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Abstract—The recently completed research project DEEP-ER

has developed a variety of hardware and software technologies to
improve the I/O capabilities of next generation high-performance
computers, and to enable applications recovering from the larger
hardware failure rates expected on these machines.

The heterogeneous Cluster-Booster architecture – first intro-
duced in the predecessor DEEP project – has been extended
by a multi-level memory hierarchy employing non-volatile and
network-attached memory devices. Based on this hardware
infrastructure, an I/O and resiliency software stack has been
implemented combining and extending well established libraries
and software tools, and sticking to standard user-interfaces. Real-
world scientific codes have tested the projects’ developments and
demonstrated the improvements achieved without compromising
the portability of the applications.

Index Terms—Exascale; Architecture; Cluster-Booster archi-
tecture; Co-design; Resiliency; I/O; Modular Supercomputing;

I. INTRODUCTION

During the last decade the computing performance of HPC

systems is growing much faster than their memory bandwidth

and capacity [1]. This so-called memory wall is not expected to

disappear in the near future. Additionally, higher failure rates

are predicted for next generation machines due to their huge

number of components. These are two of the main issues most

directly affecting the scientific throughput that can be extracted

from Exascale systems.

The DEEP projects [2] are a series of (by now) three

EC funded projects (DEEP, DEEP-ER, and DEEP-EST) that

address the Exascale computing challenges with their re-

search. All three follow a stringent co-design strategy, in

which full-fledged scientific applications guide the design

and implementation of system hardware and software. Their

requirements, identified by detailed application analysis, guide

all the projects’ developments. The selected codes have also

been adapted to the project platforms and served as a yard-

stick to validate and benchmark the hardware and software

achievements implemented in the course of the projects.

This paper describes the technology developed within the

DEEP-ER project to improve the I/O and resiliency capa-

bilities of HPC systems. In particular, the heterogeneous

Cluster-Booster architecture [3] (first introduced in DEEP) was

extended by a multi-level memory hierarchy. This served as

a foundation of a complete I/O and resiliency software stack.

Section II of this paper presents the DEEP-ER system

architecture, including the underlying Cluster-Booster concept,

the specific hardware configuration of the DEEP-ER prototype,

and its memory hierarchy and technologies. The software

stack is explained in Section III, including the programming

environment already introduced in the predecessor DEEP

project, and – more detailed – the DEEP-ER I/O and resiliency

software developments. The co-design applications are shortly

described in Section IV. A selection of results obtained during

the evaluation of the DEEP-ER concepts are presented in

Section V, while Section VI puts them in context with related

work. Finally, the conclusions of the paper are summarized in

Section VII.

II. SYSTEM ARCHITECTURE

Cluster computing enables building high-performance sy-

stems benefiting from lower-cost of commodity of the shelf

(COTS) components. Traditional, homogeneous clusters are

built by connecting a number of general purpose processors

(e.g. Intel Xeon, AMD Opteron, etc.) by a high speed network

(e.g. InfiniBand or OmniPath). This approach is limited by the

relatively high power consumption and cost per performance

of general purpose processors. Both make a large scale homo-

geneous systems extremely power hungry and costly.

The cluster’s overall energy and cost efficiency can be

improved by adding accelerator devices (e.g. many-core pro-

cessors or general purpose graphic cards, GPGPUs), which

provide higher Flop/s performance per Watt. Standard hetero-

geneous clusters are built attaching one or more accelerators to

each node. However, this accelerated node approach presents

some caveats. An important one is the combined effect of the

accelerators’ dependency on the host CPU and the static arran-

gement of hardware resources, which limits the accessibility

of the accelerators for other applications than the one running
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(a) Sketch of the Cluster-Booster architecture as
implemented in the DEEP-ER project (KNL: Knig-
hts Landing; NVM: non-volatile memory; NAM:
network attached memory).

(b) Picture of
the DEEP-ER
prototype, at JSC.

Fig. 1: Cluster-Booster architecture in DEEP-ER.

on the host CPU. Furthermore, both CPU and accelerator have

to compete for the limited network bandwidth in this concept.

A. Cluster-Booster concept

The Cluster-Booster architecture (Fig. 1a) integrates hete-

rogeneous computing resources at the system level. Instead of

plugging accelerators into the node and attaching them directly

to the CPUs, they are moved into a stand-alone cluster of

accelerators that has been named Booster. It is capable to run

full codes with intensive internal communication, leveraging

the fact that accelerators therein are autonomous and do

communicate directly with each other through a high-speed

network without the help of an additional CPU.

The Booster is attached to a standard HPC Cluster via a

high-speed network. This connection, together with a uniform

software stack running over both parts of the machine (see

Section III), enables Cluster and Booster acting together as

a unified system. This opens up new prospects to application

developers, who have now full freedom to decide how they

distribute their codes over the system. In contrast to accelera-

ted clusters the Cluster-Booster concept poses no constraints

on the combined amount of CPU and accelerator nodes that

an application may select, since resources are reserved and

allocated independently. Performance benefits of an applica-

tion distributed over Cluster and Booster on the DEEP-ER

prototype are discussed in [4].

B. Prototype hardware configuration

The first prototype of the Cluster-Booster concept was

designed and built in the course of the DEEP project [2].

The later DEEP-ER prototype (Fig. 1b) is the second ge-

neration of the same architecture and was installed at the

Jülich Supercomputing Centre (JSC) in 2016. It consists of 16

Cluster nodes and 8 Booster nodes. The system’s configuration

is detailed in Table I. Cluster and Booster modules are

integrated into a single, air-cooled 19” rack. This rack also

holds the storage system (one meta-data, two storage servers,

and 57 TB of storage on spinning disks). A uniform high-

speed Tourmalet A3 EXTOLL fabric runs across Cluster and

TABLE I: Hardware configuration of the DEEP-ER prototype.

Feature Cluster Booster

Processor Intel Xeon E5-2680 v3 Intel Xeon Phi 7210

Microarchitecture Haswell Knights Landing (KNL)

Sockets per node 2 1

Cores per node 24 64

Threads per node 48 256

Frequency 2.5 GHz 1.3 GHz

Memory (RAM) 128 GB 16 GB – MCDRAM

96 GB – DDR4

NVMe capacity 400 GB 400 GB

Interconnect EXTOLL Tourmalet A3 EXTOLL Tourmalet A3

Max. link bandwidth 100 Gbit/s 100 Gbit/s

MPI latency 1.0 µs 1.8 µs

Node count 16 8

Peak performance 16 TFlop/s 20 TFlop/s

Booster, connecting them internally, among each other, and to

the central storage [5].

1) Non-volatile Memory: The DEEP-ER prototype is en-

hanced by advanced memory technologies. A multi-level me-

mory hierarchy has been built providing a total memory capa-

city of 8 TBytes, to enable the implementation of innovative

I/O and resiliency techniques (see Sections III-C and III-D).

Each node in the DEEP-ER prototype (in both Cluster and

Booster) feature a non-volatile memory (NVM) device for

efficient buffering of I/O operations and writing checkpoints.

The chosen technology is Intel’s DC P3700, a device aimed to

replace SSDs, with 400 GByte capacity. It provides high speed,

non-volatile local memory, attached to the node via 4 lanes

of PCIe gen3. Extensive experiments and a wide range of

measurements with I/O benchmarks and application mock-ups

have been performed, which shows substantial performance

increase over conventional best-of-breed SSDs and state-of-

the art I/O servers (see Section V-A, in particular for scenarios

with many I/O requests in parallel).

Virtex 7
690T 
FPGA

PCIe + Power

HMC
(2GB)

HDI6
EXTOLL

Fig. 2: Network Attached Memory (NAM) board.

2) Network Attached Memory (NAM): DEEP-ER has also

introduced a new memory concept: the network attached

memory (NAM) [6]. It exploits the RDMA capabilities of

the EXTOLL fabric, which enable accessing remote memory

resources without the intervention of an active component

(as a CPU) on the remote side. The NAM board (Fig. 2) is

built using a PCIe form-factor and acts fully autonomously.

The PCIe connection is only utilized for power supply and

debugging functionality. The NAM combines Hybrid Memory

Cube (HMC) resources with a state-of-the-art Xilinx Virtex 7

FPGA. The DEEP-ER prototype holds two NAM devices with



a capacity of 2 GBytes each. This relatively small size is due to

current HMC technology limitations. The FPGA implements

three functions: the HMC controller1, the EXTOLL network

interface with two full-speed Tourmalet links, and the NAM

logic. Together, they create a high-speed memory device,

which is directly attached to the EXTOLL fabric and therefore

globally accessible by all nodes in the system.

The libNAM library has been implemented to give system

and application software access to the NAM memory pool [6].

The library operates on top of the existing EXTOLL RMA

API. The function calls provided by libNAM are very similar

to EXTOLL’s libRMA, such that existing applications that use

the latter can be modified without much effort. Reading and

writing is performed via send and receive buffers organized in

a ring structure. The EXTOLL/NAM notification mechanism is

used to handle the buffer space, i.e. to free up locations when

data has been transmitted (put) or received (get). Fig. 3

presents bandwidth and latency measurements applying these

operations on the NAM, for various message sizes. Latency

and bandwidth results to read and write data from and to

the NAM are very close to the best achievable values on the

network alone.
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Fig. 3: RMA benchmarks (bandwidth and latency) on the

NAM. Best values achievable with Extoll are also plotted.

As a first NAM use-case, an improved checkpointing/restart

functionality has been implemented. It utilizes the NAM’s

FPGA to pull the required data from the compute nodes and to

calculate parity information meant to be stored on the device

locally. By this means most of the checkpointing overhead is

offloaded to the NAM. At the same time this is transparent

1The HMC controller has been released as Open Source [7].

to the applications enabled to use SCR. Results obtained

from applications using this functionality are presented in

Section V-B, Fig. 9.

III. SOFTWARE ENVIRONMENT

The main guiding principle in the software development

for the Cluster-Booster concept has been to stick, as much as

possible, to standards and well established APIs. The specific

software features required to operate Cluster and Booster as

a unified system are implemented in the lower layers of the

software stack and are as transparent as possible to application

developers. In the end they experience a software environment

very similar to the one found on any other current HPC system.

By this means they do not have to deal with the underlying

hardware complexity. Furthermore, their codes stay portable

and can run practically out-of-the-box on this new kind of

platform, as well as on any other HPC system.

A. Programming Environment

The ParaStation MPI library has been specifically optimized

to efficiently run within both, Cluster and Booster, and also

across them. This global MPI provides an efficient way of

exchanging data between the two parts of the system [8]. It im-

plements a heterogeneous, global MPI by exploiting semantic

concepts long existing in the MPI-standard. In particular, the

MPI-2 function MPI_Comm_spawn realizes the offloading

mechanism, which allows spawning groups of processes from

Cluster to Booster (or vice-versa).

B. OmpSs abstraction layer

Directly employing the MPI_Comm_spawn function call

forces the programmer to coordinate and manage two or more

sets of parallel MPI processes. This includes the explicit

handling of the required data exchanges between Cluster and

Booster. This approach may become cumbersome for large

and complex applications. To reduce the porting effort, an

abstraction layer employing the global MPI has been im-

plemented already in the DEEP project. It is based on the

OmpSs data-flow programming model [9]. OmpSs enables

application developers offloading large, complex tasks by

simply annotating those parts of their code that shall run on a

different part of the system via pragmas [10].

C. I/O

The non-volatile memory of the DEEP-ER prototype (see

Section II-B1) is used as the foundation of a scalable I/O

infrastructure. The resulting software platform combines the

parallel I/O library SIONlib [11] with the parallel file system

BeeGFS [12]. Together, they enable the efficient and transpa-

rent use of the underlying hardware and provide the functio-

nality and performance required by data-intensive applications

and multi-level checkpointing-restart techniques.

The I/O library SIONlib acts as a concentration-layer for

applications employing task-local I/O. It aims for the most

efficient use of the underlying parallel file system. For this,

SIONlib bundles together all data locally generated by appli-

cations, and stores it into one or very few large files, which



the parallel file system manage more easily. Furthermore, in

DEEP-ER SIONlib bridges between the I/O and resiliency

components of the software stack (Section III-D1).

The file system utilized in DEEP-ER is BeeGFS. It provides

a solid, common basis for high-performance, parallel I/O

operations. Advanced functionality, such as a local cache layer

in the file system, have been added to BeeGFS during the

DEEP-ER project. The cache domain – based on BeeGFS

on demand (BeeOND) [13] – stores data in fast node-local

NVM devices and can be used in a synchronous or asynchro-

nous mode. This speeds up the applications’ I/O operations

(Section V-A) and reduces the frequency of accesses to the

global storage, increasing the overall scalability of the file

system.

D. Resiliency

The DEEP-ER project has adopted an improved application-

based checkpoint-restart approach, in combination with a task-

based resiliency strategy.

1) Checkpoint/Restart: The Open Source Scalable

Checkpoint-Restart library (SCR) offers a flexible interface

for applications to write checkpoint information and to restart

from those checkpoints in case of failure [14]. The user

simply calls SCR and indicates the data required by the

application to restart execution. This library keeps a database

of checkpoints and their locations in preparation for eventual

reinitializations.

Combining SCR features with project-specific software and

hardware developments, four checkpoint/restart strategies can

be employed in DEEP-ER, listed here ordered from most basic

to more advanced:

• Single: The SCR_SINGLE feature stores checkpoints

locally on each node. This enables applications to recover

from transient errors.

• Buddy: This enhancement of the SCR’s Partner

mode combines SCR, ParaStation MPI, SIONlib, and

BeeGFS. The standard SCR_PARTNER mode first saves

checkpoint-data to the local node, re-reads it from there,

sends it to a Partner node and writes it to its local

storage. This strategy enables application to restart even

after node-failures, recovering data from the companion

node. Thus, the application can continue with minimum

time-loss. The DEEP-ER Buddy enhancement utilizes

SIONlib to skip the intermediate step of reading the data

from the local storage before sending it to the partner

node, reducing the checkpointing overhead. While SCR

in this approach keeps track of the association between

host nodes and buddies, SIONlib takes care that all MPI

processes running on a single node jointly write their

checkpoint-data into a single file on the buddy-node.

Finally, BeeOND stores the data itself on the cache file

system on the local NVMe, eventually transferring it

asynchronously to the permanent global storage.

• Distributed XOR: Both SCR_PARTNER and

DEEP-ER’s Buddy mode save the whole checkpoint-data

twice. This obviously doubles the required amount of
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Fig. 4: N-body code testing various checkpointing strategies

on the DEEP-ER Cluster (weak scaling).

memory per node and generates significant overhead due

to the additional writing time. An alternative strategy

is to generate and store parity information, instead of

copying the full checkpoints. SCR can perform this by

applying an XOR operation to the checkpointing data. In

a second step it distributes the resulting parity data over

all nodes. If one node fails, the missing checkpoint-data

can be reconstructed by combining the parity data and

the checkpoint data from the remaining nodes. This

method saves the checkpoint data on the node-local

NVMe (as in the Single mode) and distributes and

remotely stores only the parity data, which is much

smaller than the full checkpoints.

• NAM XOR: The network-attached memory (NAM)

technology developed in DEEP-ER is an ideal vehicle

to accelerate the Distributed XOR strategy. SCR and

SIONlib call libNAM to trigger data collection and parity

computations on the NAM. Furthermore, XOR-data is

stored on this central location. This enables application

developers to transparently checkpoint/restart to/from the

NAM without modifying their codes. The high read/write

performance of the NAM (Fig. 3) and its accessibility

at network-speed from all nodes in the system, largely

reduces the checkpointing overhead when compared to

the previous mode. At the same time it provides a similar

level of resiliency as the Buddy mode.

Weak-scaling results obtained testing these functionalities

on the DEEP-ER Cluster with the N-body code are presented

in Fig. 4. The Buddy and NAM XOR methods developed in

the DEEP-ER project are both faster than the equivalent SCR

functions: SCR_PARTNER and Distributed XOR, respectively.

Results of a full application comparing the Distributed XOR

with the NAM XOR modes are discussed in Section V-B.

2) OmpSs resiliency: The OmpSs programming model has

been also enhanced by three new resiliency features.

• Lightweight task-based checkpoint/restart mechanism

writes the input of the OmpSs tasks into main memory

before starting them. Thus, they can be restarted in

case of failure. If no error occurs and the task finishes

successfully, the checkpoint is evicted.



• Persistent task-based checkpointing saves all input

dependencies of a task. When the application is restarted

after a crash, OmpSs transparently identifies the execution

as a recovery and fast-forwards it to the point where the

failure occurred, restoring the appropriate data.

• OmpSs resilient offload is applied specifically to the

offload mechanism developed in the DEEP projects

(Section III-B). The ParaStation process management

daemon has been extended by an interface to query

resiliency-related status information from the MPI layer

and thus also from the OmpSs runtime environment.

ParaStation MPI itself is now able to detect, isolate

and clean up failures of MPI-offloaded tasks, which

can be then independently restarted without requiring a

full application recovery. This enables to recover failed

offloaded tasks without losing the work that had been

performed in parallel by other OmpSs tasks.

Application benchmarks utilizing the third OmpSs resiliency

approach are described in Section V-B.

IV. CO-DESIGN APPLICATIONS

Seven real-world HPC applications were chosen to steer and

evaluate the design of the DEEP-ER hardware and software

developments (Sections II and III), and to benchmark their

functionality and performance. The DEEP-ER applications

come from a wide range of scientific areas, representing the

typically broad user portfolio of a large-scale computer centre.

For the sake of brevity, details are given here only for three of

the codes. Their results (Section V) cover almost all the I/O

and resiliency features developed in DEEP-ER:

• xPic is a simulation code from KU Leuven (Katholieke

Universiteit Leuven) to forecast space weather related

events like e.g. damage of spacecraft electronics or

GPS signal scintillation. It simulates the inter-planetary

plasma using the Moment-Implicit method [15]. Like

most particle-in-cell codes, xPic consists of two parts,

a particle solver and a field solver: The particle solver

calculates the motion of charged particles in response

to the electromagnetic field and the gathering of their

moments (e.g. net current and charge density); the field

solver computes the electromagnetic field evolution in

response to the moments.

• GERShWIN [16] assesses human exposure to electro-

magnetic fields and is provided by Inria (Institut National

de Recherche en Informatique et en Automatique). This

application uses a Discontinuous Galerkin - Time Domain

solver of the 3D Maxwell-Debye equation system [17]

to simulate the propagation of electromagnetic waves

through human tissues. This field of research studies for

instance the effect of wireless communication devices on

head tissues or the implantation of antennas in the human

body for the purpose of monitoring health-related devices.

• FWI [18] is a seismic imaging code developed by the

Barcelona Supercomputing Center (BSC). Seismic ima-

ging uses sound waves to acquire the physical properties

of the subsoil from a set of seismic measurements. The

application starts from a guess (initial model) of the

variables (e.g., sound transmission velocity), the stimulus

introduced, and the recorded signals. For the inversion se-

veral phases of iterative computations (frequency cycles)

are done until the real value of the set of variables being

inverted is reached (with an acceptable error threshold).

Further applications used in DEEP-ER are:

• SKA data analysis pipeline by ASTRON (Netherlands

Institute for Radio Astronomy).

• TurboRvB from CINECA (Consorzio Interuniversitario

del Nord-Est per il Calcolo Automatico).

• SeisSol from LRZ (Leibniz-Rechenzentrum der Bayeris-

chen Akademie der Wissenschaften).

• CHROMA: by the University of Regensburg.

The role of the applications in DEEP-ER is two-fold: on

the one hand, their requirements have provided co-design

input to fix the characteristics of hardware and software

components; on the other hand, the codes have evaluated the

project developments by running different uses cases on the

DEEP-ER prototype. Examples of the co-design influence are

the determination of the amount of memory to be available

per node, the required MPI functionality when offloading

code from one side to the other of the system, or the way

in which the NAM should be addressed. A selection of the

application results achieved by the first three listed codes

(xPic, GERShWIN, and FWI) is presented in the next section.

V. RESULTS

The hardware and software concepts developed in

DEEP-ER have been evaluated using the co-design applica-

tions. Unless stated otherwise, all measurements have been

obtained on the DEEP-ER prototype (Section II-B). The codes

have been used in various simulation scenarios in order to test

different system features (e.g. input parameters leading to more

data communication were used to stress I/O features).

A. I/O application results

The features described in Section III-C have lead to several

I/O improvements in the DEEP-ER applications. Some of

them are shown here since the I/O capabilities have a direct

impact on checkpointing performance. The setup of all I/O

experiments in this section is described in Table II.

Fig. 5 shows the reduction of data writing time for the

GERShWIN application when using SIONlib to collectively

carry out task-local I/O operations into a reduced number of

files. Different use cases where tested, varying the Lagrange

order of the calculations (order three (P3) requires more data

and provides higher precision than order one (P1)). Significant

performance improvements are achieved when using SIONlib:

up to 7.4× faster for P1, and up to 3.7× for P3.

Even with the help of SIONlib, using the file system to

execute I/O operations to the global storage from a large

number of compute nodes may still lead to a bottleneck at the

storage: once the maximum storage bandwidth is reached, the

bandwidth per node decreases when additional nodes partici-

pate in I/O. In DEEP-ER this I/O scalability issue is targeted
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by the BeeGFS caching-layer, which transparently employs

the node-local NVMe devices (Section II-B1) as scalable local

storage. This has the effect of a constant storage bandwidth

per node, significantly increasing the I/O performance and

scalability of applications.

Due to the small size of the DEEP-ER prototype, such

scaling effects had to be measured on an alternative platform.

The QPACE3 system was selected, which is a Booster-like

platform with 672 KNL nodes [19], large enough to perform

scalability measurements. Fig. 6 shows weak-scaling studies

with xPic on QPACE3.

A software configuration similar to the DEEP-ER platform

could be installed on QPACE3. Since this system lacks node-

local NVMe devices, these had to be emulated by RAM-disks

residing in the local memories of each node. The absolute

performance numbers are not comparable to NVMe (RAM

on KNL is 75× faster than NVMe) but the advantage of

using local storage devices with respect to the global storage

system is clearly demonstrated, as well as the evident gain in

performance when increasing the number of nodes. In fact, the

application scales almost perfectly when using local storage.

This makes the application 7× faster compared to writing

directly to QPACE3’s global file system which is also BeeGFS.
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As demonstrated on QPACE3, the concept of writing to

TABLE II: Experiment setup used in GERShWIN and xPic

during the I/O measurements.

xPic on the

Experiment GERShWIN xPic on QPACE3 DEEP-ER

prototype

Written 3 GB (P1)

data per 6.6 GB (P3) 10 GB per node 8 GB

checkpoint

Number of

CPs

1 2 11

node-local storage does not necessarily require NVMe devices

to be attached to the compute nodes. The same strategy

can be employed with other node-local storage technologies,

leading to different absolute performance numbers. Fig. 7

presents xPic measurements on the DEEP-ER Cluster. Here

both NVMe and hard disks (HDD) are attached to each

node. Writing to the NVMe storage is up to 4.5× faster than

writing to the node-local HDD. The absolute performance

gain depends on the number of nodes performing I/O and,

as explained above, the actual benefit from the NVMe-based

local storage actually manifests when the node-count is very

large.
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HDD storage, measured by xPic on the DEEP-ER Cluster.

B. Resiliency

During the DEEP-ER project multiple resiliency features

have been developed (Section III-D). The setup of the resi-

liency experiments described here can be found in Table III.

Fig. 8 displays the overhead and benefit of using the SCR

library to save checkpoints (CP) on the node-local NVMe

(SCR_PARTNER). An xPic benchmark was selected that exe-

cutes 100 iterations in the simulation. The benchmark was run

with and without SCR_PARTNER. In the latter case check-

points are written every 10 iterations. Two error scenarios were

tested: the first completes without error; in the second an error

happens after 60 iterations and then the application is restarted

and runs through. The measurements show that the overhead

incurred by writing checkpoints with SCR is in average only

8%, while it saves 23% of the execution time if a failure occurs

according to the scenario.

The checkpointing overhead can be further reduced cal-

culating parity data (Section III-D1). Fig. 9 shows a com-
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Fig. 8: xPic testing SCR_PARTNER. Tests done writing check-

points (with CP) or not (w/o CP), for runs when an error occurs

(with) or not (w/o).

0

10

20

30

40

50

60

2 4 8 16

W
ri

ti
n

g
 t

im
e

 [
s]

# Nodes

XOR on local NVMe

XOR checkpointing on NAM

Fig. 9: Distributed XOR vs. NAM XOR checkpointing strate-

gies, evaluated with xPic.

parison between the Distributed XOR and the NAM XOR

checkpointing strategies. The latter realizes an up to 3× higher

bandwidth, and leads to much better writing times: between

50% and 65% of time is saved when storing XOR data to the

NAM instead of storing it to the node-local NVMe devices.

An alternative strategy applied in DEEP-ER to increase the

applications’ robustness against system failures is the OmpSs-

offload resiliency functionality (Section III-D2). Fig. 10 shows

the results achieved when testing this approach with the FWI

code, on an Intel Sandy Bridge cluster (MareNostrum 3, at

BSC). An error occurring right before the end of the execution

nearly doubles the FWI runtime if no resiliency technique is

activated. The new OmpSs feature enables up to 42% time

savings (an only 15% longer execution when compared to a

run without failures) and its overhead is negligible (<1%).

TABLE III: Experiment setup for the resiliency measure-

ments.

Experiment xPic SCR xPic NAM FWI

Processed 32 GB per node 20 GB per node 1 GB per node
data 8 GB per CP 2 GB per CP

4 CPs 10 CPs
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Fig. 10: OmpSs task-based resiliency tested with FWI (with

and without (w/o) checkpoints, with error - in worker or slave -

and w/o errors).

VI. RELATED WORK

The work on resiliency presented in this paper is based on

the Scalable Checkpoint-Restart library(SCR) [14]. During the

DEEP-ER project a tight integration of SIONlib [11] into SCR

was established. Task-local I/O as done by SCR typically uses

many independent files. SIONlib concentrates them into single

or few shared files on a parallel file-system, what makes this

type of I/O much more efficient. In DEEP-ER SIONlib is used

as an abstraction-layer for both, buddy checkpointing (similar

to SCR PARTNER) and NAM integration – which might be

seen as an hardware acceleration of SCR’s XOR checkpoin-

ting feature. Both approaches significantly improve the I/O

performance by preventing unnecessary read operations when

creating partner and XOR checkpoints.

A similar approach as SCR is realized in the Fault Tolerance

Interface (FTI) [20]. In the meantime an effort was started to

create a common abstraction of SCR and FTI, to help ap-

plication developers avoiding code-adaptations to the specific

checkpointing tool installed on a given HPC system.

Transparent system level checkpointing is realised in Ber-

keley Lab Checkpoint Restart (BLCR) [21]. In this approach

applications do not have to be modified in order to checkpoint

them like it is necessary in SCR or FTI, where explicit store

and load operations have to be introduced into the codes in

order to create checkpoints with all relevant data. The draw-

back of transparent checkpointing is that checkpoint wills grow

much larger, since the whole memory of the application has to

be dumped onto the underlying storage system. Furthermore,

this type of checkpointing is harder to implement since all MPI

communication has to be brought into a globally consistent

state in order to get properly checkpointed, too.

The same approach as BLCR is used by the Distributed

MultiThreaded Checkpointing (DMTCP) efforts [22] therefore

sharing the pros and cons.

VII. CONCLUSIONS AND OUTLOOK

The DEEP-ER project has introduced several hardware

and software innovations to improve the I/O and resiliency

capabilities of the Cluster-Booster architecture, and of HPC

systems in general. The central component is a multi-level



memory hierarchy employing non-volatile memory (NVM)

devices, locally attached to each of the nodes in the system.

The DEEP-ER I/O software system combines proven file-

systems and libraries with extensions that allow optimal ex-

ploitation of the capabilities of the memory and storage pool.

The project’s resiliency strategy relies on the combination of

complementary functions to recover from different kinds of

errors with reduced overhead. Building upon the infrastructure

provided by the Scalable Checkpoint/Restart library SCR,

the DEEP-ER extensions reduce the checkpointing overhead

keeping the same level of resiliency. An example is the

Buddy checkpointing functionality that employs SIONlib to

optimize SCR_PARTNER. Application resiliency is achieved

with even better performance employing the network-attached

memory (NAM) technology developed in DEEP-ER. This

special “memory node” is globally accessible from all nodes

and enables calculating and storing parity data of application

checkpoints much faster than if done on the nodes themselves.

The achieved improvements in performance and resiliency

have been demonstrated with real-world applications.

The Cluster-Booster architecture – which was first prototy-

ped in the DEEP projects series – has gone into production

in the meantime. The JURECA Cluster, running at JSC in

Germany since 2015 [23], has been recently accompanied by

a KNL-based, 5 PFlop/s Booster. The JURECA Booster is

planned to become available to users in Q1/2018.

The DEEP-ER project is now completed and success-

fully evaluated by external reviewers. Building on its results,

the successor (DEEP-EST) project generalizes the Cluster-

Booster concept to create the Modular Supercomputing ar-

chitecture [24]. It combines any number of compute modules

into a single computing platform. Each compute module is

(as the Cluster and the Booster) a system of a potentially

large size, tailored to the specific needs of a given kind of

applications. To demonstrate its capabilities, a three-module

hardware prototype will be built, covering the needs of both

HPC and high performance data analytics (HPDA) workloads.
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