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Abstract

Introduction

The default mode network and the working memory network are known to be anti-correlated

during sustained cognitive processing, in a load-dependent manner. We hypothesized that

functional connectivity among nodes of the two networks could be dynamically modulated

by task phases across time.

Methods

To address the dynamic links between default mode network and the working memory net-

work, we used a delayed visuo-spatial working memory paradigm, which allowed us to sep-

arate three different phases of working memory (encoding, maintenance, and retrieval), and

analyzed the functional connectivity during each phase within and between the default

mode network and the working memory network networks.

Results

We found that the two networks are anti-correlated only during the maintenance phase of

working memory, i.e. when attention is focused on a memorized stimulus in the absence of

external input. Conversely, during the encoding and retrieval phases, when the external

stimulation is present, the default mode network is positively coupled with the working mem-

ory network, suggesting the existence of a dynamically switching of functional connectivity

between “task-positive” and “task-negative” brain networks.

Conclusions

Our results demonstrate that the well-established dichotomy of the human brain (anti-corre-

lated networks during rest and balanced activation-deactivation during cognition) has a
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more nuanced organization than previously thought and engages in different patterns of

correlation and anti-correlation during specific sub-phases of a cognitive task. This nuanced

organization reinforces the hypothesis of a direct involvement of the default mode network

in cognitive functions, as represented by a dynamic rather than static interaction with specif-

ic task-positive networks, such as the working memory network.

Introduction

Cognitive functions arise from the orchestrated activation and cooperation of networks of regions

whose specific relationship varies dynamically across functional states [1, 2]. The default mode

network (DMN), defined as being related to a baseline cognitive state, is involved in large-scale

brain organization, both during rest and cognitive tasks [3–5]. The DMN has been identified

through the observation of its deactivation across a range of cognitive tasks [6,7] and further re-

fined through the analysis of coherent patterns of low frequency fMRI signal fluctuations [8–10].

The DMN commonly comprises the medial prefrontal cortex (MPFC), the retrosplenial cor-

tex; MPFC: medial prefronta/retrosplenial cortex (PCC/Rsp), and the inferior parietal lobule

(IPL) [2]. Although it has been suggested repeatedly that the DMN is generally related to the

working memory network (WMN) [5,11–15] and thus potentially involved in the neural mech-

anism underlying working memory [16,17], the process-dependent intimate link between the

DMN and the WMN has not been clarified. In fact, most of the above mentioned results were

obtained by using an N-back task [18], a commonly used working memory task which does

not allow one to dynamically separate the three fundamental working memory sub-processes,

called encoding, maintenance, and retrieval, as these temporally overlap across consecutive N-

back trials [11].

Recent evidences have highlighted the involvement of some DMN regions during both

other working memory tasks and episodic memory tasks [16,19–22], suggesting that DMN

nodes could be activated differently during distinct memory phases. However, this aspect can-

not be explained with the general concept of a DMN task-related global deactivation, but re-

quires a more complex functional relationship between networks to be addressed. This study

aimed to concretely address this aspect in a parametric working-memory fMRI connectivity

study.

We hypothesized that the functional connectivity between the networks supporting working

memory change dynamically across the various cognitive phases. Each of these phases is in fact

characterized by complex cognitive engagement of multiple brain regions [23–26]. In our task,

it was possible to model the temporal progression of working memory processing across three

consecutive phases: (i) encoding of the information, (ii) maintenance of the information, (iii)

retrieval of the information for response selection. We here used a delayed working memory

spatial paradigm [27] and studied the functional connectivity within and between the WMN

and the DMN nodes during each of the three phases. We were, therefore, able to systematically

assess whether intra- and/or inter-network functional connectivity depended on working

memory phase. We then expected changes in the role of the DMN depending on phase of task

execution, by means of a modulated cross-network correlation between DMN andWMN.

Methods

Fourteen healthy, subjects (8 males, age range 20–30) were recruited for this study. All of them

had no history of neurological or psychiatric disorders, normal or corrected to normal visual

acuity. All subjects were right-handed according to the Edinburgh Questionnaire [28].
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Ethical Committee of the Faculty of Psychology at the University of Maastricht approved

the study. All the subjects gave written, informed consent, in accordance with the principles ex-

pressed in the Declaration of Helsinki.

Working memory task

All subjects performed a delayed, location-based, spatial working memory paradigm, which

builds on the work by Mottaghy [27]. In this task, the subjects were asked to judge whether a

given target stimulus had been part of a previous memory stimulus set or not. The memory set

consisted of one, three, or five circles (corresponding to three load conditions) of equal diame-

ter, presented for 2000 ms. The circles were randomly presented at twelve possible locations

along a circumference and in three different colors: blue, yellow or red. To avoid physical pre-

sentation differences across load conditions, each memory stimulus contained both the circles

of the present load condition, and (in different colors) as many circles as needed to cover the

twelve positions. The central fixation cross was white and randomly assumed one of the three

colors, indicating which set of circles to focus on. After the stimulus offset, the cross assumed

the white color again. The spatial stimulus was followed by a delay period jittered between 9

and 12 s from the onset of each display to the subsequent target stimulus. The target stimulus

consisted of one white circle, randomly located in one of the twelve positions. Subjects were

asked to respond with the right (‘yes’) or left (‘no’) index fingers pressing two different keypads,

deciding whether the target stimulus had been part of the previous spatial stimulus, or not.

‘Yes’ and ‘no’ trials were pseudo-randomized to be equal in number. A resting period of 12 s

lasted from the button press to the following memory stimulus onset. Subjects were asked to

fixate the white cross during the whole experiment. A psychophysical pilot study revealed a

clear and reliable working memory load effect across conditions, confirming the suitability of

this task. Each subject was trained on the task for 15 minutes the day before the fMRI data ac-

quisition. The experiment consisted of 90 working memory trials, 30 per load, divided into

three functional runs (Fig 1).

Behavioral output

Working memory performance was calculated using reaction times (elapsed time between the

presentation of the stimulus and the response) and accuracy (percentage of correct responses)

as behavioral outcome. Only trials followed by correct response were considered for all the

analyses. We calculated one-way repeated measures ANOVA using accuracy and reaction

times as factors.

Data acquisition

fMRI data were acquired on a Siemens Allegra 3T scanner. For the functional scan, T2�-weighted

echo planar images (EPI) were acquired (TR 1500 ms, TE 30 ms, voxel 3.5x3.5x3.5 mm, flip

angle 90°, 15’each run). Anatomical images were acquired using a magnetization-prepared rapid

gradient echo (MP-RAGE) 3D T1-weighted sequence.

Preprocessing of fMRI data

Image preprocessing was performed in BrainVoyager QX (Brain Innovation, Maastricht, The

Netherlands). Functional image time-series was corrected for the differences in slice acquisition

times, realigned with T1 volumes, and warped into the standard space of Talairach and Tour-

noux [29]. The resulting voxel-time-series were filtered in time and space. A high-pass tempo-

ral filter (7 cycles) was applied and a spatial smoothing, with an isotropic Gaussian kernel of
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4 mm full width at half-maximum, was performed. For display purposes on the volumetric

anatomy, individual maps were projected on the average normalized volumetric image. No ad-

ditional pre-processing, such as whole-brain signal regression, was performed.

Group analysis

Activations. A multi-subject random-effects general linear model (GLM) analysis was

performed including all WMN runs.

We modeled each working memory trial with three predictors; encoding, starting at stimu-

lus onset; maintenance, starting 4 fMRI volumes after the encoding, when the subject main-

tained the target positions in the working memory; and retrieval, from target stimulus onset,

when the subjects had to perform a judgment. Each predictor had the duration of one function-

al volume (i.e., 1500 ms), to ensure that all the predictors had the same amplitude. BOLD re-

sponses were modeled by convolving each predictor with a canonical hemodynamic response.

In the univariate statistical analysis, we therefore used nine predictors, modeling the three

phases of the trial for the three loads separately plus an additional predictor to model trials

with errors, for a total of 10 predictors.

Fig 1. Working memory delayed spatial workingmemory task.

doi:10.1371/journal.pone.0123354.g001
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We used the main effects map (thresholded using False Discovery Rate with q = 0.05) to

identify de-activated regions within the DMN (MPFC, PCC/Rsp, left and right IPL) [2] and

task-related activations within the WMN (DLPFC and IPS bilaterally) [1]. As a post-hoc analy-

sis, we then considered event-related averages (i.e. the average across all the repetitions of a

given trial) of each of these regions in order to inspect the modulation of the hemodynamic re-

sponses by the load.

Single subject analysis

Connectivity analyses were performed at a single subject level, the subsequent statistical assess-

ment was done via a second level analysis. For each subject, we randomly selected one of the

three functional runs to identify the nodes, and used the remaining two runs to evaluate con-

nectivity profiles. This procedure ensured independence between the region selection proce-

dure and the connectivity evaluation, ruling out possible biases due to data re-usage.

Region of Interest selection. For each subject, we randomly selected one out of the three

runs to localize ROIs, and used the remaining two runs to conduct the connectivity analyses

(localizing run), selecting the nodes of interest by means of a single-subject GLM, overall F-sta-

tistic on the main effect (FDR, q = 0.05). This procedure led to the identification of a set of

task-positive and a set of task-negative areas. From the task-positive map, we selected four

ROIs relating to the working memory task: left and right DLPFC and left and right IPS. From

the task-negative map, we selected four ROIs relating to the DMN: MPFC, PCC/Rsp, left and

right IPL [2]. These areas could be consistently identified in all the subjects. Inferior parietal

cortex and DLPFC were chosen based on their high degree of consistency across the fMRI stud-

ies involving working memory [1,30]. Furthermore, in the context of the DLPFC, the peaks of

activation were located in Brodmann area 9 for all subjects (S1 Table). As a control analysis, we

also selected two ROIs in auditory cortex (right and left, see S2 Table) and used them as control

region, as we do not expect any modulation of connectivity between these areas and the regions

investigated in this study.

Activations analysis. We calculated a ROI GLM analysis from single subjects’ ROIs, using

the three phases of the task (encode, maintenance, and retrieval) as conditions, to test the activ-

ity of each region in the different phase of the cognitive process against baseline. In this analysis

we used the same ROIs as in the connectivity analysis (see below). We also computed a two-

way repeated measures ANOVA using load and phase as within subjects factor (FDR,

q = 0.05).

Functional connectivity analysis. In the connectivity analysis, we used the remaining two

runs (connectivity runs) and constructed a cube of maximally 27 voxels centered on the peaks

of the F-map in the DMN andWMN nodes, as estimated from the localizing run. Voxels with-

in the cube but outside the cortex were excluded from the analysis. The time series within these

cubes were averaged and the resulting time series (one per region) were analyzed using Beta Se-

ries Correlation (BSC) approach [31], which has been successfully employed in a large number

of studies [32–34]. In BSC, regional time-courses are modeled with a set of regressors with

each predictor coding for a specific event. In our design, we modeled each working memory

trial with three predictors, (one for each phase of the task, convolving with an estimate of the

hemodynamic response function, similarly to what described in the univariate analysis), result-

ing in maximally 60�3 predictors for the two connectivity runs, plus a predictor accounting for

error trials (when present). The patterns of temporal variation across the experiment of the re-

gression coefficients (i.e., betas) are then compared across different areas using a Pearson cor-

relation. This approach is different from conventional resting state connectivity, which

characterizes connectivity by means of temporal correlation between raw BOLD time series of
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different voxels; BSC first summarizes each trial with a set of coefficients describing the

amplitude in different phases of the trial, and then investigates the temporal correlation of

task-modulated temporal variations of response amplitude. With such an approach, it is possi-

ble to study differences in connectivity across different experimental conditions and, most im-

portantly, modulations of connectivity across different stages of the same task. We used a

1500 ms duration for each predictor; however, duration was not a critical factor since correla-

tion was calculated for each phase separately. To ensure that changes of overall signal intensity

and variance across runs did not affect the connectivity measures, we standardized the Beta

Series of each run with a z-score transformation.

The group analysis was performed with a second level analysis (random effects): we first

computed the BSC for each subject, and then used subject’s estimates as input to a subsequent

analysis. For each of the three conditions and for each of the three loads, we computed the pair-

wise Pearson correlation between the beta series of two distinct areas, and repeated this with all

the possible combinations. This analysis resulted in 9 correlation values per connection, for a

total of 28 connections. It is worth noting that, since the correlations are calculated for each ex-

perimental condition and load separately (e.g., encoding, load 1), we do not expect their values

to be influenced by univariate load effects in one or in both of the areas compared. Moreover,

since the separation between the predictors is larger than 4 seconds, the different conditions

can be identified [31]. Before conducting the group analysis, we transformed the correlation

values with a Fisher transformation, to ensure normally distributed observations [35]. The

group analysis consisted of a repeated measure two-way ANOVA with task phase and load as

factors for each connection. The results obtained were then corrected for multiple comparisons

(across the different connections and test, 9�28 tests) using False Discovery Rate (FDR) [36].

Results

Performance

Fig 2 shows the behavioral data. Reaction times increased and accuracy decreased with working

memory load.

Activations

The main effects map, obtained from a multi-subject random-effects general linear model

(GLM) analysis, included both de-activated regions (DMN) and task-related activations

(WMN). When we performed the post hoc event related average analysis, we found a higher

activation at higher working memory loads in the task-related regions and higher de-activation

at higher loads in DMN regions, thus confirming the model of two anti-correlated networks

(Fig 3). These findings were consistent across individual subject GLMs. Single subject regions

of interest (ROIs) GLM analysis showed a highly significant activation in all the working mem-

ory regions and a deactivation in DMN regions in all of the task conditions (Table 1). Two-way

repeated measures ANOVA with load and phase as within subjects factor (FDR, q = 0.05)

showed that there was a significant phase effect in each region of both networks with the excep-

tion of right IPL whereas the load effect was limited to the right IPL in the DMN and the right

and left intra-parietal sulcus (IPS) in the WMN (Table 2). This analysis confirmed that the

areas that were selected from the individual localizer runs also showed task-related activity in

the independent runs from the same participants.

Brain Functional Connectivity andWorking Memory
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Connectivity

For each pair of ROIs, we considered the trial-by-trial correlation of the beta series, calculating

Pearson correlation separately for each phase and load. This resulted in 9 different values per

pair of ROIs, per subject, which were transformed with a Fisher transform to ensure normality.

For each ROI pair, we performed a repeated measures two-way ANOVA, with phase and load

as factors. We corrected for multiple comparisons using FDR with q = 0.05.

Effects of load. We found a load effect in functional connectivity within the WMN, in par-

ticular between right IPS and left IPS (p = 0.001) and between right IPS and left dorso-lateral

prefrontal cortex (DLPFC) (p = 0.001). We did not find any load effect either within the DMN

or between the two networks (Table 3).

Effects of phase. When we calculated the functional connectivity within each network, we

did not find any modulation dependent on task phase. When we calculated the functional con-

nectivity between the networks, we found a significant phase modulation for the following

Fig 2. Behavioral output. Charts A and B show that accuracy (percentage of correct responses) increases
while reaction times (measured from the onset of the target stimulus to the subject's response) decrease at
higher cognitive loads. Error bars indicate SD.

doi:10.1371/journal.pone.0123354.g002
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connections: PCC/Rsp with right DLPFC (p = 0.0001), PCC/Rsp with left DLPFC (p = 0.001),

right IPL with right IPS (p = 0.004), and left IPL with left DLPFC (p = 0.005; Table 3). Apart

from the connection between right IPL and right IPS, all of them were higher during encoding

and retrieval than during maintenance. The connection between the two right parietal nodes

(IPS and IPL) of the networks increases its strength through the task (Table 3).

We also calculated the mean functional connectivity in each phase of the task and found

that all the pairs within each network were positively connected in all the three phases of the

Fig 3. Multi-subject, whole brain random-effects GLMmaps, thresholded at (q)FDR = 0.05. IPS = intra-parietal sulcus; DLPFC = dorso-lateral prefrontal
cortex; MPFC = medial prefrontal cortex; PCC/Rsp = retrosplenial cortex; MPFC: medial prefronta/retrosplenial cortex; IPL = inferior parietal lobule. R- =
right; L- = left. Graphs show event related average time-course relative to each ROI.

doi:10.1371/journal.pone.0123354.g003
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task (p = 0.000; Table 4). Conversely, the correlation between DMN andWMN differed sub-

stantially depending on the task phase. During the encoding phase, only one significant corre-

lation was present: a positive functional connectivity link between left IPL and left DLPFC

(p = 0.006). During the maintenance phase, we found a negative correlation of PCC/Rsp with

right (p = 0.008) and left (p = 0.017) IPS, PCC/Rsp with right (p = 0.001) and left (p = 0.009)

DLPFC, MPFC with right (p = 0.005) and left (p = 0.003) IPS, and MPFC with right DLPFC

(p = 0.000). During the retrieval phase, there was a positive correlation of MPFC with left

DLPFC (p = 0.017), right IPL with right IPS (p = 0.001), right IPL with left DLPFC (p = 0.012)

and left IPL with left DLPFC (p = 0.005; Table 4). All these correlations survived correction

with the false discovery rate.

Combining the above results (modulation of connectivity across phases, and mean func-

tional connectivity in each phase of the task), we found during encoding and retrieval a positive

connectivity of IPL with DLPFC in the left hemisphere and, during retrieval, a positive

Table 1. Across-subjects region of interest activations analysis (general linear model).

Networks Brain regions ENCODE MAINTENANCE RETRIEVAL

p t p t p t

Default Mode Network PCC/Rsp 7,E-04* -7,415 8,E-05* -5,643 1,E-05* -6,615

MPFC 8,E-04* -4,366 1,E-03* -4,136 3,E-04* -4,838

Right IPL 2,E-05* -6,517 7,E-06* -5,686 1,E-03* -3,89

Left IPL 6,E-05* -7,257 1,E-03* -3,992 1,E-05* -6,834

Working Memory Network Right IPS 2,E-09* 14,524 1,E-05* 6,609 1,E-08* 12,15

Left IPS 2,E-05* 14,143 1,E-08* 12,601 1,E-07* 10,407

Right DLPFC 4,E-05* 6,081 1,E-05* 6,587 2,E-09* 12,042

Left DLPFC 7,E-06* 7,17 8,E-06* 7,096 1,E-06* 9,031

PCC/Rsp: retrosplenial cortex; MPFC: medial prefronta/retrosplenial cortex; MPFC: medial prefrontal cortex; IPL: inferior parietal lobule; IPS: intra-parietal

sulcus; DLPFC: dorso-lateral prefrontal cortex.

* = p values exceeding FDR threshold (q = 0.05).

doi:10.1371/journal.pone.0123354.t001

Table 2. Modulation of ROIs activations: Across-subjects two-way repeatedmeasures ANOVAwith load and phase as within subjects factor.

Networks Brain regions PHASE LOAD INTERACTION

p p p

Default Mode Network PCC/Rsp 0,0002* 0,009 0,362

MPFC 0,002* 0,774 0,050

Right IPL 0,011 0,0004* 0,036

Left IPL 0,002* 0,009 0,612

Working Memory Network Right IPS 0,000001* 0,00001* 0,000004*

Left IPS 0,000001* 0,0001* 0.0001*

Right DLPFC 0,00003* 0,050 0,007*

Left DLPFC 0,0005* 0,040 0,014*

PCC/Rsp: retrosplenial cortex; MPFC: medial prefronta/retrosplenial cortex; MPFC: medial prefrontal cortex; IPL: inferior parietal lobule; IPS: intra-parietal

sulcus; DLPFC: dorso-lateral prefrontal cortex.

* = p values exceeding FDR threshold (q = 0.05).

doi:10.1371/journal.pone.0123354.t002
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connectivity of IPL and IPS in the right hemisphere. Conversely, during maintenance we found

a negative connectivity between PCC/Rsp and DLPFC in both hemispheres.

In the control analysis, after correction with false discovery rate, we did not find any signifi-

cant modulation of correlation between the control ROIs regions in the right and left auditory

cortex and all the other ROIs (S3 Table).

Discussion

The current study aimed to investigate dynamic connectivity changes within as well as between

the DMN andWMN, depending on the specific cognitive sub-phase during a behaviorally con-

trolled working memory paradigm. This approach was aimed at more specifically addressing

Table 3. Modulation of functional connectivity between pairs of ROIs.

Networks PAIRS PHASE LOAD INTERACTIONS

p p p

Default Mode Network PCC/Rsp—MPFC 0,246 0,93 0,409

PCC/Rsp—Right IPL 0,386 0,62 0,255

PCC/Rsp—Left IPL 0,64 0,686 0,28

MPFC—Right IPL 0,55 0,774 0,47

MPFC—Left IPL 0,343 0,908 0,515

Right IPL—Left IPL 0,571 0,018 0,237

Working Memory Network Right IPS—Left IPS 0,331 0,0004* 0,225

Right IPS—Right DLPFC 0,708 0,064 0,645

Right IPS—Left DLPFC 0,699 0,0002* 0,958

Left IPS—Right DLPFC 0,915 0,026 0,68

Left IPS—Left DLPFC 0,129 0,007 0,424

Right DLPFC—Left DLPFC 0,585 0,007 0,253

Default Mode Network Vs Working Memory Network PCC/Rsp—Right IPS 0,011 0,399 0,815

PCC/Rsp—Left IPS 0,013 0,274 0,076

PCC/Rsp—Right DLPFC 0,0003* 0,326 0,389

PCC/Rsp—Left DLPFC 0,001* 0,057 0,272

MPFC—Right IPS 0,028 0,705 0,805

MPFC—Left IPS 0,03 0,564 0,785

MPFC—Right DLPFC 0,044 0,909 0,621

MPFC—Left DLPFC 0,055 0,179 0,495

Right IPL—Right IPS 0,004* 0,48 0,364

Right IPL—Left IPS 0,013 0,696 0,307

Right IPL—Right DLPFC 0,036 0,711 0,553

Right IPL—Left DLPFC 0,007 0,588 0,364

Left IPL—Right IPS 0,177 0,426 0,479

Left IPL—Left IPS 0,026 0,745 0,237

Left IPL—Right DLPFC 0,01 0,328 0,283

Left IPL—Left DLPFC 0,005* 0,744 0,092

Across-subjects two-way repeated measures ANOVA with load and phase as within subjects factor (p values).

PCC/Rsp: retrosplenial cortex; MPFC: medial prefronta/retrosplenial cortex; MPFC: medial prefrontal cortex; IPL: inferior parietal lobule; IPS: intra-parietal

sulcus; DLPFC: dorso-lateral prefrontal cortex.

* = p values exceeding FDR threshold (q = 0.05).

doi:10.1371/journal.pone.0123354.t003
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the question of the role of the different brain areas during working memory. In particular, we

were interested in the functional connectivity between task-positive (WMN) and task-negative

(DMN) networks. Interestingly, we did not find any phase modulation of functional connectiv-

ity within each network. Instead, we found that functional connectivity between certain regions

of DMN andWMN is modulated by the working memory task phases (Table 3). Specifically,

we found a positive correlation between the DMN and the WMN during the encoding and re-

trieval phases of working memory. These positive inter-network correlations between DMN

andWMN are located in the left hemisphere, between DMN parietal and WMN prefrontal re-

gions, with an additional positive correlation between right parietal regions of both networks

during the retrieval phase. In contrast, during the maintenance phase, an anti-correlation be-

tween the core of DMN (PCC/Rsp) and prefrontal regions of the WMN is present bilaterally

(Fig 4). Our findings suggest that the coupling between DMN andWMN is dynamic across the

Table 4. Across-subjects mean functional connectivity, in distinct phases of the workingmemory task.

Networks PAIRS ENCODE MAINTENANCE RETRIEVAL

p t p t p t

Default Mode Network PCC/Rsp—MPFC 2E-14* 11,462 2E-19* 16,086 6E-13* 10,289

PCC/Rsp—Right IPL 1E-12* 10,118 2E-11* 9,110 7E-12* 9,441

PCC/Rsp—Left IPL 3E-13* 10,508 1E-12* 10,064 2E-14* 11,504

MPFC—Right IPL 2E-07* 6,234 3E-12* 9,751 7E-10* 7,942

MPFC—Left IPL 1E-10* 8,441 5E-12* 9,544 1E-12* 9,896

Right IPL—Left IPL 9E-17* 13,569 3E-18* 14,995 3E-20* 17,030

Working Memory Network Right IPS—Left IPS 6E-21* 17,839 5E-21* 17,932 6E-18* 14,652

Right IPS—Right DLPFC 2E-16* 13,116 1E-14* 11,709 6E-18* 14,680

Right IPS—Left DLPFC 1E-14* 11,756 8E-14* 11,008 2E-12* 9,881

Left IPS—Right DLPFC 7E-17* 13,644 5E-16* 12,883 6E-15* 11,937

Left IPS—Left DLPFC 5E-16* 12,519 3E-18* 15,245 2E-16* 13,139

Right DLPFC—Left DLPFC 4E-15* 12,084 4E-18* 14,787 5E-17* 13,785

Default Mode Network Vs Working Memory Network PCC/Rsp—Right IPS 0,336 -0,973 0,008* -2,792 0,185 1,347

PCC/Rsp—Left IPS 0,994 0,008 0,017* -2,487 0,185 1,349

PCC/Rsp—Right DLPFC 0,481 -0,711 0,001* -3,619 0,13 1,545

PCC/Rsp—Left DLPFC 0,955 0,057 0,009* -2,727 0,082 1,782

MPFC—Right IPS 0,049 -2,027 0,005* -2,954 0,955 -0,057

MPFC—Left IPS 0,646 -0,463 0,003* -3,150 0,982 -0,023

MPFC—Right DLPFC 0,189 -1,335 0,0001* -4,110 0,625 0,493

MPFC—Left DLPFC 0,547 -0,607 0,095 -1,707 0,017* 2,487

Right IPL—Right IPS 0,696 0,393 0,32 1,006 0,001* 3,645

Right IPL—Left IPS 0,058 1,952 0,82 -0,229 0,007* 2,867

Right IPL—Right DLPFC 0,395 0,861 0,635 -0,479 0,065 1,893

Right IPL—Left DLPFC 0,035 2,178 0,485 -0,705 0,012* 2,617

Left IPL—Right IPS 0,66 0,443 0,265 -1,131 0,258 1,147

Left IPL—Left IPS 0,132 1,537 0,097 -1,698 0,101 1,676

Left IPL—Right DLPFC 0,5 0,681 0,017* -2,478 0,409 0,834

Left IPL—Left DLPFC 0,006* 2,863 0,243 -1,184 0,005* 3,006

PCC/Rsp: retrosplenial cortex; MPFC: medial prefronta/retrosplenial cortex; MPFC: medial prefrontal cortex; IPL: inferior parietal lobule; IPS: intra-parietal

sulcus; DLPFC: dorso-lateral prefrontal cortex.

*p = values exceeding FDR threshold (q = 0.05).

doi:10.1371/journal.pone.0123354.t004
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various phases of a working memory task and does not involve to the two networks as a whole,

but engages different couples of brain cortical regions throughout a complex cognitive task.

We found a similar functional connectivity pattern in the encoding and the retrieval phases;

namely, the positive correlation between left IPL within DMN and left DLPFC within WMN.

DLPFC is well known to have a supramodal function, being active in a number of cognitive

tasks requiring attention, manipulation and response selection, while IPL has been associated

with retrieval and successful recollection [20]. Furthermore, Woodward et al. recently found

an involvement of IPL in the encoding phase as well [17]. This suggests the existence of a spe-

cific type of cooperation between the two networks taking place during the encoding and re-

trieval phases in which the DLPFC becomes positively correlated with IPL, at least in the left

hemisphere. On the other hand, because the two phases have the presentation of a visual stimu-

lus in common, we cannot rule out that such positive functional connectivity is dynamically

induced by the (passive) viewing of the stimulus, independent of the working-memory task.

Our MRI acquisition parameters did not allow full coverage of the brain in the given TR (=

1500 ms) for each participant, and therefore failed to provide consistent data from visual cortex

across our sample. This absence of a potential control region for our network analyses within

the visual cortex that is also activated by the task but does not show the described stage-depen-

dent dynamics in inter-network connectivity represents a limitation of the current study.

Fig 4. Functional connectivity between theWM network and the DMN in distinct phases of a workingmemory task. DLPFC: dorsolateral prefrontal
cortex; IPS: intra-parietal sulcus; IPL: inferior parietal lobule; PCC/Rsp = posterior cingulate/retrosplenial cortex. Yellow fonts indicate WMN regions; blue
fonts indicate DMN regions. Red lines: positive correlations; blue lines: negative correlations.

doi:10.1371/journal.pone.0123354.g004
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We also found a positive correlation between the right parietal regions belonging to both

networks in the retrieval phase (Fig 4). From a cognitive perspective, the retrieval phase is char-

acterized by a matching and selection process between the memorized stimulus (from the en-

coding phase) and the stimulus presented during retrieval. Emerging evidences [16] show a

functional dissociation of sub-regions within parietal cortices, with the superior posterior pari-

etal cortex (SPL/IPS) not being directly involved in retrieval but rather in the old/new stimulus

selection process, and the IPL relating to the successful recollection of information. Further-

more, Shannon et al. [37] demonstrated that IPL is involved in recollection, irrespective of the

type of the stimulus (visual or verbal), and that its activation is not influenced by spatial manip-

ulation of the stimulus. In other words, the role of IPL seems to correspond to the integration

of multi-modal information, reflecting Baddeley’s “episodic buffer” [38]. The above mentioned

results suggest that a cooperation between IPL and IPS is involved in the retrieval phase of a

memory process and our findings of a positive correlation between IPL and IPS respectively in

the DMN andWMN would support the hypothesis of a specific functional communication,

needed to recognize the novelty of the visual stimulus and recollect previously stored informa-

tion to select the appropriate response [16,22,37].

The positive correlations between the regions of the two networks are not present during

the maintenance phase, when no external stimulus is presented and the information is purely

stored, manipulated, and kept in memory. This suggests that during a pure maintenance phase

of the working memory process, subjects are focused on the internal representation of the in-

formation and need to actively avoid or minimize any external or internal distraction. There-

fore, one possible explanation for the shift from positive to negative connection might be that,

for successful maintenance of specific information, it is necessary to keep the WMN function-

ally separated from the DMN, in such a way to keep maintenance operations undisturbed from

typical internal cognition processes, such as, e. g., mind wandering [39], autobiographic memo-

ry [40] and self-awareness streaming [41].

Previous studies have revealed an activation/deactivation dichotomy even in resting state

functional connectivity analyses, showing that the DMN’s signal is anti-correlated with the sig-

nal from the task-positive networks [3]. However, we believe that this dichotomous view can-

not be automatically extended from the resting to all possible brain and/or cognitive states,

such as those arising from the application a cognitive task, from basically two reasons: first,

nothing is known about functional connectivity modulation of selected pairs of ROIs during

distinct stages of cognitive task. Second, recent papers show a functional heterogeneity of

DMN, if determined during a cognitive task. For instance, Mayer et al. [30] suggested that the

DMN can be dissociated into subcomponents, some of which have a task dependent specificity,

while other components are considered “the core” of the network as they deactivate propor-

tionally to cognitive load but not to a specific task [30]. Furthermore, the posterior cingulate

cortex can be divided into two components, ventral and dorsal, showing dissociated functional

connectivity relatively to task load: the ventral part showed reduced functional connectivity

with the rest of DMN and reduced anti-correlation with the WMN components, while the dor-

sal part showed the opposite pattern, with increased correlation with the DMN and increased

anti-correlation with the WMN [42].

Although our activation results (load dependent activation of WMN and deactivation of

DMN) replicated previous findings, our multi-phase functional connectivity approach did not

reveal an overall anti-correlation between the two networks across all phases of the task. On

the other hand, previous reports of such anti-correlated activity mainly relied on data from

resting state or N-back experiments, which are create relatively “stationary” conditions, with or

without cognitive engagement. In contrast, our delayed task, combined with the analysis of

functional connectivity across different task phases, allowed us to define a dynamic functional
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connectivity model by disentangling the working memory phases and assign a specific pattern

of connectivity to each phase.

In conclusion, our results support previous reports about a direct and active involvement of

DMN in working memory, mainly via the interaction of its parietal nodes with prefrontal re-

gions of the WMN, but also show, for the first time, the detailed dynamics of functional con-

nectivity between networks during distinct stages of a cognitive task, thereby giving new

insights to the comprehension of human brain functioning. The dichotomous organization of

human brain in anti-correlated networks, as revealed by Fox in the resting brain [3], is dis-

rupted when the brain is involved in some cognitive processes. Moreover, functional connec-

tivity among networks is modulated by the complexity of cognitive functions that are often

multi-modal and the combination of a series of sub-processes.

These findings open new insights in understanding neural mechanism underlying a cogni-

tive process such as working memory, which seems to need specific and dynamic interactions

between two networks. Moreover they suggest that the DMN activity is not specific of resting

condition but is actively implicated in human cognition. Because DMN is functionally affected

in early stages of some neurological diseases, particularly Alzheimer’s Disease [2], our results

are potentially useful in understanding some aspects of cognitive deficit in Alzheimer’s Disease

and in developing specific rehabilitative protocols for non invasive brain stimulation, such as

Transcranial Direct Current Stimulation (tDCS) or Trancranial Magnetic Stimulation (TMS),

which are able to affect both excitability and functional connectivity of brain cortex [43–46].
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