semismall map.
Every stratum yields a bilinear form on a certain homology group which has a neat
geometric interpretation in terms of basic intersection theory on X. Theorem 4.2.9
below states that the decomposition theorem for the semismall map f turns out to
be equivalent to the nondegeneracy of all these intersection forms.

Let us describe these intersection forms. If a stratum is not relevant, then, as
noted below, the construction that follows yields a trivial homology group. Let
S ⊆ Y be a relevant stratum, and y ∈ S. Let Σ be a local transversal slice to S at
y, given for example by intersecting a small contractible Euclidean neighborhood of
y with the complete intersection of dimS general hyperplane sections in Y passing
through y. The restriction f| : f

−1(Σ) → Σ is still semismall and d = dim f−1(y) =

(1/2) dim f−1(Σ). By composing the chain of maps:

H2d(f
−1(y)) = HBM

2d (f−1(y)) −→ HBM
2d (f−1(Σ)) ≃ H2d(f−1(Σ)) −→ H2d(f−1(y)),
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where the first map is the push-forward with respect to a closed inclusion and the
second is the restriction, we obtain the intersection pairing (cf. §5.4) associated
with the relevant stratum S,

IS : H2d(f
−1(y))×H2d(f

−1(y)) −→ Q.

Of course, we have used the usual identification Bil(U,U) ≃ Hom(U,U∨). If the
stratum is not relevant, then dim f−1(y) < d and H2d(f

−1(y)) = 0, and the inter-
section form is defined, it is trivial and also nondegenerate, in the sense that the
corresponding linear map is an isomorphism of trivial vector spaces.

A basis of H2d(f
−1(y)) is given by the classes of the d-dimensional irreducible

components E1, . . . , El of f
−1(y). The intersection pairing IS is then represented

by the intersection matrix ||Ei · Ej || of these components, computed in the, possibly
disconnected, manifold f−1(Σ).

In what follows, for simplicity only, let us assume that S = Sk is a connected
stratum of dimension k, relevant or not. Let U =

∐
k′>k Sk′ be the union of the

strata of dimension strictly greater than k and U ′ = U ∐ S. Denote by i : S →
U ′ ←− U : j the corresponding imbeddings. The intersection map H2d(f

−1(y)) →
H2d(f−1(y)) is then identified with the natural map of stalks

H−d(i!f∗QU ′ [n])y �� H−d(i∗f∗QU ′ [n])y.

By Remark 5.7.5, the nondegeneracy of IS is equivalent to the existence of a
canonical isomorphism:

(27) f∗QU ′ [n] ≃ j!∗f∗QU ′ [n] ⊕ H−dimS(i!f∗QU ′ [n])[dimS].

It follows that the splitting behaviour of f∗QX [n] is governed precisely by the
nondegeneracy of the forms IS .

In our paper, cf. [48], we proved, using classical Hodge-Lefschetz theory, that
for every relevant stratum S with typical fiber of dimension d, the form IS has a
precise sign. In particular, all forms IS are nondegenerate. We summarize these
results in the following.

Theorem 4.2.9. Let f : X → Y be a semismall map with X nonsingular. Then
the statement of the decomposition theorem is equivalent to the nondegeneracy of the
intersection forms IS. These forms are nondegenerate and if a connected component
of a stratum S is relevant with typical fiber of dimension d, then the form (−1)dIS
is positive definite.

4.2.2. Examples of semismall maps I: Springer theory. References for what follows
are [39, 167]. Let G be a semisimple connected linear algebraic group with Lie
algebra g, let T ⊆ G be a maximal torus, let B be a Borel subgroup containing T
and let W be the Weyl group. The flag variety G/B is complete and parametrizes
the Borel subalgebras of g. We recall that an element x ∈ g is nilpotent (resp.
semisimple) if the endomorphism [x,−] : g → g is nilpotent (resp. diagonalizable).
If dimKer [x, − ] equals the dimension of T , then x is said to be regular.

Let N ⊆ g be the cone of nilpotent elements of g. It can be easily shown (cf.
[39]) that

Ñ = {(x, c) ∈ N ×G/B : c is a Borel subalgebra of g and x ∈ N ∩ c}
is isomorphic to the cotangent bundle T ∗ G/B of the flag variety G/B, and is
therefore endowed with a natural (exact) holomorphic symplectic form. The map
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p : Ñ → N ⊆ g, defined as p(x, c) = x, is surjective, since every nilpotent element
is contained in a Borel subalgebra, generically one-to-one, since a generic nilpotent
element is contained in exactly one Borel subalgebra, proper, since G/B is complete,

and semismall, since Ñ is holomorphic symplectic. The map p is called the Springer
resolution.

Example 4.2.10. If G = SL2, then the flag variety G/B = P1 and the cotangent
space is the total space of the line bundle OP1(−2). The variety obtained by con-
tracting the zero-section to a point is isomorphic to the cone with equation z2 = xy
in C3. If {H,X, Y } denotes the usual basis of sl2, the matrix zH + xX − yY is
nilpotent precisely when z2 = xy.

The aim of the Springer correspondence is to get an algebra isomorphism be-
tween the rational group algebra of the Weyl group W of g and the algebra of

correspondences of Ñ ,

Q[W ]
≃ �� HBM

2dim Ñ
(Ñ ×N Ñ ) ,

so that the elements of the Weyl group will correspond to certain correspondences
in the fiber product above.

The Springer correspondence is realized as follows. One constructs an action

of the Weyl group W on p∗QÑ [dimÑ ]. This action extends to an algebra homo-

morphism Q[W ] → EndDN (p∗QÑ [dim Ñ ]) which is verified to be an isomorphism.
Finally, one uses (26).

We now sketch, following [126] (see also [16, 17]), the construction of the de-
sired W -action. By a theorem of Chevalley, there is a map q : g → t/W de-
fined as follows: any x ∈ g has a unique expression x = xss + xn, where xss

is semisimple and xn is nilpotent and commutes with xss. Then xss is conju-
gate to an element of t, well defined up to the action of W . The quotient t/W
is an affine space. Let us denote by trs = t \ {root hyperplanes}, the set of reg-
ular elements in t, and by grs = q−1(trs/W ) the set of regular semisimple ele-
ments in g. The set trs/W is the complement of a divisor ∆ ⊆ t/W . The map
q : grs → trs/W is a fibration with fiber G/T and we have the monodromy repre-
sentation ρ : π1(t

rs/W ) → Aut(H∗(G/T )).

Example 4.2.11. Let G = SLn. The map q sends a traceless matrix to the
coefficients of its characteristic polynomial. The set trs/W = t/W \∆ is the set of
polynomials with distinct roots. The statement that the map q : grs → trs/W is a
fibration boils down to the fact that a matrix commuting with a diagonal matrix
with distinct eigenvalues must be diagonal and that the adjoint orbit of such a
matrix is closed in sln.

Let us define

g̃ = {(x, c) ∈ g×G/B : c is a Borel subalgebra of g and x ∈ c}.
Let p : g̃ → g be the projection to the first factor. This map “contains” the Springer

resolution in the sense that Ñ = p−1(N ) ⊆ g̃.
On the other hand, the G-orbits in g̃ of regular semisimple elements (i.e., for

which the corresponding x is regular semisimple) are affine varieties isomorphic to

G/T and diffeomorphic to Ñ .
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Example 4.2.12. In the case discussed in Example 4.2.10, one considers the family
of affine quadrics Yt ⊆ C3 of the equation z2 = xy + t for t ∈ C. For t �= 0, Yt is
diffeomorphic, but not isomorphic, to T ∗P1, while, for t = 0, Y0 is the nilpotent cone
of sl2. Pulling back this family by the map t → t2, we get the family z2 = xy + t2,
which admits a simultaneous (small) resolution, whose fiber at t = 0 is the map
T ∗P1 → Y0.

The Weyl group acts simply transitively on the set of Borel subgroups containing
a regular semisimple element. Setting g̃rs = p−1(grs), this observation leads to the
following:

Proposition 4.2.13. The restriction p′ : g̃rs → grs is an (unramified) covering
map with Galois group W . The map p : g̃ → g is small.

We summarize what we have discussed so far in the following diagram (the map
r is defined below):

Ñ�
�

����
��

��
��

p

��

g̃rs

p′

��

� � �� g̃

p

��

�� t

��

G/T
�
�

������������

r �� N�
�

i
����

��
��

��

g̃rs/W = grs
� � �� g

q �� t/W

Let L = p′∗Qg̃rs be the local system associated with the W -covering, which, by its
very definition, is endowed with an action of the Weyl group W . Since any map be-
tween local systems extends uniquely to a map between the associated intersection
cohomology complexes (see [87], Theorem 3.5), we have an action of W on ICg(L).
Since p is small, by Remark 4.2.4, ICg(L) = p∗Qg̃[dim g].

In particular, there is an action of W on i∗p∗Qg̃[dimg] = p∗QÑ [dimÑ ], and this
is the sought-for W -action.

A perhaps more intuitive way to realize this action is the following. We have
N = q−1(0). There is a continuous retraction map r : G/T → N . Since the affine

variety G/T is diffeomorphic to Ñ , we have an isomorphism:

r∗QG/T [dimÑ ] ≃ p∗QÑ [dimÑ ].

As we have already observed, the monodromy of the fibration q : grs → trs/W gives

an action of π1(t
rs/W ) on r∗QG/T [dimÑ ]. There is an exact sequence of groups:

0 → π1(t
rs) → π1(t

rs/W ) → W → 0,

and the existence of the simultaneous resolution g̃ shows that the monodromy
factors through an action of W , and this yields the desired alternative description
of the W -action on p∗ etc.

As mentioned earlier, the W -action extends to an algebra homomorphism

Q[W ] −→ EndDN (p∗QÑ [dimÑ ]) = HBM
2dim Ñ

(Ñ ×N Ñ )

and we have

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE DECOMPOSITION THEOREM AND PERVERSE SHEAVES 589

Theorem 4.2.14 ([16]). The map

(28) Q[W ] −→ HBM
2dim Ñ

(Ñ ×N Ñ )

constructed above is an isomorphism of algebras.

We thus have a geometric construction of the group ring of the Weyl group W

as an algebra of (relative) correspondences on Ñ , and a natural basis given by the

irreducible components of Ñ ×N Ñ .
A deeper investigation of the isomorphism (28) sheds light on the irreducible

representations of Q[W ], or, equivalently, of W , by giving a natural geometric con-
struction of these representations: the nilpotent cone N has a natural G-invariant
stratification, given by the orbits of the adjoint action contained in N , i.e., by the
conjugacy classes of nilpotent elements. Let Conj(N ) be the set of conjugacy classes
of nilpotent elements in g. For [x] ∈ Conj(N ), let x be a representative, and denote
by Bx := p−1(x) the fiber over x and by Sx = Gx the stratum of N containing x.

Example 4.2.15. Let G = SLn. Each conjugacy class contains exactly one matrix
which is a sum of Jordan matrices, so that the G-orbits are parameterized by the
partitions of the integer n. The open dense stratum of N corresponds to the Jordan
block of length n.

It can be proved (cf. [169, 164]) that every stratum Sx is relevant and that all
the components of Bx have the same dimension dx. The vector space H2dx

(Bx),
generated by the irreducible components ofBx, is, by construction, a representation
of W . This representation is not necessarily irreducible, as the finite group of
connected components of the stabilizer Gx of x acts. This action commutes with
the action of W and splits H2dx

(Bx). It can be shown that every irreducible
representation of W is realized as a direct summand of some H2dx

(Bx). At this
point, we refer the reader to the original papers [165, 16, 17], and to the book [39].

4.2.3. Examples of semismall maps II: Hilbert schemes of points. A reference for
what follows is [149]. The n-th symmetric product (C2)(n) = (C2)n/Sn, parametriz-
ing 0-cycles Z =

∑
k nkpk of C2 of length n, is singular. Singularities appear when

some points come together, that is, at cycles
∑

k nkpk where some multiplicity

is greater than one. The Hilbert scheme X = (C2)[n] is a certain resolution of
singularities of n-th (C2)(n) = (C2)n/Sn which keeps tracks of the “tangent” infor-
mation when two or more points collapse. For instance, X = (C2)[2] is the blowup
of X = (C2)(2) along the diagonal, consisting of cycles of type 2p1.

When n points come together at a point p0 of coordinates (x0, y0), this tangent
information is encoded as a scheme structure supported on the point parametrizing
the cycle np0. This scheme structure is given in terms of an ideal I of the ring of
polynomials in two indeterminates C[X,Y ] with radical

√
I = (X − x0, Y − y0),

the maximal ideal of the point p0, such that dimCC[X,Y ]/I = n. In general,
the points of the variety X = (C2)[n] parametrize ideals I ⊆ C[X,Y ] such that
dimCC[X,Y ]/I = n. Every such ideal is the product

∏
Ik of ideals supported

at points pk ∈ C2, and we can associate with it the 0-cycle Z(I) :=
∑

k nkpk,
where nk = dimCC[X,Y ]/Ik, called the support of this ideal. Then n =

∑
k nk

and Z(I) is a point in the symmetric product (C2)(n) = (C2)n/Sn. The Hilbert-
Chow map π : (C2)[n] → (C2)(n), sending I to its support Z(I), is well defined and

proper. It is an isomorphism precisely on the set (C2)
(n)
reg corresponding to cycles
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p1+ . . .+pn consisting of n distinct points, as in this case there is only one possible
scheme structure. Let (x1, y1), . . . , (xn, yn) be coordinates on (C2)n. The form∑

k dxk ∧ dyk on (C2)n is Sn-invariant and descends to a closed and nondegenerate

form on (C2)
(n)
reg. A local computation shows that its pull-back by π extends to a

symplectic form on (C2)[n]. In particular π is semismall (this can also be verified

directly). The subvariety (C2)
[n]
0 of subschemes supported at 0 is called the punctual

Hilbert scheme of length n. Its points parametrize the n-dimensional quotient rings
of C[X,Y ]/(X,Y )n+1. These punctual Hilbert schemes have been studied in depth;
see [103, 28], for example. They are irreducible, of dimension n − 1, and admit a

disjoint-union decomposition into affine spaces. Clearly, (C2)
[n]
0 ≃ (π−1(np))red,

for every p ∈ C2. Similarly, if Z :=
∑

k nkpk with pi �= pj for all i �= j, then

(π−1(Z))red ≃ ∏
i(C

2)
[ni]
0 . The construction can be globalized, in the sense that,

for any nonsingular surface S, the Hilbert scheme S[n] is nonsingular and there is
a map π : S[n] → S(n) which is semismall, and locally, in the analytic topology,
isomorphic to π : (C2)[n] → (C2)(n). There also exists a version of S[n] for a
symplectic manifold S of real dimension four, which was defined and investigated
by C. Voisin in [176].

To describe the strata of the map π, we denote by Pn the set of partitions of the
natural number n. Let ν = (ν1, . . . , νl(ν)) ∈ Pn, so that ν1 ≥ ν2 ≥ . . . ≥ νl(ν) and∑

i νi = n. We will also write ν = 1a12a2 . . . nan , with
∑

kak = n, where ai is the
number of times that the number i appears in the partition ν. Clearly l(ν) =

∑
ai.

We consider the following stratification of S(n): for ν ∈ Pn we set

S(ν) = {0-cycles ⊆ S(n) of type ν1p1 + . . .+ νl(ν)pl(ν) with pi �= pj , ∀i �= j}.
Set S[ν] = π−1(S(ν)) (with the reduced structure). The variety S(ν) is nonsingular
of dimension 2l(ν). It can be shown that π : S[ν] → S(ν) is locally trivial with fiber

isomorphic to the product
∏

i(C
2)νi

0 of punctual Hilbert schemes. In particular,
the fibers of π are irreducible; hence the local systems occurring in (4.2.7) are
constant of rank one. Furthermore, the closures S(ν) and their desingularization
can be explicitly determined. If ν and µ are two partitions, we say that µ ≤ ν
if there exists a decomposition I1, . . . , Il(µ) of the set {1, . . . , l(ν)} such that µ1 =∑

i∈I1
νi, . . . , µl(µ) =

∑
i∈Il(µ)

νi. Then

S(ν) =
∐

µ≤ν

S(µ).

This reflects just the fact that a cycle
∑

νipi ∈ S(ν) can degenerate to a cycle in

which some of the p′is come together. If ν = 1a12a2 . . . nan , we set S(ν) =
∏

i S
(ai)

(product of symmetric products). The variety S(ν) has dimension 2l(ν), and there
is a natural finite map ν : S(ν) → S(ν), which is an isomorphism when restricted

to ν−1(S(ν)). Since S(ν) has only quotient singularities, it is normal, so that ν :

S(ν) → S(ν) is the normalization map, and ICS(ν)
= ν∗QS(ν) [2l(ν)].

Theorem 4.2.16. The decomposition theorem 4.2.7 for π : S[n] → S(n) gives a
canonical isomorphism:

(29) π∗QS[n] [2n] ≃
⊕

ν∈Pn

ν∗QS(ν) [2l(ν)].
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Taking cohomology, (29) gives

(30) Hi(S[n],Q) =
⊕

ν∈Pn

Hi+2l(ν)−2n(S(ν),Q).

This explicit form was given by L. Göttsche and W. Soergel in [90] as an appli-
cation of M. Saito’s theorem [156]. Since S(n) is the quotient of the nonsingular
variety Sn by the finite group Sn, its rational cohomology Hi(S(n),Q) is just the
Sn-invariant part of Hi(Sn,Q). In [131], MacDonald determines the dimension of
such an invariant subspace. His result is more easily stated in terms of generating
functions:

∑
dimHi(S(n),Q)tiqn =

(1 + tq)b1(S)(1 + t3q)b3(S)

(1− q)b0(S)(1− t2q)b2(S)(1− t4q)b4(S)
.

With the help of this formula and (30), we find “Göttsche’s Formula” for the gen-
erating function of the Betti numbers of the Hilbert scheme:

∑

i,n

dimHi(S[n],Q)tiqn(31)

=

∞∏

m=1

(1 + t2m−1qm)b1(S)(1 + t2m+1qm)b3(S)

(1− t2m−2qm)b0(S)(1− t2mqm)b2(S)(1− t2m+2qm)b4(S)
.

Remark 4.2.17. Setting t = −1, we get the following simple formula for the gener-
ating function for the Euler characteristic:

∞∑

n=0

χ(S[n])qn =

∞∏

m=1

1

(1− qm)χ(S)
.

See [43], for a rather elementary derivation of this formula.

Göttsche’s Formula appeared first in [89], following some preliminary work in
the case S = C2 by Ellingsrud and Strømme ([71, 72]). The original proof relies on
the Weil conjectures, and on a delicate counting of points over a finite field with
the help of the cellular structure of the punctual Hilbert scheme following from
Ellingsrud and Strømme’s results.

4.3. The functions-sheaves dictionary and geometrization. In §4.4 and §4.5
we discuss two rather deep applications of the decomposition theorem to geometric
representation theory. Even though the applications can be stated and proved
within the realm of complex geometry, they have been inspired by the Grothendieck
philosophy ([95]) (see also [122], §1.1) of the dictionnaire fonctions-faisceaux for
varieties defined over finite fields. This section is devoted to a brief explanation of
this philosophy. The reader who is unfamiliar with algebraic geometry over finite
fields may look at §3.1.

Suppose that X0 is a variety defined over a finite field Fq of cardinality q.
Associated with any complex of l-adic sheaves K0 on X0, there is the function
tK0

: X0(Fq) → Ql:

tK0
(x) =

∑

i

(−1)iTrace(Fr : Hi
x(K) → Hi

x(K)),

where Fr is the Frobenius endomorphism of Hi
x(K). This function is additive

with respect to distinguished triangles in Db
c(X0,Ql), multiplicative with respect to
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tensor products of complexes, compatible with pull-backs, and satisfies the Grothen-
dieck trace formula: If f : X0 → Y0 is a proper map of Fq-schemes and K0 ∈
Db

c(X0,Ql), then, for y ∈ Y (Fq),

tf∗K0
(y) =

∑

x∈f−1(y)∩X0(Fq)

tK0
(x).

Since l-adic sheaves on X0 yield these trace-like functions, one may think of
replacing certain classes of functions on X0 with (complexes of) l-adic sheaves on
X0.

The philosophy of geometrization is rooted in the fact that quite often functions
arising from representation theory or combinatorics can be interpreted as associated
with sheaves (often perverse sheaves) on algebraic varieties, and theorems about
such functions become consequences of theorems about the corresponding sheaves.

If the cohomology sheaves of K0 are zero in odd degree and, for every i, the
eigenvalues of Frobenius (not just their absolute values!) on H2i

x (K0) are equal to
qi, then the function tK0

satisfies the relation tK0
(x) =

∑
i dimH2i

x (K0)q
i.

We can modify this formula so that it makes sense for a constructible complex
of sheaves K on a complex algebraic variety X. We do so by considering q to be a
free variable. If the stalk cohomology vanishes in all odd degrees, then we obtain a
Poincaré-like polynomial for K.

This is the case in the two examples we discuss in §4.4 and §4.5.
In §4.4 we show that the Kazhdan-Lusztig polynomials, which are associated in a

purely combinatorial way (see (33)) with the Weyl group W of an algebraic group
G, may be interpreted, via the functions-sheaves dictionary, as the Poincaré-like
polynomials of the intersection complexes of Schubert varieties in the flag variety
G/B of G. This fact allows a geometric interpretation of the Hecke algebra of W
as an algebra of equivariant perverse sheaves on the flag varieties.

Similarly, in §4.5 we treat the case of a certain class of functions arising from the
classical Satake isomorphism and which are associated, via the functions-sheaves
dictionary, with the intersection complexes of certain subvarieties of the (infinite-
dimensional) affine Grassmannian. This leads to a geometrization of the classical
Satake isomorphism.

In both of these situations, the strategy towards geometrization is similar. We
start with an algebra of functions on a group G with some invariance property. For
instance, in the case treated in §4.4, the group is a Chevalley group and the functions
are the left and right invariants with respect to a fixed Borel subgroup, and in the
case treated in §4.5, they are the functions on an algebraic group over a local field
which are left and right invariant with respect to the maximal compact subgroup
of points over its ring of integers. This algebra has a natural basis, consisting
of characteristic functions of double cosets, which correspond, via the functions-
sheaves dictionary, to the constant sheaves concentrated on some subvarieties of a
variety associated with G, i.e., the flag variety in the case of §4.4 and the affine
Grassmannian in the case of §4.5. In each of the two situations, there is another
basis which is more significant from the group-theoretic point of view, as it carries
representation-theoretic information: it affords a description of representations of
the Hecke algebra via the W -graph in the first case, and it describes the weight
decomposition of the representations of the Langlands dual group in the second.
The matrix relating the natural and the group-theoretic bases singles out a set of
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functions, the Kazhdan-Lusztig polynomials in §4.4 and the functions of formula
(35) in §4.5.

The upshot is that in both cases it turns out that these functions are those
associated, via the functions-sheaves dictionary, with the intersection complexes of
the aforementioned subvarieties.

In §4.4 and §4.5, the main role is played by certainG-equivariant perverse sheaves
and by the notion of l-adic purity. The decomposition theorem allows us to greatly
simplify the arguments and to clarify the overall picture.

4.4. Schubert varieties and Kazhdan-Lusztig polynomials. The connection
between the Kazhdan-Lusztig polynomials associated with the Weyl group of a
semisimple linear algebraic group and the intersection cohomology groups of the
Schubert varieties of the associated flag variety played an important role in the
development of the theory of perverse sheaves. This connection was worked out by
D. Kazhdan and G. Lusztig ([118], [119]), following discussions with R. MacPherson
and P. Deligne.

We quickly review the basic definitions in the more general framework of Cox-
eter groups; see [102] for more details on this beautiful subject. Let (W,S) be a
Coxeter group, that is, a group W with a set of generators S which satisfy relations
(ss′)m(ss′) = 1 with m(s, s) = 1 and m(s, s′) ≥ 2 if s �= s′. Any element w ∈ W
has an expression w = s1 · · · sn with si ∈ S, and the length l(w) of w ∈ W is the
minimal number of si’s appearing in such an expression. For the definition of the
Bruhat order, a partial order on W compatible with lengths, see [102], 5.9.

Example 4.4.1. Let W = Sn+1, the symmetric group. Then the set of transposi-
tions si = (i, i+ 1) yields a set of generators S = {s1, . . . , sn}.

A basic object associated with (W,S) is the Hecke algebra H. It is a free module
over the ring Z[q1/2, q−1/2] with basis {Tw}w∈W and ring structure

TwTw′ = Tww′ if l(ww′) = l(w) + l(w′),

TsTw = (q − 1)Tw + qTsw if l(sw) < l(w).

As the following two examples show, Hecke algebras often arise as convolution
algebras in Lie theory. Recall that, given a locally compact topological groupG with
Haar measure dg, the convolution product of two compactly supported measurable
functions f1, f2 : G −→ Z is defined as

(32) f1 ∗ f2(h) =
∫

G

f1(g)f2(g
−1h)dg.

In the case of a finite group, the ring of Z-valued functions with respect to the
convolution product is thus canonically isomorphic to the group ring Z[G].

Example 4.4.2. Let Gq be a Chevalley group over the finite field with q elements
Fq, e.g., the general linear group GLn(Fq), the symplectic group Sp2n(Fq) or the
orthogonal group On(Fq). Let Bq ⊆ Gq be a Borel subgroup, and letW be the Weyl
group. We consider functions f : G −→ Z which are left and right Bq-invariant,
that is, such that f(b1gb2) = f(g) for all b1, b2 ∈ Bq and g ∈ Gq. The convolution of
two such functions is still left and right Bq-invariant, and the corresponding algebra
Z[Bq\Gq/Bq] is generated by the characteristic functions of the double Bq-cosets.
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In [106], Iwahori proved that the Bruhat decomposition

Gq =
∐

w∈W

BqwBq

determines an algebra isomorphism between Z[Bq\Gq/Bq], and the Hecke algebra
H of W , where the indeterminate q is specialized to the cardinality of the field.
The survey [42] gives a useful summary of the properties of this algebra and its
relevance to the representation theory of groups of Lie type.

Example 4.4.3. Let K be a local field and O be its ring of integers, and denote
by π a generator of the unique maximal ideal p of O. e.g., K = Qp, O = Zp, and
π = p ∈ Zp, or K = Fq((T )), the field of formal Laurent series with coefficients in
a finite field, O = Fq[[T ]], and π = T . Denote by q the cardinality of the residue
field k = O/π. Let G be a simply connected reductive group split over K; that
is, G contains a maximal torus T whose set of K-points is T (K) = (K∗)r. Let
W aff be its affine Weyl group, i.e., the semidirect product of W with the co-root
lattice of G; see [102], §4.2. We call the map π : G(O) → G(k) the “reduction
mod-p” map. Let B′ := π−1(B) be the inverse image of a Borel subgroup of G(k).
For instance, if G = SL2 with the usual choice of a positive root, and K = Qp,
then the “Iwahori subgroup” B′ consists of matrices in SL2(Zp) whose entry on
the upper right corner is a multiple of p. Iwahori and Matsumoto [107] proved
that the algebra Z[B′\G(K)/B′], generated by the characteristic functions of the
double B′-cosets, endowed with the convolution product, is isomorphic to the Hecke
algebra for W aff . As in Example 4.4.2, the double B′-cosets are parameterized, via
a Bruhat-type decomposition, by W aff , and the basis Tw of their characteristic
functions satisfies the two defining relations of the Hecke algebra of W aff . The
closely related “spherical Hecke algebra” will be discussed in §4.5, in connection
with the geometric Satake isomorphism.

It follows from the second defining relation of the Hecke algebra that Ts is in-
vertible for s ∈ S : T−1

s = q−1(Ts − (q − 1)Te). This implies that Tw is invertible
for all w.

The algebra H admits two commuting involutions ι and σ, defined by

ι(q1/2) = q−1/2, ι(Tw) = T−1
w−1 , and σ(q1/2) = q−1/2, σ(Tw) = (−1/q)l(w)Tw.

The following is proved in [118]:

Theorem 4.4.4. There exists a unique Z[q1/2, q−1/2]-basis {Cw} of H with the
following properties:

(33) ι(Cw) = Cw, Cw = (−1)l(w)ql(w)/2
∑

v≤w

(−q)−l(v)Pv,w(q
−1)Tv

with Pv,w ∈ Z[q] of degree at most 1
2 (l(w)− l(v)− 1), if v < w, and Pw,w = 1.

The polynomials Pv,w are called the Kazhdan-Lusztig polynomials of (W,S).

Remark 4.4.5. For s ∈ S, we have that Cs = q−1/2(Ts − qTe) satisfies (33); hence
Ps,s = Pe,s = 1. A direct computation shows that if W = S3, then Pv,w = 1 for all
v, w. In contrast, if W = S4, then Ps1s3, s1s3s2s3s1 = Ps2, s2s1s3s2 = 1 + q.

Let G be a semisimple linear algebraic group, T be a maximal torus, and W =
N(T )/T be the Weyl group. Choose a system of simple roots. Each simple root
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yields a reflection about the hyperplane associated with the root. The set of these
reflections is known to generate W . Let B be the Borel subgroup containing T and
associated with the choice of the simple roots: this means that the Lie algebra of
B is spanned by the Lie algebra of T and the positive roots spaces. If w ∈ W , then
we denote a representative of w in N(T ) by the same letter.

The flag variety X = G/B parametrizes the Borel subgroups via the map gB →
gBg−1. The B-action on X gives the “Bruhat decomposition” by B-orbits X =∐

w∈W Xw. The Schubert cell Xw is the B-orbit of wB. It is well known, see [18],

that Xw ≃ Cl(w) and Xw =
∐

v≤w Xv, where ≤ is the Bruhat ordering. Hence the

Schubert variety Xw is endowed with a natural B-invariant cell decomposition.

Example 4.4.6. Let G = SLn+1, B be the subgroup of upper triangular matrices,
T be the subgroup of diagonal matrices. Then W ≃ Sn+1, and the choice of B
corresponds to S = {s1, . . . sn} as in Example 4.4.1. Clearly Xe = Xe is the point
B, and Xw0

= X, if w0 denotes the longest element of W . If s ∈ S, then Xs ≃ P1.
If {o} ⊆ C0 ⊆ C1 ⊆ . . . ⊆ Cn is the flag determined by the canonical basis
of Cn, then Xsi parameterizes the flags {o} ⊆ V1 ⊆ . . . ⊆ Vn−1 ⊆ Cn such that
Vk = Ck for all k �= i. One such flag is determined by the line Vi/Vi−1 ⊆ Vi+1/Vi−1.
If l(w) ≥ 2, then the Schubert variety Xw is, in general, singular. The flags
V = {o} ⊆ V1 ⊆ . . . ⊆ Vn−1 ⊆ Cn in a Schubert cell Xw can be described in terms
of the dimension of the intersections Vi ∩ Cj as follows:

Xw = {V : dimVi ∩ Cj = wij}, where wij = ♯{k ≤ i such that w(k) ≤ j}}.
Since B acts transitively on any Schubert cell, it follows that dimHi(ICXw

)x
depends only on the cell Xv containing the point x.

Set, for v ≤ w, hi(Xw)v := dimHi(ICXw
)x for x any point in Xv. Define, for

v ≤ w, the Poincaré polynomial P̃v,w(q) =
∑

i h
i−l(w)(Xw)vq

i/2.
We have the following remarkable and surprising fact, which yields a geometric

interpretation of the Kazhdan-Lusztig polynomials in terms of dimensions of stalks
of cohomology sheaves of intersection complexes of Schubert varieties.

Theorem 4.4.7 ([119]). We have Pv,w(q) = P̃v,w(q). In particular, if i + l(w) is
odd, then Hi(ICXw

) = 0, and the coefficients of the Kazhdan-Lusztig polynomials
Pv,w(q) are nonnegative.

Remark 4.4.8. Theorem 4.4.7 implies that Pv,w = 1 for all v ≤ w iff ICXw
=

QXw
[l(w)]. This happens, for instance, for SL3 (cf. Remark 4.4.5). The Schubert

varieties of SL3 are in fact smooth.

Remark 4.4.9. To our knowledge, there is no purely combinatorial proof of the
nonnegativity of the coefficients of the Kazhdan-Lusztig polynomials. This fact
illustrates the power of the geometric interpretation.

Remark 4.4.10. In the same paper [118] in which the polynomials Pv,w are intro-
duced, Kazhdan and Lusztig conjecture a formula, involving the values Pv,w(1), for
the multiplicity of a representation in the Jordan-Hölder sequences of Verma mod-
ules. The proofs of this conjecture, due independently to Beilinson-Bernstein ([10])
and Brylinski-Kashiwara ([31]), make essential use of the geometric interpretation
given by Theorem 4.4.7 of the Kazhdan-Lusztig polynomials. See [167], §3, for the
necessary definitions and a sketch of the proof.
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Remark 4.4.11. Since dimXv = l(v), the support conditions (12) of §2.1 for intersec-
tion cohomology imply that if v < w, thenHi−l(w)(ICXw

)v = 0 for i−l(w) ≥ −l(v).

It follows that the degree of P̃v,w(q) is at most 1
2 (l(w) − l(v) − 1), as required by

the definition of the Kazhdan-Lusztig polynomials. Furthermore, as (ICXw
)|Xw

=
QXw

[l(w)], we have Pw,w = 1.

The original proof of Theorem 4.4.7, given in [119], is inspired to the “functions-
sheaves dictionary” briefly discussed in §4.3, and does not use the decomposition
theorem, but, rather, the purity of the intersection cohomology complex in the l-adic
context (see §3.1) and the Lefschetz Trace Formula, [95]. As seen in Remark 4.4.11,

the polynomials P̃v,w satisfy the first property (33) on the degree. It thus remains to
show the invariance under the involution ι. Kazhdan and Lusztig directly show that
Hi(ICXw

) = 0 if i+l(w) is odd, and that the Frobenius map acts onH2i−l(w)(ICXw
)

with eigenvalues equal to qi, so that, up to a shift, P̃v,w(q) = tICXw
(x), if x ∈

Xv(Fq). Once this is shown, the invariance under the involution ι turns out to be
equivalent to the Poincaré duality theorem for intersection cohomology, §2.1.

For another approach, again based on the purity of the l-adic intersection coho-
mology complex, see [130].

An approach to Theorem 4.4.7 due to MacPherson, also gives a topological de-
scription of the Hecke algebra. It is based on exploiting the decomposition theorem
for the Bott-Samelson variety (see [21, 67]), which is a G-equivariant resolution of
a variety closely related to the Schubert cell Xw.

Another proof, which still relies on applying the decomposition theorem to the
resolutions of the Schubert varieties mentioned above, was later worked out by
T. Haines, in [97]. It exploits the fact that the fibers of the resolution have a
decomposition as a disjoint union of affine spaces. This latter approach works with
the flag variety as well as with the (infinite-dimensional) affine flag variety.

4.5. The Geometric Satake isomorphism. We now discuss an analogue of the
constructions described in §4.4, culminating in a geometrization of the spherical
Hecke algebra and the Satake isomorphism. In this case, the Schubert subvarieties
will be replaced by certain subvarieties Orbλ of the affine Grassmannian GRG.

Let us first recall, following the clear exposition [94], the basic statement of the
classical Satake isomorphism ([161]).

Let K, O, p, π and q be as in §4.4.3. We let G be a reductive linear algebraic
group split over K. We denote by G(K) the set of K-points and by K = G(O),
the set of O-points, a compact subgroup of G(K). Similarly to Examples 4.4.2,
4.4.3, the spherical Hecke algebra H(G(K), G(O)) is defined to be the set of K−K-
invariant locally constant Z-valued functions onG(K) endowed with the convolution
product (32), where the Haar measure is normalized so that the volume of K is 1.

The group X•(T ) := Hom(K∗, T (K)) of co-characters of T is free abelian and
carries a natural action of the Weyl group W . The choice of a set of positive roots
singles out a system of positive co-roots in X•(T ) as well as the positive chamber

X•(T )
+ = {λ ∈ X•(T ) s.t. λ(α) ≥ 0 if α > 0},

which is a fundamental domain for the action of W . Given λ, µ ∈ X•(T ), we say
that λ ≥ µ if λ− µ is a sum of positive co-roots.
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Every λ ∈ X•(T ) defines an element λ(π) ∈ K, and one has the following
Cartan-type decomposition:

G =
∐

λ∈X•(T )+

Kλ(π)K.

The characteristic functions Cλ of the double cosets Kλ(π)K, for λ ∈ X•(T )
+, give

a Z-basis of H(G,K). The spherical Hecke algebra is commutative.

Remark 4.5.1. For the torus T , we have H(T (K), T (O)) ≃ Z[X•(T )].

Example 4.5.2. Let G = GLn. With the usual choice of positive roots, an element
λ ∈ X•(T )

+ is of the form diag(ta1 , . . . tan), with a1 ≥ a2 ≥ . . . ≥ an. The above
decomposition boils down to the fact that a matrix can be reduced to diagonal form
by multiplying it on the left and on the right by elementary matrices.

The Langlands dual LG of G is the reductive group whose root datum is the
co-root datum of G and whose co-root datum is the root datum of G. For a very
nice description of these notions, see [166]. The representation ring R(LG) of LG
is isomorphic to Z[X•(T )]

W .

Theorem 4.5.3 (The classical Satake isomorphism). There is an isomorphism of
algebras:

(34) S : H(G(K), G(O))⊗ Z[q1/2, q−1/2]
≃−→ R(LG)⊗ Z[q1/2, q−1/2].

Remark 4.5.4. The Z-module R(LG) has a basis [Vλ] parameterized by λ ∈ X•(T )
+,

where Vλ is the irreducible representation with highest weight λ. It may be tempting
to think that the inverse S−1 sends [Vλ] to the characteristic function Cλ of the
double coset Kλ(π)K. However, this does not work: there exist integers dλ(µ),
defined for µ ∈ X•(T )

+, with µ < λ such that the more complicated formula

(35) S−1([Vλ]) = q−ρ(λ)(Cλ +
∑

µ∈X•(T )+

µ<λ

dλ(µ)Cµ),

where ρ = (1/2)
∑

α>0 α, holds instead.

The Satake isomorphism is remarkable in the sense that it relates G and LG.
A priori, it is unclear that the two should be related at all, beyond the defining
exchanging property. The isomorphism gives, in principle, a recipe to construct the
(representation ring of the) Langlands dual LG of G from the datum of the ring of
functions on the double coset space K\G/K.

A striking application of the theory of perverse sheaves is the “geometrization”
of this isomorphism. The whole subject was started by the important work of
Lusztig [127, 126]. In this work, it is shown that the Kazhdan-Lusztig polynomials
associated with a group closely related to W aff are the Poincaré polynomials of
the intersection cohomology sheaves of the singular varieties Orbλ, for λ ∈ X•(T ),
inside the affine Grassmannian GRG defined below, and they coincide with the
weight multiplicities dλ(µ) of the representation Vλ appearing in formula (35). As
a consequence, he showed that, if we set IH∗(Orbλ) =

⊕
l IH

l(Orbλ), then we have

dim IH∗(Orbλ) = dimVλ and that the tensor product operation Vλ⊗Vν correspond
to a “convolution” operation ICOrbλ

⋆ ICOrbν
.

The geometric significance of Lusztig’s result was clarified by the work of Ginz-
burg [83] and Mirković-Vilonen [145].
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We quickly review the geometry involved, according to the paper [145]. We work
over the field of complex numbers. The analogue of the coset space G(K)/G(O))
of §4.4 is the affine Grassmannian, which we now introduce; see [12] for a thorough
treatment. Let G be a reductive algebraic group over C, let C[[t]] be the ring of
formal power series and C((t)) its fraction field of Laurent series. The quotient
GRG = G(C((t)))/G(C[[t]]) is called the affine Grassmannian: it is an ind-variety,
i.e., a countable increasing union of projective varieties.

Remark 4.5.5. Let G = SLn(C). The points of GRSLn(C) parameterize special
lattices in the C((t))-vector space V = C((t))n. A special lattice is a C[[t]]-module
M ⊆ V such that tNC[[t]]n ⊆ M ⊆ t−NC[[t]]n for some N , and

∧n M = C[[t]]. The
action of SLn(C((t))) on the set of special lattices is transitive, and SLn(C[[t]]) is
the stabilizer of the lattice M = C[[t]]n.

Remark 4.5.6. The set of points of the affine Grassmannian GRT of a torus T is
easily seen to be X•(T ) (see Remark 4.5.1). The scheme structure is somewhat
subtler, as it turns out to be nonreduced.

Set K = C((t)) and O = C[[t]]. The imbedding T ⊆ G of the maximal torus gives
a map GRT → GRG; thus, by Remark 4.5.6, we can identify X•(T ) with a subset
of GRG. It turns out that the group G(O) acts on GRG with finite-dimensional
orbits. We still denote by λ the point of the affine Grassmannian corresponding to
λ ∈ X•(T ), and denote its G(O)-orbit by Orbλ ⊆ GRG (cf. [12]).

Proposition 4.5.7 ([12], 5.3). There is a decomposition GRG =
∐

λ∈X•(T )+ Orbλ.

Furthermore, every orbit Orbλ has the structure of a vector bundle over a rational
homogeneous variety, it is connected and simply connected,

dimOrbλ = 2ρ(λ) and Orbλ =
∐

µ≤λ

Orbµ.

Proposition 4.5.7 implies that the category PG(O) of perverse sheaves which
are constructible with respect to the decomposition in G(O)-orbits is generated
by the intersection cohomology complexes ICOrbλ

. Lusztig has proved in [127]

that the cohomology sheaves Hi(ICOrbλ
) are different from zero only in one parity.

Together with the fact that the dimensions of all G(O)-orbits in the same connected
component of GRG have the same parity, this implies that PG(O) is a semisimple
category. Its objects are automatically G(O)-equivariant perverse sheaves.

The Tannakian formalism, see [65], singles out the categories which are equiva-
lent to categories of representations of affine group schemes, and it gives a precise
prescription for reconstructing the group scheme from its category of representa-
tions. The geometrization of the Satake isomorphism essentially states that the
category PG(O) is equivalent to the category of representations Repr(LG) of the

Langlands dual group LG, so it yields a recipe to reconstruct this dual group.
More precisely, it is necessary to endow PG(O) with the structure of a rigid tensor
category with a “fiber functor.” Essentially, this means that there must be 1) a
bilinear functor ⋆ : PG(O)×PG(O) → PG(O) with compatible associativity and com-

mutativity constraints, i.e., functorial isomorphisms A1 ⋆ (A2 ⋆A3)
≃→ (A1 ⋆A2)⋆A3

and A1 ⋆ A2
≃→ A2 ⋆ A1, and 2) an exact functor, called the fiber functor, F :

PG(O) → VectQ which is a tensor functor; i.e., there is a functorial isomorphism

F (A1 ⋆ A2)
≃→ F (A1)⊗ F (A2).
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Remark 4.5.8. For the category of representations of a group, the product is given
by the tensor product of representations, while the fiber functor ω associates with
a representation its underlying vector space.

In fact, there exists a geometrically defined “convolution product”

⋆ : PG(O) × PG(O) −→ PG(O)

with “associativity and commutativity constraints,” such that the cohomology func-
tor H : PG(O) → VectQ is a tensor functor. The construction of this geometric
convolution product is reviewed below; see Theorem 4.5.11.

We state the geometric Satake isomorphism as follows:

Theorem 4.5.9 (Geometric Satake isomorphism). There is an equivalence of
tensor categories

(36) Sgeom : (PG(O), ⋆,H)
≃−→ (Rep(LG),⊗, ω).

Remark 4.5.10. Nadler investigated ([148]) a subcategory of perverse sheaves on
the affine Grassmannian of a real form GR of G and proved that it is equivalent
to the category of representations of a reductive subgroup LH of LG. This estab-
lishes a real version of the Geometric Satake isomorphism and, as a corollary, the
decomposition theorem is shown to hold for several real algebraic maps arising in
Lie theory.

We discuss only two main points of the construction of [145], the definition of
the convolution product and the use of the “ semi-infinite” orbits to construct the
weight functors. We omit all technical details and refer the reader to [145].

The convolution product. In the following description of the convolution
product we treat the spaces involved as if they were honest varieties. See [80] for a
detailed account. Let us consider the diagram:

GRG G(K)
π �� GRG

G(K)×G(O) GRG

p

��

G(K)× GRG

��

q�� π×Id �� GRG × GRG

p1

��

p2 �� GRG.

The map q : G(K)×GRG → G(K)×G(O) GRG is the quotient map by the action of
G(O), the map p : G(K)×G(O) GRG → GRG is the “action” map, p(g, hG(O)) =
ghG(O). If A1, A2 ∈ PG(O), then (π × Id)∗(p∗1(A1) ⊗ p∗2(A2)) on G(K) × GRG

descends to G(K) ×G(O) GRG; that is, there exists a unique complex of sheaves

A1⊗̃A2 on G(K)×G(O) GRG with the property that (π × Id)∗(p∗1(A1)⊗ p∗2(A2)) =

q∗(A1⊗̃A2), and we set A1 ⋆ A2 := p∗(A1⊗̃A2).
The following fact is referred to as “Miraculous theorem” in [12]:

Theorem 4.5.11. If A1, A2 ∈ PG(O), then A1 ⋆ A2 ∈ PG(O).

The key reason why this theorem holds is that the map p enjoys a strong form
of semismallness.

First of all the complex A1⊗̃A2 is constructible with respect to the decomposition

G(K)×G(O) GRG =
∐

Sλ,µ with Sλ,µ = π−1(Orbλ)×G(O) Orbµ.
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Proposition 4.5.12. The map p : G(K) ×G(O) GRG → GRG is stratified semi-

small, in the sense, that for any Sλ,µ, the map p|Sλ,µ
: Sλ,µ → p(Sλ,µ) is semis-

mall. As a consequence, p∗ sends perverse sheaves, constructible with respect to the
decomposition {Sλ,µ}, to perverse sheaves on GRG constructible with respect to the
decomposition {Orbλ}.
Remark 4.5.13. While the “associativity constraints” of the convolution product
are almost immediate from its definition, the commutativity constraints are far
subtler (see [145] and also [80]).

The weight functor. The cohomology functor H(−) :=
⊕

l H
l(−) is a fiber

functor for the category PG(O). In particular, it is a tensor functor: H(A1 ⋆ A2) ≃
H(A1) ⊗ H(A2). In order to verify this, Mirković and Vilonen decompose this
functor as a direct sum of functors Hµ parameterized by µ ∈ X•(T ). This decom-
position is meant to mirror the weight decomposition of a representation of LG.
It is realized by introducing certain ind-subvarieties Nµ which have a “cellular”
property with respect to any A ∈ PG(O), in the sense that at most one compactly
supported cohomology group does not vanish. Let U be the unipotent radical of
the Borel group B, and let U(K) be the corresponding subgroup of G(K). The
U(K)-orbits in the affine Grassmannian are neither of finite dimension nor of finite
codimension. It can be shown that they are parameterized by X•(T ). If, as be-
fore, we still denote by ν the point of the affine Grassmannian corresponding to a
co-character ν ∈ X•(T ), and set Sν := U(K)ν, then we have GRG =

∐
ν∈X•(T ) Sν .

Proposition 4.5.14. For any A ∈ PG(O), we have H l
c(Sν , A) = 0 for l �= 2ρ(ν)

and H
2ρ(ν)
c (Sν , ICOrbλ

) is canonically isomorphic to the vector space generated by

the irreducible components of Orbλ∩Sν . In particular, the functor H
2ρ(ν)
c (Sν , − ) :

PG(O) → VectQ sending A ∈ PG(O) to H
2ρ(ν)
c (Sν , A) is exact, and

H(A) :=
⊕

l∈Z

H(GRG, A) =
⊕

ν∈X•(T )

H2ρ(ν)
c (Sν , A).

Remark 4.5.15. Let A ∈ PG(O). Since in the equivalence of categories of Theorem
4.5.9, the fiber functors H correspond to ω, the decomposition

H(A) =
⊕

ν∈X•(T )

H2ρ(ν)
c (Sν , A)

of Proposition 4.5.14 of the cohomology of A must reflect a decomposition of the
underlying vector space of the representation Sgeom(A). In fact, this is the weight
decomposition of the corresponding representation of LG.

An aspect of the Geometric Satake correspondence which we find particularly
beautiful is that, up to a renormalization, the intersection cohomology complex
ICOrbλ

corresponds, via the Geometric Satake isomorphism, to the irreducible rep-

resentation V (λ) of LG with highest weight λ. This explains (see Remark 4.5.4) why
the class of V (λ) is not easily expressed in terms of the characteristic function Cλ

of the double coset Kλ(π)K, which corresponds, in the function-sheaves dictionary
of 4.3, to the constant sheaf on Orbλ, and once again emphasizes the fundamental
nature of intersection cohomology. Furthermore, in view of Proposition 4.5.14, the
irreducible components of Orbλ ∩ Sν as ν varies in X•(T ), give a canonical basis
for V (λ). These components are now called Mirković-Vilonen cycles.
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The classical Satake isomorphism 4.5.3 for K = Fq((T )) may be recovered from
the geometric Satake isomorphism 4.5.9 by considering the Grothendieck group of
the two tensor categories. In fact, the Grothendieck ring of the category Repr(LG)
is the representation ring R(LG), while the functions-sheaves dictionary identifies
the Grothendieck ring of PG(O) with the spherical Hecke algebra H(G(K), G(O)).

4.6. Ngô’s support theorem. We thank G. Laumon and B.C. Ngô for very useful
conversations. The paper [152] is devoted to the proof of the fundamental lemma
in the Langland’s program, a long-standing and deep conjecture concerning Lie
groups. For its complexity, depth and wealth of applications to representation the-
ory, this paper deserves a separate treatment, which we do not provide here. In this
section, instead, we give a brief and rough discussion of B.C. Ngô’s support theorem
([152], Theorem 7.1.13). This result, which we state in a slightly weaker form in
Theorem 4.6.2, can be stated and proved without any reference to the context of
the Langlands program, and it is of great independent geometrical interest. Under
the favourable assumptions which are explained in the sections that follow, it gives
a precise characterization of the supports of the perverse sheaves which enter the
decomposition theorem for a map f : M → S acted upon in a fiber-preserving
manner by a family of commutative algebraic groups g : P → S. This seems to
be one of the first cases in which the decomposition theorem is studied in depth
in the context of a nongenerically finite map, i.e. of a map with large fibers. For
expository reasons, we state these results over the complex numbers, even though
the main use in [152] is in the l-adic context over a finite field.

The determination of the simple summands ICYa
(La) appearing in the decom-

position theorem (9) is a difficult problem. The determination of the supports Ya

does not seem to be easier. In fact, consider Examples 1.8.2, 1.8.3: the vertex of
the cone is certainly a special locus in both cases; however, it appears as a support
of a summand in the decomposition theorem only in Example 1.8.2.

One important ingredient of Ngo’s proof of the support theorem is the following
result of Goresky and MacPherson, which, in the case of equidimensional maps,
yields an a priori constraint on the codimension of subvarieties supporting simple
summands in the decomposition theorem. The proof is a simple and elegant ap-
plication of the symmetry (10) arising from Poincaré-Verdier duality, and can be
found in [152], Appendice A, Théorèmes 2 and 3.

Theorem 4.6.1. Let f : X → Y be a proper map of algebraic varieties, with X
nonsingular. Assume that all the fibers of f have the same dimension d. Assume
that Z ⊆ Y is an irreducible subvariety which is the support of a nonzero summand
appearing in the decompositon theorem (9). Then

codim (Z) ≤ d.

If, in addition, the fibers are irreducible, then one has strict inequality in the above.

The basic idea in the proof is that a larger codimension, coupled with duality,
would force the corresponding summand to contribute a nontrivial summand to the
direct image sheaf Rjf∗QX for j > 2d, contradicting the fact that the fibers have
dimension d.

In order to state Ngô’s support theorem, let us fix some notation.
Let f : M → S be a proper and flat map of relative dimension d with reduced

fibers and where M and S are smooth irreducible varieties. The map f is assumed
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to be endowed with an action of a commutative group scheme g : P → S of relative
dimension d. A group scheme is a map g : P → S together with S-maps e : S → P ,
m : P ×S P → P and ι : P → P that satisfy the usual axioms of a group. Each
fiber g−1(s) is an algebraic group, and a group scheme can be seen as a family
of groups. In this context, an action is an S-map a : P ×S M → M commuting
with the projections to S that satisfy the usual requirements of an action, suitably
modified to the “relative to S” situation.

Let g : P → S be as above and with connected fibres, and let s ∈ S. By a classical
result of Chevalley, there is a canonical exact sequence 1 → Rs → Ps → As → 1
of algebraic groups, where Rs is affine (thus a product Cαs × C∗µs of additive and
multiplicative groups), and As is an abelian variety. The function δ : S → N,
s �→ δs := dimRs = αs+µs is well defined. This function is upper-semicontinuous;
i.e., it jumps up on Zariski-closed subsets. In particular, there is a partition of
S =

∐
δ≥0 Sδ into locally closed subvarieties where the invariant δ is constant. We

assume furthermore that P acts with affine stabilizers: for any m ∈ M , the isotropy
subgroup of m is an affine subgroup of Pf(m).

We need the two notions of δ-regularity and of polarizability. An S-group scheme
g : P → S as above is δ-regular if

codimS(Sδ) ≥ δ.

The Tate sheaf is the sheaf

T (P ) := R2d−1g!Q

whose stalk at s ∈ S is, by base change, the homology group H1(Ps). We say that
TQ(P ) is polarizable if there is an alternating bilinear pairing

T (P )⊗ T (P ) −→ QS

that factors through H1(As) at every point and induces on it a perfect pairing.
We can now state the following

Theorem 4.6.2 (Ngô support theorem). Let f : M → S, g : P → S be as
above. Assume that P → S is δ-regular and that T (P ) is polarizable. A closed irre-
ducible subvariety Z ⊆ S is the support of a nontrivial simple summand appearing
in the decomposition theorem for f : M → S if and only if there is a Zariski dense
open subvariety Z0 ⊆ Z such that the sheaf R2df∗Q is locally constant on Z0 and
Z is maximal with respect to this property.

Remark 4.6.3. Theorem 4.6.2 is applied to the case when f : M → S is a suitable
open subset of the Hitchin fibration associated with a Lie group. The hypothesis of
δ-regularity is verified with the aid of Riemann-Roch and of the deformation theory
of Higgs bundles. Over the complex numbers an infinitesimal argument shows that
a group scheme (variety) associated with a completely integrable algebraic system
is always δ-regular. The hypothesis of polarizability is verified using the classical
Weil pairing. See [152].

The statement of the support theorem, is remarkable because it tells us where to
look for the supports of the summands of the decomposition theorem: they are those
varieties’ closures of (maximal) parts of S over which the single sheaf R2df∗Q is
locally constant. On the other hand, since the fibers are assumed to be reduced, the
sheaf R2df∗Q is the linearization of the sheaf of finite sets given by the irreducible
components of the fibers of f . This fact makes the determination of these supports
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an approachable problem. For example, suppose that the map f has irreducible
fibres; denote by j : Sreg → S the imbedding of the open set of regular values of f
and by Ri the local systems Rif∗Q on Sreg. Then f∗Q[dimM ] =

⊕
i IC(Ri)[d− i];

that is, there are no summands beyond those which are determined by the “fibration
part”.

4.7. Decomposition up to homological cobordism and signature. We want
to mention, without any detail, a purely topological counterpart of the decompo-
sition theorem. Recall that this result holds only in the algebraic context; e.g., it
fails for proper holomorphic maps of complex manifolds.

In the topological context, Cappell and Shaneson [33] introduce a notion of
cobordism for complexes of sheaves and prove a general topological result for maps
between Whitney stratified space with only even codimension strata that in the
case of a proper algebraic map f : X → Y identifies, up to cobordism, f∗ICX

with pH0(f∗ICX) and its splitting as in the decomposition theorem. For a related
question, see [88], D., Problem 6.

The decomposition up to cobordism is sufficient to provide exact formulae for
many topological invariants, such as Goresky-MacPherson L-classes and signature,
thus generalizing the classical Chern-Hirzebruch-Serre multiplicativity property of
the signature for smooth fiber bundles with no monodromy to the case of stratified
maps (see [34, 35, 163]).

In the case of complex algebraic varieties, one may also look at the MacPherson
Chern classes [132], the Baum-Fulton-MacPherson Todd classes [6], the homology
Hirzebruch classes [25, 37] and their associated Hodge-genera defined in terms of
the mixed Hodge structures on the (intersection) cohomology groups. The papers
[35, 36, 37] provide Hodge-theoretic applications of the above topological stratified
multiplicative formulæ. For a survey, see [137].

These results yield topological and analytic constraints on the singularities of
complex algebraic maps. In the case of maps of projective varieties, these Hodge-
theoretic formulæ are proved using the decomposition theorem, especially the iden-
tification in [51] of the local systems appearing in the decomposition combined with
the Hodge-theoretic aspects of the decomposition theorem in [54]. For noncompact
varieties, the authors use the functorial calculus on the Grothendieck groups of
Saito’s algebraic mixed Hodge modules.

4.8. Further developments and applications. Toric varieties and poly-
topes. There exist polytopes that are not combinatorially equivalent to any ratio-
nal polytope, and the formula for the generalized h-polynomial makes sense also in
this case, even though there is no toric variety associated with it. It is thus natural
to ask whether the properties of the h-polynomial reflecting the Poincaré duality
and the hard Lefschetz theorem hold more generally for any polytope.

In order to study this sort of questions, P. Bressler and V. Lunts have developed
a theory of sheaves on the poset associated with the polytope P , or more gener-
ally to a fan; see [26]. Passing to the corresponding derived category, they define
an intersection cohomology complex and prove the analogue of the decomposition
theorem for it, as well as the equivariant version.
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By building on their foundational work, K. Karu proved in [112] that the hard
Lefschetz property and the Hodge-Riemann relations hold for every, i.e., not nec-
essarily rational, polytope. Different proofs, each one shedding new light on inter-
esting combinatorial phenomena, have then been given by Bressler-Lunts in [27]
and by Barthel-Brasselet-Fieseler-Kaup in [4]. Another example of an application
of the methods of intersection cohomology to the combinatorics of polytopes is the
solution, due to T. Braden and R. MacPherson of a conjecture of G. Kalai concern-
ing the behavior of the g-polynomial of a face with respect to the g-polynomial of
the whole polytope. See [24] and the survey [23].

The Hilbert scheme of points on a surface. Vafa and Witten noticed in
[170] that Göttsche’s Formula (31) suggests a representation-theoretic structure un-
derlying the direct sum

⊕
i,n H

i(S[n]). Namely, this space should be an irreducible
highest weight module over the infinite-dimensional Heisenberg-Clifford super Lie
algebra, with highest weight vector the generator of H0(S[0]). H. Nakajima and,
independently, I. Grojnowski took up the suggestion in [151, 93] (see also the lec-
ture notes [149]) and realized this structure by a set of correspondences relating
Hilbert schemes of different lengths.

An elementary proof of Göttsche’s formula stemming from this circle of ideas was
given in [47]. The papers [49, 50] prove, in two different ways, a motivic version of
the decomposition theorem (29) for the map π : S[n] → S(n) exhibiting an equality

(S[n],∆, 2n) =
∑

ν∈Pn

(Sl(ν), Pν , 2l(ν))

of Chow motives with rational coefficients. In this formula, Pν denotes the projector
associated with the action of the group

∏Sai
on Sl(ν). Two related examples, still

admitting a semismall contraction, are the nested Hilbert scheme S[n,n+1], whose
points are couples (Z,Z ′) ∈ S[n] × S[n+1] such that Z ⊆ Z ′, and the parabolic
Hilbert scheme; see [50] and its Appendix for details.

The Geometric Satake isomorphism. The decomposition theorem, applied
to the stratified semismall map p used to define the convolution, gives a decompo-
sition

ICOrbλ
⋆ ICOrbµ

=
⊕

ν

ICOrbν
⊗ Fν ,

where Fν is the vector space generated by the relevant irreducible components of
the fibres of p (see (24) and note that the strata are simply connected). This
decomposition mirrors, on the geometric side, the Clebsch-Gordan decomposition
V (λ)⊗V (µ) =

⊕
ν V (ν)⊗Fν . The irreducible components of the fibres were shown

to be Mirković-Vilonen cycles in [1]. A combinatorial study of Mirković-Vilonen
cycles is made possible by letting the maximal torus T act on them. The action
is Hamiltonian and its image by the moment map is a polytope. The so-obtained
Mirković-Vilonen polytopes are investigated in, for instance, [2, 111].

Other applications. The examples discussed in this section are far from
exhausting the range of applications of the theory of perverse sheaves. We suggest
G. Lusztig’s [128], T.A. Springer’s [167], and N. Chriss and V. Ginzburg’s [39]
for further applications and for more details, including motivation and references,
about some of the examples discussed here in connection with representation theory.

For lack of space and competence, we have not discussed many important exam-
ples, such as the proof of the Kazhdan-Lusztig conjectures and the applications of
the geometric Fourier transform.
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The most dramatic occurrence of the functions-sheaves dictionary, and one of
the reasons for the importance of perverse sheaves in representation theory, is the
geometrization of the notion of automorphic form in the geometric Langlands pro-
gram; for details, see for instance [76], §3.3, or [79]. Coarsely speaking, an (unram-
ified) automorphic form is a function on the “adèlic quotient” GLn(F )\GLn(AF )/
GLn(O), where F is the field of rational functions of an algebraic curve X defined
over a finite field Fq, AF is the ring of adèles of F , and O =

∏
x∈X Ox. The func-

tion must also satisfy some other property, such as that of being an eigenvector
for the unramified Hecke algebra. A theorem of A. Weil gives an interpretation of
the adèlic quotient as the set of points of the moduli stack of vector bundles on X.
Hence, by the function-sheaves dictionary, an automorphic form should correspond
to a perverse sheaf on this moduli stack, and the important condition that the
automorphic form be a Hecke eigenvector can also be interpreted geometrically by
introducing the notion of a Hecke eigensheaf.

5. Appendices

5.1. Algebraic varieties. The precise definitions of varieties and maps in alge-
braic geometry are quite lengthy. Luckily, in order to understand the statement of
the decomposition theorem, as well as some of its applications, it is often sufficient
to deal with quasi-projective varieties and the maps between them. Let us explain
a little bit this terminology, without being too formal. A projective variety is an
algebraic variety that admits an embedding in some projective space PN as the zero
set of finitely many homogeneous equations in N + 1 variables. A quasi-projective
variety is an algebraic variety that admits an embedding in some projective space as
the difference set of two projective varieties. There are algebraic varieties that are
not quasi-projective. An affine variety is a variety that can be viewed as the zero
set in some affine space AN of finitely many polynomial in N variables. An affine
variety is clearly quasi-projective; the converse does not hold, e.g., A2 \ {(0, 0)}.
We also have the notions of subvariety and product varieties. A map of algebraic
varieties f : X → Y , or simply a map, is a map of the underlying sets whose graph
is an algebraic subvariety of the product variety X × Y . A complex algebraic vari-
ety carries two interesting topologies: the Euclidean (or classical) topology and the
coarser Zariski topology. Let us discuss these two topologies in the case of a quasi-
projective variety embedded in a projective space, X ⊆ PN : the Euclidean topology
is the topology induced on X by the complex manifold topology on PN ; the Zariski
topology is the topology with closed sets given by zero sets on X of finitely many
homogeneous polynomials in N +1 variables. A closed (open, resp.) subvariety is a
closed (open, resp.) subset for the Zariski topology. A map of algebraic varieties is
proper (in the sense of algebraic geometry) if it is separated and universally closed
for the Zariski topology; luckily, this happens if and only if the map is proper for the
Euclidean topology. In particular, a map of projective varieties is always proper.
An algebraic variety X is reducible if it is the union X = X ′ ∪ X ′′ of two closed
algebraic subvarieties with X ′, X ′′ �= X, and it is irreducible otherwise.

5.2. Hard Lefschetz theorem and mixed Hodge structures. We want to
state the hard Lefschetz theorem and the Hodge-Riemann bilinear relations in the
language of Hodge structures. Let us recall briefly this formalism.
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Hodge structures and polarizations.
Let l ∈ Z, H be a finitely generated Abelian group, HQ := H⊗ZQ, HR = H⊗ZR,

HC = H ⊗ZC. A pure Hodge structure of weight l on H, HQ or HR, is a direct sum
decomposition HC =

⊕
p+q=l H

p,q such that Hp,q = Hq,p. The Hodge filtration is

the decreasing filtration F p(HC) :=
⊕

p′≥p H
p′,q′ . A morphism of Hodge structures

f : H → H ′ is a group homomorphism such that the complexification of f (still
denoted f) is compatible with the Hodge filtrations in the sense that f(F pHC) ⊆
F pH ′

C, i.e., such that it is a filtered map. Such maps are automatically what one
calls strict, i.e., (Im f) ∩ F pH ′

C = f(F pHC). The category of Hodge structures of
weight l with the above arrows is Abelian.

Let C be the Weil operator, i.e., the R-linear map C : HC ≃ HC such that
C(x) = ip−qx, for every x ∈ Hpq. Replacing ip−q by zpzq we get a real action ρ
of C∗ on HC. A polarization of the real pure Hodge structure HR is a real bilinear
form Ψ on HR which is invariant under the action given by ρ restricted to S1 ⊆ C∗

and such that the bilinear form Ψ̃(x, y) := Ψ(x,Cy) is symmetric and positive
definite. If Ψ is a polarization, then Ψ is symmetric if l is even, and antisymmetric
if l is odd. In any case, Ψ is nondegenerate. In addition, for every 0 �= x ∈ Hpq ,
(−1)lip−qΨ(x, x) > 0, where Ψ also denotes the C-bilinear extension of Ψ to HC.

Let η be the first Chern class of an ample line bundle on the projective n-fold
Y . For every r ≥ 0, define the space of primitive vectors Pn−r := Ker ηr+1 ⊆
Hn−r(Y,Q).

Classical Hodge theory states that, for every l, H l(Y,Z) is a pure Hodge structure
of weight l, Pn−r is a rational pure Hodge structure of weight (n − r) polarized,
up to a precise sign, by the bilinear form defined on Hn−r(Y ) as follows (it is well
defined by Stokes’ theorem):

(37) Sη(α, β) :=

∫

Y

ηr ∧ α ∧ β.

The fact that this form is nondegenerate is equivalent to the celebrated hard Lef-
schetz theorem. Its signature properties are expressed by the Hodge-Riemann bi-
linear relations.

Theorem 5.2.1. Let Y be a complex projective manifold of dimension n. Then
the following statements hold.

(1) (Hard Lefschetz theorem) For every r ≥ 0 the cup product with η yields
isomorphisms

ηr : Hn−r(Y,Q) ≃ Hn+r(Y,Q).

(2) (Primitive Lefschetz decomposition) For every 0 ≤ r ≤ n there is the
direct sum decomposition

Hn−r(Y,Q) =
⊕

j≥0

ηjPn−r−2j,

where each summand is a pure Hodge substructure of weight n − r and all
summands are mutually orthogonal with respect to the bilinear form Sη.

(3) (Hodge-Riemann bilinear relations) For every 0 ≤ r ≤ n, the bilin-

ear form (−1)
(n−r)(n−r+1)

2 Sη is a polarization of the pure weight l Hodge
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structure Pn−r ⊆ Hn−r(Y,R). In particular,

(38) (−1)
(n−r)(n−r−1)

2 ip−q

∫

Y

ηr ∧ α ∧ α > 0, ∀ 0 �= α ∈ Pn−r ∩Hp,q(Y,C).

Inductive approach to hard Lefschetz theorem.
Our proof (discussed in §3.3) of the decomposition theorem requires that we

first establish the relative hard Lefschetz theorem. We do so by using an approach
similar to the classical inductive approach to the hard Lefschetz Theorem 5.2.1(1).
There are two variants of this inductive approach (see [62, 44]): the former is via
Hodge-Riemann relations, the latter is via the semisimplicity of the monodromy
action in a Lefschetz pencil. Though both are relevant to our approach to the
decomposition theorem, we limit ourselves to discussing the former variant.

The induction is on n := dimY and uses a nonsingular hyperplane section D ⊆
Y . The case r = 0 is trivial. The cases r ≥ 2 follow by an easy induction on the
dimension of Y using the Lefschetz hyperplane theorem. One is left with the key
case r = 1. The cup product map η := c1(D) ∧ − factors as η = g ◦ r:

Hn−1(Y )
r �� Hn−1(D)

g �� Hn+1(Y ),

where r is the injective restriction map and g is the surjective Gysin map. It is
easy to show that η is an isomorphism iff the intersection form on D, restricted to
Im(r), is nondegenerate. While the form on Hn−1(D) is nondegenerate by Poincaré
duality, there is no a priori reason why it should restrict to a nondegenerate form
on Hn−1(Y ). This is where the Hodge-Riemann relations enter the picture: by
contradiction, assume that there is a nonzero class α ∈ Ker η, which we may suppose
of pure Hodge type; then r(α) is primitive inHn−1(D), and, by the Hodge-Riemann
relations on D, 0 =

∫
Y
η ∧ α ∧ α =

∫
D
α ∧ α �= 0, a contradiction.

The Lefschetz theorem on hyperplane sections coupled with the Hodge-Riemann
bilinear relations for a hyperplane section imply the hard Lefschetz theorem for Y .
However, they do not imply the Hodge-Riemann bilinear relations for the critical
middle-dimensional cohomology group Hn(Y ), and the induction procedure grinds
to a halt.

To make the proof work, one has to somehow establish the Hodge-Riemann
relations on Hn(Y ). §3.3.2, sections 1 and 2b, outlines two instances of how Hodge-
Riemann-type relations can be established.

The hard Lefschetz theorem applied to the fibers of a smooth projective mor-
phism and Theorem 5.3.1 imply the following result (cf. item (3), following Theorem
1.6.1). For the proof, see [56] and [59], Théorème 4.2.6.

Theorem 5.2.2 (Decomposition, semisimplicity and relative hard Lef-
schetz theorem for proper smooth maps). Let f : Xn → Y m be a smooth
proper map of smooth algebraic varieties of the indicated dimensions. Then

f∗QX ≃
⊕

j≥0

Rjf∗QX [−j]

and the Rjf∗QX are semisimple local systems. If, in addition, f is projective and η
is the first Chern class of an f -ample line bundle on X, then we have isomorphisms

ηr : Rn−m−rf∗QX ≃ Rn−m+rf∗QX , ∀r ≥ 0,

and the local systems Rjf∗QX underlie polarizable variations of pure Hodge struc-
tures.
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Mixed Hodge structures.
In general, the singular cohomology groups Hj(Y,Z) of a singular variety cannot

carry a pure Hodge structure of weight j; e.g., H1(C∗,Z) has rank one, and pure
Hodge structures of odd weight have even rank. However, these groups underlie
a more subtle structure, the presence of which makes the topology of complex
algebraic varieties even more remarkable.

Theorem 5.2.3 (Mixed Hodge structure on cohomology). Let Y be an alge-
braic variety. For every j ≥ 0 there is an increasing filtration (the weight filtration)

{0} = W−1 ⊆ W0 ⊆ . . . ⊆ W2j = Hj(Y,Q)

and a decreasing filtration (the Hodge filtration)

Hj(Y,C) = F 0 ⊇ F 1 ⊇ . . . ⊇ Fm ⊇ Fm+1 = {0}
such that the filtrations induced by F • on the complexified graded pieces of the
weight filtration W• endow every graded piece Wl/Wl−1 with a rational pure Hodge
structure of weight l. This structure (mixed Hodge structure) is functorial for maps
of algebraic varieties and the induced maps strictly preserve both filtrations.

5.3. The formalism of the constructible derived category. Standard refer-
ences for what follows are [116, 82, 19, 108, 9]; see also [162]. In what follows, we
freely refer to our crash course in §1.5 and to the complete references given above.

A full subcategory C′ ⊆ C of a category C is a subcategory such that the induced
map on the Hom sets is bijective; in other words we keep all the arrows.

An additive category C is one in which each Hom(A,B) is an Abelian group,
composition of arrows is bilinear, the direct sum A ⊕ B is defined for any pair of
objects A,B ∈ C, and the zero object 0 ∈ C exists. A complex K in an additive
category C is a sequence

. . . �� Ki−1 di−1
�� Ki di

�� Ki+1 di+1
�� . . .

of objects and morphisms in C such that for every i ∈ Z we have di ◦ di−1 = 0.
The objects Ki are called the entries of the complex and the arrows di are called
its differentials. One often omits the indexing of the arrows. A map of complexes
f : A → B is a collection of arrows f i : Ai → Bi such that d◦f = f ◦d. Complexes
in C form an additive category, denoted C(C). Given a complex K and m ∈ Z, the
m-shifted complex K[m] is the complex with entries (K[m])i := Ki+m and with

differentials diK[m] = (−1)kdi+k
K . The cone of a map of complexes f : A → B is the

complex Cone(f), where Cone(f)i := Bi ⊕ Ai+1 and the differential is defined by
setting d(b, a) = (d(b) + f(a),−d(a)).

An Abelian category is an additive category where every arrow admits a kernel
and a cokernel and, given any arrow f : A → B, the resulting natural arrow
Coker {Kerf → A} → Ker {B → Cokerf} is an isomorphism.

In this paragraph, we work in a fixed Abelian category A. An arrow is monic if
its kernel is (isomorphic to) zero. If an arrow A → B is monic, then we say that A
is a subobject of B. An object A ∈ A is simple if it has no nontrivial subobjects.
The Abelian category A is Artinian if, for every object A ∈ A, every descending
chain of subobjects of A stabilizes. If A is Artinian, then every nonzero object A
is a finite iterated extension of nonzero simple objects, called the constituents of A;
the constituents of A are well defined up to isomorphism. The Abelian category
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A is Noetherian if, for every object A, every ascending chain of subobjects of A
stabilizes. The category of complexes C(A) is Abelian. Given a complex K in C(A)
and an integer i ∈ Z, we define the cohomology object Hi(K) := Kerdi/Imdi−1 ∈ A
and the truncated complexes τ≤iK and τ≥iK as follows:

(τ≤iK)l = Kl, l < i, (τ≤iK)i = Ker di, (τ≤iK)l = 0, l > i,

with the obvious differentials, and

(τ≥iK)l = 0, l < i, (τ≤iK)i = Coker di−1, (τ≤iK)l = Kl, l > i,

with the obvious differentials. For every i ∈ Z there are short exact sequences in
the Abelian category C(A):

0 �� τ≤iK �� K �� τ≥i+1K �� 0,

and natural identifications of functors

τ≤i ◦ τ≥i ≃ τ≥i ◦ τ≤i ≃ [−i] ◦Hi.

Given an arrow f : A → B in C(A), we get a short exact sequence in C(A):

0 �� B �� Cone(f : A → B) �� A[1] �� 0.

Let Y be an algebraic variety and DY be the constructible bounded derived
category (§1.5). The category DY is a triangulated category. In particular, it
is additive, so that we can form finite direct sums, and it is equipped with the
translation functor A �→ A[1]. A triangle is a diagram of maps A → B → C → A[1]
in DY . A most important feature of triangulated categories is the presence of
distinguished triangles. Given a map of complexes f : A′ → B′, there exists a short
exact sequence of complexes 0 → B′ → Cone(f) → A′[1] → 0. This exact sequence
gives rise to a triangle A′ → B′ → Cone(f) → A′[1] in DY . A distinguished
triangle is a triangle which is isomorphic in DY to the one associated with a map f
as above. Any map f : A → B in DY can be completed to a distinguished triangle.
One should keep in mind that this construction is not functorial; see [82].

It is easy to show that the kernel of a morphism f : A → B in DY splits off as
a direct summand of A. Since there are complexes which do not split nontrivially,
the category DY is not Abelian (unless Y is a finite collection of points).

The cone construction is a replacement in the non-Abelian category DY of the
notions of kernel and cokernel. In fact, if f : A → B is an injective (surjective,
resp.) map of complexes, then Cone(f) is isomorphic in DY to the cokernel (1-
shifted kernel, resp.) complex.

An essential computational tool is that the application of a cohomological functor
to a distinguished triangle produces a long exact sequence. Distinguished triangles
are a replacement for short exact sequences in the non-Abelian category DY . A
cohomological functor, with values in an Abelian category A, is an additive functor
T : DY → A such that T (A) → T (B) → T (C) is exact for every distinguished
triangle as above. Setting T i(A) := T (A[i]), we get the long exact sequence

· · · �� T i(A) �� T i(B) �� T i(C) �� T i+1(A) �� · · · .
Using injective resolutions and the two global sections functors Γ and Γc we

define the derived global sections functors (see [82, 116] for the identification with
categorical derived functors)

RΓ, RΓc : DY −→ Dpt,
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and the finite-dimensional cohomology vector spaces of Y with coefficients in K ∈
DY :

H∗(Y,K) := H∗(RΓ(Y,K)), H∗
c (Y,K) := H∗(RΓc(Y,K)) (compact supports).

Given a map f : X → Y , we have the four functors

Rf∗, Rf! : DX −→ DY , f∗, f ! : DY −→ DX .

The sheaf-theoretic direct image functors f∗, f! : ShX → ShY are left exact as
functors, e.g., if 0 → F → G → H → 0 is an exact sequence of sheaves on X,
then 0 → f!F → f!G → f!H is an exact sequence of sheaves on Y . The right
derived functors Rf∗ and Rf! arise by applying the sheaf-theoretic direct image
functors f∗ and f! (proper supports), term-by-term, to injective resolutions. Taking
cohomology sheaves, we obtain the i-th right derived functors Rif∗ and Rif!. We
have equalities of sheaf-theoretic functors R0f∗ = f∗, R

0f! = f!. The inverse image
functor f∗ : ShY → ShX is exact on sheaves and descends to the derived category.
The exceptional inverse image functor f ! does not arise from a functor defined on
sheaves.

It is customary to employ the following simplified notation to denote the four
functors (f∗, f∗, f!, f

!). In this paper, f∗ and f! denote the right derived functors.
To avoid confusion, the sheaf-theoretic functors are denoted R0f∗, R

0f!.
Given maps f : X → Y , g : Y → Z, we have (g◦f)! = f ! ◦g!, etc. For g : Y → pt

and for C ∈ DX , we have canonical isomorphisms

H∗(X,C) ≃ H∗(Y, f∗C), H∗
c (X,C) ≃ H∗(Y, f!C).

The functors f! and f ! in special cases.
If f is proper, e.g., a closed immersion, then f! = f∗.
If f is smooth of relative dimension d, then f ! = f∗[2d].

A closed embedding f : X → Y is normally nonsingular of pure codimension d
([87]) if it can be realized as the intersection X = Y ∩ N inside M , where N,M
are nonsingular, N has codimension d in M , and N is transverse to every stratum
of some stratification Σ of Y . In this case, we have that f ! = f∗[−2d] holds for
every Σ-constructible complex. Such so-called normally nonsingular inclusions can
be obtained by embedding Y in some projective space and then intersecting Y with
d general hypersurfaces.
If f is an open embedding, then f ! = f∗.
If f is a locally closed embedding, then
1) f! is the extension-by-zero functor and f! = R0f!;
2) f ! = f∗RΓX , where ΓXF , not to be confused with the sheaf f!f

∗F = FX that
is zero outside X and coincides with F on X, is the sheaf of sections of the sheaf
F supported on X (see [116], p.95). If, in addition, f is a closed embedding, then
H∗(Y, f!f

!K) = H∗(X, f !K) = H∗(Y, Y \X;K) = H∗
X(Y,K).

The usual Hom complex construction can be derived, and we get the right derived
functors

RHom : Dopp
Y ×DY −→ Dpt, RHom : Dopp

Y ×DY −→ DY

with the associated Exti and Exti functors. We have

HomDY
(K,K ′) = H0(Y,RHom(K,K ′)) = H0(Y,RHom(K,K ′)).
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The pair (f∗, f∗) is an adjoint pair (this holds also for the sheaf-theoretic version)
and so is (f!, f

!) and we have, for every C ∈ DX and K ∈ DY :

f∗RHom(f∗K,C) = RHom(K, f∗C), f∗RHom(f!C,K) = RHom(C, f !K).

Since we are working with field coefficients, the tensor product operation ⊗ on
complexes is exact and there is no need to derive it. For Ki ∈ DY , we have (also
for RHom):

RHom(K1 ⊗K2,K3) = RHom(K1, RHom(K2,K3))

and, if the sheaves Hi(K3) are locally constant:

RHom(K1,K2 ⊗K3) = RHom(K1,K2)⊗K3.

The dualizing complex ωY ∈ DY is well defined up to canonical isomorphism
by setting ωY := γ!Qpt, where γ : Y → pt. If Y is nonsingular, then ωY ≃
QY [2 dimC Y ]. Given f : X → Y , we have ωX = f !ωY . Define a contravariant
functor

D : DY −→ DY , K �−→ D(K) (= K∨) := RHom(K,ωY ).

We have D2 = Id, (K[i])∨ = K∨[−i] and ωY = Q∨
Y . The complex K∨ is called the

(Verdier) dual of K. Poincaré-Verdier duality consists of the canonical isomorphism

Hi(Y,K∨) ≃ H−i
c (Y,K)∨,

which is a formal consequence of the fact that (f!, f
!) form an adjoint pair. The

usual Poincaré duality for topological manifolds is the special case when Y is smooth
and orientable, for then a choice of orientation gives a natural isomorphism ωY ≃
QY [dimR Y ].

We have the important relations

Df! = f∗D, Df ! = f∗D.

A t-structure on a triangulated category D is the data of two full subcategories
D≤0,D≥0 ⊆ D subject to the following three requirements:

(1) for every C ∈ D≤0 and C ′ ∈ D≥1, we have HomD(C,C
′) = 0;

(2) D≤0[1] ⊆ D≤0 and D≥0 ⊆ D≥0[1];
(3) for every C ∈ D, there is a distinguished triangle C ′ → C → C ′′ → C ′[1]

with C ′ ∈ D≤0 and C ′′ ∈ D≥1.

A t-category is a triangulated category endowed with a t-structure ([9, 116]).
The heart of a t-structure is the full subcategory C := D≤0∩D≥0. The heart of a t-
structure is an Abelian category. By virtue of axiom (1), the distinguished triangle
in (3) is defined up to canonical isomorphism and this defines functors, called the
truncation functors τ≤0 : D → D≤0, C �→ C ′ =: τ≤0C and τ≥0 : D → D≥0,
C �→ (C[−1])′′[1] =: τ≥0C. The functor H0 := τ≤0 ◦ τ≥0 : D → C is cohomological.

The prototype of a t-structure is the standard t-structure on DY , which is defined

by setting D≤0
Y ⊆ DY to be the full subcategory of complexes K ∈ DY with

Hj(K) = 0 for j > 0, and D≥0
Y ⊆ DY to be the full subcategory of complexes

K ∈ DY with Hj(K) = 0 for j < 0. The three axioms are easily verified. The

truncation functors are the usual ones. The intersection D≤0
Y ∩D≥0

Y is the Abelian
category of constructible sheaves on Y . The two-sided truncation τ≤0 ◦ τ≥0 is the
usual functor H0 (0th-cohomology sheaf).

Another important t-structure is the (middle) perverse t-structure (§2.3).
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We have the following notions of exactness. A functor of Abelian categories is
exact if it preserves exact sequences. We also have the companion notions of left and
right exactness. A functor of triangulated categories (i.e., additive an commuting
with translations) is exact if it preserves distinguished triangles. A functor of t-
categories F : D → D′ is a functor of the underlying triangulated categories. It is

exact if it preserves distinguished triangles. It is left t-exact if F : D≥0 → D′≥0
.

It is right t-exact if F : D≤0 → D′≤0
. It is t-exact if it is both left and right t-

exact, in which case it preserves the Abelian hearts; i.e., it induces an exact functor
F : C → C′ of Abelian categories.

Perverse t-exactness.
Let f : X → Y be a map of varieties. If dim f−1y ≤ d, then

f!, f
∗ : pD≤0

Y −→ pD≤d
Y , f !, f∗ : pD≥0

Y −→ pD≥−d
Y .

If f is quasi-finite (= finite fibers), then d = 0 above.
If f is affine, e.g., the embedding of the complement of a Cartier divisor, the
embedding of an affine open subset, or the projection of the complement of a
universal hyperplane section, etc., then

f∗ : pD≤0
Y −→ pD≤0

Y (right t-exact), f! :
pD≥0

Y −→ pD≥0
Y (left t-exact).

More generally, if locally over Y , X is the union of d+ 1 affine open sets, then

f∗ : pD≤0
Y −→ pD≤d

Y , f! :
pD≥0

Y −→ pD≥−d
Y .

If f is quasi-finite and affine, then f! and f∗ are t-exact.
If f is finite (= proper and finite fibers), then f! = f∗ are t-exact.
If f is a closed embedding, then f! = f∗ are t-exact and fully faithful. In this case
it is customary to drop f∗ from the notation, e.g., ICX ∈ DY .
If f is smooth of relative dimension d, then f ![−d] = f∗[d] are t-exact.
In particular, if f is étale, then f ! = f∗ are t-exact.
If f is a normally nonsingular inclusion of codimension d with respect to a stratifi-
cation Σ of Y , then f ![d] = f∗[−d] : DΣ

Y → DX are t-exact.
The following splitting criterion ([56, 58]) plays an important role in the proof

of the decomposition theorem:

Theorem 5.3.1. Let K ∈ DX and η : K → K[2] such that ηl : pH−l(K) → pHl(K)
is an isomorphism for all l. Then there is an isomorphism in DY :

K ≃
⊕

i

pHi(K)[−i].

5.4. Familiar objects from algebraic topology. Here is a brief list of some of
the basic objects of algebraic topology and a short discussion of how they relate to
the formalism in DY .

(Co)homology, etc.:
singular cohomology: H l(Y,QY );
singular cohomology with compact supports: H l

c(Y,QY );
singular homology Hl(Y,Q) = H−l

c (Y, ωY );
Borel-Moore homology: HBM

l (Y,Q) = H−l(Y, ωY );
relative (co)homology: if i : Z → Y is a locally closed embedding and j :
(Y \ Z) → Y , then we have canonical isomorphisms H l(Y, Z,Q) ≃ H l(Y, i!i

!Q)
and Hl(Y, Z,Q) ≃ H−l

c (Y, j∗j
∗ωY ).
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Intersection (co)homology. The intersection homology groups IHj(Y ) of
an n-dimensional irreducible variety Y are defined as the j-th homology groups
of chain complexes of geometric chains with closed supports subject to certain
admissibility conditions ([86]). Similarly, one defines intersection homology with
compact supports from the natural maps

IHj(Y ) −→ HBM
j (Y ), IHc,j(Y ) −→ Hj(Y ).

intersection cohomology: IHj(Y ) := IH2n−j(Y ) = H−n+j(Y, ICY ).
intersection cohomology with compact supports: IHj

c (Y ) := IHc,2n−j(Y ) =
H−n+j

c (Y, ICY ).
Duality and pairings. Verdier duality implies we have canonical identifications

Hl(Y,Q)∨ = H−l
c (Y, ωY )

∨ ≃ H l(Y,Q), HBM
l (Y,Q)∨ = H−l(Y, ωY )

∨ ≃ H l
c(Y,Q).

If Y is nonsingular of dimension n, then we have the Poincaré duality isomorphisms:

Hn+l(Y,Q) ≃ HBM
n−l (Y,Q), Hn+l(Y,Q) ≃ Hn−l

c (Y,Q).

There are two ways to express the classical nondegenerate Poincaré intersection
pairing:

Hn+l(Y,Q)×Hn−l
c (Y,Q) −→ Q, HBM

n−l (Y,Q)×Hn+l(Y,Q) −→ Q.

While the former one is given by wedge product and integration, the latter can be
described geometrically as the intersection form in Y as follows. Given a Borel-
Moore cycle and a usual, i.e., compact, cycle in complementary dimensions, one
changes one of them, say the first one, to one homologous to it, but transverse
to the other. Since the ordinary one has compact supports, the intersection set is
finite and one gets a finite intersection index.

Let Y be compact, Z be a closed subvariety such that Y \ Z is smooth and of
pure dimension n. We have the Lefschetz duality

Hq(Y, Z;Q) = H−q
c (Y, j∗j

∗ωY ) = H−q(Y, j∗j
∗ωY )

= H−q(Y \ Z,QY [2n]) = H2n−q(Y \ Z,Q).

Goresky-MacPherson’s Poincaré duality: since ICY ≃ IC∨
Y , we have canonical

isomorphisms
IHn+l(Y,Q) ≃ IHn−l

c (Y,Q)∨.

Functoriality. The usual maps in (co)homology associated with a map f : X →
Y arise from the adjunction maps

QY −→ f∗f
∗QY = f∗QX , f!f

!ωY = f!ωX −→ ωY

by taking cohomology. In general, for an arbitrary map f , there are no maps
associated with Borel-Moore and cohomology with compact supports. If f is proper,
then f∗ = f! and one gets pull-back for proper maps in cohomology with compact
supports and push-forward for proper maps in Borel-Moore homology. These maps
are dual to each other.

If f is an open immersion, then f∗ = f ! and one has the restriction to an open
subset map for Borel-Moore homology and the push-forward for an open subset
map for cohomology with compact supports. These maps are dual to each other.

Cup and Cap products. The natural isomorphisms H l(Y,Q) ≃ HomDY
(QY ,

QY [l]) and HomDY
(QY ,QY [l]) ≃ HomDY

(QY [k],QY [k+l]) identify the cup product

∪ : H l(Y,Q)×Hk(Y,Q) → Hk+l(Y,Q)
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with the composition

HomDY
(QY ,QY [l])×HomDY

(QY [l],QY [k + l]) −→ HomDY
(QY ,QY [k + l]).

Similarly, the cap product

∩ : HBM
k (Y,Q)×H l(Y, Y \ Z,Q) −→ HBM

k−l (Z,Q)

relative to a closed imbedding i : Z → Y is obtained as a composition of maps in
the derived category as follows:

HBM
k (Y,Q)

‖

H l(Y, Y \ Z,Q) = HomDZ
(QZ , i

!QY [l])

×

HomDY
(QY , ωY [−k]) �� HomDZ

(i!QY , i
!ωY [−k]) = HomDZ

(i!QY , ωZ [−k])

��
HBM

k−l (Z,Q) = HomDZ
(QZ , ωZ [l − k]).

Gysin map. Let i : Z → Y be the closed embedding of a codimension d
complex submanifold of the complex manifold Y . We have i∗ = i! and i! = i∗[−2d],
the adjunction map for i! yields

i∗QZ = i!i
∗QY = i!i

!QY [2d] −→ QY [2d]

and by taking cohomology we get the Gysin map

H l(Z,Q) −→ H l+2d(Y,Q).

Geometrically, this can be viewed as equivalent via Poincaré duality to the proper
push-forward map in Borel-Moore homology HBM

j (Z,Q) → HBM
j (Y,Q).

Fundamental class. Let i : Z → Y be the closed immersion of a d-dimensional
subvariety of the manifold Y . The space Z carries a fundamental class in HBM

2d (Z).
The fundamental class of Z is the image of this class in HBM

2d (Y ) ≃ H2n−2d(Y,Z).
Mayer-Vietoris. There is a whole host of Mayer-Vietoris sequences (cf. [116],

2.6.10), e.g.:

· · · → H l−1(U1 ∩ U2,K) → H l(U1 ∪ U2,K) → H l(U1,K)⊕H l(U2,K) → · · · .

Relative (co)homology. Let U
j→ Y

i← Z be the inclusions of an open subset
U ⊂ Y and of the closed complement Z := Y \U . We have the following “attaching”
distinguished triangles:

i!i
!C −→ C −→ j∗j

∗C
[1]−→, j!j

!C −→ C −→ i∗i
∗C

[1]−→ .

The long exact sequences of relative (co)homology (including the versions with
compact supports) arise by taking the associated long exact sequences.

Refined intersection forms. Let i : Z → Y be a closed immersion into a
nonsingular variety Y of dimension n. There are maps

i!ωZ [−n] = i!i
!ωY [−n] −→ ωY [−n] ≃ QY [n] −→ i∗i

∗QY [n] = i∗QZ [n].

Taking cohomology we get the refined intersection form on Z ⊆ Y , which we can
view in two equivalent ways as a linear or a bilinear map:

HBM
n−l (Z) −→ Hn+l(Z) or HBM

n−l (Z)×Hn+l(Z) −→ Q.
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It is called refined because we are intersecting cycles in the nonsingular Y which are
supported on Z. By using Lefschetz duality, this pairing can be viewed as the cup
product in relative cohomology. These forms play an important role in our proof
of the decomposition theorem [48, 51] (see §3.3).

5.5. Nearby and vanishing cycle functors. An important feature of perverse
sheaves is their stability for the two functors Ψf , Φf . These functors were defined in
[57] in the context of étale cohomology as a generalization of the notion of vanishing
cycle in the classical Picard-Lefschetz theory. As explained in §5.7.2, they play a
major role in the description of the possible extensions of a perverse sheaf through
a principal divisor. We discuss these functors in the complex analytic setting. Let
f : X → C be a regular function and X0 ⊆ X be its divisor, that is, X0 = f−1(0).
We are going to define functors Ψf ,Φf : DX → DX0

which send perverse sheaves
on X to perverse sheaves on X0. We follow the convention for shifts employed in
[116].

Let e : C → C be the map e(ζ) = exp(2π
√
−1ζ) and consider the following

diagram:

X∞ := X ×e C ��

��

p

		
X∗

j ��

��

X

��

X0
i��

��
C ��

e



C∗ �� C {o}��

For K ∈ DX , the nearby cycle functor Ψf (K) ∈ DX0
is defined as:

Ψf (K) := i∗p∗p
∗K.

Note that Ψf (K) depends only on the restriction of K to X∗. It can be shown
that Ψf (K) is constructible. Depending on the context, we shall consider Ψf as a
functor defined on DX , or on DX∗ .

The group Z of deck transformations ζ → ζ + n acts on X∞ and therefore on
Ψf (K). We denote by T : Ψf (K) → Ψf (K) the positive generator of this action.

Remark 5.5.1. (See [85], §6.13 for details.) Under mild hypotheses, for instance
if f is proper, there exists a continuous map r : U → X0 of a neighborhood of
X0, compatible with the stratification, whose restriction to X0 is homotopic to the
identity map. Denote by rǫ the restriction of r to f−1(ǫ), with ǫ ∈ C small enough
so that f−1(ǫ) ⊆ U . Let Xǫ := f−1(ǫ). Then

rǫ∗(K|Xǫ
) = Ψf (K).

In particular, let x0 ∈ X0, let N be a neighborhood of x0 contained in U and let
ǫ ∈ C be as before. Then the cohomology sheaves of Ψf (K) can be described as
follows:

Hi(Ψf (K))x0
= Hi(N ∩ f−1(ǫ),K|N∩f−1(ǫ)).

The monodromy Xǫ → Xǫ induces a transformation T : Ψf (K) → Ψf (K) called
the monodromy transformation.

Example 5.5.2. Let X = C and K be a local system on C∗. Since the inverse
image by e of a disk centered at 0 is contractible, Ψf (K) can be identified with the
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stalk at some base point x0. The automorphism T is just the monodromy of the
local system.

The adjunction map K → p∗p
∗K gives a natural morphism i∗K → Ψf (K). The

vanishing cycle complex Φf (K) ∈ DX0
fits in the following distinguished triangle:

(39) i∗K �� Ψf (K)
can �� Φf (K)[1]

[1] �� .

This distinguished triangle determines Φf (K) only up to a nonunique isomor-
phism. The definition of Φf as a functor requires more care; see [116]. The long
exact sequence for the cohomology sheaves of this distinguished triangle and Re-
mark 5.5.1 show that

Hi(Φf (K))x0
= Hi(N,N ∩ f−1(ǫ),K).

Just as the nearby cycle functor, the vanishing cycle Φf (K) is endowed with an
automorphism T .

We now list some of the properties of the functors Ψf and Φf :

Theorem 5.5.3.

(1) The functors commute, up to a shift, with Verdier duality (see [104], and
[30]):

Ψf (DK) = DΨf (K)[2] Φf (DK) = DΦf (K)[2].

(2) If K is a perverse sheaf on X, then Ψf (K)[−1] and Φf (K)[−1] are perverse
sheaves on X0 (see [85] 6.13, [9], [30], [104]).

(3) Dualizing the distinguished triangle ( 39) we get a distinguished triangle

(40) i!K �� Φf (K)
var �� Ψf (K)[−1]

[1] �� ,

with the property that

can ◦ var = T − I : Φf (K) → Φf (K), var ◦ can = T − I : Ψf (K) → Ψf (K),

and we have the fundamental octahedron of complexes of sheaves on X0 :

i∗j∗j
∗K

����������������

����
��

��
��

��
��

��
��

��
��

�

i∗K[1]

��������������

[1]

��

i!K[1]��� � � � � � � � � � � � � � � �

���
�

�
�

�
�

�
�

�
�

Ψf (K)
T−I ��

can
��													

Ψf (K)

��
[1]

��






















Φf (K)[1]

��






















 var[1]

�������������

Remark 5.5.4. Clearly, if U ⊆ X is an open subset, then the restriction to U of
Ψf (K) is the nearby cycle complex of the restrictionK|U relative to the function f|U
forX∩U . On the other hand, explicit examples show that Ψf (K) depends on f and
not only on the divisor X0: the nearby functors associated with different defining
equations ofX0 may differ. In particular, it is not possible to define the functor Ψf if
the divisor X0 is only locally principal. Verdier has proposed in [171] an alternative
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functor, which he called the “specialization functor” SpY,X : DX → DCY
, associated

with any closed imbedding Y → X, where CY is the normal cone of Y in X. In the
particular case that Y is a locally principal divisor in X, the specialization functor
is related to the nearby functor as follows: the normal cone CY is a line bundle,
and a local defining equation f of Y defined on an open set V ⊆ X defines a section
sf : Y ∩ V → CY ∩V trivializing the fibration. One has an isomorphism of functors
s∗fSpY,X ≃ Ψf .

5.6. Unipotent nearby and vanishing cycle functors. Let K be a perverse
sheaf on X \ X0. The map j : X \ X0 → X is affine, so that j∗K and j!K are
perverse sheaves on X.

Let us consider the ascending chain of perverse subsheaves

Ker {(T − I)N : Ψf (K)[−1] → Ψf (K)[−1]}.
For N ≫ 0 this sequence stabilizes because of the Noetherian property of the
category of perverse sheaves. We call the resulting T -invariant perverse subsheaf
the unipotent nearby cycle perverse sheaf associated with K and we denote it by
Ψu

f (K). In exactly the same way, it is possible to define the unipotent vanishing
cycle functor Φu

f :

Φu
f (K) = Ker { (T − I)N : Φf (K) → Φf (K) }, for N ≫ 0.

The perverse sheaves Ψf (K)[−1] and Φf (K)[−1] are in fact the direct sum of
Ψu

f and another T -invariant subsheaf on which (T − I) is invertible.

Remark 5.6.1. The functor Ψf (K) on a perverse sheaf K can be reconstructed
from Ψu

f by applying this latter to the twists of K with the pull-back by f of local

systems on C∗; see [7], p.47.

We have the useful formulæ

Ker { j!K → j!∗K } ≃ Ker {Ψu
f (K)

T−I−→ Ψu
f (K) },

Coker { j!∗(K) → j∗K } ≃ Coker {Ψu
f (K)

T−I−→ Ψu
f (K) }.

They can be derived as follows. The cone of (T − I) : Ψf (K) → Ψf (K), which is
isomorphic to i∗j∗K, is also isomorphic, up to a shift [1], to the cone of (T − I) :
Ψu

f (K) → Ψu
f (K), and we still have the distinguished triangle

i∗j∗K
[1] �� Ψu

f (K)
T−I �� Ψu

f (K) �� .

The long exact sequence of perverse cohomology introduced in §2.5 then gives

pH−1(i∗j∗K) = Ker {Ψu
f (K)

T−I−→ Ψu
f (K) }

and
pH0(i∗j∗K) = Coker {Ψu

f (K)
T−I−→ Ψu

f (K) }.
In turn, the long exact perverse cohomology sequence of the distinguished triangle

i∗j∗K
[1] �� j!K �� j∗K ��

and the fact that j∗K and j!K are perverse sheaves on X give

pH−1(i∗j∗K) = Ker { j!K → j∗K } = Ker { j!K → j!∗K}
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and
pH0(i∗j∗K) = Coker { j!K → j∗K } = Coker { j!∗K → j∗K }.

Remark 5.6.2. Let N be a nilpotent endomorphism of an object M of an abelian
category. Suppose Nk+1 = 0. By [62], 1.6, there exists a unique finite increasing
filtration

M• : {0} ⊆ M−k ⊆ . . . ⊆ Mk = M

such that

NMl ⊆ Ml−2 and N l : Ml/Ml−1 ≃ M−l/M−l−1.

The filtration defined in this way by T − I on Ψu
f (K) is called the monodromy

weight filtration. An important theorem of O. Gabber (see [11], §5) characterizes
this filtration in the case of l-adic perverse sheaves.

5.7. Two descriptions of the category of perverse sheaves. In this section
we discuss two descriptions of the category of perverse sheaves on an algebraic
variety. Although not strictly necessary for what follows, they play an important
role in the theory and applications of perverse sheaves. The question is roughly
as follows: suppose X is an algebraic variety, Y ⊆ X a subvariety, and we are
given a perverse sheaf K on X \ Y . How much information is needed to describe

the perverse sheaves K̃ on X whose restriction to X \ Y is isomorphic to K ? We
describe the approach developed by R. MacPherson and K. Vilonen [135] and the
approach of A. Beilinson and J.L. Verdier [8, 172].

5.7.1. The approach of MacPherson-Vilonen. We report on only a part of the de-
scription of the category of perverse sheaves developed in [135], i.e., the most ele-
mentary and the one which we find particularly illuminating.

Assume thatX = Y ∐(X\Y ), where Y is a closed and contractible d-dimensional
stratum of a stratification Σ ofX. We have PΣ

X , i.e., the category of perverse sheaves

on X which are constructible with respect to Σ. Denote by Y
i−→ X

j←− X \ Y
the corresponding imbeddings.

For K ∈ PΣ
X , the attaching triangle i!i

!K −→ K −→ j∗j
∗K

[1]−→, and the
support and co-support conditions for a perverse sheaf give the following exact
sequence of local systems on Y :

(41) 0 �� H−d−1(i∗K) �� H−d−1(i∗j∗j
∗K) �� H−d(i!K)

��
0 H−d+1(i!K)�� H−d(i∗j∗j

∗K)�� H−d(i∗K).��

Note that the (trivial) local systems H−d−1(i∗j∗j
∗K),H−d(i∗j∗j

∗K) are deter-
mined by the restriction of K to X \ Y .

A first approximation to the category of perverse sheaves is given as follows:

Definition 5.7.1. Let P ′
X be the following category:

• an object is a perverse sheaf K on X \ Y , constructible with respect to Σ|X−Y ,
and an exact sequence

H−d−1(i∗j∗K) −→ V1 −→ V2 −→ H−d(i∗j∗K)

of local systems on Y ;
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• a morphism (K, . . .) (L, . . .) is a morphism of perverse sheaves φ : K → L together
with morphisms of exact sequences:

H−d−1(i∗j∗K) ��

φ

��

V1
��

��

V2
��

��

H−d(i∗j∗K))

φ

��
H−d−1(i∗j∗L) �� W1

�� W2
�� H−d(i∗j∗L)).

Theorem 5.7.2. The functor PΣ
X → P ′

X , sending a perverse sheaf K̃ on X to its
restriction to X \ Y and to the exact sequence

H−d−1(i∗j∗j
∗K̃) �� H−d(i!K̃) �� H−d(i∗K̃) �� H−d(i∗j∗j

∗K̃)

is a bijection on isomorphism classes of objects.

To give an idea why the theorem is true, we note that for any object Q in PX ,
we have the distinguished triangle

i!i
!Q �� Q �� j∗j∗Q

[1] �� ,

and Q is identified by the extension map e ∈ Hom(j∗j
∗Q, i!i

!Q[1]). We have i! = i∗;
hence

Hom(j∗j
∗Q, i!i

!Q[1]) = Hom(i∗j∗j
∗Q, i!Q[1]) =

⊕

l

Hom(Hl(i∗j∗j
∗Q),Hl+1(i!Q)).

The last equality is due to the fact that the derived category of complexes with con-
stant cohomology sheaves on a contractible space is semisimple (K ≃ ⊕

Hi(K)[−i],
for every K). By the support condition,

Hl(i∗j∗j
∗Q) ≃ Hl+1(i!Q) for l > −d.

By the co-support condition,

Hl(i!Q) = 0 for l < −d.

There are the two maps

H−d(i∗j∗j
∗Q) −→ H−d+1(i!Q), H−d−1(i∗j∗j

∗Q) −→ H−d(i!Q)

which are not determined a priori by the restriction of Q to X \ Y . They appear
in the exact sequence (41) and contain the information about how to glue j∗Q to
i!Q. The datum of this exact sequence makes it possible to reconstruct Q ∈ PX

satisfying the support and co-support conditions.
Unfortunately the functor is not as precise on maps, as we will see. There are

nonzero maps between perverse sheaves which induce the zero map in P ′
X ; i.e.,

the corresponding functor is not faithful. However, it is interesting to see a few
examples of applications of this result.

Example 5.7.3. Let X = C, Y = {o} with strata X \ Y = C∗ and Y . A perverse
sheaf on C∗ is then of the form L[1] for L a local system. Let L denote the stalk
of L at some base point, and T : L → L the monodromy. An explicit computation
shows that

i∗j∗L[1] ≃ Ker (T − I)[1]⊕ Coker (T − I),
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where Ker(T − I) and Coker(T − I) are interpreted as sheaves on Y . Hence a
perverse sheaf is identified up to isomorphism by L and by an exact sequence of
vector spaces:

Ker (T − I) −→ V1 → V2 −→ Coker (T − I).

A sheaf of the form i∗V is represented by L = 0 and by the sequence

0 �� V
≃ �� V �� 0.

Since j is an affine imbedding, j∗ and j! are t-exact; i.e., j∗L[1] and j!L[1] are
perverse.

The perverse sheaf j∗L[1] is represented by

Ker (T − I) �� 0 �� Coker (T − I)
Id �� Coker(T − I),

which expresses the fact that i!j∗L[1] = 0.
Similarly j!L[1], which satisfies i∗j!L[1] = 0, is represented by

Ker (T − I)
Id �� Ker (T − I) �� 0 �� Coker (T − I).

The intermediate extension j!∗L[1] is represented by

Ker (T − I) �� 0 �� 0 �� Coker (T − I),

since, by its very definition,

H0(i∗j!∗L[1]) = H0(i!j!∗L[1]) = 0.

Let us note another natural exact sequence given by

Ker (T − I) �� L
T−I �� L �� Coker (T − I)

which corresponds to Beilinson’s maximal extension Ξ(L), which will be described
in the next section. From these presentations one sees easily the natural maps

j!L[1] −→ j!∗L[1] −→ j∗L[1] and j!L[1] −→ Ξ(L[1]) −→ j∗L[1].

Remark 5.7.4. If T has no eigenvalue equal to one, then the sequence has the form
0 → V → V → 0. This corresponds to the fact that a perverse sheaf which restricts
to such a local system on C \ {o} is necessarily of the form j!L[1]⊕ i∗V . Note also
that j!L[1] = j∗L[1] = j!∗L[1].

Remark 5.7.5. One can use Theorem 5.7.2 to deduce the following special case
of a splitting criterion used in our proof of the decomposition theorem [51]: Let
d = dimY . A perverse sheaf K ∈ PX splits as K ≃ j!∗j

∗K ⊕ H−d(K)[d] if and
only if the map H−d(i!K) → H−d(i∗K) is an isomorphism.

In fact, if this condition is verified, then the maps H−d−1(i∗j∗j
∗K) → H−d(i!K)

and H−d(i∗K) → H−d(i∗j∗j
∗K) in (41) vanish, and the exact sequence correspond-

ing to K is of the form

H−d−1(i∗j∗K) �� 0 �� 0 �� H−d(i∗j∗K)) j!∗j
∗K

⊕

W �� W H−d(K)[d].
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The following example shows that the functor PΣ
X → P ′

X is not faithful. Consider
the perverse sheaf j∗QC∗ [1]. It has a nonsplit filtration by perverse sheaves

0 �� QC[1] �� j∗QC∗ [1]
α �� i∗Q0

�� 0.

Dually, the perverse sheaf j!Q[1] has a nonsplit filtration

0 �� i∗Q0
β �� j!QC∗ [1] �� QC[1] �� 0.

The composition βα : j∗QC∗ [1] → j!QC∗ [1] is not zero, being the composition of
the epimorphism α with the monomorphism β; however, it is zero on C∗, and
the map between the associated exact sequences is zero, since i!j∗QC∗ [1] = 0 and
i∗j!QC∗ [1] = 0.

In the paper [135], MacPherson and Vilonen give a refinement of the construction
which describes completely the category of perverse sheaves, both in the topological
and complex analytic situation. For an application to representation theory, see
[143].

5.7.2. The approach of Beilinson and Verdier. We turn to Beilinson’s approach
[7], i.e., the one used by Saito in his theory of mixed Hodge modules. Beilinson’s
approach is based on the nearby and vanishing cycle functors Ψf and Φf introduced
in §5.5. In [173], Verdier obtained similar results using the specialization to the
normal cone functor SpY,X , Remark 5.5.4, which is not discussed here.

The assumption is that we have an algebraic map f : X → C and X0 = f−1(0)
as in §5.5. Let K be a perverse sheaf on X \X0. Beilinson defines an interesting
extension of K to X which he calls the maximal extension and denotes by Ξ(K). It
is a perverse sheaf, restricting to K on X \X0, which can be constructed as follows:
consider the unipotent nearby and vanishing cycle functors Ψu

f and Φu
f (see §5.6)

and the distinguished triangle

i∗j∗K
[1] �� Ψu

f (K)
T−I �� Ψu

f (K) �� .

The natural map i∗j∗K → Ψu
f (K)[1] defines, by adjunction, an element of

Hom1
DX0

(i∗j∗K,Ψu
f (K)) = Hom1

DX
(j∗K, i∗Ψ

u
f (K)),

which, in turn, defines an object Ξ(K) fitting in the distinguished triangle

(42) i∗Ψ
u
f (K) −→ Ξ(K) −→ j∗K −→ i∗Ψ

u
f (K)[1].

Since j is an affine morphism, it follows that j∗K is perverse. The long exact
sequence of perverse cohomology implies that Ξ(K) is perverse as well.

In [7], Beilinson gives a different construction of Ξ(K) (and also of Ψu
f (K) and

Φu
f (K)) which implies automatically that Ξ is a functor and that it commutes with

Verdier duality.
There exists an exact sequence of perverse sheaves

0 �� i∗Ψu
f (K)

β+ �� Ξ(K)
α+ �� j∗K �� 0

and, applying Verdier duality and the canonical isomorphisms Ξ ◦D ≃ D ◦ Ξ and
Ψu

f ◦D ≃ D ◦Ψu
f ,

0 �� j!K
α− �� Ξ(K)

β− �� i∗Ψu
f (K) �� 0.
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The composition α+α− : j!K → j∗K is the natural map, while β−β+ : i∗Ψ
u
f (K) →

i∗Ψ
u
f (K) is T − I. We may now state Beilinson’s results.

Definition 5.7.6. Let Gl(X,Y ) be the category whose objects are quadruples
(KU , V, u, v), where KU is a perverse sheaf on U := X \X0, V is a perverse sheaf
on Y , u : Ψu

f (K) → V , and v : V → Ψu
f (K) are morphisms such that vu = T − I.

Theorem 5.7.7. The functor γ : PX → Gl(X,Y ) which associates to a perverse
sheaf K on X the quadruple (j∗K,Φu

f (K), can, var) is an equivalence of categories.

Its inverse is the functor G : Gl(X,Y ) → PX associating to (KU , V, u, v) the coho-
mology of the complex

Ψu
f (KU )

(β+,u) �� Ξ(KU )⊕ V
(β−,v) �� Ψu

f (KU ).

Example 5.7.8. Given a perverse sheaf KU on U = X \X0, we determine

γ(j!KU ) �� γ(j!∗KU ) �� γ(j∗KU ).

We make use of the distinguished triangles (39) and (40) discussed in §5.5 and
restricted to the unipotent parts Ψu

f and Φu
f . Since i∗j!KU = 0, the map can:

Ψu
f (j!KU ) → Φu

f (j!KU ) is an isomorphism. Hence

γ(j!KU ) = Ψu
f (KU )

Id−→ Ψu
f (KU )

T−I−→ Ψu
f (KU ).

Similarly, since i!j∗KU = 0, the map var : Φu
f (j∗KU ) −→ Ψu

f (j∗KU ) is an isomor-
phism, and

γ(j∗KU ) = Ψu
f (KU )

T−I−→ Ψu
f (KU )

id−→ Ψu
f (KU ).

The canonical map j!KU → j∗KU is represented by the following diagram, in which
we do not indicate the identity maps:

(43) γ(j!KU )

��

Ψu
f (KU ) ��

��

Ψu
f (KU )

T−I

��

T−I �� Ψu
f (KU )

��
γ(j∗KU ) Ψu

f (KU )
T−I �� Ψu

f (KU ) �� Ψu
f (KU ).

The intermediate extension j!∗KU corresponds to j!∗KU := Im{ j!KU → j∗KU };
hence

γ(j!∗KU ) = Ψu
f (KU )

T−I �� Im(T − I) � � �� Ψu
f (KU ),

where the second map is the canonical inclusion. We can complete the diagram
(43) as follows:

(44) γ(j!KU )

��

Ψu
f (KU ) ��

��

Ψu
f (KU )

T−I

��

T−I �� Ψu
f (KU )

��
γ(j!∗KU )

��

Ψu
f (KU )

T−I ��

��

Im(T − I)

��

� � �� Ψu
f (KU )

��
γ(j∗KU ) Ψu

f (KU )
T−I �� Ψu

f (KU ) �� Ψu
f (KU ).
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The maximal extension Ξ(KU ) is represented by the factorization

Ψu
f (KU )

(I,T−I)�� Ψu
f (KU )⊕Ψu

f (KU )
p2 �� Ψu

f (KU ),

where p2((a1, a2)) = a2 is the projection on the second factor. Finally we note that
if L is a perverse sheaf on X0, then, since Ψf (i∗L) = 0,

γ(i∗L) = 0 �� L �� 0.

Remark 5.7.9. From the examples of γ(j!∗KU ) and γ(i∗L) discussed in Example
5.7.8, one can derive the following criterion (Lemme 5.1.4 in [156]) for a perverse
sheaf K on X to split as K ≃ j!∗j

∗K ⊕ i∗L. Let X be an algebraic variety and X0

be a principal divisor; let i : X0 → X ←− X \X0 : j be the corresponding closed
and open imbeddings. A perverse sheaf K on X is of the form K ≃ j!∗j

∗K ⊕ i∗L
if and only if

Φu
f (K) = {Im : (Ψu

f (K)
can→ Φu

f (K))} ⊕ {Ker : (Φu
f (K)

var→ Ψu
f (K))}.

This criterion is used in [156] to establish the semisimplicity of certain perverse
sheaves.

5.8. A formulary for the constructible derived category. Throughout this
section, f : X → Y , g : Y ′ → Y and h : Y → Z are maps of varieties, C ∈ DX is a
constructible complex on X and K,K ′,Ki ∈ DY are constructible complexes on Y .
An equality sign actually stands for the existence of a suitably canonical isomor-
phism. Since we use field coefficients, the tensor product is exact and it coincides
with the associated left derived functor. Perversity means middle perversity on
complex varieties. All operations preserve stratifications of varieties and of maps.
We use the simplified notation f∗ := Rf∗, f! := Rf!. Some standard references are
[116, 87, 19, 108, 82, 9, 84].

Cohomology via map to a point or space.

H(X,C) = H(pt, f∗C), Hc(X,C) = H(pt, f!C);

H(X,C) = H(Y, f∗C), Hc(X,C) = Hc(Y, f!C).

Translation functors. Let T := f∗, f∗, f! or f
!:

T ◦ [j] = [j] ◦ T.
pτ≤i ◦ [j] = [j] ◦ pτ≤i+j ,

pτ≥i ◦ [j] = [j] ◦ pτ≥i+j ; same for τ .

Hi ◦ [j] = Hi+j , pHi ◦ [j] = pHi+j .

RHom(K,K ′)[j] = RHom(K,K ′[j]) = RHom(K[−j],K ′).

RHom(K,K ′)[j] = RHom(K,K ′[j]) = RHom(K[−j],K ′).

(K ⊗K ′)[j] = K ⊗K ′[j] = K[j]⊗K ′.

Morphism in DY .

ExtiDY
(K,K ′) = HomDY

(K,K ′[i]) = H0(RHom(K,K ′[i]))

= H0(Y,RHom(K,K ′[i])).

If K ∈ pD≤i
Y and K ′ ∈ pD≥i

Y , then (same for the standard t-structure)

HomDY
(K,K ′) = HomPY

( pHi(K), pHi(K ′)).
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For sheaves, Ext<0(F,G) = 0 and, Exti>0(F,G) is the group of Yoneda i-extensions
of G by F . The group Ext1(F,G) is the set of equivalence classes of short exact
sequences 0 → F → ? → G → 0 with the Baer sum operation. For complexes,
Ext1(K,K ′) classifies distinguished triangles K → ? → K ′ → K[1].

Adjunction.

RHom(f∗K,C) = RHom(K, f∗C), RHom(f!C,K) = RHom(C, f !K),

RHom(K1 ⊗K2,K3) = RHom(K1, RHom(K2,K3));

f∗RHom(f∗K,C) = RHom(K, f∗C), RHom(f!C,K) = f∗RHom(C, f !K),

RHom(K1 ⊗K2,K3) = RHom(K1, RHom(K2,K3)).

If all Hj(K3) are locally constant, then

RHom(K1,K2 ⊗K3) = RHom(K1,K2)⊗K3.

Transitivity.

(hf)∗ = h∗f∗, (hf)! = h!f!, (hf)∗ = f∗h∗, (hf)! = f !h!,

f∗(K ⊗K ′) = f∗K ⊗ f∗K ′, f !RHom(K,K ′) = RHom(f∗K, f !K ′).

Change of coefficients.

K ⊗ f!C ≃ f!(f
∗K ⊗ C).

Duality exchanges.

DK := K∨ := RHom(K,ωY ), ωY := γ!Qpt, γ : Y → pt.

D : pD≤0
Y −→ pD≥0

Y , D : pD≥0
Y −→ pD≤0

Y , D : PY ≃ Popp
Y .

If F : DX → DY is left (right, resp.) t-exact, then D ◦ F ◦D is right (left, resp.)
t-exact. A similar result holds for G : DY → DX .

ωY = Q∨
Y ;

D ◦ [j] = [−j] ◦D;

DY ◦ f∗ = f! ◦DX , DX ◦ f∗ = f ! ◦DY ;

D ◦ pτ≤j =
pτ≥−j ◦D, D ◦ pτ≥j =

pτ≤−j ◦D, pHj ◦D = D ◦ pH−i;

D(K ⊗K ′) = RHom(K,DK ′);

D2 = Id (biduality).

Poincaré-Verdier duality.

Hj(Y,DK) ≃ H−j
c (Y,K)∨.

If Y is smooth of pure complex dimension n and is canonically oriented, then

ωY = QY [−2n].

Support conditions for perverse sheaves.
Support conditions: K ∈ pD≤0

Y iff dimSuppHi(K) ≤ −i, for every i.

Co-support conditions: K ∈ pD≥0
Y iff dimSuppHi(DK) ≤ −i, for every i.

A perverse sheaf is a complex subject to the support and co-support conditions.
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Base change. Consider the Cartesian square, where the ambiguity of the no-
tation does not generate ambiguous statements:

X ′
g ��

f

��

X

f

��
Y ′

g �� Y.

Base change isomorphisms:

g!f∗ = f∗g
!, f!g

∗ = g∗f!.

For the immersion of a point g : y → Y ,

H l
c(f

−1(y), C) = (Rlf!C)y ; H l(f−1(y), C) = (Rlf∗C)y (f proper).

Base change maps:
g∗f∗ −→ f∗g

∗, f!g
! ≃ g!f!.

Proper (smooth, resp.) base change: if f is proper (g is smooth, resp.), then the
base change maps are isomorphisms.

There exist natural maps

g!f∗ −→ f∗g!, f!g∗ −→ g∗f!.

Intermediate extension functor. For f a locally closed embedding,

f!∗ : PX −→ PY , P �−→ Im { pH0(f!P ) −→ pH0(f∗P )}.
For an open immersion, the intermediate extension is characterized as the extension
with no subobjects and no quotients supported on the boundary (however, it may
have such subquotients).

Intersection cohomology complexes. Let L be a local system on a nonsin-
gular Zariski dense open subset j : U → Y of the irreducible n-dimensional Y .
Then

ICY (L) := j!∗L[n] ∈ PY .

If the smallest dimension of a stratum is d, then

Hl(ICY (L)) = 0, ∀j �= [−n,−d− 1];

note that for a general perverse sheaf, the analogous range is [−n,−d].
As to duality:

D(ICY (L)) = ICY (L
∨).

The category PY is Artinian and Noetherian. The simple objects are the intersec-
tion cohomology complexes of simple local systems on irreducible subvarieties.

Nearby and vanishing cycles. With a regular function f : Y → C are

associated the two functors Ψf ,Φf : DY → DY0
, where Y0 = f−1(0). If Y \ Y0

j−→
Y

i←− Y0, there are distinguished triangles:

(45) i∗K �� Ψf (K)
can �� Φf (K)[1]

[1] �� ,

i!K �� Φf (K)
var �� Ψf (K)[−1]

[1] �� .

The functors Ψf ,Φf are endowed with the monodromy automorphism T and

can ◦ var = T − I : Φf (K) → Φf (K), var ◦ can = T − I : Ψf (K) → Ψf (K).
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Consider the distinguished triangle

i∗j∗j
∗K �� Ψf (K)

T−I �� Ψf (K)
[1] �� .

Up to a shift, the functors Ψf ,Φf commute with duality and are t-exact:

Ψf ◦D = D ◦Ψf ◦ [2], Φf ◦D = D ◦ Φf ◦ [2], Ψf [−1],Φf [−1] : PY −→ PY0
.

For K ∈ PY \Y0
, the long exact sequence for the distinguished triangle above gives:

pH−1(i∗j∗K) = Ker{Ψf (K)[−1]
T−I−→ Ψf (K)[−1] },

pH0(i∗j∗K) = Coker{Ψf (K)[−1]
T−I−→ Ψf (K)[−1] },

j∗K and j!K ∈ PY , and comparing the above equalities with the distinguished
triangle:

i∗j∗K
[1] �� j!K �� j∗K ��

yields

Ker { j!K → j!∗K } ≃ Ker {Ψf (K)[−1]
T−I−→ Ψf (K)[−1] },

Coker { j!∗K → j∗K } ≃ Coker {Ψf (K)[−1]
T−I−→ Ψf (K)[−1] }.
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Paris, 1983. MR737927 (85j:14087)

[18] A. Borel, “Linear algebraic groups,” Graduate Texts in Mathematics, 126, Springer-Verlag,
New York, 1991. MR1102012 (92d:20001)

[19] A. Borel et al., Intersection Cohomology, Progress in Mathematics Vol. 50, Birkhäuser,
Boston Basel Stuttgart 1984. MR788171 (88d:32024)

[20] A. Borel et al., Algebraic D-modules, Perspectives in Mathematics, 2. Academic Press, Inc.,
Boston, MA, 1987. MR882000 (89g:32014)

[21] R. Bott, H. Samelson, “Applications of the theory of Morse to symmetric spaces,” Amer. J.
Math. 80 (1958), 964–1029. MR0105694 (21:4430)

[22] R. Bott, “On a theorem of Lefschetz,” Michigan Math. J. 6 (1959), 211–216. MR0215323
(35:6164)

[23] T. Braden, “Remarks on the combinatorial intersection cohomology of fans,” Pure Appl.
Math. Q. 2 (2006), no. 4, 1149–1186. MR2282417 (2008c:14031)

[24] T. Braden, R. MacPherson, “Intersection homology of toric varieties and a conjecture of
Kalai,” Comment. Math. Helv. 74 (1999), no. 3, 442–455. MR1710686 (2000h:14018)
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[139] Z. Mebkhout, “Une équivalence de catégories”, Compositio Math. 51 (1984), 51-62.

MR734784 (85k:58072)
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