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Abstract

We present a new formulation for the problem of electromagnetic scattering from

perfect electric conductors. While our representation for the electric and mag-

netic fields is based on the standard vector and scalar potentials A; � in the

Lorenz gauge, we establish boundary conditions on the potentials themselves

rather than on the field quantities. This permits the development of a well-

conditioned second-kind Fredholm integral equation that has no spurious res-

onances, avoids low-frequency breakdown, and is insensitive to the genus of the

scatterer. The equations for the vector and scalar potentials are decoupled. That

is, the unknown scalar potential defining the scattered field, �scat, is determined

entirely by the incident scalar potential �inc. Likewise, the unknown vector po-

tential defining the scattered field, Ascat, is determined entirely by the incident

vector potential Ainc. This decoupled formulation is valid not only in the static

limit but for arbitrary ! � 0. © 2015 Wiley Periodicals, Inc.

1 Introduction

In this paper, we consider the problem of exterior scattering of time-harmonic

electromagnetic waves by perfect electric conductors. For a fixed frequency !, we

assume that the electric and magnetic fields take the form

(1.1) E.x; t / D <fE.x/e�i!tg; H.x; t / D <fH .x/e�i!tg;
so that Maxwell’s equations are

(1.2) r � E .x/ D i!�H .x/; r � H .x/ D �i!�E .x/:
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2 F. VICO ET AL.

Following standard practice, we write the total electric and magnetic fields as a

sum of the (known) incident and (unknown) scattered fields:

(1.3) E D E inc C E scat; H D H inc C H scat:

The scattered field in the exterior must satisfy the Sommerfeld-Silver-Müller radi-

ation condition:

(1.4) H scat.x/ � x

jxj �
r

�

�
E scat.x/ D o

�

1

jxj

�

; jxj ! 1:

uniformly for all directions x

jxj
.

It is well-known that when the scatterer, denoted by D, is a perfect conductor,

the conditions to be enforced on its boundary are [17, 26]

n � E .x/ D 0
ˇ

ˇ

@D
) n � E scat.x/ D �n � E inc.x/j@D;(1.5)

n � H .x/ D 0
ˇ

ˇ

@D
) n � H scat.x/ D �n � H inc.x/j@D;(1.6)

where n is the outward unit normal to the boundary @D of the scattered. It is also

well-known that

n � E .x/ D �

�

ˇ

ˇ

ˇ

@D
;(1.7)

n � H .x/ D J
ˇ

ˇ

@D
;(1.8)

where J and � are the induced current density and charge on the surface @D. In or-

der to satisfy the Maxwell equations, J and � must satisfy the continuity condition

rs � J D i!�, where rs � J denotes the surface divergence of the tangential cur-

rent density. It is also well-known that the exterior problem for E scat has a unique

solution for ! > 0 when boundary conditions are prescribed on its tangential com-

ponents (see, for example, [11, 25]):

(1.9) n � E scat.x/ D f.x/
ˇ

ˇ

@D

for an arbitrary tangential vector field f. On a perfect conductor, f.x/ D �n �
E inc.x/ to enforce (1.5).

1.1 The Vector and Scalar Potential

Scattered electromagnetic fields are typically represented in terms of the induced

surface current J and charge � using the vector and scalar potentials in the Lorenz

gauge:

E scat D i!Ascat � r�scat;(1.10)

H scat D 1

�
r � Ascat;(1.11)
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where

AscatŒJ �.x/ D �SkŒJ �.x/ � �

Z

@D

gk.x � y/J .y/dAy ;

�scatŒ��.x/ D 1

�
SkŒ��.x/ � 1

�

Z

@D

gk.x � y/�.y/dAy ;

(1.12)

with

gk.x/ D eikjxj

4�jxj
and k D !

p
��. We chose the sign of k such that Im.k/ � 0. Here, Im.k/ denotes

the imaginary part of k. The Lorenz gauge is defined by the relation

(1.13) r � Ascat D i!���scat:

We will often refer to �scat and Ascat as the scalar and vector Helmholtz potentials

since �scat and Ascat satisfy the Helmholtz equations with wavenumber k:

(1.14) ��scat C k2�scat D 0; �Ascat C k2Ascat D 0:

Using the representation (1.10) for the electric field and imposing the boundary

condition (1.5) results in the electric field integral equation (EFIE) [9, 18, 23, 24]:

(1.15) i!n�AscatŒJ �.x/�n�r�scat

�rs � J

i!

�

.x/ D �n�E inc.x/; x 2 @D:

The representation (1.11) for the magnetic field and the boundary condition (1.8)

results in the magnetic field integral equation (MFIE):

(1.16)
1

2
J .x/ �KŒJ �.x/ D n.x/ � H inc.x/; x 2 @D;

where

(1.17) KŒJ �.x/ D
Z

@D

n.x/ � r � gk.x � y/J .y/dAy :

There is an enormous literature on the properties of these integral equations,

which we will not review here, except to note that the EFIE is poorly scaled; one

term in the representation of E is of order O.!/ and one term is of the order

O.!�1/. This makes it difficult to compute both the solenoidal and irrotational

components of the current J and causes ill-conditioning in the integral equation

at low frequencies, a phenomenon generally referred to as “low-frequency break-

down” [36, 37]. Both the EFIE and the MFIE are also subject to spurious reso-

nances at a countable set of frequencies !j going to infinity. Below the first such

resonance, the MFIE is a well-conditioned second-kind Fredholm integral equa-

tion. While low-frequency breakdown is obvious in the EFIE, it is not entirely

avoided by switching to the MFIE [36]. The problem is that the current J is not

sufficient for computing accurately the electric field.
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Note, for example, that

(1.18) n � E D � D rs � J

i!�
:

As ! ! 0, what in numerical analysis is called catastrophic cancellation causes

a progressive loss of digits [19, 20]. Catastrophic cancellation comes not just from

the ill-conditioning associated with the evaluation of a derivative. The current J is

an O.1/ quantity, while rs � J is O.!/, amplifying the loss of digits.

A variety of remedies to solve this problem have been suggested. In the widest

use are methods based on specialized basis functions for the discretization of the

current J itself. Loop-tree and loop-star basis functions, for example, can be used

to rescale the solenoidal and the irrotational parts of the current [22,29,33,34,37].

A second class of methods is based on using both current and charge as separate

unknowns. This avoids terms of the orderO.!�1/ (see [6,27,28,30,35]). Unfortu-

nately, all of these approaches encounter a second difficulty in multiply connected

domains—a phenomenon that we refer to as “topological low-frequency break-

down” [10, 13]. At zero frequency, the MFIE, Calderon-preconditioned EFIE, and

charge-current based integral equations are all rank-deficient, with a nullspace of

dimension related to the topology of the surface @D: g for the MFIE, 2g for the

Calderon-preconditioned EFIE, and g C N for the charge-current based integral

equations [10,13,32], where g is the genus of the surface @D and N is the number

of connected components. This inevitably leads to ill-conditioning in the low-

frequency regime. This problem was carefully analyzed in the paper [13], and the

nullspace characterized in terms of harmonic vector fields [10, 13, 32].

DEFINITION 1.1. Assuming D is topologically equivalent to a sphere with g han-

dles, one can choose g surfaces Sj in R
3 nD so that R

3 n .D
Sg

j D1 Sj / is simply

connected. The boundaries of these surfaces are loops on @D called B-cycles.

They go around the “holes” and form a basis for the first homology group of the

domain D.

In [14], it was shown that the addition of a consistency condition of the form

(1.19)

Z

Sj

H scat � n da D �
Z

Sj

H inc � n da

or

(1.20)

Z

Bj

Ascat � ds D �
Z

Bj

Ainc � ds;

where the line integrals represent the circulation of the vector potential, enforces

uniqueness on the solution of the MFIE, assuming ! is not at a spurious resonance.

This requires knowledge of, or computation of, the genus, geometry tools that iden-

tify B-cycles, and linear algebraic methods that are capable of efficiently solving

integral equations subject to constraints.



DECOUPLED POTENTIALS FOR ELECTROMAGNETIC SCATTERING 5

FIGURE 1.1. Double torus, number of connected components N D 1,

genus g D 2, two B-cycles. l1 and l2 are the integration domain of

integrals in (2.10). Surfaces S1 and S2 are covering each hole of the

surface.

Remark 1.2. These topological issues can also be addressed through an analysis

of the Hodge decomposition of the source current on the surface of the scatterer

itself by using the generalized Debye source representation of [15]. Additional

conditions are used (similar to (1.19)) to ensure that the problem is well-posed.

Remark 1.3. Very recently a method was introduced that overcomes the topological

low-frequency breakdown inherent in the EFIE by a clever projection of the dis-

cretized problem using Rao-Wilton-Glisson (RWG) basis functions into a suitable

subspace [3].

In short, the various integral equations presently available pose significant diffi-

culties in the low-frequency regime.

1.2 A Decoupled Formulation

In this paper we introduce a new formulation for electromagnetic scattering from

perfect conductors. Rather than imposing boundary conditions on the field quan-

tities (E , H ), we derive conditions on the potentials themselves. Moreover, we

show that the integral equations for Ascat and �scat can be decoupled, lead to well-

conditioned linear systems, and are insensitive to the genus of the scatterer. More

precisely, we seek to impose the boundary conditions

n � Ascat.x/ D �n � Ainc.x/
ˇ

ˇ

@D
;

n � r�scat.x/ D �n � r�inc.x/
ˇ

ˇ

@D
:

(1.21)

At first glance, there is an obvious difficulty with such an approach: the vector

and scalar potentials are not unique, a fact generally referred to as gauge freedom.
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Even in the Lorenz gauge above, the representation is known not to be unique. That

is, the condition (1.13) does not completely determine the potentials Ascat; �scat.

To see this, consider the vector potentials A0 scat; �0 scat defined by

(1.22)
A0 scatŒJ �.x/ D AscatŒJ �.x/C rSkŒ��.x/;

�0 scatŒ��.x/ D �scatŒ��.x/C i!SkŒ��.x/:

Here, � is an arbitrary source on the surface @D. It is straightforward to check that

the fields E scat;H scat induced by A0 scat; �0 scat are the same as those induced by

Ascat; �scat, all the while satisfying the Lorenz gauge condition.

We will make use of this additional gauge freedom to establish a well-posed

boundary value problem and a stable, well-conditioned integral equation. In Sec-

tion 2, we consider the low-frequency limit of the exterior scattering from perfect

conductors, both for the sake of review and to motivate our formulation. In Section

3, we discuss the relevant existence, uniqueness and stability results for what we

refer to as the decoupled potential integral equation (DPIE). Finally, we discuss the

stable representation of the incoming field in terms of scalar and vector potentials

and the high-frequency behavior of the new formulation.

2 Preliminaries

In this section, we consider the low-frequency limit of the Maxwell equations,

where the electric and magnetic fields are decoupled. We will refer to the electro-

static and magnetostatic fields by E0 and H 0, respectively.

2.1 Electrostatics

The electrostatic field satisfies the equations

(2.1) r � E0.x/ D 0; r � E0.x/ D 0; x 2 R
3=D;

which we decompose (as above) into incoming and scattered fields. The scattered

field must satisfy the radiation condition

(2.2) E scat
0 .x/ D o.1/; jxj ! 1:

The boundary condition for the electrostatic field is the same as that for any nonzero

frequency,

(2.3) n � E0.x/ D 0; x 2 @D;
but the solution is no longer unique.

The nullspace, that is functions satisfying (2.1) and (2.3) and the radiation con-

dition (2.2), is of dimension N , where N is the number of connected components

of the scatterers @D. They are known as harmonic Dirichlet fields [10] with a ba-

sis denoted by fYj gN
j D1. It is straightforward to see that there are at least N such

solutions, since they correspond to the well-studied problem of capacitance. To

see this, let us denote by @Dj the j th connected component of @D. Taking the
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static limit of (1.10), the scattered electrostatic field is described as the gradient of

a scalar harmonic function:

(2.4) E scat
0 D �r�scat

0 :

Imposing the boundary condition (2.3) and assuming the incoming field is repre-

sented in terms of an incoming potential �inc, we have

��scat
0 D 0; n � r�scat

0 D �n � r�inc
0

ˇ

ˇ

@D
:

It is clear that the preceding boundary condition is satisfied by any scattered poten-

tial that satisfies the Dirichlet condition

(2.5) �scat
0 D ��inc

0

ˇ

ˇ

@Dj
C Vj ;

where Vj is an arbitrary constant on @Dj that represents the voltage of each con-

ductor (with respect to infinity). The Dirichlet field Yj corresponds to the gradient

of �scat
0 obtained by setting �scat

0 to 0 on each boundary component @Di for i ¤ j

and �scat
0 D 1 on @Dj .

Let us now define the scalars Qj by

(2.6) Qj D
Z

@Dj

@�scat
0

@n
ds D �

Z

@Dj

n � Escat
0 ds;

so that �Qj is the total charge on each conductor @Dj . The matrix that links

the voltages Vj and the charges �Qj is known as the capacitance matrix [17].

Since we are interested here in the time-harmonic Maxwell equations and their

zero-frequency limit, we must have charge neutrality on each boundary compo-

nent. Thus, we are interested in studying (2.5) where the voltages Vj are additional

unknowns, but for which N additional constraints are given of the form Qj D 0

for j D 1; : : : ; N .

It is important to note that, in the static regime, the problem suffers from more

than nonuniqueness. The boundary condition

n � r�scat
0 D �n � E inc

0

cannot be satisfied unless the incoming field is also an electrostatic field. In par-

ticular, if the circulation of the incoming field
H

L�@D E inc
0 � d l is not zero on every

closed loop L on the surface @D, the solution E scat
0 does not exist. This follows

easily from the fact that

I

L�@D

E inc
0 � d l D �

I

L�@D

r�scat
0 � d l D 0:

We refer the reader to [10] for further discussion.
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2.2 Magnetostatics

The magnetostatic field satisfies the equations

(2.7) r � H 0.x/ D 0; r � H 0.x/ D 0; x 2 R
3=D;

and the boundary condition

(2.8) n � H 0.x/ D 0
ˇ

ˇ

@D
:

The total field is again decomposed into incoming and scattered fields, with the

scattered field satisfying the radiation condition (2.9),

(2.9) H scat
0 .x/ D o.1/; jxj ! 1:

H scat
0 can be described either as the curl of a harmonic vector potential A0 or as the

gradient of a harmonic scalar potential �scat
0 .

The magnetostatic problem also suffers from nonuniqueness. The nullspace,

that is functions satisfying (2.7) and (2.8) and the radiation condition (2.9), is of

dimension g, where g is the genus of the surface @D. Elements of this space are

called harmonic Neumann fields fZmgg
mD1 [10]. In order to completely specify the

solution, additional information, such as the total induced current Im on g loops

lying on the surface, must be specified:

(2.10)

I

lm

H scat
0 .x/ � d l D Im; m D 1; : : : ; g:

The loops lm here go around the “holes” (see Figure 1.1). That is, they are a basis

for the first homology group of R
3 n D, with spanning surfaces that lie in the

interior of the scatterer; see [10] for more details. The persistent currents Im at

zero frequency are due to the potential presence of superconducting loops (as we

are considering scattering from perfect electric conductors).

2.3 Summary

To summarize, the problem of electromagnetic scattering from perfect conduc-

tors is uniquely solvable for any ! strictly greater than 0. At ! D 0, however,

various subtleties arise. The issue of Dirichlet fields needs to be resolved in elec-

trostatics and the issue of Neumann fields needs to be resolved in magnetostatics.

For any ! strictly greater than 0, however, it is necessary that the total charge Qj

induced on any connected component of the scatterer be 0. Enforcing this con-

dition at ! D 0 (and introducing the additional unknown constants Vj as above)

uniquely determines the electrostatic field. In the magnetostatic case, however, we

are obligated to introduce additional constants, such as the fImg in (2.10), in order

to account for the Neumann fields when the scatterer has nonzero genus [25].
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3 Scattering Theory for Decoupled Potentials

We turn now to the analytic foundations of the DPIE. We first derive boundary

value problems for the scattered scalar and vector potentials that are completely in-

sensitive to the genus, although they do depend explicitly on the number of bound-

ary components. After this reformulation of the Maxwell equations, we design

integral representations that lead to well-conditioned and invertible linear systems

of equations.

For the sake of simplicity we will assume in the rest of the paper that D is a

bounded open region in R
3. The boundary of D, denoted by @D, is assumed to

consist of a finite number of disjoint, closed bounded surfaces belonging to class

C 2, and the exterior region R
3 nD is assumed to be connected.

DEFINITION 3.1. By the scalar Dirichlet problem, we mean the calculation of a

scalar Helmholtz or Laplace potential �scat 2 C 2.R3 n xD/ \ C.R3 n D/ whose

boundary value equals a given continuous function f 2 C.@D/ and which satisfies

standard radiation conditions at infinity:

��scat C k2�scat D 0; �scatj@D D f;(3.1)

x

jxj � r�scat.x/ � ik�scat.x/ D o

�

1

jxj

�

; jxj ! 1(3.2)

(uniformly for all directions x

jxj
) for the scalar Helmholtz potential, and

��scat
0 D 0; �scat

0 j@D D f;(3.3)

�scat
0 .x/ D o.1/; jxj ! 1;(3.4)

(uniformly for all directions x

jxj
) for the scalar Laplace potential, respectively.

DEFINITION 3.2. By the vector Dirichlet problem, we mean the calculation of

a vector Helmholtz or Laplace potential Ascat 2 C 2.R3 n xD/ with r � Ascat 2
C.R3 nD/ whose tangential boundary values equal a given continuous tangential

function f 2 Ct .@D/, whose divergence equals a given scalar continuous function

h 2 C.@D/ and which satisfies standard radiation conditions at infinity:

�Ascat C k2Ascat D 0; n � Ascatj@DC D f; r � Ascatj@D D h;(3.5)

r � Ascat.x/ � x

jxj C x

jxjr � Ascat.x/ � ikAscat.x/ D o

�

1

jxj

�

;

jxj ! 1
(3.6)

(uniformly for all directions x

jxj
) for the vector Helmholtz potential, and

�Ascat
0 D 0; n � Ascat

0

ˇ

ˇ

@DC D f; r � Ascat
0

ˇ

ˇ

@D
D h;(3.7)

Ascat
0 .x/ D o.1/; jxj ! 1(3.8)

(uniformly for all directions x

jxj
) for the vector Laplace potential.
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Unknowns

�scat;Ascat Laplace Helmholtz

Scalar

(

��scat D 0;

�scatj@D D f:
(Yes)

(

��scat C k2�scat D 0;

�scatj@D D f:
(Yes)

Vector

8

ˆ

<

ˆ

:

�Ascat D 0;

n � Ascatj@DC D f;

r � Ascatj@D D h:

(No)

8

ˆ

<

ˆ

:

�Ascat C k2Ascat D 0;

n � Ascatj@DC D f;

r � Ascatj@D D h:

(Yes)

TABLE 3.1. Uniqueness for Dirichlet problems

The boundary condition on the tangential components of Ascat should be under-

stood in the sense

(3.9) n � Ascat
ˇ

ˇ

@DC WD lim
ı!0C

n.x/ � Ascat.x C ın.x//

where the limit must exist uniformly for all x 2 @D. Note that the normal compo-

nent of Ascat might not be continuous up to the boundary in the same sense as the

tangential components.

For k ¤ 0, both Dirichlet problems have unique solutions, but for k D 0, the

vector Dirichlet problem has a nullspace—the harmonic Dirichlet fields discussed

in Section 2.1. This lack of uniqueness also makes the vector Dirichlet problem

ill-conditioned at low frequencies.

3.1 Modified Dirichlet Problems

In order to address the nonuniqueness of the vector Dirichlet problem at zero

frequency and in order to enforce that the uncoupled scalar and vector potentials

define a suitable Maxwell field (enforcing the Lorenz gauge), we introduce a re-

lated set of boundary value problems, which we refer to as the modified Dirichlet

problems.

DEFINITION 3.3. By the scalar modified Dirichlet problem, we mean the calcula-

tion of a scalar Helmholtz or Laplace potential �scat 2 C 2.R3n xD/\C.R3nD/ that

satisfies standard radiation conditions at infinity, and a set of constants fVj gN
j D1,

whereN denotes the number of connected components of the boundary @D. Given

boundary data f 2 C.@D/ and known constants fQj gN
j D1, the scalar Helmholtz

potential and the fVj gN
j D1 must satisfy

��scat C k2�scat D 0; �scatj@Dj
D f C Vj ;(3.10)

x

jxj � r�scat.x/ � ik�scat.x/ D o

�

1

jxj

�

; jxj ! 1(3.11)
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(uniformly for all directions x

jxj
), with the flux condition

(3.12)

Z

@D
C

j

@�scat

@n
ds D Qj :

The scalar Laplace potential and the constants fVj gN
j D1 must satisfy

��scat
0 D 0; �scat

0

ˇ

ˇ

@Dj
D f C Vj ;(3.13)

�scat
0 .x/ D o.1/; jxj ! 1(3.14)

(uniformly for all directions x

jxj
), with the same flux condition (3.12),

Z

@D
C

j

@�scat
0

@n
ds D Qj :

The flux condition 3.12 must be interpreted as
Z

@D
C

j

@�scat

@n
ds WD lim

ı!0C

Z

@Dı
j

@�scat

@n
ds D Qj :

See Appendix A for further details.

DEFINITION 3.4. By the vector modified Dirichlet problem, we mean the cal-

culation of a vector Helmholtz or Laplace potential Ascat 2 C 2.R3 n xD/ with

r � Ascat 2 C.R3 nD/ that satisfies standard radiation conditions at infinity, and a

set of constants fvj gN
j D1, where N denotes the number of connected components

of the boundary @D. Given tangential boundary data f 2 Ct .@D/, scalar boundary

data h 2 C.@D/, and known constants fqj gN
j D1, the vector Helmholtz potential and

the constants fvj gN
j D1 must satisfy

�Ascat C k2Ascat D 0; n � Ascatj@DC D f; r � Ascat
ˇ

ˇ

@Dj
D hC vj ;(3.15)

r � Ascat.x/ � x

jxj C x

jxjr � Ascat.x/ � ikAscat.x/ D o

�

1

jxj

�

;

jxj ! 1;

(3.16)

with

(3.17)

Z

@D
C

j

n � Ascat ds D qj :

The vector Laplace potential and the constants fvj gN
j D1 must satisfy

�Ascat
0 D 0; n � Ascat

0

ˇ

ˇ

@DC D f; r � Ascat
0

ˇ

ˇ

@Dj
D hC vj ;(3.18)

Ascat
0 .x/ D o.1/; jxj ! 1(3.19)
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Unknowns

�scat, fVj gN
j D1

Ascat, fvj gN
j D1

Laplace Helmholtz

Scalar

8

ˆ

<

ˆ

:

��scat D 0;

�scatj@Dj
D f C Vj ;

R

@D
C

j

@�scat

@n
ds D Qj :

(Yes)

8

ˆ

<

ˆ

:

��scat C k2�scat D 0;

�scatj@Dj
D f C Vj ;

R

@D
C

j

@�scat

@n
ds D Qj :

(Yes)

Vector

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

�Ascat D 0;

n � Ascatj@DC D f;

r � Ascatj@Dj
D hC vj ;

R

@D
C

j

n � Ascat ds D qj :

(Yes)

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

�Ascat C k2Ascat D 0;

n � Ascatj@DC D f;

r � Ascatj@Dj
D hC vj ;

R

@D
C

j

n � Ascat ds D qj :

(Yes)

TABLE 3.2. Uniqueness for modified Dirichlet problems.

(uniformly for all directions x

jxj
), with the same flux condition (3.17).

We summarize the modified Dirichlet boundary value problems in Table 3.2.

We now define the scattered scalar and vector potentials in terms of modified

Dirichlet problems.

DEFINITION 3.5. Let �inc;Ainc denote incoming scalar and vector potentials and

assume that D is a perfect conductor. The scattered scalar potential �scat is the

solution to the scalar modified Dirichlet problem with boundary data:

(3.20) f WD ��inc
ˇ

ˇ

@Dj
; Qj WD �

Z

@Dj

@�inc

@n
ds:

Likewise, the scattered vector potential Ascat is the solution to the vector modified

Dirichlet problem with boundary data:

(3.21) f WD �n � Ainc
ˇ

ˇ

@D
; h WD �r � Ainc

ˇ

ˇ

@D
; qj WD �

Z

@Dj

n � Ainc ds:

Next we prove a lemma that shows the connection between the scalar and vector

modified Dirichlet problems. For simplicity, in the remainder of the paper we as-

sume that � > 0; � > 0, so that k is real and nonnegative. The proofs are analogous

when the wavenumber k has a positive imaginary part, which adds dissipation.

LEMMA 3.6. Let Ascat; fvj gN
j D1 be a solution of the vector modified Dirichlet prob-

lem with boundary data f; h; fqj gN
j D1 for k � 0. Then,

(3.22)  scat WD r � Ascat; fVj D vj gN
j D1;

satisfies the scalar modified Dirichlet problem with boundary data:

(3.23) f WD h; fQj D �k2qj gN
j D1:



DECOUPLED POTENTIALS FOR ELECTROMAGNETIC SCATTERING 13

PROOF. By hypothesis we have that  scat WD r � Ascat 2 C.R3 nD/. We also

have that Ascat satisfies

�Ascat C k2Ascat D 0;(3.24)

n � Ascat
ˇ

ˇ

@DC D f;(3.25)

r � Ascat
ˇ

ˇ

@Dj
D hC vj ;(3.26)

Z

@D
C

j

n � Ascat ds D qj :(3.27)

Taking the divergence of (3.24), we get

(3.28) �r � Ascat C k2r � Ascat D 0:

Therefore,  scat WD r � Ascat satisfies the Helmholtz equation. From 3.26, we get

(3.29)  scat D r � Ascat D hC vj
ˇ

ˇ

@Dj
:

Notice that Ascat is a Helmholtz (or Laplace) potential, analytic at every exterior

point, so that  scat WD r � Ascat 2 C 2.R3 n xD/ \ C.R3 n D/. Finally, we may

write

r � r � Ascat D k2Ascat C rr � Ascat

for any point x 2 R
3 n xD. Taking the flux on a parallel surface @Dı

j for h small

enough we have

(3.30)

Z

@Dı
j

n � r � r � Ascat ds D
Z

@Dı
j

k2n � Ascat C n � rr � Ascat ds;

Z

@Dı
j

�rs � .n � r � Ascat/ds D k2

Z

@Dı
j

n � Ascat ds C
Z

@Dı
j

n � r @ 
scat

@n
ds;

so that

k2

Z

@Dı
j

n � Ascat ds C
Z

@Dı
j

@ scat

@n
ds D 0:

Taking the limit for ı ! 0 and using the boundary condition (3.27), we obtain

(3.31)

Z

@D
C

j

@ scat

@n
ds D �k2qj ;

and the desired result follows. �
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3.2 Uniqueness

We begin with two well-known theorems from scattering theory.

THEOREM 3.7 ([10]). Let �scat 2 C 2.R3 n xD/\C.R3 nD/ be a scalar Helmholtz

potential in the exterior domain possessing normal derivatives in the sense of uni-

form convergence (see (A.1)) with wavenumber k, k ¤ 0, in the exterior domain

R
3 n xD satisfying the radiation condition (3.2) and the condition

(3.32) Is D Im

�

k

Z

@D

�scat @
x�scat

@n
ds

�

� 0;

where Imff g denotes the imaginary part of f . Then �scat D 0 in R
3 nD.

THEOREM 3.8 ([10]). Let Ascat 2 C 2.R3 n xD/\C.R3 nD/ be a vector Helmholtz

potential in the exterior domain with r � Ascat;r � Ascat 2 C.R3 n D/, with

wavenumber k, k ¤ 0, satisfying the radiation condition (3.6) and the condition

(3.33) Iv D Im

�

k

Z

@D

n � Ascat � r � xAscat C n � Ascatr � xAscat
ds

�

� 0:

Then, Ascat D 0 in R
3 nD.

We now show that the modified Dirichlet problems have unique solutions in all

regimes.

THEOREM 3.9. The scalar modified Dirichlet problem has at most one solution for

any k > 0.

PROOF. Consider a solution of the homogeneous problem .f D 0;Qj D 0/

(3.34)

8

ˆ

ˆ

<

ˆ

ˆ

:

��scat C k2�scat D 0;

�scatj@D D 0C Vj ;
R

@D
C

j

@�scat

@n
ds D 0:

If �scat had a normal derivative in the sense of uniform convergence (see A.1),

we could immediately apply Theorem 3.7. However, in our formulation of the

scalar modified Dirichlet problem, we require �scat only to be continuous up to

the boundary. There are several approaches to overcoming this difficulty. Conver-

gence theorems for Lebesgue integration could be used, as in lemma 3.10 of [11].

Here, we simply use the fact that the function �scatj@D is constant on each con-

nected component @Dj of @D. Thus, �scatj@D 2 C 1;˛.@D/. Applying theorem

3.27 of [10], we have that the solution �scat 2 C 1;˛.R3 n D/, and we can apply

Theorem 3.7. The quantity Is in (3.32) is then given by

(3.35) Is D Im

�

k

Z

@D

�scat @
x�scat

@n
ds

�

D Im

�

k

N
X

j D1

Vj

Z

@Dj

@x�scat

@n

�

D 0:
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Thus, by Theorem 3.7, �scat D 0 and using the boundary condition �scatj@Dj
D

0C Vj ; we get Vj D 0. �

THEOREM 3.10. The vector modified Dirichlet problem has at most one solution

for any k > 0.

PROOF. Consider a solution of the homogeneous problem .f D 0; h D 0;

qj D 0/:

(3.36)

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

�Ascat C k2Ascat D 0;

n � Ascat
ˇ

ˇ

@DC D 0;

r � Ascat
ˇ

ˇ

@Dj
D 0C vj ;

R

@D
C

j

n � Ascat ds D 0:

Again, in order to be able to use Theorem 3.8 we need continuity of the function

Ascat and its derivatives up to the boundary. As before, we can use the fact that the

regularity of the boundary data in the homogeneous case implies the regularity of

the solution up to the boundary. The technique of [8, 16], could be used, requiring

some technical arguments concerning Hölder space analysis on surfaces parallel to

@Dı .

A simpler proof is obtained by applying Lemma 3.6, which shows that r � Ascat

satisfies the homogeneous modified Dirichlet problem. By Theorem 3.9 we have

that r � Ascat.x/ D 0 for x 2 R
3 nD. Let us now define the vector fields

(3.37) ME WD Ascat; MH WD 1

i!�
r � Ascat:

These fields satisfy the exterior homogeneous Maxwell problem and ME ; MH 2
C 1.R3 n xD/. Applying theorem 6.23 of [11] we have that Ascat.x/ D 0 for

x 2 R
3 nD.

Using the boundary condition r � Ascatj@Dj
D 0C vj , we obtain vj D 0. �

THEOREM 3.11. The scalar modified Dirichlet problem for the Laplace equation

has at most one solution.

PROOF. As in Theorem 3.9, we have that the normal derivative of �scat
0 exists in

a strong sense if �scat
0 satisfies the homogeneous scalar modified Dirichlet problem.

Note also that the radiation condition implies a strong decay at infinity (see (5.1)

in [10]). This permits the application of Green’s theorem in the exterior region

from which

(3.38)

Z

R3n xD

jr�scat
0 j2 dv D

Z

@D

�scat
0

@x�scat
0

@n
ds D

N
X

j D1

Vj

Z

@Dj

@x�scat
0

@n
ds D 0:

Thus, r�scat
0 D 0 in the exterior domain. Using the radiation condition, we

obtain �scat
0 D 0. Using the boundary condition �scat

0 j@Dj
D 0 C Vj ; we have

Vj D 0. �
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THEOREM 3.12. The vector modified Dirichlet problem for the Laplace equation

has at most one solution.

PROOF. Let .Ascat; vj / be a solution of the homogeneous vector modified Dir-

ichlet problem. Again, we can assume the regularity of the homogeneous solution

up to the boundary and apply Green’s theorem as in Theorem 3.11. We then have

(3.39)

Z

R3n xD

jr � Ascat
0 j2 C jr � Ascat

0 jdv

D
Z

@D

n � Ascat
0 � r � xAscat

0 C n � Ascat
0 r xAscat

0 ds

D
N

X

j D1

xvj
Z

@Dj

n � Ascat ds D 0:

Thus, r�Ascat
0 D 0 and r�Ascat

0 D 0 in the exterior region, and Ascat
0 is a harmonic

field in R
3 n xD. From the boundary condition n�Ascat

0 D 0j@D , we have that Ascat
0

is a Dirichlet field and thus a linear combination of the basis functions fYj gN
j D1. It

follows from the flux conditions
R

@Dj
n � Ascat ds D 0 that Ascat D 0. �

3.3 Existence and Stability

In this section, we use the Fredholm alternative to obtain existence results for the

modified Dirichlet problems, making use of the single- and double-layer potentials,

Sk and Dk , of classical potential theory. We also show that the solution depends

continuously on the boundary data, uniformly in k in a neighborhood of k D 0.

Next we define classical operators in potential theory:

(3.40)

Sk� D
Z

@D

gk.x � y/�.y/dAy ; Dk� D
Z

@D

@gk

@ny
.x � y/�.y/dAy ;

S 0
k� D

Z

@D

@gk

@nx
.x � y/�.y/dAy ; D0

k� D @

@nx

Z

@D

@gk

@ny
.x � y/�.y/dAy ;

where x 2 @D and the Green’s function on the free space is

(3.41) gk.x/ D eikjxj

4�jxj :

For off-surface evaluations x 2 R
3 n @D we have

(3.42)

SkŒ��.x/ D
Z

@D

gk.x � y/�.y/dAy ;

DkŒ��.x/ D
Z

@D

@gk

@ny
.x � y/�.y/dAy :
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THEOREM 3.13. The scalar field

(3.43) �scat.x/ D DkŒ��.x/ � i�SkŒ��.x/;

with scalar density � of class C.@D/ and � > 0, and the constants fVj gN
j D1 solve

the modified Dirichlet problem (k � 0) provided � and fVj gN
j D1 solve the equa-

tions

(3.44)

�

2
CDk� � i�Sk� �

N
X

j D1

Vj�j D f;

Z

@Dj

�

�

D0
k �D0

0

�

� C i�
�

2
� i�S 0

k�
�

ds D Qj ;

where �j denotes the characteristic function for boundary @Dj . The resulting

integral equation is of the second kind on C.@D/ � C
N and resonance-free.

PROOF. See Appendix B. �

In order to study the vector modified Dirichlet problem, we define the following

dyadic operators:

(3.45) xxL
�

a

�

�

D
�

L11a C L12�

L21a C L22�

�

;

where

(3.46)

L11a D Mka D
Z

@D

nx � rx � .gk.x � y/a.y//dAy ;

L12� D �n � Sk.n�/; L21a D 0; L22� D Dk�;

and

(3.47) xxR
�

a

�

�

D
�

R11a CR12�

R21a CR22�

�

;

where

(3.48)
R11a D n � Sk.n � a/; R12� D n � rSk.�/;

R21a D r � Sk.n � a/; R22� D �k2Sk�:

and

(3.49) xxSik

�

a

�

�

D
�

Sik.a/

Sik.�/

�

:

THEOREM 3.14. The vector field

(3.50) Ascat D r�SkŒa�.x/�SkŒn��.x/Ci�.SkŒn�Sika�.x/CrSkŒSik��.x//;
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with tangential density a of class Ct .@D/, scalar function � of class C.@D/, � > 0,

and constants fvj gN
j D1 solves the vector modified Dirichlet problem (with k � 0)

provided that a, �, and fvj gN
j D1 solve the equations

(3.51)

1

2

�

a

�

�

C xxL
�

a

�

�

C i� xxR xxSik

�

a

�

�

C
�

0
PN

j D1 vj�j

�

D
�

f

h

�

;

Z

@Dj

�

�n � Sk.n�/

C i�

�

n � Sk.n � Sik.a// � Sik�

2
C S 0

k.Sik�/

��

ds D qj ;

where �j denotes the characteristic function for boundary @Dj . The resulting

integral equation is of the second kind on Ct .@D/ � C.@D/ � C
N .

PROOF. See Appendix B. �

DEFINITION 3.15. We will refer to (3.44) and (3.51) as the scalar and vector de-

coupled potential integral equations. The former will be abbreviated by DPIEs and

the latter by DPIEv. Together, they form the DPIE.

The following two theorems show that the solutions to the modified Dirichlet

problems are continuous functions of the boundary data all the way to k D 0. In

particular, they are independent of the genus of @D. (As expected, the more regular

the boundary data, the more regular the corresponding solution.)

THEOREM 3.16. The scalar modified Dirichlet problem has a unique solution for

k � 0. Further, for continuous boundary data f 2 C.@D/, the solution can be

extended continuously up to the boundary. The following stability condition holds

uniformly on the interval Œ0; kmax�:

(3.52) k�scatk1;R3nD � K.@D;kmax/

�

kf k1;@D C
N

X

j D1

jQj j2
�

:

For uniformly Hölder-continuous boundary data f 2 C 0;˛.@D/, the solution

can be extended in a uniformly Hölder-continuous way up to the boundary �scat 2
C 0;˛.R3 n D/. The following stability condition holds uniformly on the interval

Œ0; kmax�:

(3.53) k�scatk˛;R3nD � K.˛;@D;kmax/

�

kf k˛;@D C
N

X

j D1

jQj j2
�

:

For uniformly Hölder-continuous differentiable boundary data f 2 C 1;˛.@D/,

the solution can be extended in a uniformly Hölder-continuous differentiable way
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up to the boundary �scat 2 C 1;˛.R3 nD/. The following stability condition holds

uniformly on the interval Œ0; kmax�:

(3.54)

k�scatk˛;R3nD � K.˛;@D;kmax/

�

kf k˛;@D C
N

X

j D1

jQj j2
�

;

kr�scatk˛;R3nD � K.˛;@D;kmax/

�

kf k˛;@D C krsf k˛;@D C
N

X

j D1

jQj j2
�

:

The constants K depend only on the indicated indices.

PROOF. See Appendix B. �

THEOREM 3.17. The vector modified Dirichlet problem has a unique solution for

k � 0. Further, for continuous boundary data f 2 Ct .@D/; h 2 C.@D/, the di-

vergence and tangent components of the solution can be extended continuously up

to the boundary. The following stability condition holds uniformly on the interval

Œ0; kmax�:

(3.55) kAscatk1;M � K.@D;kmax;M/

�

kfk1;@D C khk1;@D C
N

X

j D1

jqj j2
�

I

for any closed M � R
3 n xD

(3.56) kr � Ascatk1;R3nD � K.@D;kmax/

�

kfk1;@D C khk1;@D C
N

X

j D1

jqj j2
�

:

For uniformly Hölder-continuous boundary data f 2 C 0;˛
t .@D/; h 2 C 0;˛.@D/,

the solution and its divergence can be extended in a uniformly Hölder-continuous

way up to the boundary A 2 C 0;˛.R3 nD/;r � A 2 C 0;˛.R3 nD/. The following

stability condition holds uniformly on the interval Œ0; kmax�:

kAscatk˛;R3nD � K.˛;@D;kmax/

�

kfk˛;@D C khk˛;@D C
N

X

j D1

jqj j2
�

;(3.57)

kr � Ascatk˛;R3nD � K.˛;@D;kmax/

�

kfk˛;@D C khk˛;@D C
N

X

j D1

jqj j2
�

:(3.58)

For boundary data f 2 C
0;˛
t .div; @D/; h 2 C 0;˛.@D/, the solution and its di-

vergence and curl can be extended in a uniformly Hölder-continuous way up to the

boundary A 2 C 0;˛.R3 nD/, r � A 2 C 0;˛.R3 nD/;r � A 2 C 0;˛.R3 nD/.
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The following stability condition holds uniformly on the interval Œ0; kmax�:

kAscatk˛;R3nD � K.˛;@D;kmax/

�

kfk˛;@D C khk˛;@D C
N

X

j D1

jqj j2
�

;(3.59)

kr � Ascatk˛;R3nD � K.˛;@D;kmax/

�

kfk˛;@D C khk˛;@D C
N

X

j D1

jqj j2
�

;(3.60)

kr � Ascatk˛;R3nD �

K.˛;@D;kmax/

�

kfk˛;@D C krs � fk˛;@D C khk˛;@D C
N

X

j D1

jqj j2
�

(3.61)

PROOF. See Appendix B. �

4 Electromagnetic Scattering and Modified Dirichlet Problems

In this section, we explain the connection between the scalar and vector modified

Dirichlet problems and the Maxwell equations. It is evident from Theorems 3.16

and 3.17 that, if such a reformulation exists, then we have overcome the topologi-

cal low-frequency breakdown that makes electromagnetic scattering from surfaces

with nontrivial genus so difficult at low frequency.

We will first show that the vector and scalar modified Dirichlet problems pre-

serve the Lorenz gauge, so that the induced E and H fields are Maxwellian. We

will also show that the calculation is stable in the sense that bounded “incoming”

data leads to bounded “outgoing” data, independent of the frequency. We will then

show, in Theorem 4.3, that the modified Dirichlet problems lead directly to the

solution of the desired scattering problem.

Remark 4.1. For ! 2 Œ0;C1Œ fixed, we consider the incoming fields Ainc; �inc;

E inc;H inc to be either suitably defined plane waves or induced by known current

and charge distributions located in the exterior region. In either case, they are well-

defined solutions to the homogeneous vector or scalar Helmholtz equation in some

region that contains xD:

(4.1)

��inc.x/C k2�inc.x/ D 0;

�Ainc.x/C k2Ainc.x/ D 0;

�E inc.x/C k2E inc.x/ D 0;

�H inc.x/C k2H inc.x/ D 0;

x 2 �;

with

(4.2) �inc;Ainc;E inc;H inc 2 C 2.�/ \ C 0;˛.x�/;
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where � is an open set that contains xD. We write �inc
! ;Ainc

! ;E inc
! ;H inc

! to de-

note explicitly the dependence on frequency !. We assume that the maps ! !
�inc

! ;Ainc
! ;E inc

! ;H inc
! are continuous functions defined from Œ0;C1Œ to C 0;˛.x�/.

THEOREM 4.2. Let Ainc; �inc be bounded (for ! ! 0) incoming vector and scalar

Helmholtz potentials in the Lorenz gauge:

(4.3) r � Ainc.x/ D i!���inc.x/

for .x/ 2 �. Then, the associated vector and scalar scattered Helmholtz poten-

tials Ascat; �scat (see Definition 3.5) are also bounded and satisfy the Lorenz gauge

condition

r � Ascat.x/ D i!���scat.x/

for x 2 R
3 nD.

PROOF. Due to the analyticity of Ainc and �inc, the boundary data is smooth.

This implies that �scat 2 C 1;˛.R3 n D/, Ascat 2 C 2.R3 n xD/ \ C 0;˛.R3 n D/,
r � Ascat 2 C 0;˛.R3 nD/, and r � Ascat 2 C 0;˛.R3 nD/ (see Theorems 3.16 and

3.17). This implies that we can evaluate the flux conditions on the surfaces @Dj

without using the parallel surface trick @DC
j .

By Lemma 3.6, the scalar Helmholtz potential  scat D r � Ascat satisfies

(4.4)

 scat D hC vj D �r � Ainc C vj
ˇ

ˇ

@D
;

Z

@Dj

@ scat

@n
ds D �k2qj D k2

Z

@Dj

n � Ainc ds:

Using the Lorenz gauge condition on the boundary itself, we may write

(4.5)  scat D hC vj D �i!���inc C vj
ˇ

ˇ

@D
:

Since

(4.6) r � .i!Ainc � r�inc/ D 0; x 2 �;
we have

(4.7)

Z

@Dj

@�inc

@n
ds D i!

Z

@Dj

n � Ainc ds:

Thus,
Z

@Dj

@ scat

@n
ds D k2

Z

@Dj

n � Ainc ds D k2

i!

Z

@Dj

@�inc

@n
ds

D �i!��
Z

@Dj

@�inc

@n
ds:

(4.8)
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From (4.5) and (4.8), we see that the function and constants  scat; fvj gN
j D1 and the

function and constants i!���scat; fi!��vj gN
j D1 satisfy the same scalar modified

Dirichlet problem. By uniqueness (Theorem 3.9), we find that

i!���scat.x/ D  scat.x/ D r � Ascat.x/; x 2 R
3 nD;

so that Ascat and �scat are in the Lorenz gauge.

Using the estimates 3.53 and 3.57 of Theorems 3.16 and 3.17, we find that

Ascat; �scat are continuous functions of Ainc; �inc, uniformly on ! 2 Œ0; !max� for

any !max. In particular, they are uniformly continuous functions of f D �n �
Aincj@D , h D �r � Aincj@D D i!���incj@D , f D ��incj@D , qj D �

R

@Dj
n �

Ainc ds, and Qj D �
R

@Dj

@�inc

@n
ds D �i!

R

@Dj
n � Ainc. Since Ainc; �inc are

bounded in C 0;˛.x�/ (for ! ! 0), Ascat; �scat are bounded in C 0;˛.R3 nD/. �

The next theorem is the main result of the present paper.

THEOREM 4.3. For any ! � 0, let Einc;Hinc be an incoming electromagnetic field

described by the potentials Ainc; �inc in the Lorenz gauge:

(4.9)
H inc D 1

�
r � Ainc; E inc D i!Ainc � r�inc;

r � Ainc D i!���inc;

and let Ascat; �scat denote the corresponding scattered vector and scalar poten-

tials (Definition 3.5). Then the electromagnetic fields Escat;Hscat scattered from a

perfect conductor are given by

H scat D 1

�
r � Ascat; E scat D i!Ascat � r�scat:

with

r � Ascat D i!���scat;

n � E scat D �n � E inc
ˇ

ˇ

@D
; n � H scat D �n � H inc

ˇ

ˇ

@D
:

When the explicit dependence on ! is needed, we write E scat
! and H scat

! instead

of E scat and H scat. With this notation, the scattered electromagnetic fields at zero

frequency are the low-frequency limits of the time-harmonic solutions. That is,

(4.10)

lim
!!0

kE scat
! � E scat

0 k˛;R3=D ! 0;

lim
!!0

kH scat
! � H scat

0 k˛;R3=D ! 0:

PROOF. As in the previous theorem, due to the analyticity of Ainc and �inc, the

boundary data is smooth. Therefore �scat 2 C 1;˛.R3 nD/, Ascat 2 C 2.R3 n xD/\
C 0;˛.R3 n D/, r � Ascat 2 C 0;˛.R3 n D/, and r � Ascat 2 C 0;˛.R3 n D/ (see

Theorems 3.16 and 3.17).
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Since Ascat; �scat are Helmholtz potentials in the Lorenz gauge, the associated

E scat;H scat are valid Maxwell fields that satisfy the necessary radiation condition.

We need only check that the desired boundary conditions are satisfied. From the

boundary conditions on Ascat; �scat we have

n � Ascat D �n � Ainc
ˇ

ˇ

@D
; i!n � Ascat D �i!n � Ainc

ˇ

ˇ

@D
;(4.11)

�scat D ��inc C Vj

ˇ

ˇ

@Dj
; n � r�scat D �n � r�inc

ˇ

ˇ

@D
:(4.12)

Adding (4.11) and (4.12), we have

(4.13)
i!n � Ascat � n � r�scat D �i!n � Ainc C n � r�inc

ˇ

ˇ

@D
;

n � E scat D �n � E inc
ˇ

ˇ

@D
:

Taking the surface divergence of (4.11), we also have that

(4.14)
n � Ascat D �n � Ainc

ˇ

ˇ

@D
; rs � n � Ascat D �rs � n � Ainc

ˇ

ˇ

@D
;

n � H scat D �n � H inc
ˇ

ˇ

@D
:

Thus, for ! > 0 we have the correct solution for E scat
! and H scat

! .

We now prove that our particular solution to the static Maxwell equations, E scat
0

and H scat
0 , corresponds precisely to the limiting case of the time-harmonic solution

as ! ! 0. That is,

(4.15) lim
!!0

kE scat
! � E scat

0 k˛;R3=D ! 0; lim
!!0

kH scat
! � H scat

0 k˛;R3=D ! 0:

For this, we will require the following equalities:

lim
!!0

k�n � E inc
! C n � E inc

0 k˛;@D D 0;(4.16)

lim
!!0









1

i!�
rs � �n � E inc

! C n � H inc
0









˛;@D

D 0;(4.17)

lim
!!0

1

�i!�

Z

@D

n � E inc
! � Zm ds D

Z

R3=D

H scat
0 � Zm dv;(4.18)

Z

R3=D

E scat
0 � Yj dv D 0:(4.19)

Condition (4.16) follows from the assumption that lim!!0 kE inc
! �E inc

0 k˛; x�=0.

From the fact that rs � �n � E inc
! D i!�n � H inc

! , we obtain 4.17. Note now that

(4.20)

1

�i!�

Z

@D

n � E inc
! � Zm ds D 1

�i!�

Z

@D

n �
�

i!Ainc
! � r�inc

!

�

� Zm ds

D �1
�

Z

@D

n � Ainc
! � Zm ds;
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where fZmgg
mD1 is a basis for the Neumann fields in the exterior region. Gauss’

theorem then yields
Z

@D

�n � r�inc � Zm ds D �
Z

@D

rs � n � Zm�
inc ds

D
Z

@D

n � r � Zm�
inc ds D 0:

(4.21)

Thus,

(4.22) lim
!!0

1

�i!�

Z

@D

n � E inc
! � Zm ds D �1

�

Z

@D

n � Ainc
0 � Zm ds

and

(4.23)

Z

R3=D

H scat
0 � Zm dv D

Z

R3=D

1

�
r � Ascat

0 � r � Am dv

D 1

�

Z

@D

n � Ascat
0 � Zm ds

D �1
�

Z

@D

n � Ainc
0 � Zm ds;

where Am is defined in (5.28) of [10] with the properties r � Am D Zm and

r � Am D 0. The previous result is obtained from Green’s theorem, taking into

account the radiation condition for static fields and r � Am D 0. From (4.22) and

(4.23) we get (4.18). Condition (4.19) follows from the calculation

(4.24)

Z

R3=D

E scat
0 � Yj dv D �

Z

R3=D

r�scat
0 � rujdv

D �
Z

@Dj

@�scat
0

@n
ds D

Z

@Dj

@�inc
0

@n
ds D

Z

D

��inc
0 dv D 0;

where uj is a harmonic scalar field in the exterior region with the property uj

ˇ

ˇ

@D
D

1@Dj
and Yj D ruj is a basis for the Dirichlet fields.

The desired result (4.10) now follows from theorem 5.11 in [10] (which de-

scribes technical conditions for convergence of Maxwell fields in the low-frequency

limit.)

The consistency conditions (1.19) on the flux of the magnetic field through each

hole Sj [14] are also easily verified for all ! � 0:

(4.25) n � Ascat D �n � Ainc
ˇ

ˇ

@D
;

I

Bj

Ascat � d l D �
I

Bj

Ainc � d l:
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Here, Bj is a standard B-cycle on a surface with nonzero genus (see Figure 1.1

and related discussion). �

5 Incoming Potentials

In a stable DPIE approach, the vector and scalar potentials must be defined in

the Lorenz gauge and be bounded as ! ! 0. We will need to find a representation

for the incoming fields that will permit the stable uncoupling of the vector and

scalar potentials. Assuming we are given the “impressed” free current and charge

J imp; �imp, the incoming potentials

(5.1) Ainc.x/ D �SkŒJ
imp�.x/; �inc.x/ D 1

�
SkŒ�

imp�.x/;

satisfy these requirements. For an incoming plane wave with a polarization vector

Ep and a direction of propagation u, given by

(5.2) E inc D Epe
iku�x; H inc D Hpe

iku�x D u � Ep

Z
eiku�x;

where Z D
p

�=�, the standard representation of incoming vector and scalar po-

tentials

(5.3) Ainc D 1

i!
E inc; �inc D 0;

does not lead to stable uncoupling, since the vector potential is unbounded as

! ! 0. But, as mentioned above, the Lorenz gauge does not, by itself, impose

uniqueness on the governing potentials. It is easy to check that the vector and

scalar potentials defined by

(5.4) A0 inc D �u.x � Ep/
p
��eiku�x; �0 inc D �x � Epe

iku�x;

satisfy the Lorenz gauge condition

(5.5) r � A0 inc.x/ D i!���0 inc.x/I

both A0 inc and �0 inc are bounded Helmholtz potentials as ! ! 0 and represent the

same incoming plane wave (5.2). See Appendix C for more details on how to sta-

bly decompose incoming/outgoing electric and magnetic multipole fields (Debye

sources).

6 The DPIE and the Aharonov-Bohm Effect

In classical physics, the Maxwell equations are described in terms of the com-

ponents of the electric and magnetic fields, with the vector and scalar potentials

viewed as matters of computational convenience. In quantum mechanics, however,

it was shown by Aharonov and Bohm [2] that an electron is sensitive to the vector

potential A itself in regions where E and H are identically zero (the Aharonov-

Bohm effect).
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FIGURE 6.1. In the exterior of a torus, a harmonic Neumann field Z1

serves as a vector potential A0 with the corresponding scalar potential

set equal to zero. For x 2 R
3 nD, the associated electromagnetic fields

E and H are identically zero.

Let us first recall that the two pairs of potentials fA; �g and fA0; �0g produce

the same electromagnetic field so long as they satisfy the condition

(6.1) A0 D A C r ; �0 D � C i! :

In multiply connected regions at zero frequency, however, the situation is more

complex. There exist potentials that give rise to identical fields that are not related

according to (6.1). In particular, the potentials

(6.2)
A0 D Z1; �0 D 0;

A0
0 D 0; �0

0 D 0;

where Z1 is an exterior harmonic Neumann field, give rise to zero electromagnetic

fields in the exterior. Z1, however, is not the gradient of a single-valued harmonic

function.

The Aharonov-Bohm effect is based on an experiment that is able to distinguish

between the physical states A0; �0 and A0
0; �

0
0. We have taken some liberties with

the actual experiment in [2], but the physical idea is the same. In essence, quantum

mechanical tunneling permits an electron to be aware of the electromagnetic field

in the interior of D even though it is a perfect conductor. For A0
0; �

0
0, the field

is identically zero in the interior, but for A0; �0 it is not. As discussed in [10, 13,

15, 32], A0 can be viewed as the field induced by an axisymmetric current density

flowing on the surface in the direction of the arrows in Figure 6.1. This induces a

nontrivial magnetic field within the torus. Electrons, as a result, sense whether they

traveled through the hole of the torus or passed by the torus on the outside. The

DPIE formalism easily distinguishes between these two cases, since we deal with
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the vector and scalar potentials directly. Thus, A0, �0, A0
0, and �0

0 in (6.2) satisfy

(6.3)
n � A0

ˇ

ˇ

@D
D n � Z1; r � A0

ˇ

ˇ

@D
D 0; �0

ˇ

ˇ

@D
D 0;

n � A0
0

ˇ

ˇ

@D
D 0; r � A0

0

ˇ

ˇ

@D
D 0; �0

0

ˇ

ˇ

@D
D 0:

7 The DPIE in the High-Frequency Regime

Theorems 3.13 and 3.14 suggest that the numerical solution of scattering prob-

lems in the presence of perfect conductors can be effectively solved through the use

of the DPIE, defined by equations (3.44) and (3.51). Both equations are Fredholm

equations of the second kind, invertible for all frequencies. Our interest in the

DPIE formulation grew out of issues in low-frequency scattering. Nevertheless, we

would like to find a representation that is effective at all frequencies, and this will

involve a slight rescaling of the equations. In order to carry out a suitable analysis,

we follow [21] and study scattering from the unit sphere @D D fx W kxk D 1g. For

k � 1, setting � D 1 works well, while for k > 1 the optimal scaling factor � � k

(see [21]). Setting � D k, instead of (3.44), we have the scaled DPIEs integral

equation:

(7.1)

�

2
CDk� � ikSk� �

N
X

j D1

Vj�j D f;

Z

@Dj

�

1

k
.D0

k �D0
0/� C i

�

2
� iS 0

k�

�

ds D 1

k
Qj ;

where the second set of equations has been multiplied by a factor of 1
k

. For the

vector modified Dirichlet problem, when k > 1, we replace (3.50) with

Ascat D r � SkŒa�.x/ � kSkŒn%�.x/

C ik
�

kSkŒn � Sika�.x/C rSkŒSik%�.x/
�

;
(7.2)

where we have multiplied the single-layer potential terms by k and set � D k. We

also rescale the boundary condition r � Ascat D �r � Ascat C vn in the modified

Dirichlet problem, dividing each side by k. These changes lead to the scaled DPIEv

integral equation:

(7.3)

1

2

�

a

�

�

C xxLs

�

a

�

�

C ik xxRs
xxSik

�

a

�

�

C
�

0
PN

j D1 vj�j

�

D
�

f
1
k
h

�

;

Z

@Dj

�

�kn � Sk.n%/

C ik

�

kn � Sk.n � Sik.a// � Sik%

2
C S 0

k

�

Sik.%/
�

��

ds D qj ;
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FIGURE 7.1. Spectrum of the scaled DPIEv integral equation (7.3) for

a spherical scatterer of radius 1 at k D 30. Note that there is one cluster

point at � D 0:5.

where

(7.4) xxLs D
�

L11 kL12
1
k
L21 L22

�

; xxRs D
�

kR11 R12

R21
1
k
R22

�

;

with Lij ; Rij defined in (3.46) and 3.48.

We turn now to the analysis of the DPIE on the unit sphere, where exact ex-

pressions for the various integral operators have been worked out in detail [31].

More precisely, by using scalar and vector spherical harmonics, each integral op-

erator has a simple signature, which has been tabulated in [31]. This permits us

to compute the condition number and spectrum of the DPIEs and DPIEv integral

equations. In Figures 7.1 and 7.2, we plot the spectrum and the singular values of

the scaled DPIEv (7.3).

In Figure 7.3, we compare the condition numbers of the DPIEv and the scaled

DPIEv. Equally revealing is to plot the spectrum of the DPIEv and the scaled

DPIEv (Figure 7.4).

While the analysis above has been carried out only for a spherical scatterer, it

is reasonable to expect that the scaled DPIEv is likely to have a big impact even

for surfaces of arbitrary shape. As a final point of comparison, Figure 7.5 plots the

condition number of various integral equations that have been suggested for the

solution of the Maxwell equations over a wide range of frequencies. Note that the

scaled DPIE produces slightly worse condition numbers for 1 � k. We suspect

that improvements in the DPIE representation may lead to better performance, but

leave that for future research. Note, however, that the scaled DPIE is surprisingly

effective in the high-frequency regime, despite the fact that it was conceived in

order to overcome topological low-frequency breakdown for scatterers of nonzero

genus.
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FIGURE 7.2. Singular values of the scaled DPIEv integral equation

(7.3) for a spherical scatterer of radius 1 at k D 30. Three curves are

shown, since (7.3) is a vector integral equation with three unknowns (the

scalar % and the tangential surface vector a).

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

k (wavenumber)

C
o

n
d

it
io

n
 N

u
m

b
er

 

 

scaled DPIEv

DPIEv

FIGURE 7.3. Condition number of the scaled DPIEv (7.3) and the orig-

inal DPIEv (3.51) for a spherical scatterer of radius 1 as a function of

wavenumber k.

8 Conclusions

We have presented a new formulation of the problem of electromagnetic scatter-

ing from perfect electric conductors. Rather than imposing boundary conditions on

the field quantities themselves, we have derived well-posed boundary value prob-

lems for the vector and scalar potentials themselves, in the Lorenz gauge. This

requires that we describe incoming fields in the same gauge, but that poses no

fundamental obstacle. We have explained, in Section 5, how to do this for partial

wave expansions, plane waves, and (of course) the potentials induced by known im-

pressed currents and charges. We have also developed integral representations for
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(7.3) for a spherical scatterer of radius 1 at k D 10.
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FIGURE 7.5. Comparison of the condition numbers of several reso-

nance-free integral equations: the scaled DPIE, the generalized Debye

source equation (gDEBYE) [15], the Calderon preconditioning com-

bined source integral equation (CP-CSIE) [12], and the regularized com-

bined source integral equation (RCSIE) [7].

the vector and scalar potentials that lead to well-conditioned second kind integral

equations (the decoupled potential integral equations or DPIE). Most importantly,

we have shown that the DPIE is insensitive to the genus of the scatterer. This is one

of the few schemes of which we are aware that does not suffer from topological

low-frequency breakdown without substantial complications (including the com-

putation of special basis functions that span the space of surface harmonic vector

fields [15]).
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Careful analysis of scattering from a unit sphere has shown that the method

works well across a range of frequencies, but the DPIE is likely to be of particu-

lar utility in the low-frequency regime, especially for structures with complicated,

multiply connected geometry. We will report detailed numerical experiments at a

later date.

Appendix A Flux Condition

In the literature, the following strong definition of normal derivative is used:

(A.1)
@�

@n
.x/ WD lim

ı!0
ı>0

n.x/ � r�.x � ın.x//; x 2 @D;

where the limit exists uniformly on @D (see [10]). If the function � has a normal

derivative in that sense, the flux condition 3.12 can be rewritten as

(A.2)

Z

@Dj

@�

@n
ds D Qj

However, in our formulation of the modified Dirichlet problem we require � only

to be continuous up to the boundary (which is the natural assumption for a Dirichlet

boundary condition). In order to adapt the flux condition to the general case, we

make use of the concept of parallel surface (see equation 2.7 in [10]):

(A.3) @Dı D fx D z C ın.z/; z 2 @Dg

where @Dı is a well-defined surface of class C 1 if ı is restricted to be sufficiently

small 0 < ı � ı0.

Next we prove that the limit 3.12 always exists if � is a Helmholtz function

continuous up to the boundary.

THEOREM A.1. Let � 2 C 2.R3 n xD/\C.R3 nD/ be a solution to the Helmholtz

or Laplace equation. Then the limit 3.12

lim
ı!0

Z

@Dı
j

@�

@n
ds

exists and is finite.

PROOF. Take ı0 sufficiently small (in the sense of parallel surfaces) and con-

sider the quantity Iı0
:

(A.4) Iı0
D

Z

@D
ı0
j

@�

@n
ds �

Z

Dı0 nD

�� dv:

Notice that Iı0
is independent of the particular choice of ı0. (To see this, apply

Green’s theorem on the region Dı0 nDı1 and note that Iı0
� Iı1

D 0). Therefore
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the limit limı!0 Iı exists and is equal to Iı0
. On the other hand, we have that � is

Helmholtz and bounded up to the boundary, therefore

(A.5)

lim
ı!0

ˇ

ˇ

ˇ

ˇ

Z

DınD

�� dv

ˇ

ˇ

ˇ

ˇ

ˇ

D lim
ı!0

ˇ

ˇ

ˇ

ˇ

�k2

Z

DınD

� dv

ˇ

ˇ

ˇ

ˇ

� lim
ı!0

vol.Dı nD/k2k�k1;Dı0 nD D 0:

Therefore we obtain that

�(A.6)

Z

@D
C

j

@�

@n
ds D lim

ı!0C

Z

@Dı
j

@�

@n
ds D Iı0

:

For the vector case we have a similar situation. The function A might have

no normal component continuous up to the boundary, yet the divergence r � A

is continuous up to the boundary. This allows us to prove that the limit 3.17 is

well-defined (the limit always exists).

THEOREM A.2. Let A 2 C 2.R3 n xD/ with r � A 2 C.R3 n D/; then the flux

condition 3.17

lim
ı!0

Z

@Dı
j

n � A ds

exists and is finite.

Again take ı0 sufficiently small. Then

(A.7) lim
ı!0C

Z

@Dı
j

n � A ds D
Z

@D
ı0
j

n � A ds �
Z

Dı0 nD

r � A dv:

Similarly, the right-hand side of A.7 is independent of the particular choice of ı0
and

(A.8) lim
ı!0

ˇ

ˇ

ˇ

ˇ

Z

DınD

r � Adv

ˇ

ˇ

ˇ

ˇ

� lim
ı!0

vol.Dı nD/kr � Ak1;Dı0 nD D 0:

Next we show some examples of applications of the flux condition that simplify

the numerical calculations.

First, consider �scat
0 WD D0Œ��.x/ for a continuous density � 2 C.@D/ and

where the double-layer potential is defined in 3.40 for Laplace. Notice that D0
0�

might not exist for merely continuous densities. Consider the following identity:

(A.9) r � r � S0Œn��.x/ D rr � S0Œn��.x/ D �rD0Œ��.x/
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for x 2 R
3 n xD. Taking the flux on a parallel surface @Dı

j we get

Z

@Dı
j

n � rD0� ds D
Z

@Dı
j

�n � r � r � S0.n�/ds

D
Z

@Dı
j

rs � n � r � S0.n�/ds D 0:

(A.10)

Taking the limit, we get

(A.11)

Z

@D
C

j

D0
0� ds D lim

ı!0C

Z

@Dı
j

n � rD0� ds D 0

Notice that the expression n�rD0� involves off-surface evaluations of the gradient

as the density � of the double layer is located at @D and the target points are located

on @Dı .

Another useful example is the double layer for the Helmholtz case, �scat
k

WD
DkŒ��.x/. Proceeding similarly we get

Z

@D
C

j

D0
k� ds D lim

ı!0C

Z

@Dı
j

n � rDk� ds

D lim
ı!0C

Z

@Dı
j

n � r.Dk �D0/� ds D
Z

@Dj

.D0
k �D0

0/� ds

(A.12)

Notice that the operatorD0
k

�D0
0 is compact and well- defined for � 2 C.@D/ but

D0
k

is only well-defined on C 1;˛.@D/.

A third example involves Ascat D r � SkŒa�.x/ for continuous tangent density

a 2 Ct .@D/. Notice that the normal component n � Ascat is only well-defined up

to the boundary for uniformly Hölder-continuous tangent densities a 2 C 0;˛
t .@D/.

Applying the flux condition 3.17 we get

Z

@D
C

j

n � r � Sk.a/ds D lim
ı!0C

Z

@Dı
j

n � r � Sk.a/ds

D � lim
ı!0C

Z

@Dı
j

rs � n � Sk.a/ds D 0

(A.13)
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Appendix B Proofs of Existence and Stability Theorems

PROOF OF THEOREM 3.13. By construction, the field �scat (3.43) can be ex-

tended continuously up to the boundary, �scat 2 C 2.R3 n xD/ \ C.R3 n D/. It

satisfies the Helmholtz (or Laplace) equation, the radiation condition, and the flux

condition of the modified Dirichlet problem (see observation A.12 of Appendix A).

Consider now a solution z�; f zVj gN
j D1 of the homogeneous equation (3.44):

(B.1)

z�
2

CDk z� � i�Sk z� �
N

X

j D1

zVj�j D 0;

Z

@Dj

�

.D0
k �D0

0/z� C i�
z�
2

� i�S 0
k z�

�

ds D 0:

For this solution, the scalar function and constants

(B.2) �scat.x/ D DkŒz��.x/ � i�SkŒz��.x/; f zVj gN
j D1;

satisfy the scalar modified Dirichlet problem with right-hand side f D 0, fQj D
0gN

j D1. By Theorem 3.9, we have �scat D 0, f zVj D 0gN
j D1. As �scat is represented

by a combination of single and double layers, it is known that z� D 0. This proves

uniqueness (see [10,11]). Note that the operatorsDk and Sk defined on C.@D/ are

compact (see [10]). The rest of the operators in (3.44) are finite rank, so that the

integral equation is a second-kind equation when acting on the space C.@D/�C
N ,

where C
N is equipped with the usual finite-dimensional topology. By Fredholm

theory, for any right-hand side f , f zQj gN
j D1 2 C.@D/� C

N , there exists a solution

� , f zVj gN
j D1 2 C.@D/ � C

N .

Note also that, as a function of k, the operators involved are continuous in the

range k 2 Œ0; kmax� for any fixed kmax. This implies that the operators involved in

equation (3.44) are not only compact, but collectively compact as well (see [4, 5]).

This fact will be used later in the proof of Theorem 3.16. �

PROOF OF THEOREM 3.14. By construction, the field Ascat (3.50) has tangen-

tial components that can be extended continuously up to the boundary in the sense

of (3.9), and Ascat 2 C 2.R3 n xD/, satisfying the Helmholtz (or Laplace) equation,

radiation condition, and flux condition. Note that r � Ascat can also be extended

continuously up to the boundary.

Consider now a solution za; z%; fzvj gN
j D1 of the homogeneous equation (B.3):

(B.3)

1

2

�

za
z%

�

C xxL
�

za
z%

�

C i� xxR xxSik

�

za
z%

�

�
�

0
PN

j D1 vj�j

�

D
�

0

0

�

;

Z

@Dj

�

�n � Sk.nz%/C i�
�

n � Sk.n � Sikza/ � Sik z%
2

C S 0
k.Sik z%/

�

�

ds D 0:
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For this solution, the vector field and constants

Ascat D r � SkŒza�.x/ � SkŒnz%�.x/
C i�

�

SkŒn � Sikza�.x/C rSkŒSik z%�.x/
�

; fzvj gN
j D1;

(B.4)

satisfy the vector modified Dirichlet problem, with right-hand side f D 0; h D
0; fqj D 0gN

j D1. By Theorem 3.10, we have Ascat.x/ D 0 for x 2 R
3 n xD and

f zVj D 0gN
j D1. Using the jump conditions and the vector version of Green’s theorem

as in theorem 4.42 of [10] or theorem 6.21 of [11], we obtain

(B.5) i�

Z

@D

xza � Sikza C xz%Sik z% ds D
Z

D

jr � Ascatj2 C jr � Ascatj2 � k2jAscatjdv:

Note that we can apply the jump conditions for n�r �Sk.a/ with only continuous

densities in the sense of theorem 2.26 of [10]. Taking imaginary parts, we obtain

(B.6) �

Z

@D

xza � Sikza C xz%Sik z% ds D 0:

Due to the coercivity of the operators Sika and Sik%, we obtain za D 0, z% D 0, and

uniqueness follows.

Note now that the operator xxL W Ct .@D/�C.@D/ ! Ct .@D/�C.@D/ is compact

(see [10]). The operator xxR is continuous and bounded on C
0;˛
t .@D/ � C 0;˛.@D/,

and the operator xxSik is continuous as a map from Ct .@D/�C.@D/ to C
0;˛
t .@D/�

C 0;˛.@D/. The resulting operator xxLC i� xxR xxSik is compact on Ct .@D/ � C.@D/.
The remaining operators in equation (B.3) are finite rank, so that equation (B.3)

is second kind when acting on the space Ct .@D/ � C.@D/ � C
N , where C

N is

equipped with the usual finite-dimensional topology. By Fredholm theory, for any

right-hand side f; h; fzqj gN
j D1 2 Ct .@D/ � C.@D/ � C

N , there exists a solution

a; %; fzvj gN
j D1 2 Ct .@D/ � C.@D/ � C

N .

Note also that, as a function of k, the operators involved are continuous in the

range k 2 Œ0; kmax� for any fixed kmax. This implies that the operators involved in

equation (B.3) are not only compact, but collectively compact [4]. This fact will

be used to prove Theorem 3.17. �

PROOF OF THEOREM 3.16. The operator that appears in equation (3.44) is sec-

ond kind as a map from C.@D/�C
N to C.@D/�C

N and the equation is uniquely

solvable. Thus, the inverse operator exists and is bounded from C.@D/ � C
N to

C.@D/ � C
N . Due to the collective compactness of the operators, the continuity

of the inverse is uniform in Œ0; kmax�. This, together with the regularity properties

of 3.40 (see [10]), implies the estimate 3.52.

By the same argument, the operator (3.44) is also second kind from C 0;˛.@D/�
C

N to C 0;˛.@D/�C
N , so that the inverse is uniformly bounded from C 0;˛.@D/�
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C
N to C 0;˛.@D/ � C

N in the interval Œ0; kmax�. Using again the regularity prop-

erties of the operators 3.40, we obtain the estimate 3.53.

Likewise, the operator (3.44) is compact from C 1;˛.@D/ � C
N to C 1;˛.@D/ �

C
N (see [11]). This implies 3.54. �

PROOF OF THEOREM 3.17. The operator that appears in equation (3.51) is sec-

ond kind as a map from Ct .@D/ � C.@D/ � C
N to Ct .@D/ � C.@D/ � C

N

and uniquely solvable. Thus, the inverse operator exists and is bounded from

Ct .@D/�C.@D/�C
N to Ct .@D/�C.@D/�C

N . Due to the collective compact-

ness of the operators, the continuity of the inverse is uniform in Œ0; kmax�. This, to-

gether with the regularity properties of the operators 3.46, 3.48, and 3.49 (see [10])

implies the estimates 3.55 and 3.56

A similar argument taking into account that equation (3.51) is also second kind

from C
0;˛
t .@D/ � C 0;˛.@D/ � C

N to C
0;˛
t .@D/ � C 0;˛.@D/ � C

N implies the

estimations 3.57 and 3.58

Notice the difference between 3.55 and 3.57. We need to use the set M � R
3n xD

in 3.55, as the vector field F WD r � Sk.a/, a 2 Ct .@D/, might not have a

well-defined normal component for merely continuous density a 2 Ct .@D/. In

contrast, for uniformly Hölder-continuous tangent densities a 2 C 0;˛.@D/, the

vector field F can be extended in a uniformly Hölder-continuous way up to the

boundary F 2 C 0;˛.R3 nD/.
Again taking into account that equation (3.51) is second kind from

C
0;˛
t .div; @D/ � C 0;˛.@D/ � C

N to C
0;˛
t .div; @D/ � C 0;˛.@D/ � C

N

and uniquely solvable, the inverse operator exists and is bounded from

C
0;˛
t .div; @D/ � C 0;˛.@D/ � C

N to C
0;div
t .div; @D/ � C 0;˛.@D/ � C

N :

Notice that the operator xxL is only continuous with the given norm C
0;˛
t .div; @D/�

C 0;˛.@D/. In particular, L12.�/ D �n � Sk.n�/ is only continuous, not compact

(note that rs �L12.�/ D rs � .�n � Sk.n�// D n � r � Sk.n�/; see [11]) . Yet the

rest of the operators are compact and we can write the operator 1
2

C xxL in (3.51) in

the form

(B.7)
1

2

�

a

�

�

C xxL
�

a

�

�

D
�

1
2

L12

0 1
2

��

a

�

�

C
�

L11 0

L21 L22

��

a

�

�

where the first term is invertible with inverse

(B.8)

�

1
2

L12

0 1
2

��1

D
�

2 �4L12

0 2

�

and the rest is compact. Equations 3.59, 3.60, and 3.61 follow. �
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Appendix C Partial Wave Expansions

An important representation of the electromagnetic field is that based on sepa-

ration of variables in spherical coordinates. As shown independently by Lorenz,

Debye, and Mie [15,26], the fields induced by sources in the interior of a sphere can

always be expressed in the exterior of the sphere according to the representation

(C.1)

E far D
X

m;n

�

amnr � r �
�

xhn.kjxj/Y m
n

�

C i!�bmnr �
�

xfn.kjxj/Y m
n

��

;

H far D
X

m;n

�

bmnr � r �
�

xhn.kjxj/Y m
n

�

� i!�amnr �
�

xfn.kjxj/Y m
n

��

;

where hn is the spherical Hankel function of the first kind. For sources in the

exterior of the sphere, we have

(C.2)

E loc D
X

m;n

�

amnr � r �
�

xjn.kjxj/Y m
n

�

C i!�bmnr �
�

xfn.kjxj/Y m
n

��

;

H loc D
X

m;n

�

bmnr � r �
�

xjn.kjxj/Y m
n

�

� i!�amnr �
�

xfn.kjxj/Y m
n

��

;

where jn is the spherical Bessel function [1].

In order to obtain a finite static limit, we renormalize and define the modified

spherical Hankel/Bessel function by

(C.3) zfn.k; r/ WD

8

<

:

zhn.k; r/ D hn.kr/
knC1

�i.2n�1/.2n�3/���3�1
;

zjn.k; r/ D jn.kr/
.2nC1/.2n�1/���3�1

knC1 :

It is easy to check that

(C.4) lim
k!0

zfn.k; r/ D
(

limk!0
zhn.k; r/ D 1

rnC1 ;

limk!0
zjn.k; r/ D rn:

With a slight abuse of notation we will refer to both E far and E loc as E inc, and

to both H far and H loc as H inc. When the distinction is important, we will specify

the use of zhn.k; r/ or zjn.k; r/ as the radial function of interest.

Normalizing the coefficients amn; bmn by the inverse of the scaling factor in

(C.3), we write

(C.5)

E inc D
X

m;n

�

zamnr � r �
�

x zfn.k; jxj/Y m
n

�

C i!�zbmnr �
�

x zfn.k; jxj/Y m
n

��

;

H inc D
X

m;n

�zbmnr � r �
�

x zfn.k; jxj/Y m
n

�

� i!�zamnr � .x zfn

�

k; jxj/Y m
n

��

:

The fields of a magnetic multipole of degree n and order m are defined to be

(C.6)
PE inc

nm D i!�r � .x zfn.k; jxj/Y m
n /;

PH inc

nm D r � r � .x zfn.k; jxj/Y m
n /:
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The corresponding vector and scalar potentials can be defined by

(C.7) PAinc

nm D �r �
�

x zfn.k; jxj/Y m
n

�

; P�inc
nm D 0:

They clearly satisfy

(C.8)
� P�inc

nm C k2 P�inc
nm D 0; � PAinc

nm C k2 PAinc

nm D 0;

r � PAinc

nm D i!�� P�inc
nm:

Moreover, PAinc

mn and P�inc
mn are bounded. The fields of an electric multipole of

degree n and order m are defined to be

(C.9)
RE inc

nm D r � r �
�

x zfn.k; jxj/Y m
n

�

;

RH inc

nm D �i!�r �
�

x zfn.k; jxj/Y m
n

�

:

In this case, however, it is easy to verify that the function that serves as the obvious

vector potential, namely x zfn.k; jxj/Y m
n , is not in the Lorenz gauge. To find a

suitable replacement, we compute

r � r �
�

x zfn.k; jxj/Y m
n

�

D k2x zfn.k; jxj/Y m
n

C r @

@r

�

r zfn.k; r/Y
m
n

�

rDjxj
:

(C.10)

Note that

(C.11)
@

@r

�

r zfn.k; r/Y
m
n

�

D zfn.k; r/Y
m
n C r

@

@r
zfn.k; r/Y

m
n :

The first term zfn.k; r/Y
m
n is a Helmholtz potential. Making use of the following

identity for spherical Hankel and Bessel functions [1]

(C.12)
nC 1

´
hn.´/C h0

n.´/ D hn�1.´/;
n

´
jn.´/ � j 0

n.´/ D jnC1.´/;

we have

(C.13) r
@

@r
zhn.k; r/ D rk2

2n � 1
zhn�1.k; r/ � .nC 1/zhn.k; r/

and

(C.14) r
@

@r
zjn.k; r/ D � rk2

2nC 3
zjnC1.k; r/C n zjn.k; r/:

Multiplying by Y m
n leads to

(C.15)

r
@

@r
zhn.k; r/Y

m
n D rk2

2n � 1
zhn�1.k; r/Y

m
n � .nC 1/zhn.k; r/Y

m
n ;

r
@

@r
zjn.k; r/Y

m
n D � rk2

2nC 3
zjnC1.k; r/Y

m
n C n zjn.k; r/Y

m
n :
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The first term on the right-hand side is of the order O.k/, while the second term is

a Helmholtz potential and of magnitude O.1/. Using (C.15) and (C.11) in (C.10),

we obtain

(C.16)

r � r �
�

xzhn.k; jxj/Y m
n

�

D k2xzhn.k; jxj/Y m
n C k2

2n � 1r
�

r zhn�1.k; r/Y
m
n

�

rDjxj

� r
�

nzhn.k; r/Y
m
n

�

rDjxj

for the outgoing waves, and

(C.17)

r � r �
�

x zjn.k; jxj/Y m
n

�

D k2x zjn.k; jxj/Y m
n � k2

2nC 3
r

�

r zjnC1.k; r/Y
m
n

�

rDjxj

C r
�

.nC 1/ zjn.k; r/Y
m
n

�

rDjxj

for the incoming waves. Note that the last term on the right-hand side of (C.17)

and the left-hand side of (C.17) both satisfy the vector Helmholtz equation. Thus,

the first two terms on the right-hand side of (C.17) must together satisfy the vector

Helmholtz equation as well. Dividing those two terms by k2 and multiplying by

�i!��, we define the corresponding vector and scalar potentials by

(C.18)
RAinc

nm D �i!��xzhn.k; jxj/Y m
n C �i!��

2n � 1 r
�

r zhn�1.k; r/Y
m
n

�

rDjxj
;

R�inc
nm D nzhn.k; jxj/Y m

n ;

for the outgoing waves and

(C.19)
RAinc

nm D �i!��x zjn.k; jxj/Y m
n C i!��

2nC 3
r

�

r zjn�1.k; r/Y
m
n

�

rDjxj
;

R�inc
nm D �.nC 1/ zjn.k; jxj/Y m

n ;

for the incoming waves. It is easy to verify that

(C.20)
� R�inc

nm C k2 R�inc
nm D 0; � RAinc

nm C k2 RAinc

nm D 0;

r � RAinc

nm D i!�� R�inc
nm:

The last equation, which enforces the Lorenz gauge, is obtained by taking the di-

vergence of (C.17). Clearly, both potentials RAinc

mn and R�inc
mn are of the order O.1/.
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