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G
lobal cycles of carbon (e) 
and nitrogen (N) are coupled 
through processes of terres

trial and marine biomass accumula

tion, decomposition, and storage. 
Alfred Redfield (1958) proposed that 
nearly constant carbon-to-nurrient 
ratios in marine phytoplankton and 

bacteria required that changes in 
one biogeochemical element be 
matched by changes in other essen
tial elements. The "Redfield ratio" 
approach has proven valuable in un
derstanding not only marine bio
geochemistry (Broecker et al. 1979, 
Howarth 1988), but also carbon and 
nutrient cycles on land (Bolin and 
Cook 1983, Melillo and Gosz 1983, 
Reiners 1986, Rosswall 1981, 
Vitousek 1982). Both plant species 
diversity and their ability to produce 
varying amounts of structural mate
rial cause greater variation in car
bon to nutrient ratios within terres
trial biomass than is found in the 
ocean (Vitousek et al. 1988). Yet 
nutrient limitation of net terrestrial 
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Changes in forest area, 

nitrogen supply, and 

biomass burning may 

decrease nitrogen

stimulated terrestrial 

carbon storage 

primary production is still common
place: In particular, the photosyn
thetic requirement for nitrogen, 
coupled with relatively low levels of 
available nitrogen in many terres
trial ecosystems, causes carbon up
take and storage on land to be tightly 
regulated by the nitrogen cycle 
(Vitousek and Howarth 1991). 

Nitrogen limitation of primary 
production, and the consequential 
coupling of carbon and nitrogen, 
arises in large part because annual 
external inputs of nitrogen to most 
systems-through either atmospheric 
deposition or biological fixation
are much lower than the nutritional 
demand or uptake potential of plants. 
Nitrogen requirements must there
fore be met by efficient internal re
cycling between live plant tissue and 
decomposing organic matter (Figure 
I; Chapin et al. 1986, Cole and 
Rapp 1981,John50n and Van Hook 
1989, Seastedt and Knapp 1993, 
Vitousek 1982). Where nitrogen is 
limiting, its efficient retention within 
the system results in extremely low 
nitrogen losses to both aquatic and 
atmospheric environments (Bowden 

et al. 1991, Howarth et al. 1995, 
Johnson 1992, Matson and Vitousek 
1990), and any changes in the total 
nitrogen capital of the system are 
usually matched by parallel changes 
in toral carbon (Rastetteret al. 1992). 

The coupling of carbon and nitro
gen cycles has attracted new focus in 
light of current and projected hu
man perturbations to the environ
ment. In particular, considerable 
research has been devoted to under
standing how the terrestrial carbon 
cycle will respond to and feed back 
on changes in atmospheric carbon 
dioxide and temperature. Simple 
analyses based only on relationships 
among carbon assimilation in bio
mass, temperature, and carbon diox
ide concentrations yield predictions 
that are markedly different, often even 
in sign, from those that account for 
the coupled response of carbon and 
nutrient cycles (Schimel et al. 1990, 
1994, Townsend and Rastetter 
1996). For example, the relation
ships among temperature, decom
position, and net ptimary produc
tion predict that warming will result 
in a net carbon loss from land to the 
atmosphere, producing a positive 
feedback to further warming (Town
send et al. 1992, Woodwell 1990). 
However, the increased rates of de
composition under a warmer climate 
that produce the carbon dioxide loss 
will also increase nitrogen mineraliza
tion, potentially leading to increased 
plant growth and a net gain-rather 
than loss-in overall ecosystem car
bon (Rastetter et a!. 1992, Schimel et 
al. 1994, Shaver et al. 1992). This 
gain occurs through a repartitioning 
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of nitrogen pools from soils, which 
have low C:N ratios, to plants, which 
generally have much higher C:N ratios. 

In the long term, however, in
creases in carbon storage must even
tually become nitrogen limited un
less a novel source brings additional 
nitrogen into the system (Diaz et al. 
1993). Similar feedbacks leading to 
growth limitation are seen in the 
response of plants to elevated car
bon dioxide: Plants grown in fertil
ized environments often demonstrate 
marked (although possibly short
term) increases in growth under 
elevated carbon dioxide, but when 
the same plants are exposed to 
high carbon dioxide at ambient 
soil nutrient levels, they tend to show 
much less of a response (Bazzaz 1990, 
Comins and McMurtrie 1993). 

On a contemporary global scale, 
the carbon-nitrogen cycle coupling is 

further reflected by recent findings 
that part of the "missing" carbon sink I 

may be attributed to fertilization of 
nitrogen-limited ecosystems by 

anthropogenically enhanced levels of 
atmospheric nitrogen deposition (Gal
loway et al. 1995, Schimel 1995, 
Schindler and Bayley 1993, Townsend 
et al. in press). However, the develop
ingglobal atmospheric perspective also 
reveals that perturbations to carbon 
and nitrogen cycles are not parallel: 
the net loss of carbon from land to 
atmosphere in recent decades has oc
curred concurrently with a net gain of 
biologically available nitrogen to ter
restrial ecosystems. Although this pat
tern does not preclude a nitrogen
stimulated carbon sink, we believe 
that it is evidence of ongoing regional 
changes in the carbon-nitrogen cycle 
coupling that may ultimately elimi
nate such a sink. 

'Thc "missing" <.:arbon sink refers to the 
quantity of <.:arbon released from fossil fuel 
<.:ombustion, deforcstation, and <.:cmcnt pro
duction each year (7.1 +/-1.1 Pg Clyri 1 Pg" 
10 15 g) that is unaccounted for by measured 
a<.:cumulation in the atmosphere (3.2 +1-0.2 

Pg Clyr) plus estimated fluxes to the ocean 
(2.0 +1-0.8 Pg C/yr). This missing quantity, 
roughly 1.5 Pg elyr, is thought to represent a 
flux from the Jtmosphere to the terrestrial 
biosphere (thus the term "sink"). Potential 
mechanisms to account for the missing sink 
include fertilization of net primary produ<.:
lion by elevated carbon dioxide or nitrogen 
deposition and forest regrowth in the North
ern Hemisphere. For more detailed informa
tion, see Schimel (1995). 

April 1997 

Nitrogen inputs 

1 
Available 

nitrogen 

Figure 1. A simple nitrogen cycling model for forest ecosystems. Internal 
recycling of nitrogen through decomposition (fat arrows) provides the bulk of 
inorganic nitrogen for plant uptake. Nitrogen inputs and losses (thin arrows) 

are relatively small compared with internal fluxes, especially in nitrogen
limited ecosystems. 

In this article, we emphasize three 
points that, when integrated to the 
global level, provide us with a new 
perspective on how human influ
ences on the carbon and nitrogen 
cycles are achieving global signifi
cance. First, in the temperate zone, 
high levels of nitrogen deposition 
must eventually decrease the areal 
extent of nitrogen-limited ecosys
tems, such that further nitrogen depo
sition will not lead to more carbon 
uptake by vegetation (Figure 2a). 
Second, the net loss of temperate 
forests and woodlands and net gain 
in agricultural land over the past 
300 years have resulted in a regional 
net decrease in the amount of eco

system carbon that can be fixed and 
stored per unit nitrogen. Third, in 
tropical latitudes an increase in the 
extent and frequency of biomass 
burning-especiaIly in tropical sa
vannas~causes long-term losses of 
nitrogen from some systems, thereby 
reducing their potential to regain 
carbon lost in combustion (extreme 
nitrogen limitation; Figure 2a). We 
contend that these regional-level per
turbations are altering the natural 
linkages between the terrestrial car
bon and nitrogen cycles to an un
precedented extent, an effect that 
could reduce the future carbon stor
age potential of the biosphere. In the 
fol!owing sections, we provide evi
dence to support each of these points, 

and we use a global nitrogen deposi
tion and land-cover perturbation 
simulation to illustrate several of these 
effects. Finally, a general decoupling 
of terrestrial carbon and nitrogen 
cycles has environmental implica
tions that go well beyond its effect 
on atmospheric carbon dioxide. 

Nitrogen deposition in 
temperate regions 

Temperate northern latitudes (25-
55°N) have been subjected to el
evated atmospheric nitrogen deposi

tion for several decades, with some 
areas now receiving an order of 
magnitude more nitrogen than in 
preindustrial times (Galloway et a1. 
1995). Because plant growth in much 
of the temperate zone is limited by 
nitrogen (Vitousek and Howarth 
1991), high nitrogen deposition may 
contribute to a significant carbon 
sink in these regions (Galloway et a1. 
1995, Townsend er al. 1996), Com
pared with grassland ecosystems, this 
sink should be amplified in forests, 
where a combination of high C:N 
ratios and long lifetimes of woody 
plants allows for relatively large 
amounts of carbon to be fixed and 
stored for decades per unit nitrogen 
(Rastetter et al. 1992). H()\.vever, a 

negative effect of chronically high 
nitrogen deposition has been ob
served in some forested areas of 
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Extreme nrtrogen limitation Nitrogen saturation 
<-- ------> 

Natural ecosystems 

AQriculturalland 

Nitrogen availability 

Extreme nitrogen limitation Nitrogen saturation 
<-- ------> 

Nitrogen additions 

Figure 2. (a) A conceptual model shm'i

ing that nitrogen enrichment affects 

carbuo sequestration in plants and soils 

in a curvilinear fashion. Too much ni
trogen (saturation) plays a role in eco

system decline as micronutrient impov
erishment and soil acidification increase. 

Too little nitrogen (e.g., as a result of 

high fire frequencies on land previously 

occupied by forest or in savannas) re

duces carbon sequestration capacity 

because extreme nitrogen limitation may 

be induced through pyrodenitrification. 

Nitrogen levels of agroecosystems, by 
contrast, have little to no influence on 

long-term carbon storage due to soil 

management practices and the fast turn

over time of crops. (b) Hypothetical 

response of vegetation carbon pool in a 

nitrogen-limited system to additions of 

anthropogenic nitrogen. Initially, there 

will be significant increases in carbon 

for every increase in nitrogen, but as 

nitrogen becomes less limiting, this re

sponse will approach zero, and it may 

even become negative in systems that 

chronically receive extremely high ni

trogen additions. 

North America and Europe, in which 
nitrogen enrichment results in soil 

acidification and micronutrient im

poverishment, leading to ecosystem 

decline and a reduction in net car

bon uptake. Aber et al. (1989) and 

Schulze (1989) refer to this process 

as nitrogen saturation. These satu

ration effects may not currently be 
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Figure 3. Three extreme carbon-to-nitrogen cycle perturbation phenomena: (1) 

conversion of fores[ to cropland, (2) ninogen deposition in temperate forests, and 

(3~ deforestation or increased savanna biomass burning in the tropics. All 

phenomena share the same starting point (top centerl, a pristine forest containing 

a relatively small amount of total available nitrogen, from which nitrogen losses 

are small. Arrow thickness indicates the relative fluxes of nitrogen and carbon 

dioxide in eacb nitrogen perturbation scenario. Boxes within each section depict 

the relative nitrogen pool sizes for each scenario; see key at bottom. (1) 

Conversion of forests ro croplands creates large regions that cannot store carbon 

in the long term {decades to centuries}. Nitrogen inputs via fertilizer are 

enormous, and losses are typically high due to fertilizer application inefficiencies 

and crop harvesting. {2} In temperate regions, increased nitrogen deposition from 

fossil fucl huming supports a transient increase in carbon storage or carbon 

dioxide assimilati()n. However, as nitrogen deposition rates exceed biological 

demand, nitrogen losses by denitrification and leaching increasc. Extreme nitro

gen loading (saturation) can lead (() large nitrogen losses, forest decline, and 

carbon release to the atmosphere. (J) Tropical biomass burning causes nitrogen 

losses by pyrodenitrification. Deforestation in these regions and increased fire 

frequency in some savannas create nitrogen deficits that impede carbon seques

tration. Under extremely frequent fire regimes, carbon lost through combustion 

is not replaced in subsequent regrowth. 

. I deposition 
co, 

co, <Ii <li ~ ... - D ... ~1" • -= .' ... ~ 
_l,~oo. 

o Soil Organic Nitrogen I] Total Available Nitrogen 0 Fractlon of Available N Stored . Fraction of Available N Los! 

observed in some regions where ni

trogen deposition is high; neverthe

less, the amount of carbon stored 

per nitrogen deposited must eventu

ally decrease as other factors that 

li~it net primary production (e.g., 

other nutrients) increase in relative 

importance. In a sense, nitrogen satu

ration can be considered a process 

that begins when nitrogen no longer 

limits production due to human ac

tivities, and that may ultimately re

sult in ecosystem decline. 

Global nitrogen deposition is ex

pected to double in the next 25 years 
(Gallnway et al. 1994), but carbon 

storage is unlikely to rise at a similar 

rate. In the northern temperate zone, 
continued high levels of nitrogen 

deposition will eventually increase 
the areal extent of ecosystems that 

are no longer limited b·y nitrogen, 

leading to a decrease in annual car

bon storage that results from nitro
gen fertilization in this region. South

ern latitude forests (20-50U 5) are 

expected to experience increases in 

nitrogen deposition as nations con

tinue to industrialize (Galloway et 

al. 1994), which will likely result in 

effects similar to those seen in north

ern forests: a short-term rise in car~ 

bon sequestration followed hy a !ong

term leveling or decline in carbon 

uptake as the amount of deposited 

nitrogen exceeds that which is us

able by vegetation. Even if southern 

latitude forests do continue to ac-
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cumulate carbon for decades to 

centuries, their total area is not 

sufficient to produce a significant 

global carbon dioxide sink (Town

send et al. 1996). 

Pronounced increases in nitro

gen deposition to moist tropical 

forests are also expected in the 

coming century, but nitrogen limi

tation is less pervasive in these 

forests (Vitousek and Howarth 

1991). Tropical forest soils tend to 

be highly weathered. Plant growth 

in these ecosystems is often lim

ited by phosphorus, by other rock

derived elements (Crews et al. 

1995), or perhaps even by light; thus, 

tropical forests are unlikely to store 

significant excess carbon in response 

to increases in available nitrogen. 

In sum, where nitrogen is in short 

supply, increases in nitrogen should 

be matched by significant increases in 

carbon, but as nitrogen inputs con

tinue to rise, the response of the car

bon cycle must eventually approach 

zero and may even become negative in 
some regions (Figure 2b). Thus, at 

best, a nitrogen-stimulated carbon sink 

can last only until nitrogen limitation 

of growth is alleviated; at worst, any 

net storage of carbon in the early years 

of elevated deposition may be offset 

by later carbon loss as the system 
degrades (Figure 3). 

Shifting land use and 
land cover 

The link between the carbon and 

nitrogen cycles is highly dependent 

on the global distribution of land 
cover, which has changed dramati

cally in the last 300 years (Table J). 

The world has experienced a large 

decrease in forest and woodland 

cover and a concomitant increase in 

agricultural land. Global cropland 
and pasture area has more than 

doubled in the last 140 years, to 
32% of the earth's terrestrial sur

face (Houghton 1994). Much of 

this agricultural land was con

verted from forests; aside from 

dense urban centers, such trans

formations represent the most dra

matic shift in the carbon and nitro

gen storage and flux characteristics 

of the earth's surface. An additional 

21 'Yo to 37% of the global land 

surface may be convertible to crop 

land, and much of this land will 

April J 997 

Table 1. Regional and total global percentage change in forest/woodland, 
grassland/pasture, and agricultural land from 1700 to 1980 (Houghton et al. 
1983, Richards 1990). The first group of entnes includes regions or countries 
chat are currently experiencing, or wil! experience, significant levels of 
nitrogen deposition in the next 25 years (Galloway et al. 1994, Townsend et 
al. 1996). The second group includes regions that are likely to experience 
extreme nitrogen limitation via deforestation and biomass burning (Crutzen 
and Andreae 1990, Robertson and Russwall 1986). Numbers in parentheses 
indicate the actual areal extent of change in 10 6 ha. 

Region Forest!woodland 

Subject to N deposition 

Europe -7.8% (-llS) 

North America -7.3'Yo (-74) 

Russia/North A~ia -17.3% 1-197) 

China -57.0% (-77) 

Southeast A,ia -7.1 'I" (-18) 
South A~)a -46.3<'/,,1-155) 

Northern Africa/ -(,3.2% (-24) 

~1iddlc East 

Suhject to N depletion 
Tropical Africa -20.9% (-284) 

Latin America -20.3% (-294) 

Pacific developed -7.9% (-21) 

countries 

Gloh;ll rota I -18.7% (-I 162) 

likely be transformed in the future 
(Houghton J 994). 

Agricultural lands dramaticalty 

alter the natural linkages between 

carbon and nitrogen cycles. They 

typically receive large amounts of 

excess nitrogen from fertilizer 
(Matthews 1994), but a combina

tion of management practices, low 

C:N ratios of most crops, and rapid 

turnover time of crops prevents the 

nitrogen inputs from resulting in 
long-term carbon storage (Burke et 

al. 1989). Thus, the global-scale ex

pansion of cropland is decreasing 

the available surface area on which 
the natural carbon-nitrogen cycle 

coupling can function and is in

creasing fluxes of excess reactive 
nitrogen from the terrestrial landscape 

to aquatic systems and to the atmo

sphere (Figure 3; Howarth et al. 1996). 

Many areas that might have the 

potential to store carbon in response 

to elevated nitrogen arc experienc

ing concurrent losses in forests and 

woodlands and gains in croplands. 

For example, by the year 2020, an

thropogenic nitrogen enrichment 

mediated by fossil fuel combustion 

and fertilizer use in Asia alone is 
expected to increase the global an

thropogenic input of nitrogen to the 
biosphere by 40% (Galloway et a!. 

Grassland! 
pasture Cropland 

-27.4% (-52) +104.5%(+70) 

-13.7% (-1251 +(,666.7% (+2001 

-0.3% (-3) +606.1%(+200) 

-2.9% (-28) +362.1%(+105) 

-26.4% (-B) +1275.0%(+41) 
-1.1 '};, (-2) +296.2%(+157) 

-5.6% (-63) +435.0% 1+87) 

+10.1'/0(+106) +404.5% (+I7!:\) 
+26.2%(+159) +1928.6'?I,,(+US) 

-4.9% (-31) +lO60.0% (+53) 

-1.0% {-721 +466.4% (+ 12361 

1995); moreover, Asia continues to 

have one of the highest deforesta

tion and cropland expansion rates In 

the world (Houghton 1994, Richards 

1990). Forest and woodland extent is 

also decreasing due to urban and rural 

development, producing artificial or 

degraded landscapes that contribute 

little, if at all, to carbon storage. From 

a regional standpoint, the rate at which 

an area's carbon cycle becomes less 

sensitive to nitrogen additions in

creases successively as forests are con

verted to croplands, towns, and cities. 

Some temperate regions, includ

ing parts of North America, Europe, 
and the former Soviet Union, have 

undergone reforestation of aban

doned agricultural land since the 
turn of the century (Dixon et 31. 
1994, Richards 1990), and these 

changes may partially offset the gen

eral decrease in carbon storage hy

pothesized here. Ho\vever, current 

carbon sink estimates for Northern 

hemisphere forest regro\vth 3re 

highly variable, ranging from 0-1 Pg 
elyr (1 Pg = 10 1 'g; Dixon et al. 1994, 

Houghton 1993, Schimel1995). The 

uncertainty in this estimate reflects 

the difficulty in quantifying '>llch 
things as the geographic extent of 

recovering forests, the decay of log

ging debris for decades after the ini-
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tial and repeated cutting of forests, 
the oxidation of removed wood prod
ucts and in situ soil carbon, and the 
immediate burning of forest materials 
at the logging sites (Houghton 1993). 

Part of the uncertainty in the" re
growth sink" also arises from the 
difficulty in discerning how much 
additional regrowth is being stimu
lated by elevated carbon dioxide and 
nitrogen. However, the effects of 
regrowth on the overall regional cou
pling of carbon and nitrogen cycles 
are somewhat independent of this 
debate. A given secondary forest may 
or may not be a significant carbon 
sink, bur conversion of agricultural 
land back to forests does represent 
the best way to restore some of the 
natural carbon-nitrogen cycle link
ages of a region. Even if forest recov
ery in the Northern Hemisphere is 
currently a significant carbon sink, 
it is surely a temporary one because 
net annual carbon uptake declines 
with increasing stand age (Houghton 
1993). Moreover, increases in de
mand for agricultural land could 
result in the felling of these second
ary forests again in the future. 

Combined land cover and 
nitrogen deposition effects 

To better demonstrate the effect of 
land-cover change on potential ter
restrial carbon storage, we used a 
nitrogen deposition perturbation 
model to estimate 1990 global ter

restrial carbon uptake due to fossil 
fuel-derived nitrogen deposition. 

The model is described in detail by 
Townsend et al. (1996); briefly, it 
uses a global nitrogen deposition 
map linked to spatially explicit eco
system response algorithms that vary 
based on land-cover and land-use 
category. These algorithms, adapted 
from the CENTURY model (Parton 
et al. 1993, Schimel et al. 1994), 
control carbon and nitrogen fluxes 
between vegetation and soil com
partments based on biome-specific 
CN stoichiometries. The model op
erates on a global 1 x 1 degree grid 
to capture the spatially heteroge
neous response of the world's biomes 
to nitrogen enrichment. Nitrogen 
deposition is estimated for each grid 
cell based on a three-dimensional 
atmospheric chemical transport 
model (Penner et al. 1991). 
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Our carbon storage calculation 
was based on a global data set of 
probable pristine biome distribution, 
with no human influence (e.g., agri
culture) on land cover (Matthews 
1983). We compared this result with 
two previous simulations by Townsend 
et al. (1996), in which carbon storage 
was assumed to be negligible in agri
cultural areas. Of their two simula
tions, one included a gradual decrease 
in ecosystem nitrogen retention with 
time in regions of high nitrogen depo
sition (e.g., North America, Europe, 
Asia), thereby simulating the likely 
effects of nitrogen saturation. Our 
no-agriculture/no-nitrogen sa tura
tion simulation estimated global car
bon uptake at 1.04 Pg/yr. Townsend 
et al.'s estimates. with agriculture/ 
no-saturation and agriculture/satu

ration were 0.74 and 0.44 Pg/rr, 
respectively. This com parison clearly 
demonstrates that agricultural ex
pansion has decreased the global ca
pacity for carbon sequestration in 

the biosphere, and this decline in 
carbon storage has likely been fur

ther affected by nitrogen saturation. 
The spatial patterns of estimated 

1990 carbon storage for the no-agri. 
culture/no-satura tion simulation are 
shown in Figure 4a and for the agri
culture/saturation simulation are 
shown in Figure 4b. A comparison 
of these two maps illustrates the loss 
of carbon storage potential in re
gions of North America, Europe, 
and Southeast Asia due to land-cover 
and land-usc change and extreme 
nitrogen loading. The development 
of two nitrogen saturation "holes," 
one in central Europe and one in the 
northeastern United States, is also 
evident (Figure 4bJ. These regions 
receive the greatest quantities of 
deposited nitrogen, yet the decrease 
in nitrogen limitation and the spa
tial distri burion of agricultural lands 
combine to prevent carbon storage 
relative to pristine conditions. These 
negative effects of nitrogen enrich

ment and agricultural expansion will 
likely increase as croplands continue 
to expand globally and as nitrogen 
saturation increases from a regional 
to a global phenomenon. 

In these atmospheric transport 
and deposition simulations, only 

NO, (NO, NO" and NHNO,l pro
duced from fossil fuel use is simu
lated. Because NO)" constitutes ap-

proximately 25% (approximately 21 
x lOll g N) of all known anthropo

genic sources of nitrogen, the nitro
gen saturation effects shown here 
are greatly understated. A compre
hensive analysis that includes all 
known nitrogen compounds has re
cently been provided by Holland et 
a1. (in press), and their results 
strongly support our argument-ni
trogen saturation and land-cover 
change are significanrly altering glo

bal carbon storage potential. 

Frequency and extent of 
biomass burning in the tropics 

Changing fire regimes in the tropics 
represent another important anthro
pogenic perturbation to the carbon
nitrogen cycle coupling. Current in
creases in the extent and frequency 
of tropical biomass burning cause 
nitrogen losses, which may lead to a 
reduction in the capacity of the trop
ics to store carbon. Although these 
increases do not literally decouple 
the nitrogen and carbon cycles-in 
fact, they may strengthen the cou
pling under certain fire regimes
the effects of unnaturally high fire 
frequencies and the permanent con
version of forests to fire-prone grass
lands result in a breakdown of estab
lished biogeochemical links in the 
tropics. These human activities ef
fectively cause a decoupling of the 
carbon and nitrogen cycles. 

Some tropical burning occurs as 
forests are converted to croplands 
and pastures; however, many fires 
take place yearly or even biennially 
in savannas (Cook 1994, Lacey et a1. 
1982). Savannas cover roughly 55%, 
50%, and 40% of the African, Aus
tralian, and South American conti
nents, respectively (Hao and Liu 
1994). Savannas are burned for many 
purposes, including pest control, lit
ter removal, nutrient mobilization, 
and cultural tradition. Whereas a 
portion of emitted nitrogen is released 
as NO, (2.1-5.5 x 10" g N/yr), more 
than 50% of the total nitrogen re
leased can be lost as N, (11-19 x 10 12 

g N/yr; Crutzen and Andreae 1990, 
Kuhlbusch et al. 1991). Although 
emitted NO may be deposited down
wind of a bXurning site and reincor
porated into vegetation, nitrogen lost 

as N2 cannot be incorporated back 
into the vegetation through deposi-
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a (qC m" yr" ) 

I--- -:;;~ ~ :::;:;;; ==_--T-~;;;:___-____==___:::::;:=_-=_--I 94 .00 

70.50 

. 47.00 

23.50 

. 0.000 

b (gC m" yr" ) 

,---- -------- ----------------~~----------~--------------, 94 .00 

70.50 

47.00 

, , , 
23.50 

)' 

0 .000 

Figure 4, Glo b:!.! di str ibut ion of carbon storage (g C· m·2 
• yr·1

) due to nitrogen deposition in 1990, calcul ated from che 
nitrogen deposition pen urharion model. (a ) Scena ri o with a pri stine bjome distribution and with no nitrogen saturat ion . 
Regions with grea teST ca rbon storage a re forested areas with the high rates of ni trogen deposit io n. (h) Scenar io with curre m 
glo bal distribu tio n o f agricu ltural la nds and pUTential niuoge n sa turatio n effects. Regions of high carbon storage shown in 
pan (a) 3 re decreased significanrl y in part (b) due ro both danging land <:over and ni trogen losses resulting fro m sa runHion. 
Observed areas of forest decl ine in the northeastern United Sta res and Eastern Europe can be seen as twO "holes" in p :Hf 

(b), each with ca rbon SlO rage approachi ng 0 g C . mo2 
• yr-' . 

tion_ Changes in biological nitrogen 
fixati on following burning appear 
insufficient to recover the emitted 
N, (Cook 1994, Lacey er al. 1982); 
thus, the losses are essentially per
manent in the short term (annual to 
deca dal time sca les; Robertson and 
Rosswa ll 1986). Eventua ll y, such 
fire-driven losses of N, (known as 
pyrodentrificatio ll; Coo k 1994, 
Crutzen and And reae 1990) from 
these typically n itrogen- limited sa
va nnas must be matChed by losses of 
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carbon as productivity declines (Fig
ures 2 and 3; Ojima et al. 1994, 
Robertson and Rosswall 1986). 

Increases in tropica l fire frequency 
are not limited to savanna regions. 
Many areas of both seasonally dry 
and moist trop ica l fores ts are ex
periencing a dra matic increase in 
grassland cover (Table 1) as a result 
of deforestat ion and the widespread 
in vas ion of grasses (D'A ntonio and 
Virousek 1992). Forested areas that 
are converted to croplands o r pas-

tures are prone to inva sion by fi re 
promoting C

4 
grass species (Parsons 

1972). These derived fi re -enhanced 
ecosystems tend ro scI f-ma intain a nd 
spread even without human involve
ment (Fosberg et al. 1990), a ltering 
the carbon and nitrogen biogeochem
istry drastically (D'Antonio and 
Vitousek 1992, Raison 1979). Once 
initiated, such grass/fire cycles pre
vent the est a blishmenr of woody bio
ma ss (Wright a nd Bai le), 1982), (hus 

serving as another fo rm of carbon 
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storage limitation. These areas do 
not readily return to forests and wood
lands without significant restoration 
effort, and even then, full recovery is 
unlikely because biotic and abiotic 
controls have been altered extensively 

(Hughes and Vitousek 1993). 
These changes in burning prac

tices and land cover make projec
tions of changes in carbon-nitrogen 
cycle linkages especially difficult in 
the tropics. In the temperate zone, 
the primary change is one of in
creasing nitrogen loading. In the 
tropics, deforestation and increases 
in grassland area and burning fre
quency are causing nitrogen losses, 
whereas increases in fertilizer use 
and industrial development are 
causing nitrogen gains. Thus, al
though the temperate zone appears 
to be limited primarily by nitro
gen, the tropics represent a matrix 
of nitrogen-limited and relatively 
nitrogen-rich ecosystems. 

Despite this complexity, the trop

ics as a whole are unlikely to store 
excess carbon in response to excess 
nitrogen. First, nitrogen-limited sa
vannas cannot store carbon in re
sponse to nitrogen deposition at tbe 
same levels as forests (Rastetter et 
a1.1992, Townsend et al. 1996),and 
burning losses of nitrogen will coun
teract any carbon gain. Second, much 
of the forested area of the tropics is 
not nitrogen limited (Walker and 
Syers 1976, Vitousek and Howarth 
1991), so adding nitrogen to these 

systems would not cause increased 
carbon storage. Third, those tropi
cal forests that are limited by nitro
gen are often at least seasonally dry 
and therefore highly subject to de
forestation and grass mvaslOn 
(D'Antonio and Vitousek 1992, 
Houghton 1991). 

Beyond the carbon sink 

Human activities are causing a signifi
cant perturbation to terrestrial carbon 
and nitrogen cycles at the global scale. 
A combination of decreasing nittogen 
limitation of plant growth, increasing 
extent of agricultural land use, and 
increasing biomass burning will make 
any current nitrogen-stimulated sink 
for anthropogenic carbon dioxide only 
temporary. Interest in solving an un
balanced global carbon budget has 
motivated more than two decades of 
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research aimed at identifying the miss
ing carbon sink (Broecker et al. 1979, 
Schimcl 1995). We believe that most 
of the current candidates for this sink 
art unlikely to be long-term mecha
nisms for carbon storage. 

In addition to elevated nitrogen 
deposition, such factors as forest 
regrowth, climate variability, and 
the direct effects of elevated carbon 
dioxide may all contribute to cur
rent terrestrial carbon uptake 
(SchimeI1995). However, regrowth 

can be a net sink for only a limited 
time, until forests mature. More

over, climate variability can pro
duce either sources or sinks on 
decadal time scales (Dai and Fung 
1993), and most studies of carbon 
dioxide effects show that the ini
tially elevated rates of photosynthe

sis tha t follow prolonged exposure 
to high carbon dioxide atmospheres 
are ultimately down-tegulated. Thus, 
although these processes of carbon 
dioxide and nitrogen fertili:zation and 
forest regrowth may well have 
slowed rates of atmospheric carbon 
dioxide accumulation in this cen
tury, our hopes for similar effects in 
future centuries may have to rest on 
other mechanisms for terrestrial car
bon storagc, such as direct negative 
feedbacks to warmer temperatures 
(Rastetter et al. 1992) or increases in 
carbon stocks due to shifting distribu
tions of natural biomes (Friedlingstein 
et al. 1995, Prentice and Sykes 1995). 

The rapidly changing global ni
trogen cycle may well have more 
pressing implications than its effect 
on atmospheric carbon dioxide. 
From a purely climatic perspective, 
increasing nitrogen deposition can 
not only decrease carbon dioxide 
levels, it can also lead to increases in 
methane, nitrous oxide, and tropo
spheric ozone (Bowden et al. 1991, 

Logan et al. 1981, Mosier et al. 
1991). The overa 11 effects of nitro
gen deposition on the radiative bal
ance of the atmosphere must there
fore account for all of these other 
factors as well. Furthermore, in
creases in reactive nitrogen through
out much of the world have already 
caused a litany of other environmen
tal impacts (Vitousek 1994), includ
ing photochemical smog and tropo
spheric ozone formation (Logan et 
al. 1981), freshwater nitrogen load
ing and coastal eutrophication 

(Howarth et a1. 1996), acid rain and 
forest decline (Schulze 1989), de
creased water quality (Gabric and 
Bell 1993, Murdoch and Stoddard 
1992), and shifts in community struc
ture (Bobbink 1991, Bowman et al. 
1995) and ecosystem function (Aber 
et al. 1989, McNulty et al. 1991, 
Neff et a1. 1994). As natural link
ages between terrestrial carbon and 
nitrogen cycles continue to deterio
rate in the coming decades, such 
changes are likely to become even 
more pronounced. 
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