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Abstract—The recently proposed context-dependent deep

neural network hidden Markov models (CD-DNN-HMMs) have

been proved highly promising for large vocabulary speech recog-
nition. In this paper, we develop a more advanced type of DNN,

which we call the deep tensor neural network (DTNN). The DTNN

extends the conventional DNN by replacing one or more of its
layers with a double-projection (DP) layer, in which each input

vector is projected into two nonlinear subspaces, and a tensor

layer, in which two subspace projections interact with each other
and jointly predict the next layer in the deep architecture. In

addition, we describe an approach to map the tensor layers to

the conventional sigmoid layers so that the former can be treated
and trained in a similar way to the latter. With this mapping we

can consider a DTNN as the DNN augmented with DP layers so

that not only the BP learning algorithm of DTNNs can be cleanly
derived but also new types of DTNNs can be more easily devel-

oped. Evaluation on Switchboard tasks indicates that DTNNs can

outperform the already high-performing DNNs with 4–5% and
3% relative word error reduction, respectively, using 30-hr and

309-hr training sets.

Index Terms—Automatic speech recognition, CD-DNN-HMM,

large vocabulary, tensor deep neural networks.

I. INTRODUCTION

R ECENTLY, the context-dependent deep neural net-

work hidden Markov model (CD-DNN-HMM) was

developed for large vocabulary speech recognition (LVSR)

and has been successfully applied to a variety of large scale

tasks by a number of research groups worldwide [2]–[9]. The

CD-DNN-HMM adopts and extends the earlier artificial neural

network (ANN) HMM hybrid system framework [10]–[12].

In CD-DNN-HMMs, DNNs—multilayer perceptrons (MLPs)

with many hidden layers—replace Gaussian mixture models

(GMMs) and directly approximate the emission probabili-

ties of the tied triphone states (also called senones). In the

first set of successful experiments, CD-DNN-HMMs were

shown to achieve 16% [2], [3] and 33% [4]–[6] relative recog-

nition error reduction over strong, discriminatively trained
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CD-GMM-HMMs, respectively, on a large-vocabulary voice

search (VS) task [13] and the Switchboard (SWB) phone-call

transcription task [14]. Subsequent work on Google voice

search and YouTube data [7] and on Broadcast News [8], [9]

confirmed the effectiveness of the CD-DNN-HMMs for large

vocabulary speech recognition.

In this work, we extend the DNN to a novel deep tensor neural

network (DTNN) in which one or more layers are double-pro-

jection (DP) and tensor layers (see Section III for the explana-

tion). The basic idea of the DTNN comes from the motivation

and assumption that the underlying factors, such as the spoken

words, the speaker identity, noise and channel distortion, and

so on, which affect the observed acoustic signals of speech can

be factorized and be approximately represented as interactions

between two nonlinear subspaces. This type of multi-way in-

teraction was hypothesized and explored in neuroscience as a

model for the central nervous system [15], which conceptually

features brain function as comprising functional geometries via

metric tensors in the internal central nervous system represen-

tation-spaces, both in sensorimotor and connected manifolds.

In DTNN, we represent the hidden, underlying factors by pro-

jecting the input onto two separate subspaces through a double-

projection (DP) layer in the otherwise conventional DNN. We

subsequently model the interactions among these two subspaces

and the output neurons through a tensor with three-way connec-

tions. We propose a novel approach to reduce the tensor layer to

a conventional sigmoid layer so that the model can be better

understood and the decoding and learning algorithms can be

cleanly developed. Based on this reduction, we also introduce

alternative types of DTNNs. We empirically compare the con-

ventional DNN and the new DTNN on the MNIST handwritten

digit recognition task and the SWB phone-call transcription task

[14]. The experimental results demonstrate that the DTNN gen-

erally outperforms the conventional DNN.

This paper is organized as follows. We briefly review the re-

lated work in Section II and introduce the general architecture

of the DTNN in Section III, in which the detailed components

of the DTNN and the forward computations are also described.

Section IV is dedicated to the algorithms we developed in this

work for learning DTNN weight matrices and tensors. The ex-

perimental results on MNIST digit recognition task and SWB

task are presented and analyzed in Section V. We conclude the

paper in Section VI.

II. RELATED WORK

In recent years, an extension from matrix to tensor has been

proposed to model three-way interactions and to improve the

1558-7916/$31.00 © 2012 IEEE
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modeling power of neural networks. In this section we briefly

survey the related work.

The tensor-based restricted Boltzmann machine (RBM) was

proposed to model three-way interactions among pixels in

[16] and to model pixel means and covariances in [17]. This

three-way RBM is different from ours in two ways. First, it is

a pure generative model, although it may be discriminatively

fine-tuned, while our DTNN is a discriminative model in

nature. Second, the three-way RBM has only one hidden layer

and the mechanism in its architecture design does not permit

the use of tensor weights in more than one layer stacked one

on top of another. In contrast, our DTNN is designed very

differently, with the goal of naturally embedding the tensor

weights in many stacked hidden layers.

The tensor-based RBMwas later extended to the tensor recur-

rent neural network (RNN) [18]. The tensor-RNN as discussed

in [18], however, is also mainly used as a generative model.

In a separate study reported in [19], a softmax layer was gated

with a hidden factor layer and a tensor was subsequently used

to model the joint interaction among the hidden factors, the in-

puts, and the labels. However, the gated softmax network in-

vestigated in [19] is a less effective shallow model with no ad-

ditional hidden layer other than the hidden factor layer. In addi-

tion, the work of [19] adopted the mixture model which predicts

the classes by summing over all possible hidden factor combi-

nations. The DTNN that we will present in this paper, however,

is a deep network and it predicts the upper layer directly through

the tensor connections as shown in (2) in Section III.

More recent work [20] replaced the single sigmoid hidden

layer with a tensor layer in a deep network where blocks of

shallow networks are used to construct the stacking deep ar-

chitecture and each block in the stacking network consists of

only one hidden layer. In contrast, in the DTNN, there are many

hidden layers, one after the other. In fact any sigmoid layer in the

conventional DNN may be replaced with a tensor layer. While

the technique of converting the tensor layer to a conventional

sigmoid layer in [20] has motivated and facilitated the develop-

ment of DTNN here, it is worth noting that the deep architecture

in [20] had difficulty for large vocabulary speech recognition

tasks since the output units are often limited to a moderate size

due to the special requirement for convexity in part of the net-

work. The DTNN presented in this paper is free from such a re-

striction, combining the virtue of DNN in handling large vocab-

ulary speech recognition tasks that require large senone output

units and the effective technique of handling tensors developed

from [20].

The most recent work reported in [21] presented two versions

of a tensor-based DNN. The first version extended the gated

softmax network of [19] by incorporating the gated softmax

layer into DNNs. However, much like the softmax network in

[19], this version also used a mixture model. The second ver-

sion that also explored tensors as proposed in [21] is closer to

the DTNN to be described in this paper. The main difference

is that the gating factor in [21] was estimated completely sepa-

rately from the main network and was only applied at the output

layer. In contrast, the DTNN integrates all estimation steps of

all parameters including the gating factors in a single, consis-

tent framework.

Fig. 1. Architectural illustrations of a conventional DNN and the corre-
sponding DTNN. (a) DNN. (b) DTNN: hidden layer consists of two
parts: and . Hidden layer is a tensor layer to which the connection
weights form a three-way tensor. (c) An alternative representation of
(b): tensor is replaced with matrix when is defined as the Kronecker
product of and .

In summary, the DTNN presented in this paper differentiates

itself from previous work in that we use DP layers to automati-

cally factorize information which is later combined through the

tensor layers. The distinction also lies in the more flexible in-

corporation of the DP layers and tensor layers into an otherwise

conventional DNN architecture. In addition, our work provides

a unified framework to train DNN, DTNN, and their variants

(which we will call quasi-DTNN; see Fig. 3 in Section III-B)

by mapping the input feature of each layer to a vector and the

tensor to a matrix.

III. ARCHITECTURES OF THEDEEP TENSOR NEURAL NETWORK

The deep tensor neural network (DTNN) is a new type of

DNN. It extends the conventional DNN by replacing one or

more layers with double-projection and tensor layers, which we

will define shortly. In this section we describe the general archi-

tecture of the DTNN.

A. DTNN With Double-Projection and Tensor Layers

Fig. 1 illustrates and compares the conventional DNN with

the DTNN. Fig. 1(a) shows a conventional DNN, whose input is

denoted by , an vector, and the output is , a vector.

Subscript is the layer index. In this conventional DNN, each

hidden layer connects to the next upper layer through a

weight matrix and a bias as

(1)

where are indexes of the hidden units in layers and

, respectively, and is the sigmoid

function applied element-wise.
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Fig. 1(b) is the corresponding DTNN in which hidden layer

is separated into two parts: (a vector) and

(a vector). These two parts connect to hidden

layer (a vector) through the three-way tensor [22]

of dimension , which is represented with a

cube in the figure, according to

(2)

where are indexes of the hidden units in layers ,

and , respectively. If were to function as a speaker de-

tector and were to function as a spectrum pattern detector,

(2) means that for different combinations of speaker and

spectrum pattern a different weight is assigned for

the same detector at next layer.

We call the hidden layer a double-projection (DP) layer

since the information from the previous layer is projected

into two separate subspaces at layer as and .

In this specific case, the DP layer can be considered as

a normal layer where

(3)

Here and are weight matrices connecting the hidden

layer with the DP layer parts and , respectively,

and and are the corresponding bias terms. As we will

see later in this section, however, this is not required and actually

is not the case if all layers are DP layers. The only requirement

for the DP layer is that it is split into two parts.

The hidden layer is called a tensor layer since the previous

layer is a DP layer that connects with through the weight

tensor .

Fig. 1(c) is an alternative view of the same DTNN shown in

Fig. 1(b). By defining , the input to the layer , as

(4)

where is the Kronecker product, and is the column-

vectorized representation of the matrix, we can organize and

rewrite tensor into matrix as represented by a rectangle

in Fig. 1(c). In other words, we now have

(5)

This rewriting allows us to reduce and convert tensor layers

into conventional matrix layers and to define the same inter-

face in describing these two different types of layers. For ex-

ample, in Fig. 1(c) hidden layer can now be considered as a

conventional layer as in Fig. 1(a) and can be learned using the

conventional backpropagation (BP) algorithm. This rewriting

also indicates that the tensor layer can be considered as a con-

ventional layer whose input comprises the cross product of the

values passed from the previous layer.

Fig. 2. Comparing conventional DNN and two equivalent views of a DTNN in
which all hidden layers are DP tensor layers. (a) DNN; (b) DTNN: normal view
where hidden layers are connected through three-way tensors; (c). DTNN: an
alternative view where tensors are replaced with matrices when is defined as
the Kronecker product of and .

Hidden layer , however, is still a DP layer that contains

two output parts and , which in turn are determined by

two separate weight matrices and , in the same way

for Fig. 1(b) and Fig. 1(c).

The DTNN shown in Fig. 1 contains only one DP layer.

However, nothing prevents other layers from being DP layers.

Fig. 2(b) illustrates an example DTNN in which all hidden

layers are DP tensor layers. For example, hidden layer

is also separated into two parts and and connects

to and through tensors and , respectively.

Note that in this DTNN each DP layer projects the input onto

two non-linear subspaces and . The bilinear interaction of

these two projections is then combined as the input feature to

the adjacent higher layer as quantified by (4). By defining input

to hidden layer as

(6)

tensors and can be rewritten as matrices and

as shown in Fig. 2(c). Note that, although all the layers in

Fig. 2(b) can be treated as non-tensor layers after this conver-

sion, they are still DP layers since each layer contains two parts.

To summarize, we can represent DTNNs using two types of

hidden layers: the conventional sigmoid layer and the DP layer.

Each of these hidden layer types can be flexibly placed in the

DTNN. For classification tasks the softmax layer that connects

the final hidden layer to labels can be used in the DTNN, in the

same way as that in the conventional DNN.

Table I summarizes all the forward computations involved in

the DTNN, where the input is always converted and written as

, a column vector, is the weight matrix, is the
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TABLE I
FORWARD COMPUTATIONS IN DTNNS

bias, is a column vector of the softmax layer weight matrix

, and

(7)

is the activation vector given input .

Note that for the DP layer, the output has two parts

(8)

where indexes the part number. The two hidden layer

vectors and may be augmented with ones when gen-

erating the input of the next layer. However, this is unneces-

sary since the same effect may be achieved by setting weights

to 0 and biases to a large positive number for one of the units so

that it always outputs 1.

B. Variants of DTNN

The basic DTNN architecture described above can have a

number of variants, and we describe two of them here. Fig. 3(a)

shows a DTNN variant in which linear activations (i.e., no sig-

moid nonlinearity) and are directly connected to layer

through tensor . Fig. 3(b) is the equivalent architecture

where weight tensor is converted into weight matrix by

defining

(9)

Note that the only difference between the architectures of

Fig. 3(a), 3(b) and those of Fig. 1(b), 1(c) is that the latter uses

a sigmoid non-linearity (as indicated by and instead

of and in the DP layer) before connecting to the next

layer. This provides numerical stability and also incorporates

the former as a special case if the sigmoid function is restricted

to the linear range.

Fig. 3(c) shows another variant of the DTNN in which linear

DP layers are also used but is redefined as

(10)

The difference between this model and that illustrated in

Fig. 1(b), 1(c) is that the sigmoid non-linearity is applied after

Fig. 3. Two additional types of DTNN. (a) DTNN in which the DP layer is
linear (i.e., sigmoid function is not applied). (b) Alternative view of the same
DTNN in (a). (c). a quasi-DTNN in which sigmoid non-linearity is applied to
the Kronecker product of and . This model, although it models a
three-way connection, cannot be represented using a tensor due to the sigmoid
non-linearity applied to the Kronecker product of the two input components.

the Kronecker product instead of being applied to the two indi-

vidual parts of the DP layers. Strictly speaking, the architecture

of Fig. 3(c), while also modeling the relations between two

subspaces and their upper layer, is not a DTNN since we cannot

rewrite and represent it using a tensor. For this reason, we refer

to the architecture of Fig. 3(c) as a quasi-DTNN.

IV. LEARNING ALGORITHMS

We optimize the DTNNmodel parameters by maximizing the

negative cross entropy

(11)

commonly used for the conventional DNN, where N is the total

number of samples in the training set and is the target

probability. When a hard alignment is used is 1 if

the sample’s training label is and is 0 otherwise. Under that

condition, the negative cross entropy is the same as the condi-

tional log-likelihood. The parameters can be learned using the

backpropagation (BP) algorithm.

The gradients associated with the softmax layer and the con-

ventional sigmoid layers are the same as that in conventional

DNNs. More specifically, for the softmax layer

(12)

(13)

where is the weight matrix, is the bias

column vector, and is a error column vector with

(14)
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where is the target probability and is the

model’s predicted probability. For other layers with we

define the error signal .

In the softmax layer, the error can be propagated to the im-

mediately previous layer according to

(15)

Similarly, for the conventional sigmoid layer, we have

(16)

(17)

and

(18)

where is the gradient of the sigmoid

function applied element-wise, and diag(.) is the diagonal ma-

trix determined by the operand.

However, the gradients are more complicated for the DP

layers, which we derive now. Note for the DP layer we have

(19)

where is a identity matrix. is thus a

column vector whose elements are ,

where we assume matrix and vector index is 0 based. This leads

to the gradients

(20)

whose -th element is , and

(21)

whose -th element is .

Note that for the parts

(22)

(23)

and

(24)

By defining we get

(25)

More specifically,

(26)

(27)

where reshapes to a matrix. The

gradients needed for BP algorithm in the DP layers are thus

(28)

(29)

and

(30)

The learning algorithm of the quasi-DTNN is very similar to

that of the DTNN derived and presented above. The main differ-

ence is that for the DP layers in the quasi-DTNN, the gradients

now become

(31)

(32)

(33)

and

(34)

V. EXPERIMENTAL RESULTS

In this section, we compare the DTNN with the conventional

DNN on the MNIST handwritten digit recognition task and two

Switchboard large vocabulary speech recognition tasks.

To specify a DTNN we use the notation of two numbers en-

closed in a pair of parentheses to denote the size of the DP layer.

As an example, (96:96) denotes a DP layer with 96 units in each

of the two parts. Thus, denotes a DTNN

that contains a DP layer with 64 units in each part, followed by 4

conventional sigmoid hidden layers each of which has 2 k units.
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TABLE II
COMPARE SINGLE HIDDEN LAYER NEURAL NETWORKSWITH ANDWITHOUT
USING DOUBLE-PROJECTION AND TENSORS IN THE HIDDEN LAYER ONMNIST

DATASET

A. MNIST Handwritten Digit Recognition Task

The MNIST dataset [23] contains binary images of hand-

written digits. The digits have been size-normalized to fit in a

20 20 pixel box while preserving their aspect ratio and cen-

tered in a 28 28 image by computing and translating the center

of mass of the pixels. The task is to classify each 28 28 image

into one of the 10 digits. TheMNIST training set is composed of

60,000 examples from approximately 250 writers, out of which

we randomly selected 5,000 samples as the cross validation set.

The test set has 10,000 patterns. The writers of the training set

and test set are disjoint.

Our goal of using the MNIST dataset is to quickly check

whether DP and tensor layers indeed have better modeling

power than conventional sigmoid layers and to evaluate

whether we should choose DTNNs or quasi-DTNNs. For this

reason, we have used single hidden layer neural networks with

a relatively small number of hidden units. More specifically,

we have used a conventional shallow network with the con-

figuration 784-130-10 and the tensor and quasi-tensor shallow

networks with the configuration of 784-(50:50)-10. We chose

these configurations to ensure that they have a similar number of

parameters, which is

and , respec-

tively, for the 784-130-10 and 784-(50:50)-10 configurations.

We initialized weights randomly and ran 10 experiments on

each configuration. The training was carried out using stochastic

gradient ascent, taking a learning rate of 0.1 per sample for the

first 5 sweeps and 0.05 per sample afterwards. The training stops

when the error rate measured on the development set increases.

The classification results are summarized in Table II. It is clear

that both tensor and quasi-tensor layers help reduce the error

rate over the conventional sigmoid hidden layers (shaded row

in the table). Note that tensor and quasi-tensor layers give sim-

ilar error rates on this same configuration. However, we have

noticed that quasi-tensor layers are in general more likely to di-

verge in training if model parameters are not correctly initialized

or the learning rate is not properly chosen. This is likely because

multiplying two real valued numbers may send an unbounded

learning signal. For this reason we apply only DTNNs to speech

recognition tasks which take much more time to train.

B. SWB 30-hr Speech Recognition Task

The training and development sets in the SWB 30-hr task con-

tain 30 hours and 6.5 hours of data randomly sampled from the

309-hour Switchboard-I training set. The 1831-segment SWB

part of the NIST 2000 Hub5 evaluation set (6.5 hours) was used

as the test set. To prevent speaker overlap between the training

and test sets, speakers occurring in the test set were removed

from the training and development sets.

TABLE III
COMPARING THE EFFECT OF DIFFERENT DTNN CONFIGURATIONS ON THE
SWB 30-hr TASK. DTNNS WERE TRAINED FOR ONLY 10 SWEEPS, IN
WHICH THE FIRST 5 SWEEPS WERE CARRIED OUT USING A LEARNING
RATE OF PER SAMPLE AND THE REMAINING 5 SWEEPS WITH

A LEARNING RATE PER SAMPLE

The system uses a 39-dimensional feature that was reduced

using HLDA from mean- and variance-normalized 13-dimen-

sional PLP features and up to third-order derivatives. The

common left-to-right 3-state speaker-independent crossword

triphones share 1504 CART-tied states determined on the con-

ventional GMM system. The trigram language model (LM) was

trained on the 2000 h Fisher-corpus transcripts and interpolated

with a written text trigram. The test-set perplexity with a 58 k

dictionary is 84. The features, lexicon and LM used in this

study are the same as those used in our earlier work [4]–[6].

The GMM-HMM baseline system has a mixture of 40 Gaus-

sians in each HMM state. It was trained with maximum likeli-

hood (ML) and refined discriminatively with the boosted max-

imum-mutual-information (BMMI) criterion. Using more than

40 Gaussians did not improve the ML result.

Both the CD-DNN-HMM and CD-DTNN-HMM systems re-

place the Gaussian mixtures with scaled likelihoods derived

from the DNN and DTNN posteriors, respectively. The input to

the DNN and DTNN contains 11 (5-1-5) frames of the HLDA-

transformed features. The baseline DNN uses the architecture of

429-2048 5-1504. A DTNN whose hidden layers are (96:96)

5 has 21 million parameters, similar to the total number of

parameters in the baseline conventional DNN.

The training was carried out with tied-triphone state labels

generated using the ML-trained CD-GMM-HMM system. In

our experiments, the conventional DNNs were pre-trained with

the DBN-pretraining algorithm [24] before they were fine-tuned

using the BP algorithm. However, we have not developed sim-

ilar pretraining algorithms for DTNNs. DTNNs were thus

trained using the BP algorithm presented in Section IV starting

from randomly initialized weights. The pretrained DNN model

typically outperforms the randomly initialized DNN model,

with 0.3%–0.5% absolute WER reduction when the number of

hidden layers is 5.

Table III compares the effect of different DTNN configura-

tions on the recognition error rate. To reduce the overall training

time we trained DTNNs for only 10 sweeps, in which the first

5 sweeps were carried out using a learning rate of

per sample and the remaining 5 sweeps with a learning rate of

per sample.
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Note that even with this highly sub-optimal learning strategy,

a DNN with 5 hidden layers (shaded row in the table) already

significantly outperforms the CD-GMM-HMM trained using

the BMMI criterion. The results in Table III are organized so

that all configurations above the shaded line underperform the

conventional DNN and all the configurations below the shaded

line outperform DNN.

Examining Table III, we can make three observations. First,

configuration (96:96) 5 in which all layers are DP tensor

layers performs similarly to the DNN baseline that contains

a similar number of parameters, even though the DNN was

pre-trained while the DTNN was not. Note that due to the na-

ture of the DP layer, the dimension of the hidden layers in the

DTNN is much smaller (under two hundred) than comparable

conventional layers (a few thousand). Second, the configuration

in which only the bottom (first) layer was replaced with the DP

layer (configuration )

performs the worst. We believe this is because much of the in-

formation in the real-valued input is lost when the input feature

is transformed into a (much smaller than 2048

in the conventional DNN) dimension DP layer. Third, the con-

figurations that replace the top hidden layer with the DP layer

(configurations and

) perform the best and

achieve more than 5% relative WER reduction over the DNN.

This is because the top hidden layer is more invariant than the

input layer and thus the information loss caused by using the

low-dimensional DP layer is outweighed by the benefit obtained

by using the tensor layer. The DTNN in which only the middle

hidden layer is a DP layer (configuration

) performs in between.

In Table III we also included the results achieved with the

joint factorized DNN (JFDNN) described in [21]. This is in-

tended to answer the question of whether using a gated softmax

layer [19] on top of a DNN is helpful. The experiment used

factors in the gated softmax layer. It can be seen that

the JFDNNonly slightly outperforms the conventional DNN but

with much longer training time.

To eliminate the possibility that the training strategy adopted

in Table III may favor DTNNs over DNNs, we tuned the

learning strategy, including learning rates and schedule, for

DNNs and used this tuned learning strategy to train DTNNs.

More specifically, DNNs and DTNNs were trained for 15

sweeps, in which the first 9 sweeps were carried out using

a learning rate of per sample and the remaining 6

sweeps with a learning rate per sample. Further in-

creasing the training sweeps does not lead to additional gain on

the development set. In addition, we have compared DNNs and

DTNNs with 7-hidden layers. The new results are summarized

in Table IV. These results further confirm the effectiveness of

the DTNN, with 1.2% and 1.0% absolute, or 4.4% and 3.9%

relative, WER reduction over the DNNs, respectively, for the

five and seven-hidden layer systems.

C. SWB 309-hr Speech Recognition Task

In the SWB 309-hr task, we used the 309-hour Switchboard-I

training set [14]. The feature extraction process is exactly the

same as that described in Section V-B. However, the optimal

TABLE IV
COMPARING DNN AND DIFFERENT CONFIGURATIONS OF DTNN
ON THE SWB 30-hr TASK. THE LEARNING STRATEGY WAS TUNED

FOR DNN AND APPLIED TO DTNN

Fig. 4. The change of training set frame-level cross entropy after each sweep
of the 309-hr training set.

number of CART-tied triphone states determined by the GMM

system is now increased to 9304. We followed the same

procedure as described in [4], [5] to train the conventional

CD-DNN-HMM with the tied-triphone state alignment gener-

ated using the ML-trained CD-GMM-HMM. More specifically,

we swept the training data seven times. We used a learning rate

of per sample for the first three sweeps and

per sample for the remaining four sweeps. The conventional

DNN was pre-trained generatively using the DBN-pretraining

algorithm, but the DTNN was not, although the discriminative

pretraining procedure introduced in [5] could be used. To

prevent divergence, we have used a minibatch size of 128 for

the first sweep and 1024 afterwards. To investigate the gener-

alization ability we tested the model on the 6.3 h Spring 2003

NIST rich transcription set (RT03S) in addition to the Hub5’00

evaluation set. Different from the best results achieved in [4]

which used DNN realignment, the results presented here used

only the alignment generated from the GMM-ML system.

Fig. 4 and Fig. 5 illustrate the training set frame-level cross-

entropy (CE) and senone prediction accuracy, respectively, over

sweeps of the 309-hr training data. It can be seen that initially

the DTNN performs worse than the conventional DNN since the

weights were not pretrained. However, after three sweeps, the

DTNN made up the difference and eventually outperformed the

DNN.

Table V summarizes the word error rate (WER) on this task

using DNN and DTNN. From Table V we can see that the

DTNN still outperforms the DNN, but the gain is smaller with

0.5% absolute or 3% relative WER reduction on the Hub5’00

eval set. This is possibly because a DNN trained with signif-

icantly more data can generalize better even without explicit
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Fig. 5. The change of training set frame-level senone classification accuracy
after each sweep of the 309-hr training set.

TABLE V
COMPARING DNN AND DTNN ON THE SWB 309-hr TASK. WER

ON HUB5’00 AND RT03S EVALUATION SETS

modeling of subspaces and their interactions as intended by the

DTNN. Table V also indicates that when applied to the RT03S

evaluation set, the DTNN outperforms the seven hidden layer

DNN with a 0.4% and 0.5% WER reduction on the FSH and

SW parts, respectively. Compared to the nine-hidden-layer

DNN it performs slightly better on the Hub5’00 evaluation set

and SW part of the RT03S set, but slightly worse on the FSH

part of the RT03S set.

VI. SUMMARY AND CONCLUSIONS

In this paper we have proposed and implemented a novel deep

neural network, the DTNN, which involves tensor interactions

among neurons. This work is in part motivated by tensor net-

work theory in neuroscience, where tensor interactions play a

role in the central nervous system (e.g., [15]).

In a DTNN, at least one layer in the deep architecture is com-

posed of a DP and a tensor layer. The two subspaces represented

by the two parts in the DP layer interact with each other to cover

a product space. We have described an approach to map the

tensor layers to conventional sigmoid layers so that the former

can be treated and trained in a similar way to the latter. With this

mapping we can consider a DTNN as a DNN augmented with

DP layers. As a result, the BP learning algorithm for DTNNs can

be cleanly derived as we presented in Section IV of this paper.

In addition, we have described how the DP and tensor layers

can stack up to form a DTNN in which all layers are DP and

tensor layers. We have also showed how two variants of the

DTNN can be constructed and their weight parameters learned.

We have evaluated different configurations of the DTNN

architecture on the MNIST digit recognition task and on two

SWB tasks using 30 and 309 hours of training data, respec-

tively. The experimental results demonstrate that when the DP

layer is placed at the top hidden layer of the DTNN, it performs

the best and it outperforms the corresponding DNN by 4%–5%

relative WER reduction on the 30-hr SWB task and 3% on the

309-hr SWB task. Our experiments suggest that the proposed

DTNN is especially effective when the training data size is

small.

In this work, we have discovered that DTNN is a very pow-

erful deep architecture capable of representing covariance struc-

ture of the data in the hidden space and thus may show its poten-

tial in modeling noisy speech or speech with high variability. As

our future work, we will investigate to what degree the use of

speaker adapted features as the input to a DTNN would shrink

the gain from using the DTNN over the regular DNN. On the

other hand, we have noticed that having small DP layers may

hurt the performance especially when the DP layer is at the

bottom. However, increasing the DP layer size may significantly

increase the overall model size and thus introduce overfitting

problems. A possible solution is to factorize the weight tensor

using the techniques adopted in [16], [19] to reduce the number

of parameters.
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The Deep Tensor Neural Network With Applications

to Large Vocabulary Speech Recognition
Dong Yu, Senior Member, IEEE, Li Deng, Fellow, IEEE, and Frank Seide, Member, IEEE

Abstract—The recently proposed context-dependent deep
neural network hidden Markov models (CD-DNN-HMMs) have
been proved highly promising for large vocabulary speech recog-

nition. In this paper, we develop a more advanced type of DNN,
which we call the deep tensor neural network (DTNN). The DTNN
extends the conventional DNN by replacing one or more of its

layers with a double-projection (DP) layer, in which each input
vector is projected into two nonlinear subspaces, and a tensor
layer, in which two subspace projections interact with each other

and jointly predict the next layer in the deep architecture. In
addition, we describe an approach to map the tensor layers to
the conventional sigmoid layers so that the former can be treated

and trained in a similar way to the latter. With this mapping we
can consider a DTNN as the DNN augmented with DP layers so
that not only the BP learning algorithm of DTNNs can be cleanly

derived but also new types of DTNNs can be more easily devel-
oped. Evaluation on Switchboard tasks indicates that DTNNs can
outperform the already high-performing DNNs with 4–5% and

3% relative word error reduction, respectively, using 30-hr and
309-hr training sets.

Index Terms—Automatic speech recognition, CD-DNN-HMM,
large vocabulary, tensor deep neural networks.

I. INTRODUCTION

R ECENTLY, the context-dependent deep neural net-

work hidden Markov model (CD-DNN-HMM) was

developed for large vocabulary speech recognition (LVSR)

and has been successfully applied to a variety of large scale

tasks by a number of research groups worldwide [2]–[9]. The

CD-DNN-HMM adopts and extends the earlier artificial neural

network (ANN) HMM hybrid system framework [10]–[12].

In CD-DNN-HMMs, DNNs—multilayer perceptrons (MLPs)

with many hidden layers—replace Gaussian mixture models

(GMMs) and directly approximate the emission probabili-

ties of the tied triphone states (also called senones). In the

first set of successful experiments, CD-DNN-HMMs were

shown to achieve 16% [2], [3] and 33% [4]–[6] relative recog-

nition error reduction over strong, discriminatively trained

Manuscript received May 29, 2012; revised September 01, 2012 and October
24, 2012; accepted November 03, 2012. Date of publication nulldate; date of
current version nulldate. This work significantly extends and completes the pre-
liminary work described in [1]. The associate editor coordinating the review of
this manuscript and approving it for publication was Mark J. F. Gales.
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F. Seide is with Microsoft Research Asia, Beijing 100080, China (e-mail:

fseide@microsoft.com).
Color versions of one or more of the figures in this paper are available online
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CD-GMM-HMMs, respectively, on a large-vocabulary voice

search (VS) task [13] and the Switchboard (SWB) phone-call

transcription task [14]. Subsequent work on Google voice

search and YouTube data [7] and on Broadcast News [8], [9]

confirmed the effectiveness of the CD-DNN-HMMs for large

vocabulary speech recognition.

In this work, we extend theDNN to a novel deep tensor neural

network (DTNN) in which one or more layers are double-pro-

jection (DP) and tensor layers (see Section III for the explana-

tion). The basic idea of the DTNN comes from the motivation

and assumption that the underlying factors, such as the spoken

words, the speaker identity, noise and channel distortion, and

so on, which affect the observed acoustic signals of speech can

be factorized and be approximately represented as interactions

between two nonlinear subspaces. This type of multi-way in-

teraction was hypothesized and explored in neuroscience as a

model for the central nervous system [15], which conceptually

features brain function as comprising functional geometries via

metric tensors in the internal central nervous system represen-

tation-spaces, both in sensorimotor and connected manifolds.

In DTNN,we represent the hidden, underlying factors by pro-

jecting the input onto two separate subspaces through a double-

projection (DP) layer in the otherwise conventional DNN. We

subsequently model the interactions among these two subspaces

and the output neurons through a tensor with three-way connec-

tions. We propose a novel approach to reduce the tensor layer to

a conventional sigmoid layer so that the model can be better

understood and the decoding and learning algorithms can be

cleanly developed. Based on this reduction, we also introduce

alternative types of DTNNs. We empirically compare the con-

ventional DNN and the new DTNN on the MNIST handwritten

digit recognition task and the SWB phone-call transcription task

[14]. The experimental results demonstrate that the DTNN gen-

erally outperforms the conventional DNN.

This paper is organized as follows. We briefly review the re-

lated work in Section II and introduce the general architecture

of the DTNN in Section III, in which the detailed components

of the DTNN and the forward computations are also described.

Section IV is dedicated to the algorithms we developed in this

work for learning DTNN weight matrices and tensors. The ex-

perimental results on MNIST digit recognition task and SWB

task are presented and analyzed in Section V. We conclude the

paper in Section VI.

II. RELATED WORK

In recent years, an extension from matrix to tensor has been

proposed to model three-way interactions and to improve the

1558-7916/$31.00 © 2012 IEEE
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modeling power of neural networks. In this section we briefly

survey the related work.

The tensor-based restricted Boltzmann machine (RBM) was

proposed to model three-way interactions among pixels in

[16] and to model pixel means and covariances in [17]. This

three-way RBM is different from ours in two ways. First, it is

a pure generative model, although it may be discriminatively

fine-tuned, while our DTNN is a discriminative model in

nature. Second, the three-way RBM has only one hidden layer

and the mechanism in its architecture design does not permit

the use of tensor weights in more than one layer stacked one

on top of another. In contrast, our DTNN is designed very

differently, with the goal of naturally embedding the tensor

weights in many stacked hidden layers.

The tensor-based RBMwas later extended to the tensor recur-

rent neural network (RNN) [18]. The tensor-RNN as discussed

in [18], however, is also mainly used as a generative model.

In a separate study reported in [19], a softmax layer was gated

with a hidden factor layer and a tensor was subsequently used

to model the joint interaction among the hidden factors, the in-

puts, and the labels. However, the gated softmax network in-

vestigated in [19] is a less effective shallow model with no ad-

ditional hidden layer other than the hidden factor layer. In addi-

tion, the work of [19] adopted the mixture model which predicts

the classes by summing over all possible hidden factor combi-

nations. The DTNN that we will present in this paper, however,

is a deep network and it predicts the upper layer directly through

the tensor connections as shown in (2) in Section III.

More recent work [20] replaced the single sigmoid hidden

layer with a tensor layer in a deep network where blocks of

shallow networks are used to construct the stacking deep ar-

chitecture and each block in the stacking network consists of

only one hidden layer. In contrast, in the DTNN, there are many

hidden layers, one after the other. In fact any sigmoid layer in the

conventional DNN may be replaced with a tensor layer. While

the technique of converting the tensor layer to a conventional

sigmoid layer in [20] has motivated and facilitated the develop-

ment of DTNN here, it is worth noting that the deep architecture

in [20] had difficulty for large vocabulary speech recognition

tasks since the output units are often limited to a moderate size

due to the special requirement for convexity in part of the net-

work. The DTNN presented in this paper is free from such a re-

striction, combining the virtue of DNN in handling large vocab-

ulary speech recognition tasks that require large senone output

units and the effective technique of handling tensors developed

from [20].

The most recent work reported in [21] presented two versions

of a tensor-based DNN. The first version extended the gated

softmax network of [19] by incorporating the gated softmax

layer into DNNs. However, much like the softmax network in

[19], this version also used a mixture model. The second ver-

sion that also explored tensors as proposed in [21] is closer to

the DTNN to be described in this paper. The main difference

is that the gating factor in [21] was estimated completely sepa-

rately from the main network and was only applied at the output

layer. In contrast, the DTNN integrates all estimation steps of

all parameters including the gating factors in a single, consis-

tent framework.

Fig. 1. Architectural illustrations of a conventional DNN and the corre-
sponding DTNN. (a) DNN. (b) DTNN: hidden layer consists of two
parts: and . Hidden layer is a tensor layer to which the connection
weights form a three-way tensor. (c) An alternative representation of
(b): tensor is replaced with matrix when is defined as the Kronecker
product of and .

In summary, the DTNN presented in this paper differentiates

itself from previous work in that we use DP layers to automati-

cally factorize information which is later combined through the

tensor layers. The distinction also lies in the more flexible in-

corporation of the DP layers and tensor layers into an otherwise

conventional DNN architecture. In addition, our work provides

a unified framework to train DNN, DTNN, and their variants

(which we will call quasi-DTNN; see Fig. 3 in Section III-B)

by mapping the input feature of each layer to a vector and the

tensor to a matrix.

III. ARCHITECTURES OF THE DEEP TENSOR NEURAL NETWORK

The deep tensor neural network (DTNN) is a new type of

DNN. It extends the conventional DNN by replacing one or

more layers with double-projection and tensor layers, which we

will define shortly. In this section we describe the general archi-

tecture of the DTNN.

A. DTNN With Double-Projection and Tensor Layers

Fig. 1 illustrates and compares the conventional DNN with

the DTNN. Fig. 1(a) shows a conventional DNN, whose input is

denoted by , an vector, and the output is , a vector.

Subscript is the layer index. In this conventional DNN, each

hidden layer connects to the next upper layer through a

weight matrix and a bias as

(1)

where are indexes of the hidden units in layers and

, respectively, and is the sigmoid

function applied element-wise.
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Fig. 1(b) is the corresponding DTNN in which hidden layer

is separated into two parts: (a vector) and

(a vector). These two parts connect to hidden

layer (a vector) through the three-way tensor [22]

of dimension , which is represented with a

cube in the figure, according to

(2)

where are indexes of the hidden units in layers ,

and , respectively. If were to function as a speaker de-

tector and were to function as a spectrum pattern detector,

(2) means that for different combinations of speaker and

spectrum pattern a different weight is assigned for

the same detector at next layer.

We call the hidden layer a double-projection (DP) layer

since the information from the previous layer is projected

into two separate subspaces at layer as and .

In this specific case, the DP layer can be considered as

a normal layer where

(3)

Here and are weight matrices connecting the hidden

layer with the DP layer parts and , respectively,

and and are the corresponding bias terms. As we will

see later in this section, however, this is not required and actually

is not the case if all layers are DP layers. The only requirement

for the DP layer is that it is split into two parts.

The hidden layer is called a tensor layer since the previous

layer is a DP layer that connects with through the weight

tensor .

Fig. 1(c) is an alternative view of the same DTNN shown in

Fig. 1(b). By defining , the input to the layer , as

(4)

where is the Kronecker product, and is the column-

vectorized representation of the matrix, we can organize and

rewrite tensor into matrix as represented by a rectangle

in Fig. 1(c). In other words, we now have

(5)

This rewriting allows us to reduce and convert tensor layers

into conventional matrix layers and to define the same inter-

face in describing these two different types of layers. For ex-

ample, in Fig. 1(c) hidden layer can now be considered as a

conventional layer as in Fig. 1(a) and can be learned using the

conventional backpropagation (BP) algorithm. This rewriting

also indicates that the tensor layer can be considered as a con-

ventional layer whose input comprises the cross product of the

values passed from the previous layer.

Fig. 2. Comparing conventional DNN and two equivalent views of a DTNN in
which all hidden layers are DP tensor layers. (a) DNN; (b) DTNN: normal view
where hidden layers are connected through three-way tensors; (c). DTNN: an
alternative view where tensors are replaced with matrices when is defined as
the Kronecker product of and .

Hidden layer , however, is still a DP layer that contains

two output parts and , which in turn are determined by

two separate weight matrices and , in the same way

for Fig. 1(b) and Fig. 1(c).

The DTNN shown in Fig. 1 contains only one DP layer.

However, nothing prevents other layers from being DP layers.

Fig. 2(b) illustrates an example DTNN in which all hidden

layers are DP tensor layers. For example, hidden layer

is also separated into two parts and and connects

to and through tensors and , respectively.

Note that in this DTNN each DP layer projects the input onto

two non-linear subspaces and . The bilinear interaction of

these two projections is then combined as the input feature to

the adjacent higher layer as quantified by (4). By defining input

to hidden layer as

(6)

tensors and can be rewritten as matrices and

as shown in Fig. 2(c). Note that, although all the layers in

Fig. 2(b) can be treated as non-tensor layers after this conver-

sion, they are still DP layers since each layer contains two parts.

To summarize, we can represent DTNNs using two types of

hidden layers: the conventional sigmoid layer and the DP layer.

Each of these hidden layer types can be flexibly placed in the

DTNN. For classification tasks the softmax layer that connects

the final hidden layer to labels can be used in the DTNN, in the

same way as that in the conventional DNN.

Table I summarizes all the forward computations involved in

the DTNN, where the input is always converted and written as

, a column vector, is the weight matrix, is the
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TABLE I
FORWARD COMPUTATIONS IN DTNNS

bias, is a column vector of the softmax layer weight matrix

, and

(7)

is the activation vector given input .

Note that for the DP layer, the output has two parts

(8)

where indexes the part number. The two hidden layer

vectors and may be augmented with ones when gen-

erating the input of the next layer. However, this is unneces-

sary since the same effect may be achieved by setting weights

to 0 and biases to a large positive number for one of the units so

that it always outputs 1.

B. Variants of DTNN

The basic DTNN architecture described above can have a

number of variants, and we describe two of them here. Fig. 3(a)

shows a DTNN variant in which linear activations (i.e., no sig-

moid nonlinearity) and are directly connected to layer

through tensor . Fig. 3(b) is the equivalent architecture

where weight tensor is converted into weight matrix by

defining

(9)

Note that the only difference between the architectures of

Fig. 3(a), 3(b) and those of Fig. 1(b), 1(c) is that the latter uses

a sigmoid non-linearity (as indicated by and instead

of and in the DP layer) before connecting to the next

layer. This provides numerical stability and also incorporates

the former as a special case if the sigmoid function is restricted

to the linear range.

Fig. 3(c) shows another variant of the DTNN in which linear

DP layers are also used but is redefined as

(10)

The difference between this model and that illustrated in

Fig. 1(b), 1(c) is that the sigmoid non-linearity is applied after

Fig. 3. Two additional types of DTNN. (a) DTNN in which the DP layer is
linear (i.e., sigmoid function is not applied). (b) Alternative view of the same

DTNN in (a). (c). a quasi-DTNN in which sigmoid non-linearity is applied to
the Kronecker product of and . This model, although it models a
three-way connection, cannot be represented using a tensor due to the sigmoid

non-linearity applied to the Kronecker product of the two input components.

the Kronecker product instead of being applied to the two indi-

vidual parts of the DP layers. Strictly speaking, the architecture

of Fig. 3(c), while also modeling the relations between two

subspaces and their upper layer, is not a DTNN since we cannot

rewrite and represent it using a tensor. For this reason, we refer

to the architecture of Fig. 3(c) as a quasi-DTNN.

IV. LEARNING ALGORITHMS

We optimize the DTNNmodel parameters bymaximizing the

negative cross entropy

(11)

commonly used for the conventional DNN, where N is the total

number of samples in the training set and is the target

probability. When a hard alignment is used is 1 if

the sample’s training label is and is 0 otherwise. Under that

condition, the negative cross entropy is the same as the condi-

tional log-likelihood. The parameters can be learned using the

backpropagation (BP) algorithm.

The gradients associated with the softmax layer and the con-

ventional sigmoid layers are the same as that in conventional

DNNs. More specifically, for the softmax layer

(12)

(13)

where is the weight matrix, is the bias

column vector, and is a error column vector with

(14)
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where is the target probability and is the

model’s predicted probability. For other layers with we

define the error signal .

In the softmax layer, the error can be propagated to the im-

mediately previous layer according to

(15)

Similarly, for the conventional sigmoid layer, we have

(16)

(17)

and

(18)

where is the gradient of the sigmoid

function applied element-wise, and diag(.) is the diagonal ma-

trix determined by the operand.

However, the gradients are more complicated for the DP

layers, which we derive now. Note for the DP layer we have

(19)

where is a identity matrix. is thus a

column vector whose elements are ,

where we assume matrix and vector index is 0 based. This leads

to the gradients

(20)

whose -th element is , and

(21)

whose -th element is .

Note that for the parts

(22)

(23)

and

(24)

By defining we get

(25)

More specifically,

(26)

(27)

where reshapes to a matrix. The

gradients needed for BP algorithm in the DP layers are thus

(28)

(29)

and

(30)

The learning algorithm of the quasi-DTNN is very similar to

that of the DTNN derived and presented above. Themain differ-

ence is that for the DP layers in the quasi-DTNN, the gradients

now become

(31)

(32)

(33)

and

(34)

V. EXPERIMENTAL RESULTS

In this section, we compare the DTNN with the conventional

DNN on the MNIST handwritten digit recognition task and two

Switchboard large vocabulary speech recognition tasks.

To specify a DTNN we use the notation of two numbers en-

closed in a pair of parentheses to denote the size of the DP layer.

As an example, (96:96) denotes a DP layer with 96 units in each

of the two parts. Thus, denotes a DTNN

that contains a DP layer with 64 units in each part, followed by 4

conventional sigmoid hidden layers each of which has 2 k units.
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TABLE II
COMPARE SINGLE HIDDEN LAYER NEURAL NETWORKSWITH AND WITHOUT
USING DOUBLE-PROJECTION AND TENSORS IN THE HIDDEN LAYER ON MNIST

DATASET

A. MNIST Handwritten Digit Recognition Task

The MNIST dataset [23] contains binary images of hand-

written digits. The digits have been size-normalized to fit in a

20 20 pixel box while preserving their aspect ratio and cen-

tered in a 28 28 image by computing and translating the center

of mass of the pixels. The task is to classify each 28 28 image

into one of the 10 digits. TheMNIST training set is composed of

60,000 examples from approximately 250 writers, out of which

we randomly selected 5,000 samples as the cross validation set.

The test set has 10,000 patterns. The writers of the training set

and test set are disjoint.

Our goal of using the MNIST dataset is to quickly check

whether DP and tensor layers indeed have better modeling

power than conventional sigmoid layers and to evaluate

whether we should choose DTNNs or quasi-DTNNs. For this

reason, we have used single hidden layer neural networks with

a relatively small number of hidden units. More specifically,

we have used a conventional shallow network with the con-

figuration 784-130-10 and the tensor and quasi-tensor shallow

networks with the configuration of 784-(50:50)-10. We chose

these configurations to ensure that they have a similar number of

parameters, which is

and , respec-

tively, for the 784-130-10 and 784-(50:50)-10 configurations.

We initialized weights randomly and ran 10 experiments on

each configuration. The trainingwas carried out using stochastic

gradient ascent, taking a learning rate of 0.1 per sample for the

first 5 sweeps and 0.05 per sample afterwards. The training stops

when the error rate measured on the development set increases.

The classification results are summarized in Table II. It is clear

that both tensor and quasi-tensor layers help reduce the error

rate over the conventional sigmoid hidden layers (shaded row

in the table). Note that tensor and quasi-tensor layers give sim-

ilar error rates on this same configuration. However, we have

noticed that quasi-tensor layers are in general more likely to di-

verge in training if model parameters are not correctly initialized

or the learning rate is not properly chosen. This is likely because

multiplying two real valued numbers may send an unbounded

learning signal. For this reason we apply only DTNNs to speech

recognition tasks which take much more time to train.

B. SWB 30-hr Speech Recognition Task

The training and development sets in the SWB30-hr task con-

tain 30 hours and 6.5 hours of data randomly sampled from the

309-hour Switchboard-I training set. The 1831-segment SWB

part of the NIST 2000 Hub5 evaluation set (6.5 hours) was used

as the test set. To prevent speaker overlap between the training

and test sets, speakers occurring in the test set were removed

from the training and development sets.

TABLE III
COMPARING THE EFFECT OF DIFFERENT DTNN CONFIGURATIONS ON THE
SWB 30-hr TASK. DTNNS WERE TRAINED FOR ONLY 10 SWEEPS, IN
WHICH THE FIRST 5 SWEEPS WERE CARRIED OUT USING A LEARNING
RATE OF PER SAMPLE AND THE REMAINING 5 SWEEPS WITH

A LEARNING RATE PER SAMPLE

The system uses a 39-dimensional feature that was reduced

using HLDA from mean- and variance-normalized 13-dimen-

sional PLP features and up to third-order derivatives. The

common left-to-right 3-state speaker-independent crossword

triphones share 1504 CART-tied states determined on the con-

ventional GMM system. The trigram language model (LM) was

trained on the 2000 h Fisher-corpus transcripts and interpolated

with a written text trigram. The test-set perplexity with a 58 k

dictionary is 84. The features, lexicon and LM used in this

study are the same as those used in our earlier work [4]–[6].

The GMM-HMM baseline system has a mixture of 40 Gaus-

sians in each HMM state. It was trained with maximum likeli-

hood (ML) and refined discriminatively with the boosted max-

imum-mutual-information (BMMI) criterion. Using more than

40 Gaussians did not improve the ML result.

Both the CD-DNN-HMM and CD-DTNN-HMM systems re-

place the Gaussian mixtures with scaled likelihoods derived

from the DNN and DTNN posteriors, respectively. The input to

the DNN and DTNN contains 11 (5-1-5) frames of the HLDA-

transformed features. The baseline DNN uses the architecture of

429-2048 5-1504. A DTNN whose hidden layers are (96:96)

5 has 21 million parameters, similar to the total number of

parameters in the baseline conventional DNN.

The training was carried out with tied-triphone state labels

generated using the ML-trained CD-GMM-HMM system. In

our experiments, the conventional DNNs were pre-trained with

the DBN-pretraining algorithm [24] before they were fine-tuned

using the BP algorithm. However, we have not developed sim-

ilar pretraining algorithms for DTNNs. DTNNs were thus

trained using the BP algorithm presented in Section IV starting

from randomly initialized weights. The pretrained DNN model

typically outperforms the randomly initialized DNN model,

with 0.3%–0.5% absolute WER reduction when the number of

hidden layers is 5.

Table III compares the effect of different DTNN configura-

tions on the recognition error rate. To reduce the overall training

time we trained DTNNs for only 10 sweeps, in which the first

5 sweeps were carried out using a learning rate of

per sample and the remaining 5 sweeps with a learning rate of

per sample.
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Note that even with this highly sub-optimal learning strategy,

a DNN with 5 hidden layers (shaded row in the table) already

significantly outperforms the CD-GMM-HMM trained using

the BMMI criterion. The results in Table III are organized so

that all configurations above the shaded line underperform the

conventional DNN and all the configurations below the shaded

line outperform DNN.

Examining Table III, we can make three observations. First,

configuration (96:96) 5 in which all layers are DP tensor

layers performs similarly to the DNN baseline that contains

a similar number of parameters, even though the DNN was

pre-trained while the DTNN was not. Note that due to the na-

ture of the DP layer, the dimension of the hidden layers in the

DTNN is much smaller (under two hundred) than comparable

conventional layers (a few thousand). Second, the configuration

in which only the bottom (first) layer was replaced with the DP

layer (configuration )

performs the worst. We believe this is because much of the in-

formation in the real-valued input is lost when the input feature

is transformed into a (much smaller than 2048

in the conventional DNN) dimension DP layer. Third, the con-

figurations that replace the top hidden layer with the DP layer

(configurations and

) perform the best and

achieve more than 5% relative WER reduction over the DNN.

This is because the top hidden layer is more invariant than the

input layer and thus the information loss caused by using the

low-dimensional DP layer is outweighed by the benefit obtained

by using the tensor layer. The DTNN in which only the middle

hidden layer is a DP layer (configuration

) performs in between.

In Table III we also included the results achieved with the

joint factorized DNN (JFDNN) described in [21]. This is in-

tended to answer the question of whether using a gated softmax

layer [19] on top of a DNN is helpful. The experiment used

factors in the gated softmax layer. It can be seen that

the JFDNNonly slightly outperforms the conventional DNNbut

with much longer training time.

To eliminate the possibility that the training strategy adopted

in Table III may favor DTNNs over DNNs, we tuned the

learning strategy, including learning rates and schedule, for

DNNs and used this tuned learning strategy to train DTNNs.

More specifically, DNNs and DTNNs were trained for 15

sweeps, in which the first 9 sweeps were carried out using

a learning rate of per sample and the remaining 6

sweeps with a learning rate per sample. Further in-

creasing the training sweeps does not lead to additional gain on

the development set. In addition, we have compared DNNs and

DTNNs with 7-hidden layers. The new results are summarized

in Table IV. These results further confirm the effectiveness of

the DTNN, with 1.2% and 1.0% absolute, or 4.4% and 3.9%

relative, WER reduction over the DNNs, respectively, for the

five and seven-hidden layer systems.

C. SWB 309-hr Speech Recognition Task

In the SWB 309-hr task, we used the 309-hour Switchboard-I

training set [14]. The feature extraction process is exactly the

same as that described in Section V-B. However, the optimal

TABLE IV
COMPARING DNN AND DIFFERENT CONFIGURATIONS OF DTNN
ON THE SWB 30-hr TASK. THE LEARNING STRATEGY WAS TUNED

FOR DNN AND APPLIED TO DTNN

Fig. 4. The change of training set frame-level cross entropy after each sweep
of the 309-hr training set.

number of CART-tied triphone states determined by the GMM

system is now increased to 9304. We followed the same

procedure as described in [4], [5] to train the conventional

CD-DNN-HMM with the tied-triphone state alignment gener-

ated using the ML-trained CD-GMM-HMM. More specifically,

we swept the training data seven times. We used a learning rate

of per sample for the first three sweeps and

per sample for the remaining four sweeps. The conventional

DNN was pre-trained generatively using the DBN-pretraining

algorithm, but the DTNN was not, although the discriminative

pretraining procedure introduced in [5] could be used. To

prevent divergence, we have used a minibatch size of 128 for

the first sweep and 1024 afterwards. To investigate the gener-

alization ability we tested the model on the 6.3 h Spring 2003

NIST rich transcription set (RT03S) in addition to the Hub5’00

evaluation set. Different from the best results achieved in [4]

which used DNN realignment, the results presented here used

only the alignment generated from the GMM-ML system.

Fig. 4 and Fig. 5 illustrate the training set frame-level cross-

entropy (CE) and senone prediction accuracy, respectively, over

sweeps of the 309-hr training data. It can be seen that initially

the DTNN performsworse than the conventional DNN since the

weights were not pretrained. However, after three sweeps, the

DTNNmade up the difference and eventually outperformed the

DNN.

Table V summarizes the word error rate (WER) on this task

using DNN and DTNN. From Table V we can see that the

DTNN still outperforms the DNN, but the gain is smaller with

0.5% absolute or 3% relative WER reduction on the Hub5’00

eval set. This is possibly because a DNN trained with signif-

icantly more data can generalize better even without explicit
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Fig. 5. The change of training set frame-level senone classification accuracy
after each sweep of the 309-hr training set.

TABLE V
COMPARING DNN AND DTNN ON THE SWB 309-hr TASK. WER

ON HUB5’00 AND RT03S EVALUATION SETS

modeling of subspaces and their interactions as intended by the

DTNN. Table V also indicates that when applied to the RT03S

evaluation set, the DTNN outperforms the seven hidden layer

DNN with a 0.4% and 0.5% WER reduction on the FSH and

SW parts, respectively. Compared to the nine-hidden-layer

DNN it performs slightly better on the Hub5’00 evaluation set

and SW part of the RT03S set, but slightly worse on the FSH

part of the RT03S set.

VI. SUMMARY AND CONCLUSIONS

In this paper we have proposed and implemented a novel deep

neural network, the DTNN, which involves tensor interactions

among neurons. This work is in part motivated by tensor net-

work theory in neuroscience, where tensor interactions play a

role in the central nervous system (e.g., [15]).

In a DTNN, at least one layer in the deep architecture is com-

posed of a DP and a tensor layer. The two subspaces represented

by the two parts in the DP layer interact with each other to cover

a product space. We have described an approach to map the

tensor layers to conventional sigmoid layers so that the former

can be treated and trained in a similar way to the latter. With this

mapping we can consider a DTNN as a DNN augmented with

DP layers. As a result, the BP learning algorithm for DTNNs can

be cleanly derived as we presented in Section IV of this paper.

In addition, we have described how the DP and tensor layers

can stack up to form a DTNN in which all layers are DP and

tensor layers. We have also showed how two variants of the

DTNN can be constructed and their weight parameters learned.

We have evaluated different configurations of the DTNN

architecture on the MNIST digit recognition task and on two

SWB tasks using 30 and 309 hours of training data, respec-

tively. The experimental results demonstrate that when the DP

layer is placed at the top hidden layer of the DTNN, it performs

the best and it outperforms the corresponding DNN by 4%–5%

relative WER reduction on the 30-hr SWB task and 3% on the

309-hr SWB task. Our experiments suggest that the proposed

DTNN is especially effective when the training data size is

small.

In this work, we have discovered that DTNN is a very pow-

erful deep architecture capable of representing covariance struc-

ture of the data in the hidden space and thus may show its poten-

tial in modeling noisy speech or speech with high variability. As

our future work, we will investigate to what degree the use of

speaker adapted features as the input to a DTNN would shrink

the gain from using the DTNN over the regular DNN. On the

other hand, we have noticed that having small DP layers may

hurt the performance especially when the DP layer is at the

bottom. However, increasing the DP layer size may significantly

increase the overall model size and thus introduce overfitting

problems. A possible solution is to factorize the weight tensor

using the techniques adopted in [16], [19] to reduce the number

of parameters.
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