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§ 1 . I n t r o d u c t i o n .

Various problems concerning infinitely many, infinitely small, parts, bad been solved 

before the infinitesimal calculus was invented ; for example, A r c h i m e d e s  on the circum

ference of the circle.* The essence of the invention of the calculus appears to be th a t 

the passage to the lim it was thereby taken a t the earliest possible stage, where diverse 

problems had operations like djdx in common. Although the infinitesimal calculus has 

been a splendid success, yet there rem ain problems in which it is cumbrous or unworkable. 

W hen such difficulties are encountered it m ay be well to return  to the m anner in which 

they did things before the calculus was invented, postponing the passage to the lim it 

until after the problem had been solved for a moderate number of moderately small 

differences.

For obtaining the solution of the difference-problem a variety of arithm etical pro

cesses are available. This memoir deals with central differences arranged in the simplest 

possible way, namely, th a t explained by the w riter in the papers cited in the footnote.! 

Advancing differences are ignored, and so are the varieties of central-difference-process 

in which accuracy is gained by complicating the arithm etic a t an early stage.

Confining attention to problems involving a single independent variable x, let h be the 

“ s te p /’ th a t is to say, the difference of x  which is used in the arithm etic, and let <j>(x, h) 

be the solution of the problem in  differences. Let /  (;x be the solution of the analogous 

problem in the infinitesimal calculus. I t  is f  (x) which we want to know, and </> (x, h) 

which is known for several values of h. A theory, published in 1910,J bu t too brief and 

vague, has suggested tha t, if the differences are “ centred ” then

</> (x, h) =  f  {x) +  h2f 2 (x) + h% (x) +  ... to  in

odd powers of h being absent. The functions f 2(x), fi{x), f 6(x) are usually unknown. 

Numerous arithm etical examples have confirmed the absence of odd powers, and have 

shown th a t it is often easy to perform the arithm etic with several values of h so small 

th a t f(x )  +  h% (x) is a good approxim ation to the sum to infinity of the series in (1).

* Many other arcs, areas and volumes are mentioned in 4 Ency. B rit.,’ IX  Edn., vol. 13, pp. 5 to 8.

t  For Differential equations—L. F. R i c h a r d s o n , 4 Phil. Trans.,’ A, vol. 210, pp. 307, 314, §1, §2. 

See especially a summary in the 4 Mathematical Gazette ’ for July, 1925. For an Integral Equation, see 

4 Phil. Trans.,’ A, vol. 223, p. 361.

X ‘ Phil. Trans.,’ A., vol. 210, pp. 310, 311, § 1.2.
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THE D EFERRED APPROACH TO THE LIMIT. 301

If generally true, th is  would be very useful, for it  would m ean th a t  if we have found two 

solutions for unequal steps Ji2, then  by elim inating f 2{x) we would obtain the desired 

f(x) in  the form

-f /,y,\  ^22</) (&> ^l) lh)
n )  h ' - h *

rChis process represented by the formula (2) will be named the “ /^-extrapolation ”

D EFN .

If the difference problem  has been solved for three unequal values of h it  is possible 

to  write three equations of the type (1) for /q, h2, h3, retaining the term  h*fi(x). Then 

f(x) is found by elim inating both f 2 (x) and fi(x ) . This proc

“ //-ex trapo lation .”

The purpose of th is investigation is to examine the //-ex trapolation  anew, looking for 

exceptions and qualifications. Two questions pervade P a rt I :—

(1) Are the odd powers of h always absent ?

(2) How small m ust li be in order th a t the //-ex trapo lation  may make an improve

m ent ?

The analysis has been found to be complicated, in  contrast w ith the sim plicity of the 

arithm etical practice. The m ethod employed is to obtain a formula showing cf>(x, h) 

as a quite explicit function of h. An analogous formula is obtained for f(x), under the 

restriction th a t f(x) m ust have ^-derivatives of all orders a t every point of the range. 

The question whether L im it </> ( x, h) is equal or not to /  ($) is de
h0

affirm ative , b y  com p arin g  th e  tw o  an a lo g o u s formulae, so th a t  th ere  is  no n eed  to  bring  

in  th e  m e th o d  of L i p s c h i t z .*

Problems involving differential equations will be divided into the “ marching ” and 

“ jury ”varieties. These w ordsf have been used in the following sense : A “ marching ” 

problem is one in which the arithm etical solution can be stepped out from one end of the 

range of x. A “ jury  ” problem is one in which the solution m ust be determined by refer

ence to both ends of the range considered together just as the verdict has to satisfy all 

the jurymen together.

The th ird  class of problem th a t will be treated  is V o l t e r r a A  integral equation of the 

first kind. Various common interests such as the properties of pt. and S are treated  first.

Th*e deferred approach to the lim it has also been considered by N. B o g o l o u b o f f  and 

N. K r y l o f f  in a recent paper,J in Russian.

* Go t j r s a t , ‘ Cours d’Analyse ’ (1925), tome 2, art. 391.

f  See “ W eather Prediction by Numerical Process” (Camb. Press), p. 3 ; also ‘ Math. Gazette,’ July, 

1925.

% N. B o g o l o u b o f f  and N. K r y l o f f , “ On the R a y l e i g h ’s  principle in the theory of the differential 

equations of the mathematical physic and upon the E u l e r ’s  method in the calculus of variations,” ‘ Acad, 

des Sci. de l’Ukraine, Classe, Phys. M ath.,’ tome 3, fasc. 3 (1926).
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§ 2 . R e p l a c e m e n t  o f  D e r i v a t i v e s  b y  D i f f e r e n c e - R a t i o s .

I f  th e  prob lem  is  a lread y  exp ressed  in  th e  lan gu age  o f th e  ca lcu lu s so as to  d eterm in e  a 

fu n ctio n  f(x ) ,  th e  first process is  to  rep lace ev ery  d e r iv a tiv e  of b y  a d ifferen ce-ratio  

of w h ich  i t  is  th e  lim it . T he fu n c tio n  w h ose  d ifferences are ta k en  w ill be  d en o ted  b y  

0 (x, h). The rep lacem en t could  be don e in  a v a r ie ty  o f w a y s, b u t th e  o n ly  one u sed  in  

P a r t I  w ill be th a t  in  w h ich  th e  d e r iv a tiv e  f  {x) is  rep laced  b y  th e  cen tra l d ifference  

ratio

{$  { x \ K ) — 0 ? > h )} /h ..................................... (1)

The n o ta tio n  m ay  be sh ortened  b y  th e  u se of th e  operators 8 an d  g defined , in  accord 

ance w ith  S h e p p a r d ,*  to  be such  th a t  if 0  (x) is  a n y  fu n c tio n  o f x, th en

8<f> (x) =  <f> (x -f- \h) (f> (x — ................................... (2)

[i(f) (x) =  ^ {<f> ( x < f )  (x — \h)}  . . . . . .  (3)

A  m o st im p o rta n t p rop erty  of 8 and  g p roved  b y  S h e p p a r d  is  th a t  th e y  fo llo w  th e  

ord inary  law s of a lgebra, so th a t  for in s ta n ce

g 8 0  (x) =  8 g 0  {x)and g {</> (x) +  =  g 0  +  g 0

W e m u st a lw ays th in k  of 0  (x) as a n u m erica l ta b le  w ith  step  h in  x. I f  0  is  a num ber  

in  th is  tab le , th en  w e ca n n o t com p u te  8 0  (a) in  a n y  s im p le

</> ( a -f- \h) an d  </> (a — \h) n e ith er  of w h ich  are ta b u la ted .

Tw o possib le  w ays of arranging th e  a r ith m etic  n eed  to  be d is tin g u ish ed . B orrow ing  

w ords from  crysta llograp h y  th e y  m a y  be n am ed  th e  m eth o d s  of th e  s in g le  la tt ic e  an d  of 

th e  in terp en etra tin g  la ttice s .

Interpenetrating lattices is  th e  nam e now  proposed  for th e  m eth o d , form erly  ca lled  

“ step  o v e r / '  in  w h ich  th ere are tw o  fu n ctio n s  0 (x ), </> {x) ta b u la te d  a t a ltern a te  p o in ts  

t h u s :—

T a b l e  I .

0 (0)

0 m  8 ( f > m
0  (h) 80 (h) 82 cf)(h)

0 ( P )  8cf> ms2© (# a ) s

0  (2 h)80 (2 h)S20  (2

0 m8^ ( i  h)
(f> (3 h)

A t a n y  p o in t, say , x — f  hth ere are b o th  odd  an d  e v en  d ifferences ta b u la

w hen  w e h a v e  an  eq u a tio n  co n n ectin g  od d  w ith  e v en  d ifferences th ere  is  no n eed  to  use  

g. The “ la tt ice  ” con sistin g  of 0 and  its  d ifferences is con n ected  w ith  th e  0 -la ttice

* W. F. S h e p p a r d , “ Central Difference Formulae,” ‘ Lond. Math. Soc. Proc.,’ vol. 31, p. 461 (1899), who 

refers to P. A. Hansen, ‘ Abhandlungen der kon. sachs. Ges.’ (Leipzig), vol. xi, pp. 505-583 (1865) (vol. vii of 

‘ Abh. der. math.-phys. Classe’).
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THE DEFERRED APPROACH TO THE LIMIT. 30 3

only by way of the range- and boundary-equations. The writer* has found interpene

tra tin g  lattices to  be convenient in the arithm etic, b u t they  need extra in itial data, 

h itherto  provided by various arb itra ry  devices, giving rise to  oscillatory errors. 

Recently, however, Mr. J . A. G a u n t  has discovered stric t rules for taking the first 

step, which he explains in P a rt II.

Single lattice, the only type discussed in P a rt I, is th a t  in  which ) is tabu la ted  a t  

intervals h of x, exactly as in Table I om itting 0 and its differences.

The differences 8n(f) are centred a t the values of x  where </» is tabu lated  when n i

and m idway between those values of x  when n is odd. If we have to  form an equation 

involving both  odd and even differences, and here (f> itself would be reckoned as a difference 

of zeroth even order, then  it  is simplest if we connect together either

[i8(f), 8z (f>, [xd3<£ . . .  ,

11(f), 8(f), g82(f), 8* + . . . ,

bu t not a m ixture. This convention th a t fx m ust precede either every odd power of

or else every even power, bu t not both, rules throughout P a rt I ................................... (4)

Differences arranged in either of these two sequences will be called “ alternating 

differences/’ and the set <f>,[x§</>, 82<f>, 

set g<f>, 8(f), jx82(f) being “ centered w ith [x</>.”

The highest derivative in the given range-equationj* will he replaced by a differe

is not modified by g .—To see why this is desirable let us consider here marching an

problems. Integral equations will be discussed in § 11.

Marching Problems.—Let the highest derivative in the given range-equation b e / (n)

To make a marching problem we m ust have given a t some value =  all lower deriva

tives as well a s / ( a ) .  T hat is to  sa y  f {n~l) (a),Suppose th a

we were to pu t [i8nc f ) ( x ,h)jhn in place of f n (x) and (x, h)jhn~l in place of / (

so th a t [x occurred with the highest difference in  the range-equation. Now let us make 

a table to show what tabular values of ^ are involved in g8ncf>.

T a b l e  II .

X. (f). 8(f). \x8(f). 8*$. y.8z(f).

a e

a 4- p *
a +  h f

f ~ e
2 (g — e) 9 ~  2/ +  e

a -j- | —
9 ~ f — i t i  — 9 —f + e )

a +  2h
a d-

y
3 - 9

2 ( 3  — j  -  + f

a -j- 3h j

* “ W eather Prediction by Numerical Process ” (Camb. Press), ch. 7/2.

f  “ Range-equation ” means either the differential equation to be satisfied a t every point of the range 

or else its analogue in differences.
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304 LEWIS F. RICHARDSON AND J. ARTHUR GAUNT ON

From  the mode of form ation of these differences it  is seen th a t [x8”0 spreads itself over 

n f-  2 tabular values of 0, among which the extreme outlying values of 0 are always 

present. The highest difference given on the boundary is on th is scheme 8n_10(a) 

which does not involve either of the aforesaid pair of extreme outlying values. There

fore when the boundary equations are substitu ted in the range equation we should have 

only one equation which is insufficient to determine these two outliers ; and no further 

progress could be made. For example if the range equation be (x80 (x, 1 and the

boundary equation be 0 (0, h) =  0 we cannot march out the solution.

On the contrary, if the highest derivative in the range equation be 8 ”0 it spreads itself 

over only n-\-I tabular values of </> and we have sufficient equations to find all of them . 

For example 8 0 (x , h) =  1 and jx0 (0, h) =  0

Thus, i f  the highest derivative in the given range equation is of even order then the centering 

of that equation must he with 0, while i f  the highest derivative, is od

range equation must he with ; x 0 ...........................................................................................(5)

Jury Problems.—In  these the boundary conditions are not all a t one point x  ; some

are a t x =  h.There is no objection to the same rule being adopted for jury  problems. 

And it is easy to show by examples th a t if jx were allowed to accompany the highest 

power 8re in the range equation, difficulties would arise.

Thus, for n =  3 suppose th a t the boundary conditions were

f{a)  =  0, f \ a )  =  0, f(h )  =  0.

The corresponding statem ent in the difference problem is

0 (a +  \h) =  0. f  (a — \h) =  0, 0 (h) 0.

T a b l e  I II .

x — a — 0 h i h 2 h 1  h 3 h 4 h

Bound
ary

Bound
ary

0 = 0 0 01 <f> a 3 0

S3
[x83

83
[x83

83

These zero values of 0 are shown in position in Table I I I  together with unknown “ body- 

values ”02, 02, 03. The number of these is unim portant provided we know it. The 

marks 83 and fxS3 are placed in all the positions a t which the corresponding range-(alias 

“ body ” -)equation can be centered. If 83 is used there are three body-equations to 

determine 01? 0 2, 0 3, th a t is just enough. If fxS3 is used, one necessary equation is 

lacking.

For these reasons the rule (5) will be adopted throughout P a rt I.
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THE DEFERRED  APPROACH TO THE LIMIT. 305

§ 3 .  U n c r i t i c a l  S u c c e s s e s .

§ 3.0. Introduction.

The /^-extrapolation was discovered by a h in t from theory  followed by arithm etical 

experiments, which gave pleasing results.

The be tter theory of the following sections is complicated, and tends thereby to  suggest 

th a t  the practice m ay also be complicated ; whereas it  is really simple. Hence the reader, 

if not already fam iliar w ith arithm etical exam ples, is invited  to a ttend  to them  before 

proceeding further.

§ 3 .1 .  An ancient problem retouched. To find the circumference of a circle

radius.

Imagine th a t we are back in the tim e of A r c h i m e d e s . A s  a first, and obviously very 

crude, approxim ation, take the perim eter of an inscribed square =  4y"2 =  5*6568. As a 

second approxim ation, take the perim eter of an inscribed hexagon =  6 exactly. The 

errors of these two estim ates should be to one another as 1/42 : 1/62, th a t is as 9 : 4, if 

the error is proportional to the square of the co-ordinate difference. Thus the ex tra

polated value is
6 +  | ( 6  — 5*6568) =  6*2746.

The error in the extrapolated value is thus only 1 /33 of the error in  the be tter of the  two 

values from which i t  was derived ; so th a t  extrapolation seems a useful process. To get 

as good a result from a single inscribed regular polygon it would need to have 35 sides, 

and in the absence of any tables of sines, the calculation would take longer.

§ 3.2. Napier’s Exponential Base.

Next suppose th a t we were living a t a tim e before logarithms or N a p i e r ’s  base had been 

calculated, and th a t it  was required to  find

Lim it ( 1 -\ =  Lim it (f>n say.

• • / 2  n-4- l \ n
If we pu t — n in place of n the function —2—- j  is unchanged, and so, i f  an expansion

like the following exists, valid for both signs of n

( 2 » ± i y  _  Lim it (
\2  n — 1/ n->oo \

2» +  i y  _  . , A a 2 , A, 
2 ^ T t J  - A» +  7» +  T 3 1 - n ' - ’

then the odd coefficients Al5 As ... are necessarily zero. Also if the lim it exists A0 must 

vanish. And by making n sufficiently large the term  A 2/n2 will predominate.

<£» -  Limit cf>n =
n-+ oo n
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306 LEWIS F. RICHARDSON AND J. ARTHUR GAUNT ON

On performing the multiplications it is found easily th a t the function runs as follows

11 = 1 2 3 4 5

(2 n - f  l \ n
3-00000 2-77777 2-74400 2-73261 2-72741

\2n -  1 / “

Now if the errors are proportional to n~2 the error of </>4 is to 

16. Therefore the extrapolated value is </>5 -f- (<̂ 5 — This works out to 2-71817.

N a p i e r  showed th a t the correct result is 2-71828, so th a t the error of our ex tra

polation was — 0-00011, whereas the error of </>5 was -f- 0-00913, th a t is 82 times greater. 

To get as accurate a result w ithout extrapolation as we did w ith it we should have to 

calculate </>5y83 th a t is <£45, a tedious process seeing th a t logarithms had not yet been 

tabulated. So extrapolation is a great economiser of toil.

The following table is intended to show how n2 { <f>n — L t <f>n} approaches its lim it which 

we have called A2

n 1 2 3 4 5

n* {(j>n L t 0-2817 0-2380 0-2315 0-2295 0-2283

To find the lim it A 2 we have 1 jn log <f> =  log (1 +  1 /2 —lo

the logarithms, rearranging, and taking antilogs it  is found th a t

4>n — e =  e/1 2 n2 +  terms in n~

So A2 =  e/12 =  0-2265, which is entered in the table under oo .

§ 3.3. Correction to the Second Moment of Grouped Statistical Data.

We require the second moment

r + go

x2f(x )d x  =  m2, say ...........
J — oo

but instead of /  (#) being given, the data have been grouped so th a t we only know for 

all integral values of n

f ( x ). dx
J till V 7

I t  is the custom to calculate
Sx2F (x) — m f  s a y ..(3)

which is an approximation to the integral in (1) when S sums for all groups, and then  to 

adjust mffor the grouping by applying “ Sh e p p a r d ’s  correction ”* which asserts th a t

m2 =  m f  — xV i2 S F  (x) ...(4)

provided th a t f (x)  and all its derivatives vanish as x  goes off to both +  x> and — 00 . (5)

* Sh e p p a r d , ‘ Proc. Lond. M ath. Soc.,’ vol. 29, p. 353 (1898) ; K. P e a r s o n , ‘ B iom etrika,’ vol. 3, pp. 

308 to  312 ; R. A. F i s h e r , ‘ Phil. T rans.,’ A, vol. 222, pp. 359 to  363 ; W h i t t a k e r  and  R o b in s o n , * Cal

culus of O bservations,’ Blackie & Son, pp. 194 to  196.
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THE DEFERRED APPROACH TO THE LIMIT. 307

I t  is  seen  th a t  th is  is  a sp e c ia l case  of our /^ -e x tr a p o la tio n . S h e p p a r d ’s  fa c t  th a t  th e  

co effic ien t is  — for cu rv es  o f a ll sh a p es  th a t  s a t is fy  (5) is  in d e e d  rem a rk a b le . I f  

in s te a d  f ( x )  =  1 w h en  — a< x< 

c o n n e c tio n  w ith  m o m en ts  o f in e r tia , sh o w s th a t  th e  co effic ien t is  s t il l  b u t w ith  th e  

p o s it iv e  s ig n .

As a d e ta ile d  illu s tr a t io n  in  m a rk ed  c o n tr a st w ith  th e  freq u en cy  cu rv es  to  w h ich  

S h e p p a r d ’s  co rrectio n  is a p p lic a b le , w e m a y  ta k e  th e  freq u en cy  defin ed  b y  y =  

w h e n  — 1 <  x <  1 an d  y =  0 e lsew h ere. I n s te a d  o f h ig h  c o n ta c t  a t  t

range i t  has d isc o n tin u it ie s .

I f  n o w  th e  range b e tw e e n  x  — — 1 an d  a? =  -f- 1 be  d iv id e d  in to  

ea ch  o f h, so  th a t  h =  2/n, an d  th e  area u n d er  th e  cu rve  in  ea ch  range be tr e

co n cen tra ted  a t  th e  m id p o in t {not a t  th e  cen tro id ) o f th e  su b -ran ge o f x, w h ich  is  th e  

procedure c o n te m p la te d  b y  S h e p p a r d , th e n  i t  is  fo u n d  th a t  th e  sec o n d -m o m e n t w ork s  

o u t as fo llo w s :—

n |
1

1 1 2 |
o 4 6 G O

Second moment . . 0 0-16666 0-285322 0-333333 0-36968 0-40000
E r r o r .................... 0-40000 0-23333 0-114678 0-066667 0-03032 zero
n2 X (error) . . . 0-4000 0-9333 1-0421 1-0667 1-0915

If there are 2m equal sub-ranges, the second moment derived from the concentrated 

areas may be shown to be

] s = m—l
S {12s4 -f- 24s3 -f- 19s2 +  7 s-j- 1}.

6'W> s = o

I t  is seen from the numerical table th a t the raw moment has to be corrected by the

addition of about We have here an illustration of a general method of correcting

moments, applicable when S h e p p a r d ’s  rule is not, namely, work the moment for two values 

of h and extrapolate on the assumption that the error is proportional to h2. In  practice it may 

be difficult to make h small enough in comparison with the irregularities of the observed 

frequency.

§ 3 .4 . Corrections to Fourier coefficients when the Data are

W hen Fourier coefficients are calculated from hourly values, which represent 60- 

minute means, the resulting amplitudes are too small, and correction-factors have to be 

applied, which according to D a r w i n  ( £ B .A .  Report for 1 8 8 3 ,’ p . 98) have the following 

values :—

Period of wave in hours =  T — 24 12 8
Factor — £ — ........................... 1-00286 1-01152 1-02617

2 T

6
1-04720

V O L. C C X X V I.— A .
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Let us see whether the addition to un ity  is proportional to the square of step here of 

one hour, when expressed in term s of the wave-period as un it of time.

(C — 1)T 2 | 1-67 | 1-66 | 1*68 I 1-70

Thus this is another example in which an ^-ex trapolation  would be valid.

308 LEWIS F. RICHARDSON AND J. ARTHUR GAUNT ON

§3.5. A Sixth Order Linear Jury Problem.

The following problem was suggested to me by Dr. H a r o l d  J e f f r e y s ,*  F.R .S., who 

met it  while extending R a y l e i g h ’s  theory of the equilibrium  of a viscous fluid when 

the higher tem perature is on the under side.

Given the “ body equation ”

d6V

dz«

Q d4V , 0 d2V  

dzi +
-  V ( l  ~  X) = 0 • ( 1 )

w here X is  in d ep en d en t of z an d  is u n k n ow n  and  has to  be d e term in ed  so as to  m ak e (.1) 

co n sisten t w ith  th e  b ou n d ary  c o n d itio n s

V =  0, =  0, =  0 a t both — - f -1 and z 1

Representation of the boundary conditions by finite differences.—Let | be values of

Y a t equally spaced values of z which increases towards the right. Take the boundary 

midway in z between the points where V =  b,V =

Then d3V/ dz3 =  0 is represented by — 3c -j- 3?) — a =  0 . 

Also d2Y/dz2 =  0 is represented by f  (d — 2c - f  b) +  

th a t is
d — c — 6 - f a  =  0 (4)

Again V =  0 is represented bv
b +  c =  0 ......................

From (4) and (5) we have
d -f- a — 0 ...... (6)

From (3), (5), (6) we have
a =  

Thus, as might be immediately evident, there is only one degree of freedom among the 

four boundary numbers which must run thus, b being arb itrary ,

36 b| 

These four numbers lie on a linear function of

* J e f f r e y s  has combined finite differences with a variable parameter, see ‘ Phil. Mag.,’ Oct., 1926.
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THE D EFERRED APPROACH TO THE LIMIT. 309

Representation of the body-equation by finite differences.—Being of the 6th order the 

corresponding difference equation involves 7 values of V. Let these be in sequence*

a (3 y 8 e £ 7 ) ........................................... (9)

equally spaced a t intervals h of 2. Then centering the body-equation a t the same point 

as 8, i t  becomes

0 =  li~6 (a — 6(3 -f- 15y — 208 -T 15e — 6£ -f- t j) — 3/Y4((3 — 4y -j- 68 — 4s -f~

+  3h~(y — 28 -j- s

The simplest problem in algebra, having one degree of freedom.—In  the ar

3 b b \ -b- 3  b

let 3b, b, etc., represent values of V equally spaced a t in tervals h o i z  ; and let the vertical 

lines indicate the positions of the two boundaries, which are located exactly midway 

between pairs of values of V. On referring to (8) it  is seen th a t the boundary conditions are 

satisfied. There are also enough values of Y to satisfy the body equation (10) a t the 

central point. T hat is to say, we equate each member of the set (11) to the corresponding 

member of the set (9) and substitu te these values into (10). W hen th is is done it  is found 

th a t b cancels, th a t is to say the “ am plitude ” of the wave is arb itrary , and we are left 

w ith a linear equation for X, which has for solution

X =  1 4 lf .......................................................... (12)

There are 3 steps of length h between the boundaries, so 2/3.

Two degrees of freedom.—We now increase by one the number of values of V between 

the boundaries, so as to make h — 2/4:. Instead  of (11) we consider the set

3b b | — b — 3b 3c c | -

in which the numbers near both boundaries are of the form (8). I t  is now possible to 

fit the set (9) on to the set (13) in two ways. We om it either the right hand or the left 

hand member of (13) and in both cases equate the components th a t remain to the corre

sponding components of (9) ; and then substitute in  (10). This operation m ight be called 

“ writing out the body-equation a t the available centres.” In  this way we obtain

0 =  (3375  — 3 X) b +  29 9 6  c 

0 =  29966  +  (3375  — 3 a ) c..................................................... (15)

T hese eq u a tio n s  are to  be m u tu a lly  co n sisten t and  so

0 =  (3375 — 3 X) 2 996

2996  (3375 — 3 X)

* The operator 8 is not used in § 3.5, hence 8 is free to mean a value of V.

2 T 2

(16)
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310 LEWIS F. RICHARDSON AND J. ARTHUR GAUNT ON

This is a quadratic in X and has roots

X =  126J or 2123f............................................... (17)

If desired, we could then find b/c.

More degrees of freedom.—Keeping the boundary values always in the relation (8) we 

may make n-\-2 steps between the boundaries ; then the body equation can be satisfied 

a t n tabular points. These nequations are homogeneous and linear in th

and will be consistent only if the determ inant of their coefficients vanishes. This is very 

like L a g r a n g e ’s  determ inant in the theory of oscillations of a system having degrees 

of freedom. This determ inant is an equation of the degree in X. Very conveniently 

it happens, owing to symmetry, th a t the cubic splits into a linear and a quadratic 

equation, and the quartic splits into two quadratics.

C o l l e c t i o n  o f  R o o t s  o f  D e t e r m i n a n t a l  E q u a t i o n s .

Degrees
of

freedom.
h Mh) Xa(A) X3(A) X4(A)

1 2/3 141f •

2 2/4 126-g- 2,123f
3 2/5 119-99 2,457-4 10,963
4 2/6 116-84 2,584-5 14,618 37,476

Extrapolation.

So far plain proofs have been indicated for all the statem ents in § 3.5. We now make 

an assumption, namely th a t the smallest roots \  of all the determ inantal equations 

are approximations to an unknown X4 (0). In  fig. 1 the smallest root is plotted against 

and it is seen th a t the graph is nearly straight, thus suggesting th a t

h W  =  X, ( 0 ) + A 2/*2

nearly. If we assume th a t more accurately

Xi(A) =  x1(o) -f" A2/C ~f~ A

and substitute for the three smallest values of h in the above table we have

12b3- =  X, (0) +  A2 (2/4)2 +  A4 (2/4 

119-99 =  X4 (0) +  A2 (2 /5)2 +  A4 (2 /5)1 

116-84 — X4 (0) +  A2 (2 /6)2 +  A4 (2/6)4

from which set of equations, on eliminating A2 and A4, it is found th a t X4(0) =  110-4&.
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THE D EFERRED APPROACH TO THE LIMIT. 311

Dr. J e f f r e y s  by an entirely different process also found x1(0) — 110. So here again we 

see th a t the extrapolation m ethod is a convenient way of obtaining numerical results.

Fig. 1.

This was an /^-extrapolation. I t  m ay be proved to be nearly equivalent to drawing a 

circle through three given points on a diagram  having A2 and </> (x , A)as co-ordinates. See 

the portion of a circle on fig. 1. The A2-extrapolation corresponds exactly to a straight 

line on th is diagram.

§ 4 .  F a i l u r e s  a n d  D i f f i c u l t i e s .

§4.1. Discontinuities.

Let us see whether the person who is computing </> ( ,  A) by a numerical process would 

receive in the course of the work any warning th a t the unknown function / ( x to which 

he is approxim ating is likely to possess a discontinuity. For if any such danger-signal 

should appear, it  will often be possible to investigate analytically in a very short 

range of x in which a discontinuity is suspected, even when analytic methods are not 

convenient for finding j  (x) over wide ranges of x. For purpose of illustration, however, 

we m ust choose examples in which/ (a;) has been found exactly over a wide range.
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312 LEWIS F. RICHARDSON AND J. ARTHUR GAUNT ON

The position of discontinuities can often be foreseen, for instance, with regard to the 

linear equation

£ + * m ! + j m . « = o  .

W h i t t a k e r  and W a t s o n * prove th a t the solution u is analytic except where p (z) or 

q (z) is not. G . H .  H a r d y ')' classifies discontinuities into four chief varieties. I f /  

tends to a lim it as x-+a from either side, these lim its are denoted b y /  — 0) a n d /  +  0). 

For continuity it  is necessary and sufficient th a t /  (x) should be defined when =  and 

th a t f ( a  — 0) — f(a)  = / ( «  +  0).

Variety I. f ( a  — 0) = / ( «  +  0) bu t f(a) is either not defined o

f ( a  — 0) and f ( a  +  0). For example let f ( x )  =  2 except when This variety

is not likely to arise in the solution of a problem in the calculus, and in the 

arithm etical method all except discrete values are missing anyway, so no new difficulty 

is likely to arise.

Variety II. f ( a  — 0) is not equal to f(a-f- 0). This m ight arise

where there is a discontinuity a t an interface, bu t if so the problem is usually quite simply 

arranged by adjusting two constants of integration, and need not detain us.

Varieties I I I  and IV, the infinity and the oscillatory , seem to present more

difficulty and so will each be illustrated by an example.

Variety I I I . Infinity.—To illustrate an infinity and the convergence in its  neigh

bourhood, a graph is shown of the successive approxim ations to the function defined 

jointly by dy/dx =  l /x  and y  — 0 when x  =  1. The so

y = f ( x )  =  [ ~~ — loge x t
J1 110

which goes off to — oo a t x  =  0. The corresponding problem in differe

solved by marching from x  =  1 by nequal steps 

integral is replaced by the sum of the reciprocals of x  a t the centres of its steps. Let 

suffixes to cf> denote the number of steps. I t  is found thus th a t where s is an integer 

between 0 and n

(j>n( s- \ =  — 2 J ——  4-1--------f  ... -l—  1
^ W  [2S +  1 1 2s +  2 1

and

</>» (0) =  — 2 j l  -J- + £ . . . +  2 ^ — i }*

The series for <f>n (0) diverges to — oo as n-► oo thus show

various values of x the results are set out in fig. 2.

* * Modern Analysis,’ 3rd edn., § 10.21. 

f  “ Pure M athematics,” Camb. Press, p. 178 (1925).
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THE DEFERRED APPROACH TO THE LIMIT. 313

The numbers nex t the po ints are the values of n. The function log,, x  is also plo tted. 

We see from the graph th a t  whereas <f>H(x ) has always an infinitely great error a t the 

po int x =  0, yet i f  by equal finite steps we approach as near to infinity as 

to say only one step away from it,the error of 
sc

or even usually, will be very im p o r ta n t; for it will mean th a t all bu t the last step can be 

done by arithm etic . In  the above example the error of <f>n {x) when expressed as a 

fraction of f(x) actually becomes less as we approach the infin ity off(x),  thus :—

a t x — 1 fn w here n = 2 3 4

<f>» («) —/(* )  

/(» )
0 -0 3 8 0 -0 2 8

i
0 -0 2 5

5

0-022

Suppose th a t the computer had not noticed th a t there was an infinity, but had calcu

lated (f>n (0) for n — 1, 2, . . .  8 and proceeded to make /^-extrapolations. Let f rs (x) deno

the ex trapolated value obtained from <f>r (x) and (f>s (x). The table shows what he would 

find for x — 0 and  x =  \ .

r S <f>rs (I) frs (0)
2 4 — 0 -6 9 2 0 6  — 3-5 8 1

4 6 — 0 -6 9 2 9 9  — 4 -0 8 0

6 8 — 0 • 69306 — 4 - 4 1 3
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314 LEWIS F. RICHARDSON AND J. ARTHUR GAUNT ON

The marked contrast between the rap id  convergence of (f>rs ( |)  and the behaviour of 

4>rs (0) should make the computer suspicious about the latter.

Variety IV .— Oscillatory discontinuity such as th a t of

/ (x) =  sin ( - ^ ................................................... (1)

as x-> 0.

In  order to make th is function arise as the solution of a problem in the calculus we 

note th a t

f  {x) =  — ̂  cos ^

Let (2) and (3) be the equations which it  is required to solve by differences. D ivide 

the range between x =  0 and x — 4 into n equal steps each of , so th a t

nh =  4 ......................................................

Let a difference-equation to replace (2) be formed a t the centre of each step. These 

centres are a t x  =  (s — J) h where 

down in § 2 the replacement results in

M ( *  -  1)»} =  t .  («*) +  - ^ W l i  COS } ..................... (5)

The process defined by equation (5) is equivalent to draw ing a polygon on an (x, f )  

diagram starting from the po int x — 4,f(x) =  1, such th a t it

on the cc-axis, and are parallel to the tangent to the f(x)  curve a t the value which x  has 

a t the m idpoint of th is projection. I t  is evident from a graph th a t the 4>{x) polygon 

will have some resemblance to the f(x)  curve if there is a t least one step h per quarter 

wave-length ; but th a t when steps are twice as long as th is critical value, all resemblance 

has ceased. ’

The difference-problem yields a definite value of cf> (0) in contrast w i th /(0 ) which 

has any value between —1 and -(-l- The solution of the difference-problem is thus 

m isleading a t the d iscontinu ity ; but the warning given by the presence of 2 in equation 

(2) is probably sufficient to prevent anyone being misled.

Incidentally it  appears th a t /^-extrapolation is valid where there is a t least one step 

per quarter wave-length. This is shown by the values a t x  =  2 which are

<̂2 (2) =  0-3019, <£4 (2) = 0 -0 7 2 6 , <£8 (2) =  0-0160, /(2 )  =  0.

If we ex trapolate from <£a and we obtain 0-0039 ; or if we ex trapolate from <£4 and <f>8 

we obtain 0-0028 ; both of which are considerable improvements on the numbers from 

which they are derived.
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THE D EFERRED APPROACH TO THE LIMIT. 315

On the contrary, to ex trapolate a t the d iscontinu ity  would lead us further away from 

the tru th , as the following num bers show

fa (0) -  -  5 • 28, (f>2(0) =  12- 868, < (0) =  23 • 809, fa (0) =  47-186.

A peculiar case.—If dyjdx =  q (x) . y. Then dyldx m ust v

q (#) is infinite. If one of our steps ends a t such a poin t there are likely to  be difficulties. 

B ut by rearranging things so th a t  the special poin t lies in the middle instead of a t the end 

of a step these difficulties disappear. For example when the equation is

there is an infinity of cot (2 t t  /x )at x 

avoid all these.

§ 4.2. Frills.

W hat is difficult by analysis is sometimes easy by arithm etic and versa. For th is 

reason ideas such as continuity  and differentiability, which are so im portan t in analysis, 

may sometimes be merely flippant if applied to the arithm etical process. For example, 

we have to deal w ith the function defined to  be sin x  cut off after the seventh decimal 

place. This function has about tw enty million discontinuities between =  0 and 

and its  derivative is alternately  zero and non-existent. Y et the computer finds it smooth 

and pleasant to deal with.

Conversely the function sin x  +  sin (100 x) +  sin (10000 x) is everywhere continuous 

and differentiable to any order. The analyst finds it pleasant, bu t to the computer i t  is 

an intractable horror. A step h which is large enough to allow sati

exploring the variation of sin x  is far too large to reveal the detail of sin (10000 x). Let 

us call these rapid oscillations, superposed on much slower variations, by the name 

“ frills.5’

To discover types of differential equation of which the computer should we can

take a prim itive with a frill, say

y  =  sin x  +  A sin 

where A and m are constants and m >  20 say, and then proceed to form differential 

equations by elim inating A or mor both between y  and its derivatives

respect to  x. Such differential equations include the following

m (cos mx) ( y — sin  x) =  (sin  mx) (y' — cos x) . . . .

y"  -f- m2y =  (m2 — 1) sin  x .....

(y — s in  x)2 fy" +  s in  x) — (y' — cos (y — sin  x) A  +  sin  x)

a / { ^

f y" +  s i n  x \ f  /  

l — y +  s i n  x\  { v

VOL. C C X X V I.— A .

y"  -f- sin x

— y fa  sin x 
2 u

. (y-  sin x) =  y'

. . ( 2 )

. (3)

• (4)

cos x. . (5)
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316 LEWIS F. RICHARDSON AND J. ARTHUR GAUNT ON

§ 5 .  S t a n d a r d s  o f  N e g l e c t .

§5 . 1 .  1 ntroduction.

An error of form which is negligible in a haystack would be disastrous in a lens. 1 bus 

negligibility involves bo th m athem atics and purpose. In  th is paper we discuss the 

mathematics, leaving the purposes to be discussed when they  are known.

Suppose for the sake of argument th a t <56 (x h), the soluti

is related to h by the formula

<f> {x,h) =  f (x)  +

where R (x, h) when expanded in positive powers of h contains only powers higher than  

h2. By hypothesis an ^-ex trapola tion  is to be made by taking two values li2, and 

eliminating f 2{x) so as to obtain

f  /x \ — V I 4* (x> h\) — ~R (x, A,)} — <f> (x, A») — R  (x* m   ̂. .
•' '■ ‘ ~  Jl* — lly

Thus it  does no t m atter how la rg e /2(cr) may be. B ut R (x, h) m ust in some sense be made 

sm all; and th a t for bo th hx and h2.

§ 5.2. Choice of Standard.

We have now to find a standard suitable for the measurement of 1I(«, Possible 

standards a r e :—

(i) cf> (x, h). If R  were negligible in comparison with <f> all would be well. In  the 

arithmetic </> is obtained simply. But in the analytical discussion <£ often has to be 

expressed in complicated algebra and f(x) is simpler.

(ii) f (x) .  If R  were negligible in comparison w ith /(cr) all would be well. But it  is

impossible to satisfy this condition a t x =  if /(c )  = 0 .

(iii) The difference between the greatest and least values of in the range of x  under 

investigation. This has the advantage of never vanishing except in the unim por

tan t case df/dx =  0. This standard is likely to suit m any purposes. 

f (x)  it is no t known until the problem is fully solved, and is decidedly awkward 

in the analysis.

(iv) All the subsequent investigations proceed by the expansion of in T a y l o r ’s  

series and the comparison of th a t series with ano ther in which (f> (x , h) is expanded 

in the sequence of the central differences of <f) ( , h), which is no t the sequence of 

the powers of x. A simple and convenient standard, from the m athem atical 

aspect, is the difference between the greatest and least values of any one term  in 

T a y l o r ’s  series, in the range of x  under investigation . This standard will be 

adopted.
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THE DEFERRED APPROACH TO THE LIMIT. 3 1 7

(v) If a different type of expansion were in use, a correspondingly different standard  

of error would be suitable.

§ 5.3. Application.

I t  will be proved in §§ 7, 9, 10, th a t  these term s in differences of <£ in the expansion 

of (f> (x, It) commonly involve It in forms such as a factor

(1 4 - a ,^ )  (l -f- aJ*2) (1 4~ ••• (1 +  a,ŝ 2) __ j

( i - ^ ) ( i - M 2) . . . ( i - M 3)
say, ( 1 )

W hen h-> 0 then  J  -> 1 and cf> ( 

which has just been adop ted .

Now if J  be expanded in ascending powers of

J  1 ( Pi ~b P2 • • • 4" (4 ~f~ a l +  a 2 • • • ~~b a«) — £ .................... (2)

where E, involves /d, /d, If ... bu t not h2 simply. The question is how small It m ust be 

in order to make £ negligible compared w ith unity . The term  in h2 is of no interest. I t  

m ay sometimes be no t too laborious to calculate J  exactly and so to settle the question. 

Yet an easier rough rule is desirable, provided it  keeps on the safe side, making h smaller 

than  is strictly  necessary.

Since

(1 — M T 1 =  1 4- M a +  Pi2/*4 4- . . .  4- Pd'/d" . . . t o  inf.,
therefore

J  =  ( l - o c ^ )  (1 ~a,h?) ... ( l - a s/*2) j l +  s  ( M 2) " } |l  +  !  ( M 2)1]  ••• j l +  S (M*2)-}-

The coefficient of h2n in this continued product consists of the sum of all possible products 

of 04, a 2 . . .  as, (31} p2 • • • Pr taken nat a tim e with the proviso t

once only in each product, but each (5 m ay occur any num ber of times. The varieties of 

products would be more numerous if we removed the restriction th a t any a occurs only 

once. Let G be the greatest of the absolute values of a1} a 2, ...  a„ (4, (4 .. .  (3r. . . (3)

We work the first two term s of the expansion strictly, subtract them  from J, and make 

changes which, if anything, increase all the o ther terms.

Then
n-+ »

151< 2  ( G A * ) - .„ 3 „  ............................................... 0 )
n=2

a positive quantity  where r+sH n is, as usual, the number of ^-combinations of (r -j- s) 

letters when any letter may be repeated any number of times up to 

Now

r 4-$J
=  (r +  s) x  (r +  s  +  1) v  (r 4 - s - f  2)

X X X
(r + s  +  n  — 1)

2 u  2

n
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318 LEWIS F. RTOIIARDSON AND J. ARTHUR GAUNT ON

And the fractions in the second member are arranged in order of m agnitude, the first 

being the greatest.

So th a t ,,+sH n <  (r +  s)n.

And
?l—>GO

|^ | <  S {Gh2 (r +  s)}n a geometric series.
71 =  2

Hence
G V  (>• +  «)’

1 - G  ha(r ..........

31)us, when h appears only as a factor of the form  J  multiplying any difference-ratio of <f>, 

an h2-extrapolationwill he valid for the corresponding derivative i f  h? G (r -f- s) is small

compared with unity, G being defined by (3) and (r -j- s) being the total number of factors in 

numerator and denominator toge th er ......................................................................... ....  (6)

§ 6 .  C e n t r a l  D i f f e r e n c e  O p e r a t o r s .

Before we can proceed w ith various necessary operations, we m ust be familiar with the 

rules for “ differencing ” as with those for differentiating. For instance, do the central 

differences of a product behave like the derivatives in L e i b n i t z  theorem ?

The differencer § and S h e p p a r d ’s  averager jx have already been defined in § 2  

equations (2), (3).

I t  will also be convenient to define the symbol | to mean th a t preceding operators do 

no t operate beyond this “ wall,” as it  will be called. A part from preventing operators 

going too far, a task which i t  shares w ith the +  sign, | will be defined to be a mere 

multiplication sign.

S h e p p a r d  h as sh ow n  th a t

(X2 =  l + i S 2.......................................................(1)

As in the Infinitesimal Calculus certain derivatives are obtained from first principles 

while others follow from them  by rules of operation such as L e i b n i t z ’ theorem ; so it  

is here with x̂ and 3.

To find the first difference of a product. From  the definition of 8

s  { 6 (x) • X (»)} =  6 (x +  \h) . x (x +  \h) 0 — P )  . x  (x \h)

P X b — ex. x  a,

where p, b, a, a are equal respectively to the expressions above. Now by algebra

~  a ) a)\=  p6  — a

But the first member is

l \  <

Hence
XL (x) | SO (x) +  [xO (x) | 3x (x). 

s ( 0 • X) =  FX l so  +  8-0 l&x- (2)
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THE DEFERRED APPROACH TO THE LIMIT. 319

Contrast the analogous formula in which D =  djdx

D (0 • x) =  xl)0  Hr

To find the mean of a 'product

(a {Q (®) • X (»)} =  J{  +

where p, 6, a, a have the same m eanings as above.

Now by algebra

(& + .? ) ..(& + _?) +  (P - « )  (6 ~ a) =  ^  +  ga).

Hence

f {0 • x} =  H0 I FX +  4S0 l sX ........................................ (3)

Higher means or differences of a product then  follow by the algebraic properties of (x and 

8 from (1), (2), (3). Thus i t  m ay be proved th a t

V* {0 • x} =  (x +  i§ 2x) I !^S0 +  (0 +  P 20) I f Sx .................... (4)

In  the second member of (4) occur differences S2x, 820 of an order one beyond th a t of 

the highest derivatives th a t we should find if we were taking instead of [x8 of the 

product. This extra order of difference appears, because (x brings in 3, as shown by (3). 

By a second application of (2) and (1) it  follows th a t

32 {0 • x} =  0 • §2X +  2[x80 I (xSx +  x • 820 +  M 20 | 82x . . . .  (5)

the term  |8 20 | 82x makes (5) unlike the second derivative of a product.

Again

S3 {0 . x} =  830 | ((xx +  (xS2x) +  3 [x S20 I SX +  380 | [x82z +  ({*0 +  p.820) | 83x (6)

In  the second member, 83 is the highest difference and the differences are centered with 

(x0 or [xx.

Difference of a product of three factors.—By repeated application of (2) and (3) 

s (0 • P • X) =  36 | [x (xp) +  {*0 18 (x . p)

=  3 0 |  (xx | (xp +  [x0 | 8x | |xp +  (X0 | (xx | 8p +  180 |8 x  | 8p . . .  (7)

in which the factors of the separate terms are acted on once only by either (x or else 8. 

Many factors.

8 (0 . x . P • * • • • t ) =  (x0 | 8 (x . p . <7 . . .  t ) +  80 | (x (x . p . s . . .  t ) . . . (8)

(x (0 . x • P . (7 • • • t ) =  (x0 | [x (x . p . cr . . .  t ) +  J80 I 8 (x . p . t ) . . (9)
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320 LEWIS F. RICHARDSON AND J. ARTHUR GAUNT ON

Tims we have split of! the first factor 0 leaving 8 and jx of the product of the rest. 

Similarly x, p, or . . .  can be split off in tu rn  and each will be acted  on once only by either

8 or by [x but not by both 8 and fx. This fact will be of im portance in § 9.3.

The advancing and retarding operators.—From  the definitions of (x and 8

(9- +  P )  X (as) =  X (as +  P ) ........................................... (10)

thus operating with [x -f- |8  is equivalent to increasing x  by p .

In  like manner

P  ~  P ) x  (x) =  X ( x — P ) ......

Operations on a reciprocal.—From  the definition of 8

s f 1 I _  1__1

l x  (®) J X (as +  P )  X (as — P ) ’

Reducing to a common denominator and using the advancing and retarding operators

* f 1 i = _________—  S X (x)________  =  —  S X (as) n 2 \
l x  (as)J ( |x  +  p ) x ( a s ) |  ([x —  J 8 ) x  (as) { f x x  (a s )} 2 —  i { s X (a s )} 3

In  like manner the mean of a reciprocal is found to be

1 1 = _ _ _ _ _ y x _ _ _ _ _

x J  ( t * x ) *  — i ( & x ) s
(13)

the denominator which is the same for [x and 8 will be denoted by Z. The higher differ

ences follow by repeated applications of these formulae, and of those for products. 

Thus

* ■ < - ; } — f i r
§2X I [x (b) — [x8x | 8 (

Also it is found th a t

So th a t

Limits as h -> 0.

If x  (as) is continuous then

If x (a?) is differentiable then

_  —  5 2x  I [xZ - f  [x8x  I 8 Z  
( [ x Z ) 2 - i ( 8 Z ) 2

H-Z =  X (x  +  J  $2x )  a n d  8 Z  =  2 x  . (xSx-

83 ( l \  =  - ^ 2x l ( x + P 2x) +  2((x8x)2

\ x /  x ( x + P 2x ) 2 - x ( t x S x ) 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 1 ;

L t  (XX (x) =  X (as).
h-+ 0

Lt 8x (x) /h =  d/' (x) jdx,
h-* o

and |x8x (x)/h has the same limit.
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THE D EFERRED APPROACH TO THE LIMIT. 321

If x(x) is “analytic ” throughou t the range, then

L* n’x (*) =  L t|x(* ) + |  =  x(x) .

This g2 is the source* of h wherever i t  appears other th an  in the com bina

hence we obtain  the righ t lim its if we om it g and pu t in place of every

§ 7 . T h e  T w o  S e r i e s  A n a l o g o u s  t o  T a y l o r ’s .

These series will be required for the solution of m arching problems in § 9, ju ry  problems 

in §10, and integral equations in §11.

To fit w ith the conventions which have been adopted in § 2 in order to keep the a rith 

metic simple, the series m ust bring in g w ith a lternate powers of S.

When the given range equation is of even order the requ ired series is

<f>(a-\-nh) =  cf> (a) +  n [ i ( a )-f 8a</> (a)-f - 1  ̂g83<ft
3 !

+  - 2 (^ 7  ~  («) +  ”  —  y * — } g S ¥  ( a )  + .....  (1)

I t  is known as the “ Ne w t o n - S t i r l i n g  ” f  formula and m ay be obtained by re

application of the advancing operator, thus,

cf) (a nh) — ( g -f- |7>)2u</> (a),

the expression ( g +  |S )2re being expanded by the binomial theorem, and superfluous even 

powers of g then  removed by the aid of g2 =  1 +  -JS2

The general term s, according to W h i t t a k e r  and R o b i n s o n , are

i  {(n +  r)2r +  (n +  r — l ) 2r} (a) +  (n +  gS2,'+1 $ (a)

where (n)rdenotes
n (n — 1) (n — 2) . . .  (n — r +  l ) / r  !.

Let us now suppose th a t the integral (f> ( x , h) has been march

by an integral number n of steps each of h.We have then

and if we put

nh — l, . (1A)

hjl — A =  1 (2)

* In § 6, bu t see also § 8, § 9.5.

t  W h i t t a k e r  and R o b i n s o n , ‘ The Calculus of Observations ’ (Blackie & Son, Ltd .), p. 43.
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322 LEWIS F. RICHARDSON AND J. ARTHUR GAUNT ON

series (1) becomes

+  =  (« )  +  l
, l28 2<f>(a), f P gS8<H«)

h 2 ! ” F “  +  l  T \ ~ ~ ¥ ~

ll 8'<f) (« ) ]

T \ ~ ~ ¥ ~  J
(1 -  X*)

+  { f +

S y r  +  ( g i  ̂ }}( 1 -  *2X 1 - 2 V ) ( l  -  8*x*)... { i - ( «  -  i m

-f- . . .  to  an end  specified  b e low  in  (7 a ) , . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . ....  . (3)

where s is a positive integer.

In  comparison with T a y l o r ’s  series th is contains difference-ratios in place of deriva

tives, also the factors in X. Unlike T a y l o r ’s  series, (3) is not simply arranged in powers 

of l, because X involves l.

When the given range-equation is of odd order, it  has been shown in § 2 statem ent (5) 

th a t the differences must be “ centered with g</>.” T hat is to say the boundary x =  a 

falls midway between two values of x a t which f  is tabulated, and the tabu lar values are

f  {a +  (n +  J) 

w here n is  an  in teger .

The required  series is  ca lled  th e  “ N e w t o n -B e s s e l  ” form u la .*  I t  m a y  be o b ta in e d  

b y  operating  on series (1) w ith  g +  JS and  afterw ards re-arranging th e  term s accord in g  

to  pow ers of 8

</> {a -j- (n -j- I) h} — [i(f> ( a)-j- (n£) ( a)-j  —^ — - g (a)

. n {n +  | )  (n +  I) $9<f> {a)
H 3!

+  ( » - ! ) "  ( »  +  D ( » +  2 )  „  S V  {a)

(il ~  ])n (n +  2~) 1) +  2)

+ .............................................................................................. (5)

We observe th a t  th e  coefficient of 8r con ta in s  factors lin ear in  n ; th a t  th ese  factors  

are arranged sy m m etr ica lly  a b ou t ( » + £ )  as cen tre ; b u t th a t  (w + £ )  appears o n ly  w ith  

th e  odd  d ifferences.

N ow  if th e  in tegra l has to  be m arched from  x =  a to x =  a \̂- k we m u st p u t

(n - f  £  ) h =

in order to have a tabular value a t — -j~ k.

* W h i t t a k e r  and R o b in s o n , ‘ The Calculus of Observations ’ (Blackie & Son, Ltd.), pp. 39, 42, 47.
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THE D EFERRED APPROACH TO THE LIMIT. 32 3

L et

JilJc =  K=ll(n +  % ) ....................................

a n d  e lim in a te  nfrom  th e  fo reg o in g  e x p a n s io n , th e n  i t  is  fo u n d  th a t

* ( «  +  * ) =  ^ ( a )  +  k ^ ^ -

. f V  |i 8 V  (a) i ** (« )] ( , *2\

+  1 2 ! — W ~  +  3 !  ~ / F l  V  ~  20

, a ‘ ( i 8 V ( o )  , fc5 S5^ ( a ) l / \  k 2\ / .  3 V \

+  t i l  ~ V ~  +  5! ^  J V1 “  2*) V "

d- ...

, j Jc2s [i §2*<f> (a) , / r ?+1 S2,s+1<ft (a ) ( /  k 2\  /  32/c2\  /  __ 5 V \

[(26*)! /Cs 1 /r s /  \  2 v  \  2 2 /  \  2 3 /

fi _  (2g — 1)2 *al
‘ ” 1 2 2 j

+  . . .  to  an  en d  sp ecified  b elow  in  (7 a ) , . . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. (7 )

w here s is  a p o s it iv e  in teger . T h is  series is  n o t s im p ly  arranged  in  pow ers o f , b ecau se  

k  a lso  in v o lv e s  k.

* Extended definition of <f>.—-W hen th e  range a ^ x ^ a  +  / is  d iv id e d  in to  eq u a l s te p s  

for th e  p ra c tica l a r ith m etica l p rocess th e n  th e  N e w t o n - S t i r l i n g  ser ies, b eca u se  i t  

in v o lv e s  d ifferences cen tered  a t  x =  a ,must in v o lv e  d iscre te  v a lu e s  o f 

m etr ica lly  on  th e  o p p o site  s id e f  o f x  — 

T hese suffice to  defin e d ifferences up to  order 2

So far cf>(x, h) is  u n d efin ed , e x c e p t  a t  th ese  2% -j- 1 eq u a lly  sp a ced  v a lu e s  o f x. A n  

/^ -ex tra p o la tio n  is  so far p o ssib le  o n ly  w here th ere  is  a co in c id en ce , th e  sam e v a lu e  o f x 

occurring  for tw o  v a lu e s  o f h. T h is  has h ith er to  restr ic ted  th e  u sefu ln ess o f th e  

/^ -ex tra p o la tio n . H o w ever , th e  N e w t o n - S t i r l i n g  series (3) defines a fa m ily  of 

co n tin u o u s  fu n c tio n s  of x, each  fu n c tio n  p a ssin g  th ro u g h  th e  2 ^ 4 - 1  d iscre te  v a lu es  o f <£, 

w h ich  are g iv e n  b y  th e  p ra c tica l a r ith m etica l process for so lv in g  th e  d ifference problem . 

T he m em bers of th e  fam ily  v a r y  from  one a n o th er  o n ly  in  co n seq u en ce  o f v a r ia tio n s of 

differences of </> (a) o f order h igher th a n  2 So far th ese  h igher d ifferences are 

undefined . T h ey  appear to  be useless in  p ractice  an d  th erefore  w e e s t a b lis h :—

A  convention th a t  a t  x =  a d ifferences of order h igh

series (3). S im ilar ly  th o se  h igher th a n  2 k/hare zero in  series (

T hese series arc th en  p o lyn om ia ls  o f degree 2n in  l and  (2 +  1) in  k. A n d  it  is  th e  

ob ject of th e  ord in ary  rules of in terp o la tio n  J to  pass a p o ly n o m ia l th rou gh  th e  g iv e n

* Revised March, 1927, here and in its im plications in § 9, § 10. 

f  Otherw ise for economy x =  a m igh t be a t  the m idpoint of the practical range, 

t  W h i t t a k e r  and R o b in s o n , ‘ Calculus of Observations ’ (Blackie).

VOL. CCXXVI,— A. 2 X
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324 LEWIS F. RICHARDSON AND J. ARTHUR GAUNT ON

points. Thus it will be an easy operation to find a small piece of a polynomial bridging 

across a short gap for one set nx, so as to provide a coincidence with a point of 

another set n2. The only uncertainty is th a t ordinary rules of interpolation may not 

provide a polynomial of a degree as high as 2 However, for a short bridge th a t is not 

likely to be of importance.

The aim therefore of the following discussion will be to investigate the /^-extrapolation 

from cf> ( x, lix) and h2)both considered as continuous functions of x define

(3) and (7). However, let <f> (x, h) remain a discontinuous function of 

discrete values of h, for the p re se n t; although ultim ately we shall obtain  for </» h) 

an explicit function of h which defines (f> for all values of h.

We may regard these series, analogous to T a y l o r ’s , as finite, for the difference-ratios 

conventionally vanish when s>: n +  1. The

steadily as h diminishes and tends to infinity as 0. For each particular value of h 

we have a particular formula for the aberration, different from the formulae for all other 

values of l i : and comparison is difficult. I t  is often convenient, and equally correct, 

to regard the series as consisting of infinitely m any terms, each of which has a value for 

all permissible values of h. Excluding the arithm etically im practicable case 

we can then always find a term  such th a t all beyond it are zero, so th a t the series are 

convergent.

The behaviour of any particular term  as a function of ii cannot be studied fully until 

we know the behaviour of the alternating difference of </> (a) which it contains as a factor. 

But in the meantime let us study th e  factors in X or k .

The coefficients in (3) involving X.—For reference denote these by L defined thus

s being a positive integer. W hen s is fixed L 2, is a polynomial in X and odd 'powers of X 

are absent. If we were to make the substitution X =  h/l in accordance with (2) above, 

then odd poivers of h ivould be absent , for l is fixed.

The result of § 5 shows that, as far as L2s alone is concerned, an /^-extrapolation would 

be valid if (s — l)2 (s — 1) X2 were small compared with unity. This condition is unne

sarily strict, as may be seen from the example s =  5. The condition then requires th a t 

X should be small in comparison with 1/8. Now

L 2s =  L 10 =  1 — 39 X2 +  399 X4 — 1261X6 +  900 X8,

th e  largest of th e  set of d iscrete  v a lu es  of X for w h ich  L10 does n o t v a n ish  is  X =  1/5 

and  th e  term s of L10 are th en  resp e c tiv e ly

1  39 , 399 1261 , 900

25 ‘ 625 15625 1 390625'

Even here the X2 term  predominates over the higher powers.

L 2* =  (1 — X2) ( l  — 22X2) (1 — 32X2) . . .  {1 — l ) 2 X2}
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THE DEFERRED APPROACH TO THE LIMIT. 325

The fact th a t  L 2s vanishes when X — ±  1 /(s — 1) and when

is not possible to choose X, independently of so th a t L 2s m ay rem ain approxim ately 

of the form 1 — X x2, where X  is independent of X, as -> oo . Consequently, as far as 

the polynomials L 2S are concerned, it is not possible to fix  h so as to make an 

valid for every s. But for  L 2s it will suffice to make n, the number of steps in the range l

large relatively to ( s— 1)3/2.................................................................................... (9)

This condition is the same for all range and boundary even order. The

behaviour of82s <j> ( a ) j h 2sand [xS2s+1 <f> ( a)/h2s+1 must also be c

different problems. If X be fixed while the integer s increases, then  L 2? vanishes as 

soon as (s — l ) 2 X2 =  I and rem ains zero for all grea ter values of Let sm be the 

grea test s for which L2s does not vanish . Then

Sm ^  =  1 S0 ~  n -

B ut differences of order higher than  2 nare conventionally zero. 

of ( a)in the expansion (3).

Thus the L2S that are not even roughly of the form  1 -f- X h2 because they are zero when 

l +  Xh2is merely small, are just those L2s that are multiplied by differences 32'5</> (a) which

are conventionally zero........................ . ............................................................................... (10)

Usually/(ai) will be represented by a series w ithout end, and whether the term ination 

of the series for f  ( x ,h) is of importance, is a further question.

The coefficients in (7) involving k .— The discussion of series (7) is so like th a t of series 

(3) th a t i t  need not be recorded in  detail. In  order th a t the term s in p.S2S</> (< and 

S2s+1</> (a)/h2s+1 should be approxim ately of the form 1 -j- X k 2 where X is independent 

of k  i t  will suffice in accordance with § 5, th a t s 3 k 2 should be small in comparison with 

unity .

§ 8. T h e  P e r m i s s i b l e  S t e p  h f o r  F u n c t i o n s  o f  x  b u t  n o t  o f  h.

§8.1. General.

In  the approxim ate solution of differential equations we meet not merely differences 

taken with step h, bu t also differences of a function of h, namely, (f> (x, h). Leaving aside 

the la tter question, § 8 trea ts of the differences of the given functions of x, independent of 

h, which may occur as coefficients in the range-equation.

The necessary series are given by S h e p p a r d .*  W hen 3, (x are trea ted  as operators 

along with D =  djdx the relations may be w ritten in brief

z p (x ) = d * | 2 ? ( * ) a )

(*) -  D ” {2 .riy p j" cosh . (2)

* W. F. Sh e p p a r d , ‘ Lond. Math. Soc. Proc.,’ vol. 31, p. 464 (1899).

2 x 2
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326 LEWIS F. RICHARDSON AND J. ARTHUR GAUNT ON

The first members of these equations are difference-ratios. The first factor of the 

second member if acting alone would produce the corresponding derivative . W hat is 

im portant for present purposes is th a t the other factor of the second member can in all 

cases be expanded in a series beginning with un ity  and proceeding by even powers of 

liD. For example

T p=  D  {*  +  I W  + 1 5 5 ; +  5 S o  ^  -  W ................ <3 >

^ W  =  B > { i 4 w + A w  +  i w . . . } })( 4 .  • • (4)

We shall have to apply the relations (1), (2) to coefficients occurring in the given 

range-equation. The convergency of the resulting series cannot be investigated until 

this function is defined. Three simple types of (x will, however, be discussed now, so 

th a t they may be ready to serve as comparison-series (series majorantes). W hat we w ant 

to know is how small h m ust be in  order th a t the term  in D2 shall be the last th a t need 

be taken into account. The coefficient of this term  can be found thus

2 sinh ^ liD _ 2 [JiD . 1 /JiDV . ] __ 

" I d  - W \ 2 ~  + s \[~2) +  ••7- 1  +  ' 2 T + - '

So by raising both sides to the power n it is seen th a t the series for (1) begins

f t  Vix ) =  Dn {1 +  ... |  p  ( a ? ) , .... (5)

while because cosh \lt\) — 1 -f- 4- ... , the series for (2) begins

=  D " !1 +(JL% r " 7 ( 4 ............................... (6)

§ 8.2. Exponential Type.

A simple type th a t presents itself is th a t for which

^2D2p  {x) =  ......... (1)

for then the separate terms of series such as § 8.1 (3), (4), (5), (6) have p  (x) as a common 

factor and (5) and (6) may be w ritten

=  Dnp(x )• ( l  +  ........... (2)

[ j . 8

n 24
(3)
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THE DEFERRED APPROACH TO THE LIMIT. 327

A t the same tim e the sum to infinity of the series in  the bracket is given by p u ttin g  

AD =  1 in § 8.1 (1), (2). The question then  is : how small m ust be in order th a t

(2 sinh 1)" =  1 +  ^  + ................................................. (4)

and

(2 s in h  \ ) nco sh  J  =  1 +  +  • • • » .. (5)

with satisfactory approxim ation a t the last term  sta ted  ? The question involves the 

purpose of the calculation, and so cannot be decided in  g en era l; bu t some illustrations 

will be given.
2 sinh |  =  1 *04220, cosh f  =  1 • 12763

n (1-04220)" 1 +  -  • 
^  24

(1-04220)M x 1-12763. i  +  ^±-3 . 
T  24

i 1-0422 1-0417 1-1752 1-1667
10 1-5119 1-4166 1-7048 1-5417

The table shows th a t even for ten th  differences the term s w/24 and (w+3)/24 form the

greater parts of the excess above un ity  of the sum to infinity .

The convergence is faster if h2J)2p  (x) <  p  (x). T ha t is to say if (x)

gence will be faster than  th a t indicated in the table provided th a t

\ha \<  1 ..................................................

But it is not possible to fix  h so that the 

from $neax/hn as n-* oc....... .............................................................(7)

For on comparing §8.1 (5) w ith §8.1 (1), in view of the fact th a t J)eax =  aenx, the 

question is whether
[2 sinh (h a j^Y  . . nh2a2

i — & — i =  1 + _ 2 r + -

with sufficient approxim ation a t the last term  shown ? The first member is an exponential 

function of n, the second member is a linear function of and they cannot remain 

approxim ately equal as n .

§ 8.3. Cosine Type.

If h2D2p(x) =  —p(x),  we pu t AD =  V  — 1 in § 8.1 (1), (2)

hyperbolic to circular functions ; so th a t in place of § 8.2 (4), (5), we have

( 2 s i n J ) “ = l - i +  ....................................... (1)

(2 sin J)“ cos J  =  1 — ~ ~  + ...........................................  (2)
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328 LEWIS F. RICHARDSON AND J. ARTHUR GAUNT ON

N ow

2 s in  i  =  0 - 95885, cos J =  0• 87758.

n (0*95885)n. 1 — — . 
24

(0-95885) X0- 87758.
n-f-3 

24 '

i 0-959 0-952 0-842 0-833
10 0-657 0-583 0-576 0-458

T hat is  to  say  if p (x) — A  cos (bx-f- e) w here A

convergence of S h e p p a r d ’s  series w ill be fa ster  th a n  th a t  in d ic a te d  in  th e  ta b le  

p rov id ed  th a t

| A A | < 1 ............................................................. (3)

But it may be proved, as in § 8.2, th a t it is not possible to fix h so th a t A_"8” cos (bx -j- e) 

should remain of the form D" cos (bx +  s) -j- A2X, where X  is independent of , as 

n -* q o ................................................................................................................................... (4)

§ 8.4. [ Revised , 1927.]

Type p (x) =  eax (c cos bx +  s sin bx)........

where a,b, c, s are independent of x. I t  is not in general possible with this type of p  (x) 

to make h2J)2p (x) small in comparison with p  (x) by any choice of h, for p  (x) vanishes 

where I) 2p(x) does not. We must have some other standard of comparison. Let us 

choose as the standard

eax | V (c2 +  s2) |

and let this be called the “ amplitude ” of p (x)..... ........................(2)

Now

h2nD2np (x) =  ea*(AD +  ha)2n p ( x

a proof of which is given in F o r s y t h ’s  ‘ Treatise on Differential Equations ’ (1903), 

p. 56.

Also

AD (c cos bx -j- s sin bx) =  hb (— c sin -f~ cos bx)

so th a t the operation AD acting on (c cos bx -f- s sin bx) changes the amplitude in 
the ratio \hb\.

Iherefore AJnlV" acting on e‘lx (c cos bx -f- s sin bx) will decrease its amplitude if

A - { i « i  +  i 6 i r < i ....................................................... (4)
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THE D EFERRED APPROACH TO THE LIMIT. 329

Now suppose th a t we take  the series

V (x) +  ^  h2l)2p  +  . . .

p (x) +  U h

the higher term s being defined as in § 8.1, and form other two series in which (x),

D *p (x) . . .  are replaced by their am plitudes. Then these la tte r series will converge 

more rapidly th an  th a t tabu lated  in § 8.2 prov ided th a t (4) is satisfied. Now the actual 

value of any quan tity  of the form eax (c cos -f- sin bx) cannot exceed its am plitude . 

Therefore the term s which we have neglected will be tru ly  negligible to the exten t shown 

in the table of § 8.2 relative to the am plitude of the first term . The actual value of 

the first term  will be zero for some values of x.

§ 9 . M a r c h i n g  P r o b l e m s .

§ 9 . 1 .  Introduction.

The range and boundary equations taken together usually provide derivatives of 

of any order a t one end of the range, so th a t  the expansion o f f  (x) in a T a y l o r  series can 

be formed.

We next arrange analogous processes in order to solve the corresponding difference- 

problem . These give </> (x, h) as a series involving x  and h together with differences of 

the coefficients in the range equation . The differences of these given functions are 

expressed as infinite series involving powers of and derivatives of the same functions by 

means of S h e p p a r d ’s  formulae of § 8.

I t  is found th a t only even powers of h occur. As h is then explicit, it  is possible to 

discuss how small i t  m ust be in order to make the /^-extrapolation valid.

Formulae applicable to an unrestricted range-equation would be cumbrous. I t  is more 

convenient to show th a t the process as described above in words, is of very general 

application, and then to illustrate it by formulae in special cases.

§9 . 2 .  The expansion of f (x)  T a y l o r ’s  series.

The derivatives of f(x) at x =  a to any order are usually determinate.

For, denoting the ^-derivative of order n b y / (,i) (x) let the given range equation be

0 =  ^ (®), / ("_1)(*), / (”"2)(x), ...  / (1) ................. (1)

where denotes some specified function.

To make a marching problem it is necessary th a t for one point of the range, say x — a 

we should have given

/ (“_1)(a), / (n~2)M ,  ................................. (2)

Together with (I) these determine / “ (a).

On differentiating (1) once, whatever be the form of no derivative of / o f  order higher
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330 LEWIS F. RICHARDSON AND J. ARTHUR GAUNT ON

than  / ('t+1) {x) can appear. So f (n+1){a) is usually determined. And so o

Exceptions occur, see below for an example.

There are subtle questions')' connected w ith the expansion of in the form

x2
f(a  +  x) = /  (a) +  xf  +  2 ! f  ^  +

. . .  +
— 1

(n — 1)! ('/•) •••• ~~~(n 1)! l f n { a+ (3)

where 0 is some suitably chosen number between 0 and 1.

(i) Does the series, om itting the Ox term , converge ?

(ii) If so, does the Ox term  tend to zero as n ---- > go ?

In  some cases it is possible, w ithout solving the differential equation, to be sure th a t its 

integral is analytic and therefore J th a t both questions (i) and (ii) have affirmative 

answers. For example if the range-equation be

f "(®) +  V ( x)• / (®) +  ?(») • /(» )  =  0

it is known th a t f ( x )is analytic for values of x a t which both (x) and q (x) are analytic

And similarly for a linear differential equation of any order, the solution is analytic except

at the singularities of coefficients of the e q u a t i o n § ................................................... (4)

In  this connection let us consider the function

f ( x)  =  e...... ............(

the T a y l o r  expansion of which, starting from =  0 was shown by C a u c h y || to consist 

only of the Ox term, all the other terms being zero, so th a t the answers to the questions 

are (i) Yes, (ii) No. When x is real, e~1,x'~ is zero a t =  0 and

unity as x — * oo . The singularity is revealed if we pu t x — y v — 1 and then let

y ----> 0 ; for it follows th a t /  (0 )----* oo instead of to  zero. I t  is interesting to see what

would happen if we try  to make this function arise as the solution of a marching 

problem, starting from x =  0. Differentiating (5)

f ' ( x) =  ........................................................ («)

a linear eq u ation , b u t w ith  a coefficient, 2 a r 3, h a v in g  a s in g u la r ity  a t =  0 ; so th a t  w e 

should  be w arned b y  (4). To define th e  m arch ing  prob lem  w e t a k e / ( 0 )  =  0 . . .  (7)

If, ignoring  th e  w arning, w e proceed  in  th e  usu a l w ay , p u tt in g  =  0 in  (6) an d  su b 

s t itu t in g  th e  v a lu e  of f  (0) from  (7) w e o b t a in / '  (0), b u t i t  is  in  th e  in d eterm in a te  form  

0 /0 . A s n o th in g  further cou ld  be done, no error w ou ld  be co m m itted .

* For restrictions, see D e  l a  Va l l e e  P o u s s i n , ‘ Cours d ’Analyse ’ (1926), Ch. IV. 

t  G o u r s a t , ‘ Cours d ’Analyse ’ (1924), a rt. 170 ; Voss, ‘ Encyk. M ath. Wiss. I I . , ’ A. 2, a rt. 14.

J W h i t t a k e r  and  W a t s o n , ‘ Modern Analysis ’ (1920), § 5.4.

§ W h i t t a k e r  and W a t s o n , * Modern Analysis ’ (1920), § 10.2, § 10.21.

II G o u r s a t , ‘ Cours d ’Analyse ’ (1924), a rt. 170.
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THE D EFERRED APPROACH TO THE LIMIT. 331

For non-linear equations the question (i) can be discussed in the particu lar cases after 

the general term  of the series has been found. B ut then  there is no obvious way of 

answering question (ii) ; for although we have a way of finding any derivative a t 

th is tells us nothing about the behaviour of any derivative in the range of x, excep t in so far 

as we assume th a t the derivative can be expanded in T a y l o r ' s  series ; and th a t brings 

up question (ii) as regards the expansion of the derivative .

The “ Calcul des lim ites ”  of C a u c h y *  and the m ethod of LiPSCH iTzf are both in a  

rather sim ilar difficulty ; for both assume th a t  a certain  upper bound M is known ; b u t 

for non-linear equations M depends o n /  [x),and is unknown .

In  § 9.4.3 a special device is employed.

To explore such questions would d istrac t a tten tion  from the m ain purpose of this 

memoir. I t  seems better to adm it th a t, for non-linear equations, casualties m ay occur, 

and to go on.

The following question (iii), relating to series in general, includes some of the finesse 

of questions (i) and (ii), but, unlike them ,J question (iii) is also adapted to the practical 

needs of the computer.

(iii) Are n term s of the series enough w ithout any rem ainder term  ?

For e~'lx‘ in relation to its T a y l o r  series, the answer is no. If for another function 

the answer be “ yes, when n =  lO6,” then  the series is valid, bu t probably useless. If the 

answer be “ yes, when n — 6 ” then the computer can probably deal w ith it. 

and § 10 the question (iii) will be answered in. some special cases.

§ 9.3. Finding the central differences of f  (x, h) x — a from the - boundar

equations.

As we here regard h as fixed, </> (x, h)may be contracted to </> (x)

For the difference equation analogous to § 9.2(1) we m ust choose a tabulation th a t 

avoids (x in the highest difference, for the reasons explained in § 2. Thus if be even we 

m ust use

0 _ . 1 f 82,<U z )  ( t * * * - V ( * )  * * " V W  A  J  , u \
* 1  v  ’ ’ A2*-2 ~ W ~ ’ h ’ + {x)’ I ' (1

in which |x occurs with differences of odd order, s being an integer. But if n be odd we

m ust use

(®) {xS2*-2 jjtSV (®)
h2s-i ’ h2s- 2 ’ " ' id

&</> (x) 

~ h ~
\>4 (*)> • (IB)

in which (x occurs with the even orders.

* G o u r s a t , c Cours d’Analyse ’ (1924), art. 383. 

f  G o u r s a t , ‘ Cours d ’Analyse ’ (1924), art. 391.

X See H. J e f f r e y s , F.R.S., ‘ Phil. Mag.,’ July, 1926. 

2 YVOL. C C X X V I.— A .
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332 LEWIS F. RICHARDSON AND J. ARTHUR GAUNT ON

To make a marching problem, we must then have given a t one end of the range all 

differences belonging to the same alternating set of all lower orders down to and including 

zero, namely, either for use w ith ( 1 a )

= f a" »  («) > -  =  f m ( « ) .  * (< * ) =  / ( « ) .  • • • ( 2 a )

or else for use with (1b )

= /« . - » ( « ) ,  =/(■>(«), ^ (« ) = /< « ) .  . . . (2B)

The boundary equations ( 2 a ) , in which the derivatives are given numbers, when inserted 

in (1 a ) determine the numerical value of 82scf In  like m

when inserted in ( 1 b ) determine S2s-1 >̂ (a).But let us leave ( 1 b

present.

To find the next higher difference we now seek a process analogous to differentiating 

( 1 a ) or ( 1 b ) and substituting the values of the derivatives of lower orders. In  order to 

simplify the discussion let ^ be restricted to be a rational function of the “ alternating ” 

differences of </>, the coefficients of the powers and products of these differences being any 

sort of analytic functions of x, provided th a t they  are k n o w n ..................................... (3)

The possibility th a t these coefficients may be transcendental functions of will be taken 

into consideration later by the aid of S h e p p a r d ’s  series as in § 8.

Say then for (1a )

+ =  T/V, ....................................................... (4)
where

.................................<•>

and V is a similar sum of products with different ]>. b ... z, say p \  b' ... z'.

By § 6 (2),

H  =  HT | s ( j )  +  S T | , x ( | ) ........................................ (6)

And by § 6 (12), (13)

8» =  - f c T M V  +  » T U Y .........................................(7)
(ixV)2 -  (8V)1

The rules for differencing and averaging products can then be applied repeatedly to the 

separate terms of T and V until, in the expansion of the operators and jx no longer 

act on any product of functions of x, but act directly on cf)(x) and on the coeffic ien ts^  (x). 

V'm (%)• Similar remarks apply to [xifc Then jx2 =  1 -f- may be used to remove all 

powers of [j. above the first. The effect of ;x and S when acting on 4> is thus to produce 

another rational function of differences of </>. The argument can be extended from order 

to order so th a t Sr4 and are also rational functions of the differences of cf>(x),

where r is any integer.
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THE DEFERRED APPROACH TO THE LIMIT. 333

Consider equations ( 1 a ) and ( 2 a ) which, are centered w ith </>. The next higher difference 

th a t is so centered is g 82s+1 f .  To produce th is we first act on ( 1 a ) w ith 8. I

the previous discussion, especially (4), (5), (7) and the p a rt in § 6 about “ m any fac to rs’" the 

operation 8 is seen to involve acting separately w ith both g and 3 on each of the differences 

already present in the second member of (1a ), b u t no t w ith both g and 8 on the same

difference. Thus because <|> is a rational function of

t ,  g8<£, S2<£, . . . g ....................................(8)

Therefore d<\) is some o ther rational function of

(. i(f>, g2 8(f>,[i82 cf>, . . . g2 g 8 "'J
and of . . .  (9)

8<£, g 8 20, . . .  , g 82s<£, 82s+1

P u tting  g2 — 1 +  J82 in (9) we see th a t 8^ is some th ird  rational function of

g<£, 8 <f>,g 82 f ,  . . . 82s-1(/>, {i 82scf>, ............(10)

which are all centered w ith ĝ >, unlike the given boundary values. To produce gS^ 

we next act on 3^ w ith g. The previous discussion shows th a t th is involves acting on 

each of the differences in the list (10) w ith g and 8 separately. T hat is to say g8<jns 

some fourth rational function of

g20, g 8 <f>, g2 82 f,. . . g S 2- 1, g2 8 g ~]
and of , . (11)

g 8  0, 8 2<t>,. . . 3 g 8 2s+1<£, 82s+2</>

and because g2 =  1 -j- J82 therefore g8 ^ is some fifth rational function of

gS0, 82<f>, g S2s+1<£, 82s+2< /> ,. . (12)

which are all centered w ith f ,  like the given boundary values.

Thus either of the operations g and 8, acting alone on a rational function of differences, 

changes the centering, and therefore gS leaves the centering unchanged ; so does 82. The 

highest possible difference in gS is seen to be orders beyond the highest difference 

in bine of these orders is brought in by 8 and the other by g via

^  ( 6  • x )  =  | MC +  i S 0  I

There is nothing like this in the analogous process with derivatives. Thus g 8 <J/ =  0 

is one equation connecting given and found boundary values with the two unknowns 

82s+2(f> (a) and g8  2s+1f(a).To find these separately we need another equation of no 

higher order. This is obtained by returning to 8 ^ and operating on it with 8 

instead of g obtaining S2^ =  0. The differences produced are the same whether 8 or g

2 Y 2
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334 LEWIS F. RICHARDSON AND J. ARTHUR GAUNT ON

be the operator, namely, those set out in the list (12) bu t [x8<j; an(l  will. in general be 

different rational functions of these differences, so th a t the two equations necessary for 

the determination of 82S+2f  (a) and \x 825+1 </> (a) are provided.

Let th is process be continued. Starting with =  0 and S2^ = 0 ,  each of which 

contains no differences except those in the list (12), operate on each of them  w ith 88 thus 

obtaining the two equations
(x S3^ =  0, ................................................... (13)

8 ^  -  0 ........................................................... (14)

The first operation 8 changes the list (12) to

Scf), [ x 82f  . . . (x
together with )=■. . . (15)

[x (f>,ix2 8 ( f ) .................[j2 8 2s+3</>

And the second operation 8 changes the list (15) to

cf), [x 8 (f).. (x . . . (16)

the last two of which can, therefore, be determined a t

Proceeding in this manner the required differences can be found pairs to any order 

x — a, as functions of differences of the coefficients (x), p 'm (x) which are given functions

of x.

The discussion of equations ( 1 b ) and ( 2 b ) would be very similar to th a t of ( 1 a ) and ( 2 a ) 

and need not be recorded.

In  the range and boundary equations every power of 8 is divided by the same power of 

h. If in operations upon these we could always use h in the combination 8 t hen the 

result would involve h only in those forms which tend to derivatives as h 0. This can 

be done with one im portant exception arising from [x2 =  l -j- \h 2(82jh2). This brings in 

even powers of h. Except in forms which tend to derivatives as h -> 0, odd

absent from the expressions for the differences o<f> as functio

and boundary equations.

Now if we compare these operations with ;x 8 and 8 on the difference equation with the 

analogous operations with 13 on the differential equation in the ligh t of the remarks a t 

the end of § 6 it is seen th a t 8 r<f>{a, h)jhrand [x h)/hr both

drf(x )/d x r as h 0.

§ 9.4. Special Cases.

§9.4.1. Exponential type.—Let

0  =  Df(x)+pf(x)....................................... (
where p  is independent of x.

Also
f  (a) — 1
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THE DEFERRED APPROACH TO THE LIMIT. 335

# We replace these by
0 =  80 h)jh +  p  . . .

also
(i.<f>(a, 1.............. .... .

From  (3) and (4)
0 =  8<£ - f  . . . .  .

We operate on (3) w ith [iS/h obtaining

0 =  \  . +  jjtSV/A* +  p H lh ,  

and on (3) with 82/A2 obtaining

. . .

(3)

(4)

( 5 )

• • ( 6 )  

• ■ co

Specialising (6) and (7) for x — a and using (5)

0 =  Jp/i2S3<£ (a )/^  -f- [xS (a)/h2 — p 2.

0 =  S3<£ (u)/A3 +  piL&cf) ..................................................  (9)

Solving for the two unknowns [i.82</> and 83</>

;jt.82</> (a)/h2 =  p2/(l — 4)......................................... (10)
and

S30 («)//i3 =  -  p 3/(l -  p 2/*2/4)....................................... (11)

In  general when sis a positive integer it  may be shown by continuing the 

described in § 9.3 th a t
[a 8 2a'0  (a) /h2s =  p 2s/ ( l  —  ..  

an(J

8 2s+1</> (a)/h2s+1 =  — p 2s+1/( 1 — ip 2

Contrast
D J(a )  =  p 28 and ..................... (14), (15)

These differences of (f>(a) are next inserted in the N e w t o n -B e s s e l  series § 7 (7) with the 

result th a t

cf> {a-\-k, h) =  1 j ^ _
kzf  \ 1 — ac2 / 2 2 

3! / l — p 2h2/

, f(£p)2s (^p)2s+1l ( l  —k 2/4)(1—3 V /4 )(1 —5 V /4 ) ... {1—(2s— 1)2k 2/4}

r  1 (2 s)! (2 s-f-l)! J

... to  s — n 

where, as before

•  •  •

k  — Jhjk =  l/(n  +  J).

( 10 )

(17)

Here a t last h is fully explicit. If we apply the test of § 5 to decide how small h m ust be 

in order th a t the ^-extrapolation may be valid up to a t least the (2s -(- l) th  power of p  

we find th a t &2G2s must be small compared with unity, where G is the greater of 

{(2s — l)/(2&)}2 and p2/4.
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336 LEWIS F. RICHARDSON AND J. ARTHUR GAUNT ON

For example if Jc =  1, p =  1, 2s =  10, then G — 20*25, and it  will suffice if h is 

comparison with 0*07.

Actually h is restricted by (17) in which n m ust be a positive integer. If n 14, 

h  =  1/14*5 =  0*069. Also k  =  1/14*5. The first pair of neglected terms, for which 

the ^"-extrapolation begins to fail so th a t our hope depends on their smallness, 

are those for s =  6, which for this value of k  are

\  292/

The higher terms become steadily less until they vanish, when (2s +  1) >  2 ; also they

alternate in sign. Thus the sum to infinity of the neglected ta il lies between 0 and 1/12 !

'there may be quicker ways of discussing this-special problem (see § 3.2), bu t they would 

not illustrate the general process of § 9.3 so well.

§ 9.4.2. Linear equation with variable coefficient.—Given

D2/  {x) +  

where p (x) is an analytic function.

Also
D /{a ) =  1 and — 0.......... (2

As usual we replace these by
82</> (x)/h2 +  

also

(a S</> (a)/h =  1 and </> (a) =  0 ...(5), 

From (4) and (6) it follows th a t
&6 (a) =  Q......................................................... (7)

To find the higher alternating differences of <f> (a) we begin by taking fx§/A of (4) using 

the rule for (xS of a product as given in § 6 and writing p, <f> for p(x), <f> (x, h).

!x 83<̂ . h~3 +  [xSp . /T1 I {</> +  \82 (/)j - f  . \ 

In  this on putting x  =  a and using (5), (6), (7) there follows

[xS3</> (a) . h~3 +  p (a) +  J  2 (82p  {a)fh2} 

Again, taking 82/^2 of (4) using the rule for 82 of a product given in § 6,

- f  v• §20 • +  2 [iSph* 1 | [x8<£ . Jr1 - f  </>82p  . / r 2 +  g 

Now let x =  a and use (5), (6), (7) obtaining

(a) . h4 -|- 2 [xSp (a) . 1 =  0, (11)
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THE D EFERRED APPROACH TO THE LIMIT.

The alternating differences of </> (a)are here being de term ined sin

usual pairs, because the derivative next below the highest is missing from the range 

equation . The process can be continued indefinitely, giving the differences of <f> as 

functions of differences of p  both a t x  — 

is some simple function . The fourth  order will suffice for illustration .

N ext the differences of </> (a)are inserted in  the N e  w t o n -St i r l i n g  series §

result th a t

* («  +  Q = 0  +  l + 0 - H j p ( a ) + ! * £ t e ! } ( l  _ J ) .  (12)

Lastly, to make h fully explicit gSp (a), S2p m ust be expre

of p, by S h e p p a r d ’s  series of § 8 giving

+ (a  +  t) =  l - j ] { p  («) +  |  D ’ (1 +  V D * . . .  ) * ( « ) }  ( l  -  j )

-  J \.{D (1 +  i  h" 1)2 +  T fe  *‘D4 • • •)?(« )} ( l  ~ j )  +  -  <13)

Only even powers of h occur. For the term s shown the /^-extrapolation will be valid if 

h is not only much less than  l bu t if also h2D2p  is much less 

by using the series of §8 for comparison; and possibly in other circumstances less stringent.

337

§ 9 .4 .3 . Cube of dependent variable.— S u p p ose  th a t  w e are g iv e n

D 2/ = ~ / 3 ....................................................... (1)
to g e th er  w ith

/ ( 0) — 1 an d  df/dx =  0 a t  x =  0 .................................. (2), (3)

T he so lu tio n  m a y  be show n* to  be f (x )  =  enx w h en  h, th e  m o d u lu s o f th is  J a c o b i a n  

e llip t ic  fu n ctio n , is  l / y ^ ............................................................................................... (4)

C a y l e y ^  g iv e s  th e  first few  term s o f th e  e x p a n s io n

, x2 | 3a;4 27a;6 441a:8 , -o / \ m\
cn »  =  1 —  —: - — T ----- -r-   --------;— h K (x)..................................... (5)

2 4 6 8

The remainder R (x) can always be found, because cna; is known from the tables of the 

first elliptic integral. For example R (1) =  — 0*002.

To see how the corresponding series for <f> (x, begins, we replace (1), (2), (3) by

h~2$2cf> = - $ * ;  

These give immediately
h~2§2<f>(0) =  — 1 ..................

* Ca y l e y , ‘ An elementary treatise on Elliptic functions ’ (1895), art. 19. 

t  Loc. tit.p. 57, correcting the first term from to 1.
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338 LEWIS F. RICHARDSON AND J. ARTHUR GAUNT ON

Knowing from t-lie sym m etry of (6), (7), (8) th a t the odd term s of the series all vanish, 

we omit the operation (x8 and act on (6) with S2 according to § 6 (5), obtaining

7 r 4§4<7> =  -  7 r 2S2<£3 =  -  7 r 2{<£ . S2#  +  2gS<£ | fxS<£2 +  </>2S2</> +  |S 2<£ | S2</>2}.

A second application of § 6 (5), (4), gives

/ r 4s 4 ^  =  -  7r2 [{2<£ . s2</> +  6 ( [x ^ )2 - f  J (S2<£)2}  {<£ + - p 2</>} +  </,2S2<£]. ( i o )

Now specialising for x =  0 and substituting from (7), (8), (9) we have

V
(0) = 3  - - P 2 + r ............................................... (11)

Inserting these difference-ratios in the series § 7, (3), it is found to begin thus

(f> ( x, ^) =  1 i 3 ~  P 2 +  j /d  4 
2! 4!

§9.4.4. f(x )  single-valued, but<f> (x) branching.—Let the problem be

( 12 )

df/dx = / 2 an d /(0 )  — 1 ...................................(1), (2)
The solution is

f{x ) =  l / ( l - x ) ............................................... (3)

a single valued function except a t x =  1.

The analogous problem in differences is

h~l%<!> =  (gcfyf and 

In  accordance with § 9.3 the differences (xS2^ (0) and <$3<7> (0) have to be determined from

a pair of equations each of which involves both 

unknowns. These equations are quadratic, so 

th a t the differences are multivalued .

If we step out the values of by arithm etic, 

they are determined by quadratic equations, 

which have two real roots or none. So the 

graph of <f> (x) either bifurcates a t each step or 

comes to an end, thus resembling the branches 

of some trees. In  fig. 2 a  the seven large dots 

show all the discrete real values of (j> (x, 0*2) 

when x  is positive. The lines joining the dots 

are merely to show the sequence, and do not 

represent <f> as the polynomials of § 7 would do. 

The/(a?) curve lies close to one branch. If h is reduced to 0*1 one branch continues 

to fit /  (x) w ell; another is more steeply divergent.

20— r

10—

Fig. 2 a .
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THE D EFERRED APPROACH TO THE LTMIT. 339

§ 9.5. Conclusion o f the Marching 

I t  lias been shown th a t  when <f> (x, h) is expanded in  a series arranged according to the 

alternating differences of <f> (a, h),then the separate term s of the series 

num ber of expressions of the form (1 ~j- X/?2 -j- ...) where X  is independent of h, and 

+  ... indicates possible term s in higher even powers of h. These expressions arise in 

three w a y s :—

(i) There are some factors like (1 -f-X/i2. ..) which are the same for all range and boundary

equations. They have been discussed in § 7. They bring in h in the form

h2/(x — a)2.

(ii) O ther expressions like (1 -f- XA2 ...) are brough t in  by the differences of (f>(a, h).

They depend upon the particu lar form of the range and boundary equations.

They do no t involve x. They m ay be divided into two sub-classes :—

(a) Some appear even if the coefficients of the derivatives in the given range 

equations are independent of x, as in § 9.4.1, § 9.4.3.

(h) O thers are produced by the variab ility  of the coefficients in the range 

equation, as in § 9.4.2.

The production of factors (1 -f- XA2 +  ...) may be traced back for classes (i) and (ii) (a) 

to the formula jx2 =  1 +  \h 2 (S2/A2). B ut in the class (ii) (b) the  source of h2 is different, and 

depends on the formulae (x =  cosh |AD, § =  2 sinh J/tD as in § 8.

How to  choose h so th a t  a conglomerate of expressions like (1 +  X ^2) may make the 

^ -ex trapo la tion  valid, has been discussed in § 5. I t  is shown in  § 7 th a t, for any fixed 

h, the ^-ex trapo lation  cannot in general rem ain valid for a derivative as -> oo .

This peculiarity may not hinder the purpose of the calculation.

§ 10. A S i m p l e  J u r y  P r o b l e m .

When there is only one independent variable, jury  problems may be evolved from 

marching problems. The peculiarity of a jury  problem is th a t not all of the derivatives 

of /  (a?) below the order of the highest in the range equation, are given a t either end of the 

range. However we pu t in symbols for those th a t are unknown a t one end x — a and 

write out the expansions of f ( x )and of (f> (x, h) as if i t  were a marching probl

from x =  a. The unknowns are then determ ined by the given conditions a t the  other end 

of the range.

To illustrate th is process in a very simple case let it  be given th a t

We replace these by 

Let

# M + f ( x )  =  0 , /  (a) =  0, /(&) =  ! ...  (1),

^  t  =  o, * ( « ) = .0 ,  =  1..................... (4), (5), (6)

[xS (f>(a)/h =  p, an unknown ................................ (7)

2 zVOL. C C X X V I.— A .
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340 LEWIS F. RICHARDSON AND J. ARTHUR GAUNT ON

Then by the process which has been described in § 9.3 and illustrated in § 9.4 i t  can be 

shown th a t all the even differences of cj> all vanish a t x and th a t for the odd 

differences
(ji<$2s+1(f> h)

h2s+1
( - ) 'P , ( 8 )

where s is a positive integer.

To fit w ith the arithm etical practice we suppose th a t the range ( — a) is divided into 

n equal steps thus fixing h to be equal to  (b — a) jn. The N

then shows tha t,

<f> (b) P (b — a) —
(b — 

3d

( b - a f f ,  1
5! \  n2

(9)

en d in g  a t th e  term  of degree 2n — 1, an d  in  v ie w  of (6) th is  d eterm

red uces th e  ju ry  prob lem  to  a m arch in g  prob lem .

The next question is to find how cf> (x, h) depends on h a t some intervening point. In  

view of the extended definition of cf> given in § 7 it does not m atter whether th is in ter

vening point can be reached by an integral number of steps from x =  Let the point 

be x =  a -j- l, and let r be defined by

l/(b — a) =  rjn ... (10)

T hen  b y  a second  ap p lica tion  of th e  N e w t o n - S t i r l i n g  ser ies

</> (a +  l) =  P

So th a t on eliminating [3 between (9) and (11)

. . (11)

l

(f) (a +  l)

V

3 !
+

5!
1 - *̂2

?!

(b — a)
(b — a f  

3 !
+

(b — 

~ \
- 2 ) ( 1 -

2_2 

n2

. ( 12)

both ending a t term s in (2 n — 1 )  !

The general terms of the series may be seen by reference to (8) and § 7 (3).

The value of h which is small enough to make the ^-extrapolation  valid, may be 

decided in the following way. An algebraic argum ent is 

given concurrently with a numerical illustration in the 

margin. As (b — a) is given, we m ay choose a positive 

integer s so th a t not only is (b — a)2s~1/(2 s — 1)! negligibly 

small but also
(2s — 1) >  \b — a\ (13)

The tail of the series in the denominator of (12) from and 

including the term

(6 -  a)2*-1 f, h% I f  2 %* 1 L ( s - l ) 2^2!
(2s — 1)! 1 (6 — a)M l (b — a)2j ' ' I  ~{b~af J

b — (i — 2  

s =  7

(2s- 1 ) !  1 < fxI°
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THE DEFERRED APPROACH TO THE LIMIT. 341

is then  a series w ith alternating signs and term s steadily decreasing in modulus, because 

the extra  factors in h2, th a t come on in the higher term s, are all less th an  un ity  and 

vanish altogether after a certain  term . So the modulus of the sum to infinity of the 

ta il is less th an  the modulus of first term  of the tail, which in tu rn  is less th an  

| (6 — a)2S~1/(2 s — 1)1 | , which is negligible. S im ilarly the ta il of the series in the num era

tor of (12) from and including the term  in /2S_1 m ust be negligible because 11 1 <  | — | .

N ext we can choose h so th a t all the continued products in n and  r, which are not in 

negligible term s, are of the form 1 +  h2X (number independent of 

according to the rule of § 5  th a t h2Q(s — 1) should be small 

compared w ith unity , where G is the greater of ( —1 

and ( s—1 )2//2 ; th a t is to say h2 should be small compared 

w ith
l2l(s-l)3................................... (14)

W hen h is thus restricted we m ay rearrange the num erator 

and denom inator of (12) according to powers of h, neglecting 

powers beyond h2. I t  is thus found th a t

(f) (u —|— l, li)
sin 1 4 - A2F ( )

sin (b — a)-f- F  ( — a)
(15)

in which

F (D == 1

3!
| j ( l 2+ 2 2) + A ( 1 2  +  22 + 3 2) . . .

! - 1

—I— ( —  V + 1 -  

1 V ' ( 2 « + l ) I

+  ... to the term  in (2

( l2 +  22 +  32 +  42 ... t2)

1 ) !  ..................... (16)

l =  1 

h 2 <  1 / 63 

h < 1 /1 5  

^ > 1 5

F  (1) =  0-130 

F  (2) =  0-079

F 0 )  

sin 1
0-155

g ( 2 ) _
sin 2 

therefore 

h2<-

0-190

1

Now by a reapplication of the rule of § 5 the second member 

of (15) will be of the required form if /^Gj 2 ^ 1  where Gi is 

the greater of | F  ( l)/sin l \ and | F  (b— a)/sin (b — a) | . (17)

We have thus in (14) and (17) three separate restrictions on 

h, and it suffices if the strictest be observed.

If sin (b — a) =  0 then  Gj -> oo , and no value of h will make 

the /^-extrapolation valid. There is a corresponding pecu

liarity  in the solution of the problem in the infinitesimal

calculus. To satisfy (1) and (2) f(x ) =csin (a; — a) where 

c is an arb itrary  constant. To satisfy (3) also 1 =  sin — a) 

which determines c unless sin (b — a) =  0.

Thus the case in which no suitable value of h can be found is th a t in which the problem 

is indeterm inate. Exceptions of this type are usual in jury  problems. Physically they 

are connected with the disturbing effects of free periods of oscillation.

2 z 2

0-38 

h <  1 • 6

much less strict than 

(14) in this case.

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

9
 A

u
g
u
st

 2
0
2
2
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§ 1 1 .  V o l t e r r a ’s  I n t e g r a l  E q u a t i o n  o f  t h e  F i r s t  K i n d .

§ 11 . 1 . Introduction.
Tlie given equation is

0 =  p  (x) -\~ \ k (x , .......(1)
J 0

in which p  ( x) and k  (x , y)are given functions, and the problem 

/^-ex trapolation has been used in this connection previously,* but justification was 

lacking.

The problem will now be approached by the aid of g and 8 and the N e w t o n - B e s s e l *|* 

series. T hat is to say we shall compare two analogous processes ; in the one will 

be expanded in derivatives of p (x) and of k  (x , y) w ith powers of in the coefficients; 

in the other derivatives oi f{x)  will be replaced by difference-ratios and means of <f> ( ,

§ 11.2. The Expansion in Derivatives.% 

In  § 11.1 (1) let x — > 0 ; it follows th a t

p ( 0 )  =  0 ................. ...............................................(1)

p (x) must be given thus, otherwise §11.1 (1) is self-contradictory. We shall assume th a t 

p (x) and k  (x, y) possess derivatives to any order a t all points of the range w ith respect

to all the variables th a t they c o n t a i n ........................................................................... (2)

The process is to take ^-derivatives of equation § 11.1 (1) of orders 1, 2, 3, 4, 5, . . . ,  and  

then to let x = 0, so as to get rid  of all the integrals. This leaves us with a set of linear 

equations connecting/(0), /'(()), /" ( () ) ,/" '(0 )  . . .  w ith known derivatives of p  (x) and of 

k (x , y).

Taking d/8x of § 11.1 (1)

0 =  % x T + f ( x ) - K +  j 0 f ( y )  • ..
Let x  — 0 then

0 =  +  / ( 0 )  • K( 0 ’ 0)
(4)

which gives/(()) in terms of lmowns. 

Taking d/dx of (3)

0 =  ^  o  + / ( * )  + / ( * )dx dx

'8 k  (xt y)'

8 x x=U

+ j  /(«/)•
8p< {£, y)

dx2
dy. (5)

* L. F. R ic h a r d s o n , ‘ Phil. Trans.,’ A, vol. 223, p. 363 (1923).

t  Dy mistake the nucleus k ( x, y) has been printed as kappa instead of capital K. 

course no connection with the same letter in the N e w t o n -B e s s e l  series.

-t E. T. W h i t t a k e r , ‘ Roy. Soc. Proc.,’ A, vol. 94, p. 367 (1918), has discussed a less general type of 

nucleus, namely, k  (x  — y).
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THE DEFERRED APPROACH TO THE LIMIT. 3 4 3

In  the last we have to d istinguish whether x  is p u t equal to y  before or after the 

differentiation . A no tation  like 9 k  (0 ,0)/9a? is ambiguous and causes m istakes. Let 

x — 0 then

0 =  -I- % M .
9x2 dx

K(Oj o) +  / ( 0 )
f / 9k  (x,x)\

1 \ 9^ /*=o
a* ( v ,  y ) \  1

dx / 0 J
( 6 )

which w ith (4) determ ines 9 /(0 )/9a?.

This process can evidently be continued w ithout end. The results m ay be w ritten  

com pactly if we have an operator to  mean “ pu t x — Try || for th is purpose, so th a t 

if F  (x, y) is any function of x  and y

|| F  (x, y) =  F  

The symbol || m ay be pronounced “ equalised .” Then if D  denote 9 /9a?

D || is n o t in  general equivalent to | | D ................................ (8)

Provided th a t/m e a n s /(a ? )  except in the integrand, (3) m ay now be w ritten

0 =  D p + / 1 II * +  f ..............
Jo

in which 1 is the “ wall ” of § 6.

Similarly (5) may be w ritten

0 =  D °p  + D /III  « + / I  {D IIK +  II D«} + j*/
Now operating on ( 5 a ) with I) we obtain

o =  D»p +  D2/1 II  K +  Bf| {2D II K +  II + f  | {D2 II K +  D II 1)k  +  || D2

(3a )

(5a )

Operating on (9) with D

+  \ j ( y ) ^ Kdy- (9)

0 =  D >  +  D 3/ 1  |1 k  +  D2/ 1  {3D || « +  || D k } +  D /1  {3D2 1| « +  2D || D k  +  || D 2K}

+ / I  {D 3 1| K +  D 2 1| D k  +  D || D2« +  II D3*} +  £ / ( y )  . D (10)

an equation which would be very cumbrous if w ritten w ithout the aid of [). And so on. 

W hen x =  0 the integrals all vanish, and what is left is a set of linear equations to deter

mine / ,  D/, I)2/  . . .  a t x — 0. They are so arranged th a t f  (0) is determined by the 

equation ; D / (0) by the second equation a n d /( 0 ) ; D2/ (0) by the th ird  equation together 

with /  (0) and 1)/ (0) ; and in general D nf(0) by the wth e

results already extracted from the previous n — 1 equations.

I t  w ill be a ssu m ed  t h a t / i s  su ch  th a t  i t  can  be ex p a n d ed  b y  T a y l o r 's  th eorem  . (11) 

F or ex a m p le , if k (x , y) =  1 -j- erxy\  an  u n sy m m etrica l kernel, i t  m a y  be sh ow n  

w a y  th a t  th e  series fo r /(a ; )  b eg in s th u s

/ ( » )  =  — i  [ DP (0) +  xD2p  (0) +  ~  W p  (0) +  | |  (D4p  (0) 4 (0 )) +  . . .  j .  (12)
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344 LEWIS F. RICHARDSON AND J. ARTHUR GAUNT ON

§ 11.3. The Analogous Process in Differences.

Along a vertical line on which k  (x , y) . f  (y) is tabulated 

which shall be a simple but good approxim ation, vanishing a t x — 0, to

I x (x ,y )  • /  (y) • dy.
Jo

For brevity let k (x , y).f(y) be denoted by

0 ( « ,  y). . . . . . . . . . . . . . . . ( 1 )

Let it  be granted th a t 0 is tabulated a t equally spaced values of y  and th a t the only 

alternati ve is th a t the ends of the range 0 < « / <  x  may either coincide with points where 

0 is tabulated or fall midway between them. In  either case let 2  be defined, when 

x  is positive, to be the sum of the tabular values of 0 lying w ithin the range, plus half 

of the tabular values, if any, of 0 lying a t the term ini of the range. W hen x  is negative 

2 {x) is defined as above bu t with the opposite sign ................................* . . . (2)

The integral equation is replaced by

0 =  p (x) -f- AS (x) 

The Tabulation.—The choice of tabulation is im portant. In  the diagrams let the sloping 

line be x — yand let the dots indicate the points a t which k  (x , y) and /  ( ) are both 

tabulated. The a>axis is horizontal.

The co-ordinate lines are x =  ±  nh, 

At first sight fig. 3 looks harmless. 2  (h) involves 

/  (h) and /  (0) by the rule (2). 2  (— h) involves /  (—

a n d /(0 ) . A t the origin we can pu t =  0 in (3), bu t 

as both terms of the equation then  vanish we get no 

information. Next, by operating with gAx and 8 * in 

which suffix x  means th a t y is constant we can form 

two equations

o  —  (d )  +  m A 2  ( o ) ,

0 =  8x'p  (0) +  v s  (0),

— r

A/ •

/ 9 •

iJ 9 9 •

- * • y
9 • / /
O / A/

//
/

y
/

Fig. 3.

Fig. 4.

Fig. 5.

separately with \xx and

but these involve three unknowns / ( — 0), f(h )

and so are insoluble. The next pair of alternating 

differences ;j,xSz3 and dx would bring in two more 

unknow ns/ ( — 2 h)an d / ( 2 / i ) ;  and so on for hi

pairs. Thus the tabulation of fig. 3 produces an 

indeterm inate problem and m ust be rejected. We 

have already met unworkable tabulations in § 2.

The above difficulty is avoided by the tabulation 

of fig. 4, for with this, if we act on equation (3) 

we obtain two equations sufficient to determine f{ \h )
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THE DEFERRED APPROACH TO THE LIMIT. 345

and / ( — \h) which are the only unknowns. N ext (x8z2 and of (3) determ ine 

f ( j k )  a n d / ( — -|A), and so on, in pairs w ithout end. B ut £  then  depends on k  a t one 

end only of the range of integra tion . Th is is an ill-balanced arrangem ent, likely to 

produce error. Indeed, an investiga tion which would occupy two pages, shows th a t  the  

lim it of /i_18</» as h -+ 0 is a t the origin {Dp JD || — |D 2p  f  || k } (|| k )~2. This does 

agree w ith D /, which according to § 11.2 ( 3 a , 5 a ) ,  is a t the origin

{Dp | (D || * -H | D/c) -  D2p  11| k }(|| k )“2.

So if we were to use the tabu lation  of fig. 4, then  the lim it of $ as •+ 0 would no t be 

a solution of the given integral equation .

A tabu lation  which avoids both the indeterm inancy  of fig. 3 and the wrong lim it of fig. 4 

is shown in fig. 5. I t  was used by  the present w riter in connection w ith “ Spheres shot 

upwards ”* and will now be exam ined more critically .

The specialising operator.—In  § 11.2 (8) we have begun to use an algebra which is in 

p a rt non-com m utative. I t  is desirable for consistency th a t the symbols for all operations 

should be written down in the sequence in ivhich the operations are to be performed; 

or else in the reverse sequence, which happens to be cu sto m ary ; bu t not in a 

m ixture of the two sequences. Now such a m ixture occurs if D be used to denote 

the value of Df  ( x)when x — a .It 

use a special bracket, writing [a] D f .Here [a] means “ pu t x =  ..

I t  may be called a “ localising ” or “ specialising ” operator.

Similarly when we have two independent variables \a, b] k  will mean the value of

k  (x, y) when x — a, y — b........................................................................ (5)

W ith the aid of this new operator i t  is possible to avoid am biguity .

On the same scheme we m igh t use [x, x] to mean “ pu t =  B ut || is easier to write, 

to read and to p rin t and will be used instead .

The definitions of p. and S now appear thus, where 0 is any function of x

\x] ;x0 — \  \x  +  \h \  0 +  | [  \K\ 0 .(6)

[cc] SO =  \x  +  J A ]  0 —  

Halving the second of the equations and adding, we obtain the advancing operator ( (x-j--|8) 

in the relation

M  ^ H~ "2̂ ) 0 =  [^ +  \hi\ 0........................................... (8)

And by subtraction the retarding operator [x—JS thus

[*] ( tx — i&) 0 =  \x  — JA] 0.........(9)

* * Phil. Trans.,’ A, v o l. 223, p. 361 (1923).
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346 LEWIS F. RICHARDSON AND J. ARTHUR GAUNT ON

Formation of the sum 2 (x).—Let the numerical values of 0 (x , y) be A, B, C , ... ...

arranged as in fig. 6.
Cx

Then in accordance with (2) we replace 0 (x, y) dy by liL where, for example, a t x  =  3
Jo

we have 2  =  D +  E  -j- F  simply. We are con

cerned only w ith means and differences in the 

^-direction so th a t [x and 3 m ay be used to denote 

these, w ithout needing x as a suffix. Let us 

form in tu rn  fxS, S2, [xS3, S4 ... of 2  a t — 0.

The first pair ;xS and 82.—[0] ;xS2 — (A -j- a) 

the plus sign, occurring because the term ini of 

integration cross one another a t the origin. Now 

by (8) and (9)

A =  \h, |  0 =  \_\h, ( [J. -f- 0
And

a =  [ h, 0 =  [ |  \Ji\ ( (x |-S) 0.

A +  a — {\fih, \h \ -f- [— |  h,|A ]} jxO +  J  {\fih, \h] [ 

'Fherefore

[0] (XSS =  [0] {(X il M-0 +  i s  II SO}- (10)

Next for the second difference in like manner

[0] 822  =  A  -  a =  [0] {8|| (x 0 +  ;x || 3 0 } ................................. (11)

Now 0 =  cf> {y). k (x, y) in the ordinary notation ; and (f> (y) behaves as a constant relative

to jx and 3, th a t is to say
|| fi.0 =  (f) (X)|| [ X / C , .(12)

d. h  a

Fig. 6.

|| SO =  4>(x) || 3#c...................................................(13)

We may now write </> simply for </> ( x).

Next by the rules of § 6 for differencing and averaging products

t* II 1*6 =  n *  I n  II ( «  +  i * *  |  8 |[ n K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 1 4 )

8 || (j.0 =  | 8 || (i k  -f- S<£ | |i || (iK, ................................ (15)

n il 86 =  n *  | n | |  S k  + i S ^  | 8 || 8k . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . (1 6 )

8 || SO =  n *  |  8 || 8 k  +  8 ^  |  n  || S k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 1 7 )

Thus the “ sum-equation ” (3) yields for the first difference

0  =  [ 0 ]  nSV1 i> +  [0] { n *  I (n II +  m i  S k )  +  1 8 *  I ( *  II n<c +  n II S k )
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THE DEFERRED APPROACH TO THE LIMIT. 347

A gain , for th e  seco n d  d ifferen ce, th e  su m  e q u a tio n  y ie ld s

0 =  [0] Wh~*p +  h - 1 [0] { g 0 | ( S  || £x#c +  tx || Sk ) +  §0 | ( ( i  |

F o r  in se r t io n  in  th e  N e w t o n - B e s s e l  ser ies § 7 (7) w e n eed  g <f> an d  8 0  sep a ra te ly . T h ey  

are o b ta in ed  from  th e  p a ir  o f eq u a tio n s  (18), (19) ju s t  as in  th e  m a rch in g  p rob lem  th e  

differen ces are in  gen era l fo u n d  in  p a irs (§ 9 .3 ).

[0] P* =  [o] -  1 B , .................... (20)

[o  ] k - ' H  =  [o] .(2 1 )

in  w h ich

A  =  |i II +  i?*2 |  II |  K,  

B  =  | | |  [ * « +  till | kt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 2 3 )

T he lim its  of (i0  an d  w hen  h -> 0 are a cco rd in g ly

[0] 4, =  [0] =  * £ . , ......(24
K

[0] D 0 =  [0] * +  J I  .^ 1 - - - f f g -LL*, .................... (25)
(II

The infinitesimal calculus gives, in the analogous problem, equations §11.2 ( 3 a , 5 a ) , 

which, on being solved for [0 ]/ and [0] Df, become identical w ith (24) and (25) provided 

th a t f  =  L im it 0 as we should expect. I t  is here th a t the tabulation of fig. 5 succeeds,
h-+ 0

while th a t of fig. 4 fails.

As w ith differential equations, we have next to make h fully explicit in (20), (21), (22), 

(23) by expressing the means and differences of the known functions and k  in term s of 

their derivatives by the aid of the series of § 8. For p  i t  suffices to refer to § 8 (3, 4). 

The case of k  is complicated by ||. We have by § 8 (1,2) or Sh e p p a r d ' s  expansions of

them
(TK =  (1 + U 2D2 +  * ^ D 4+ . . . ) * ....................... (26)

|  =  D (1 +  *  /t2DJ + T9Vs A'D* +  . . . ) * .....................(27)

Thus

II =  II K +  i  h2II D 2k  4 -  -gfa II D 4 + .(28) II

II 1 K —  II D /c  -f~ f a hi21| D

VOL. CCXXVI.— A. 3 A
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348 LEWIS F. RICHARDSON AND J. ARTHUR GAUNT ON

A n d  th en , b y  p u ttin g  || i±k  in  th e  p lace  of k  in  (26),

(JL || [XK =  || l< + “§- A2 || D 2* +  75-1-4 || b)4K +  • • •

+  1- m *  II K +  ^  II J32/c + . . .

+  * f e f t 4D 4 l l*  + ................................ (30)

in which h is fully explicit as far as A4. In  like manner 11| 1 <$k 1 1| gK

(r || 8 /u1 k  can be obtained, and so h made fully explicit in  th

N e w t o n - B e s s e l  series. I t  is seen th a t only even powers 

k  are specified we have the formulae ready to settle how small m ust be, for these terms.

The higher pairs of terms can be treated  similarly. For instance, referring to Fig. 6 

on  p. 346,

[0] ^ (B  d-  C) — A  —

[0] §42  =  (B  +  C) — 4 A  +  4a — (6 +

N o w  a ll th e  v a lu es  A , B , C, a, h, c can  be tran sferred  to  th e  s lo p in g  lin e

of th e  a d v a n cin g  an d  retard in g  operators. W h en  on  th e  s lo p in g  lin e , v a lu e s  can  be  

exp ressed  b y  th e  operator ||,a n d  so can  be b rou gh t in to  com p arison  w ith  th e  corresp on d in g  

term s in  th e  in fin ites im a l ca lcu lu s of § 9 .1 .

§ 1 2 . S u m m a r y  a n d  A b s t r a c t .

(1) T his is  an  in v e s tig a tio n  of th e  v a lid ity  of an  a r ith m etica l process, here ca lled  th e  

“ /^ -ex tra p o la tio n ,” w h ich  h as p rev io u sly  b een  u sed  for so lv in g  d ifferen tia l an d  in teg ra l 

eq u a tio n s. W e o b ta in  b y  ar ith m etic , o ften  ea sily , <f> (x, h) th e  so lu tio n  of th e  an a logou s  

prob lem  in  cen tered  d ifferences, m ade w ith  step  h =  $x. I f  i t  is  p o ss ib le  to  e x p a n d  th u s

cf> (x, h) = f ( x )  +  hfx [x) +  h% 

t h e n /  (x)the  lim it  of </> (x, h)as h -> 0 is  u su a lly  th e  d esired  so lu tio n  of th e  

in fin ites im a l ca lcu lus. N o w  if  th e  fu n c tio n  f uv a n ish es , an d  if  fu

sm all th a t  h2f 2(x) is  m u ch  larger th a n  th e  su m  to  in f in ity  o f th e  h igh er term s o f th e  series, 

th en  a fter  so lv in g  th e  d ifference-prob lem  for tw o  u n eq u a l s tep s h2, th e  u n k n o w n  

f 2 (x) can  be e lim in a ted  an d  f ( x )  found . T h is  e lim in a tion  is  ca lled  th e  “ /^ -ex tra p o la 

t io n .”

(2) The m eth od  of in v e s tig a tin g  its  v a lid ity  is  to  o b ta in  </• (x, h) as a fu lly  e x p lic it  

fu n ctio n  of h. T his is  done b y  a s tu d y  of th e  p rop erties  of th e  d ifference-operator S 

and  of S h e p p a r d 's  averag in g  operator jx, com b in ed  w ith  th e  N e w t o n - S t i r l i n g  an d  

N e w t o n - B e s s e l  exp a n sio n s in  d ifferences of </>. T here is  a general resem b lan ce  to  corre

sp on d in g  op era tion s in  th e  in fin ites im a l ca lcu lus, b u t a lso a num ber of rem arkable  

co n trasts, see, for ex a m p le , § 9 .4 .4 .
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THE DEFERRED APPROACH TO THE LIMIT. 349

(3) A particu lar arrangem ent of the arithm etic, which fits w ith the properties of \i 

and 8 is used throughou t. See §2, § 11.3.

(4) The investigation is restricted, except in  §4.1, to  functions/(a?) which can be ex

panded by  T a y l o r ’s  theorem .

(5) The definition of </> {x, h)is extended by interpolation in  § 7 so as

a continuous function of x, to  which an ^ -ex trapo la tion  can be applied a t any value of

(6) No exceptions have been found to  the rule th a t  odd powers of h are absent from 

the expansion of </> (x, h).

(7) General m ethods for finding how small h m ust be, in order to  make the /^-extra

polation valid, have been indicated, and have been applied in  detail to some simple 

examples in  § 8, § 9.4, § 10, § 11.

(8) In  § 4.1 and § 10 cases have been found in  which it  is not possible to choose li small 

enough to make an ^ -ex trapo la tion  valid  for f(x ) ,  bu t th is occurred only where f  (x) 

became indeterm inate . Some of the branches of the function in § 9.4.4 become more 

divergent as h decreases.

(9) B ut i t  is not in general possible to  fix h so th a t an ^ -ex trapo la tion  m ay rem ain 

valid for dnf  (x) /dxn as n-> go  . This rem ark applies both when f(x)  is a given f

as in § 8*, and w h en /(x ) is the solution of a differential equation as in § 7, § 9.

(10) Isolated discontinuities are less inconvenient th an  frills (§ 4.2).

(11) In  order to prevent am biguity some new operators have been introduced in  § 6, 

§ 11. One of them  is useful in solving integral equations by the infinitesimal calculus 

and a non-com m utative algebra.

(12) The laborious expansions in ^ and 8 of the present paper are not intended for 

obtaining numerical results, bu t only for testing the valid ity  of results obtained by 

arithm etic in the simple way illustrated in § 3.

§ 1 3 . P l a c e s  w h e r e  R e c u r r i n g  S y m b o l s  a r e  D e f i n e d .

§ 1 ; S, jx, § 2 ; G, § 5.2 ; |, § 6 ; X, L 2„ § 7 ; D, § 8 ; <]o § 9.2 ; ||, [0],

[a, b], § 11.

3 A 2

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

9
 A

u
g
u
st

 2
0
2
2
 



350 LEWIS E. RICHARDSON AND J. ARTHUR GAUNT ON

PartII.—Interpenetrating Lattices.

By J . A. G a u n t , B.A., Scholar of Trinity , Cambridge.

{Communicated by L. F. R i c h a r d s o n , F.R.S.)

(Received. November 6, 1926—Read January  20, 1927.)

1 . I n t r o d u c t i o n .

This paper is supplementary to a paper by L. F. R i c h a r d s o n ,*  in which he describes 

arithm etical methods of solving differential equations by means of centred differences. 

I t  will be best to explain one of these methods by an example.

We will take the simple differential equation, ^  =  — y, w ith 1 a t — 0, and find
dX

the value of yat x =  1. The interval (0 < a ;< l)  is divided into a num be

say 10, and the following table ca lcu la ted :—

X. y- 0-2 iX .
dx

Error.

0-0 1-00000 0-00000
0-1 0-90499 -0 -1 8 1 0 0 0-00015
0-2 0-81900 -0 -1 6 3 8 0 0-00027
0-3 0-74119 -0 -1 4 8 2 4 0-00037
0-4 0-67076 -0 -13415 0-00044
0-5 0-60704 -0-12141 0-00051
0-6 0-54935 -0-10987 0-00054
0-7 0-49717 -0 -0 9 9 4 3 0-00058
0-8 0-44992 -0 -0 8 9 9 8 0-00059
0-9 0-40719 -0 -0 8 1 4 4 0-00062
1-0

--------------------------------

0-36848 0-00060

The m ethod of obtaining the value of yat 

For the next step, we replace dyjdx in the differential equation by — ---- and
0*2

consider th is value to hold a t x =  0*1, the centre of the interval (0 < £ < ()

it  is essential always to use centred differences. Our equation then gives : (0 • 2) =  (0)

— 0 - 2y (0 • 1). The second term  on the right-hand side is tabulated in the th ird  column, 

opposite x — 0* 1, and added to the value of yat 

This process is continued, until x  =  1 is reached. This type of solution, in which each 

value of y is obtained from the value two steps back, used to be called the “ step-over ” 

method ; but lately Dr. R i c h a r d s o n  has named it “ the method of the interpenetrating 

lattices ” {see P a rt I § 2).

* L. F. R i c h a r d s o n , ‘ Phil. Trans.,’ A, vol. 210, pp. 307 to 357. See also a summary in the ‘ Mathe

matical Gazette,’ July, 1925, pp. 415 to 421.
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THE D EFERRED APPROACH TO THE LIMIT. 351

The difference between our approxim ate solution and the correct result, viz., *,

is tabu lated  in the last column. The errors would have been grea ter if we had not centered

our differences. Still grea ter accuracy, however, can be achieved if we can assume th a t  

the approxim ate solution has the form

A +  BA2 * +  C/*4+ ... , .................................... (1.0)

where h is the leng th  of the step . We calculate the value of a t =  1, using steps of

twice the length, obtaining 0*37029. The error of th is  result should be four tim es the 

error of the original result, if the term s of (1.0) decrease rap id ly  in im portance .

Thus the value w ith large steps was ................................................  0*37029

the value w ith small steps w a s ........................................................  0*36848

The difference 0*00181

should be three tim es the error w ith small steps, which is therefore 0 • 00060

and the corrected value i s ................................................................  0*36788

This is accurate to five places of decimals.

There are two outstand ing questions which th is paper tries to answer. F irst, how is 

the table to be started  ? Secondly, can the approxim ate solution be expanded in a 

power series in h, w ith odd powers missing, as in (1.0) ? In  other words : how should 

we take the first step ? and, is our final correction justified ?

We shall assume th a t an expansion in powers of h is possible, and prove th a t the odd 

powers do not appear, and th a t the first step m ust be taken in a definite manner. §§ 2 

to  8 give the detailed analysis for ordinary differential equations. § 9 contains two 

examples. § 10 gives an outline of the work for simultaneous differential equations 

and an example. In  each case the m ethod of solution is th a t of the interpenetrating 

lattices, which has just been explained.

2 .  T h e  R a n g e - a n d  D i f f e r e n c e - E q u a t i o n s .

We will consider an ordinary differential equation in two variables, resolved with

respect to the highest derivative which appears :

with initial conditions :

<
dxn

— F y ,
d x ’ dxn~l) ’

dy

’ d x ’ dxn~x
are given as x =  0.

( 2 . 0 )

( 2 . 1)

We suppose th a t F  is differentiable, to an order which will be specified later (§ 8).
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352 LEWIS F. KICHARDSON AND J. ARTHUR GAUNT ON

Owing to the presence of dThl
dxn~1’

th is equation is best solved by the interpenetrating

lattices.* The functions in the various columns of the table, headed by , 

d2yldx2, . . .d nyldxn, are only approximations. We will denote them  by / 0 (x), 

f x {x),... f n(x), respectively. f 0; f

and its difference ratios. They depend on the param eter h as well as , and are defined 

only a t those points where x[h is an integer.

The rules for making the table are expressed m athem atically by the following equa

tions and conditions:

f s ~ \  { p  +1  h) — f s - 1 {p — 1 h )  =  2 hfs (ph) 1,2,  is a positiv

/„ =  F •■•/ , -. )...........................................

A t x =  0 : / 0, / i ,  •••/«_! have the initial values of

d*~ly

dx  . . . . . . . . . . . . . . . . . . . . . . . . . . .

( 2 .2 )

(2.3)

(2.4)

At x =  Ji: / 0, fx ,.../„_] have values to be settled later, when we consider the first step 

(§7).

(2.2) will be referred to as the “ difference-equation,” and (2.3) as the "  range-equation.”

3 . T h e  P r o b l e m .

We propose to find necessary conditions th a t

f s (x) =  Vs («) +  hys (x) +  y, (x) +  ^ j y s (%) +  j y  (x) +  s4 (x, h)} (3.0)

for s — 0, 1, ... n,where ys, ys, ys, ys, y s are independent of h, and differentiable to an 

order to be specified later (§ 8) ; and, as h-> 0, es (x , -> 0 unifo

In  other words, we shall see under what conditions the approxim ations to y  and its 

derivatives can be expanded in power series in h, w ith remainders ; and we shall deter

mine the coefficients in the expansion. In  practice, y0 would be the exact solution of the 

problem ; and some knowledge of the size of y0f y0, etc., would give an estim ate of the 

accuracy of our approximation.

To shorten the lengthy expressions which follow, dashes and upper suffixes will be 

used to denote differentiation w ith respect to x. Thus

* The single lattice can be used ; but it involves, a t each line of the table, the solution of a pair of 

simultaneous equations, one of which is not in general linear (cf. P art I § 9.3 and § 9.4.4).
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THE DEFERRED APPROACH TO THE LIMIT. 353

Also for partia l differential coefficients we shall use :

Tf — ^F

V* = W .'
: etc.

t y .  ty’

4 . S u b s t i t u t i o n  i n  t h e  D i f f e r e n c e - E q u a t i o n .

By (2.2)

2 h f,(ph ) = f t- x{p +  l h ) — f l- x(p — lh ) (s =  1 ... ...).

Substitu te from (3.0):

2 h ys (ph) +  hys (ph ) +  y, (ph) +  y, ph +

= [  y*- i  ( p  +  1 h) — ys- x (p — lh )] +  h +  1 1

+  2 ~\[ys-x(p-\- lh) — y ,-x{p — l  h)] +  g-j {p +  1

jp . . . . _____.... _____  ______ _____

^~^~\[y*-i{p +  1 h) — y, - x (p — 1 

In  order to make the argum ents of m ost of the functions the same on both sides of the 

equation, expand the righ t-hand side by T a y l o r ’s  theorem, a t the point w ith

remainders after term s in hl. It  becomes

2 (ph)+ | V " - >  w  +  r \  ' ° - 1 {ph’ A)]

+  2 h [hi/',-!(ph) +  A  (ph) +  i._ i h)}}

+  TTih {jl',-l {ph) +  Vj.-, (ph, h)}

JP .... ____  ____
+  4 ~\{'r\ '- \ (p h ,h )J{-zs- x(p-]r \h ,h )  — es- x (p . . . (4.0

where y),-! (x , h), y),-! (x, h), r\s- x{x, h), yjs- x(x, ŷ - j ( 

Coefficients of the same powers of h on the two sides of the

For, d ividing by h and making h0 (keeping ph constant) we see th a

of h are equal, as all the other term s -> 0. So for the coefficients of A4, and finally

the odds and ends. (The fact th a t the s’s are evaluated a t p  ±  1 and not a t ph, presents 

no difficulty, since the e’s -> 0 uniformly.)

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

9
 A

u
g
u
st

 2
0
2
2
 



354 L E W I S  F .  R I C H A R D S O N  A N D  J .  A R T H U R  G A U N T  O N

By equating coefficients we obtain the following equations:

y .  =  

y s =

y* +  i

y s =  y ’" s-x +  y \ - x

Transforming sligh tly :

y ' s - 1  =  y ,  

y \ - 1

i =  y , —  y ' s

>(s =  1 , 2 , . . .  n)

>{s =  1,2,

(4 .1)

(4.2)

By (2.3)

5 .  S u b s t i t u t i o n  i n  t h e  R a n g e - E q u a t i o n .

f n =  ¥ ( x , f 0, f i ,.../„_ !).

Expand b y  T a y l o r ’s  theorem a t the point ( yx, ... yn-i), which is independent 

of h :

/„ =  F  +  "s F„ ( / ,  -  y.) + 1  *S F „ , ( / ,  -  y.) ( /, -  y.)
^ ! « = o *= o5 =  0

1 n —1 n —1 n —1

where

+  -  2 2 2 ( F ^ .  +  ( / ,  -  y,) ( /, -  yt) ( f u -  */„), . (5.0)
o ! 5  =  0 t  = o n — o

virtu 0 a s / ,  — y,,etc. -> 0 ; i.e., as -> 0.

Substitute for f ,  — ys from (3.0) and equate coefficients of h°, 2, h?, as in the last

section.

yn =  F

*/» =  S F ,# ,
5 =  0

i jn  =  2  F y . 2 ) ,  +  2 2  F ^ y ,

5 =  0  5 =  0 t =  0

?/. =  *2 F „y, +  f  T  s '  F w  (y.y, +  y.y,)
5 =  0 5 =  0 t  =  0

n —1 w — 1 n -  1

+ 2  2  26* = 0 < = 0 R = 0

. . . (5.1)

where F, F,,., etc., are evaluated a t (x, y0, ... y„).
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THE DEFERRED  APPROACH TO THE LIMIT. 3 55

6 . D e t e r m i n a t i o n  o f  ys,

(4.2) and (5.1) are differential equations in  the unknown functions of (3.0). Also we 

know their in itia l values a t  x =  0. For by (2.4), w ith (2.0) and (2.3),

f s — y {s) a t x — 0 — 0, 1, ... n).

Substitu te  in  (3.0) and “ equate coefficients ” as before**:

A t x  — 0 :

=  0, 1, ... (a; =  0) . . . .  (6.0)

By (4.2), for any x :

ys =  y 's-i =  y''s-2=  ••• =  */o(s)-
Therefore by (5.1)

y0{n) =  ¥(x,y0, , ... yQ(n~l)).

This is our original differential equation (2.0). The in itial conditions are the same, by

(6.0). Therefore

yo =  y ,  y s =  yU) (s o, 1,... %).....

The equations in y ’s, and their initial conditions evidently have the solution

ys =  0 (s =  0 , l , . . . % ) ....................

and the form of the equations is such th a t  the solution is unique.*

The same now applies to ys’s:

ys — 0 (« =  0 , l , . . . w ) ..................

On substitu ting in (4.2) for ysby (6.1), and in (5.1) for y s by (6.2), 

initial condition (6.0), ygcan be determined.

7 . T h e  F i r s t  S t e p .

In  the solution of differential equations by interpenetrating lattices, it is generally 

difficult to see a priori how to take the first step. Various empirical suggestions have 

been made, such as the “ algebraic first s te p /’ and the use of smaller steps a t the beginning, f 

Our work so far, however, has been independent of any explicit method of taking the 

first step. Yet i t  has sufficed to determine most of the functions on the right-hand 

side of (3.0). This equation, if it  is to hold for all (sufficiently small) x, determines the 

way in which the first step m ust be taken ; for we have only to pu t x  =  h, to obtain f s

* See Ch . J .  d e  l a  V a l l e e  P o u s s in , * Cours d ’Analyse Infin itesim ale/ tom e II, chap. 5, § 4 

(5th edition).

f  L. F . R ic h a r d s o n , ‘ M athem atical G azette,’ Ju ly , 1925, pp. 417 to  418 ; also ‘ W eather Prediction by 

Numerical Process,’ Camb. Univ. Press, chap. 7 /2.

VOL. C C X X V I.— A. 3 B
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356 LEWIS F. RICHARDSON AND J. ARTHUR GAUNT ON

The expression found for fs( h) can be 

remainder after the term  in h \  This rem ainder is indeterm inate, because ss is indeter

minate, and for convenience it may be chosen equal to zero. I t  is not necessary, however, 

th a t the remainder should vanish.

We must first evaluate various functions a t — 0.

By (6.1) Vs =  y{s\  y 's =  y{s+1\  etc. (s =  o, 1, ... W)

By (6.0) =  0 a t x  =  0. (* =  0, 1, ... %)

By (4.2) -  y,+i  — W 's +i (* =  0, 1, ... w — 1)

=  — y{s+3)a t a? =  0. (s =  0, 1, ... n — 1)

By (4.2) y". “  y  s+i ^y (s =  0 , 1, ... w — 1)

=  — f  y{s+i)a t 0. (* =  o, 1, ... n — 2)

By (6.0) V s =  0 a t x =  0. (s =  0 , 1, ... n).

P utting x = hin (3.0), and using (6.2) and (6.3) *

/ , (h) =  y, (h) +  £  y, +

Therefore for s =  0 , 1, . . .  n — 2, b y  T a y l o r 's  ex p a n sio n

f s (h) =  y{s) (0) +  hŷ(0) +  y ^  (0) +  £  (0) +  £  { y ^  (0) +
3! 4!

21
0 - h .  (0) +  * { -  f  (0) + ,* .} +  T1

where Ss, §s, -> 0 as h 0. Therefore

f ,  (h) =  f  (0) +  %<*«> (0) +  |  «/*«> (0) -  |  f * ‘> (0) (s =  0, 1, . . . »  -  2) (7.0)

if we choose es (h, h) =  -  S, -  6Ss — Ss.

For s =  n — 1, we require h" , (0).

By (4.2) and (5.1)

n — 1
=  — Iw"

Therefore a t x 0

Expanding as before

\ y " n +  2 i/s.
s =  0

n — 1

=  -  iy* t3) + n , ( -  i y +»)
s  =  0

fn—iW  =  (0) +  %<»> (0) +  |-2/(n+1) (0) — —
^ 24

w—1
*/”+3) (0) +  2 2  F yty{ŝ  (0)

s = 0

(7.1)

if we choose

£ n - l  ( ^ J  ^ )  ---- 68n - l  ^ n - l *
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THE DEFERRED  APPROACH TO THE LIMIT. 35 7

By the analysis of § 5 , fn(h) is given, to the same order, by equation (2.3).

E quations (7.0) and (7.1) are im p o r ta n t; they  differ from all the empirical rules m en

tioned above. Their application is no t so com plicated as m igh t appear a t first sight. 

(See the example of § 9.)

8 . P r e c i s e  A s s u m p t i o n s  a s  t o  D i f f e r e n t i a b i l i t y .

On looking through the work up to  th is point, i t  will be seen th a t we have assumed th a t

F  is 3 tim es differentiable w ith respect to . . . (§5)

F„ is once
5 5 5 5

x (s =  0, 1 ,  . . .  — 1)(§ 7)

ys is 4 tim es 5 5 5 5
X (§4)

ys is 3 tim es
5 ? 5 5 X (§4)

ys is twice
? ? 5 5

X (§4)

ysis once
? J 5 5

X (§4)

also th a t ys is continuous in a? 0, 1 ,  . . .  n — 1 ) (§4).

9 .  E x a m p l e s .

(i) ^  =
 ̂ '  /Z~ ~ y \ y — 1 when x — 0.

This is the example of § 1. By comparison with (2.0), n 1 and F  =  —

(7.0) does not apply.

(7.1) requires the values of y, y ' , y " , y '"  an d ? /7 a t 0 ; 1 is give

by the differential equation .

D ifferentiating : y"  =  — y ' =  1.

Similarly, y"' — — 1, yir — 1.

Also F y — — 1.

Therefore

/ . ( * )  =  l - *  +  f - | [ l + 2 ( - l ) ( - l ) ] -

P u tting h =  0 • 1 we obtain 0 • 90499 to five places.

I t  is interesting to compare the results of § 1, in which the above value is used for y  

a t x =  0-1, w ith a similar solution using an incorrect first step. Suppose we take a t

x — 0 ’1 the correct analytical value for y, in violation of equation (7.1). We m ight 

expect greater accuracy, bu t the actual errors are as follows :—

X ....................................... 0-0 0-1 0-2 0*3 0-4 0-5 0-6 0-7 0-8 0-9 1-0
Error X 1 0 ° ............... 0 0 30 21 50 34 64 39 72 40 78

3 b  2
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358 LEWIS F. RICHARDSON AND J. ARTHUR GAUNT ON

The error is seen to oscillate, and is greater th an  th a t in § 1 a t alternate points, th e  

result a t £ =  1 is y = 0 -3 6 8 6 6  ; the sim ilar result, using steps of double the length, is 

y =  0-36868. The m ethod of approxim ation explained in § 1 gives a corrected result 

y =  0-36865. The final error is 10~5 X 77, as compared with zero in § 1.

(ii) p i  - y p  =  0 ; a t  * =  0, y =  -  1-09262, y 1 = 2 -5 9 6 9 .
(LX (LX

In  th is case n — 2 ; F  =  yy \

f 0 (h) is determined by (7.0) ; f x by (7.1).

We require various derivatives of yat x =  0 (some of them  onl

y" =  yyf = -  2-838

y'" =  yy" y'2 = 9 .845

yiv =  3 y'y" + yym 

i f  =  3 y"24- 4y'y'" +  yyiv =  162

Also
F v = y '  2-5969

F / = y  = — 1-09262

Suppose we take h =  0 • 05, and substitute in

A W = y’ + H  + 1 2r  -  £  [2/v +  2 

which are (7.0) and (7.1).

We obtain a t x =  0 • 05, / 0 =  — 0 - 96629, f x 2 

We enter these in our table under y  and dyldx, and proceed happily ever after. In  

the last column of the table is entered the difference between the approxim ate solution, 

and the analytical solution, viz., y =  2 tan  (x — J).

X. y- dy/dx. d2y/dx2. Error X 105.

0-00 -1-09262 2-5969 -2 -8 3 8 0
0-05 -0-96629 2-4672 -2 -3 8 4 - 1 7
0-10 —0-84:590 2-3585 -1 -9 9 5 - 3 2
0*15 —0-73044 2-2677 -1 -6 5 6 - 3 8
0-20 -0 -6 1 9 1 3 2-1929 -1 -3 5 8 - 4 9
0-25 -0-51115 2-1319 - 4 7
0-30 -0 -4 0 5 9 4 - 5 4
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THE D EFERRED APPROACH TO THE LIMIT. 35 9

The value of y  a t  £ =  0*3, using steps of double the leng th, is — 0-40729. 

corrected result is — 0-40549, w ith an  error of — 10~5 X 9.

1 0 . S i m u l t a n e o u s  D i f f e r e n t i a l  E q u a t i o n s .

Let t be the independent variable ; x, y, z, ... dependent variables. 

Eesolve the equations w ith respect to the highest derivatives

F  ( t;x ,x ',  ... , x{m l) ; «/, y ,  ... , ; ...)

& {t\x , x \  ... , x{m~l) ; , y \  . . . ,  y{n~x); ...) y  . . .  . (10 .0 )

etc.

where dashes and upper suffixes denote differentiation w ith respect to 

Use the in terpenetrating lattices. L e t / 0, f Xi ... , be the approxim ations to x, x', ... ;

9o, 9i> • • • » to y> y ’> •••; and so on.

The difference-equations are (compare (2 .2))

f s-i (P +  1 h) — f s_,(p — 1 h )=  2hf8 =  1, 2, ...

9s-i{p +  l h ) ~ 9 s- i ( p — 1 h) = 2hg,(ph) (s 1, 2 , ... 

etc.

and the range-equations (compare (2 .3))

fin F  ( t, J q, fi, . . - 

9n =  &{t\— fm -x \9 0 >9 l> ••• 0,-1 J •••) r  *

y .

etc.

We assume (compare (3 .0))

7) 2 —

=  ••• (s =  0, 1, ... m)

7,2  7?4 ... .

=  +  + ••• (* =  °» L ••• w)

etc.

The analysis of § 4 holds good.

< _ i  =  a?, ;

y's-i =  ys; y \ . x =  -  W *-

etc.

(s =  1, 2, ... m)"j 

(s =  1, 2, ... %) ^

r

( 1 0 . 1 )

( 10 .2 )

(10.3)

(10.4)
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3 6 0 LEWIS F. RICHARDSON AND J. ARTHUR GAUNT ON

By the m ethod of § 5
m— 1 w—1

=  F ; xm =  2 F*,®, +  2  F ^  +  •••
s — 0 

m—1
8  =  0 

ft —1
( 10 . 6 )

yn — G ; — 2  G + s +  2  G„fy, +  • • •
s = 0 s = 0

etc.

(If odd powers of h had been inserted in (10.3) the ir coefficients would have disappeared 

exactly as in § 6.)

The analysis leading up to (7.0) holds good.

As+i)f s(h) — xis) +  hx(s+l) +  ^  a;(-s+2) — — x'-(s =  0, 1, ... m — 2)

7,3 70
g,(h) =  +  % <I+1) +  2- «/‘+a) -  |  (» =  0, 1, ... re - 2 )

8

etc.

( 10 . 6 )

Finally, corresponding to (7.1)

f nx_, (h) =  x(m~1} +  ^  + ii+,) -  ]l

9n- 1 W +  % W + ^ (M + 1> -

24

2

etc.

w—1 ft —1
x(m+i) 4- 2 2 F a.,£r(s+3) +  2 2  F 2/$ (s+3) + . . .

s = 0 s = 0

m—1 ft— 1
y{n+ 3)+  2 2  G ,+ s+3) +  2 2  G2/y-s+3) +  ...

s = 0 s = 0

V-

Example*

x' =  — x V  x* +  y2 — l ; y' =  — +

At t =  0, suppose x — 0, =  1

Then by successive differentiation of (10.8) we have a t =  0

xf —  —  1

(10.7)

( 1 0 . 8 )

x" =  1

xf" =  — 3 

z iv =  15

F ,  = -  1

G, . =  0

i f  =  2

ym =  -  7 

yiv =  29

=  

Gy =

0

2

Substituting in (10.7), we get formulae for the first step

/ ( A ) = 0 - A  +  | - £ [ 1 5  +  2 ( - l ) ( - 3 )  +  0] j

y
7>2

y(A) =  l - A  +  | . 2 - | j [ 2 9  +  0 +  2 ( - 2 ) ( - 7 ) ] j

* Taken from L. F. R i c h a r d s o n , “ Theory of the Measurement of the W ind by Shooting Spheres 

Upward,” £ Phil. Trans.,’ A, vol. 223, p. 376, equations (6) and (7).
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THE D EFERRED APPROACH TO THE LIMIT. 361

If, for instance, we choose a step of leng th 0 • 1, we have

/ ( 0 - 1 )  -  — 0-0951 )

0 ( 0 - 1 ) =  0-9098J

1 1 . S u m m a r y .

We have been considering the arithm etical solution, by means of centred differences, 

of a certain class of differential equation . (Marching problems.)*

Assum ing th a t the approxim ate solution can be expanded in powers of the leng th of 

the step (with a rem ainder after the fourth power), and th a t  the coefficients in  the 

expansion are conveniently differentiable (§ 8), we have shown th a t the odd powers m ust 

be absent ((6 .2) and (6.3) ). This is the basis of a useful m ethod of dim inishing the 

error (§1), named in P a rt I  the /^-extrapolation .

I t  is necessary, however, for the existence of such an expansion th a t the first step shall 

be taken in accordance with certain formulae ((7 .0), (7.1), (10.6), (10 .7)). S trictly  speak

ing, these formulae may be varied by adding to the right-hand side any term  th a t -> 0 

more rapidly than  A4 (§ 7).

We may say th a t they are necessary “ to the order of Ji\” If they  are violated, 

either the expansion in powers of h is impossible, or the coefficients are no t differentiable 

as in § 8 and their behaviour m ay be inconvenient. In  practice, i t  is often found th a t if 

the solution is started  wrongly, the error oscillates with increasing violence (see § 9, 

example ( i ) ).

Incidentally, we have found equations determ ining the coefficients ys in the expansion. 

(§ 6, (10.4), (10.5)). I t  will often be possible to form from them  an estim ate of the size 

of these coefficients, and hence of the error of the solution.

There would be no essential difficulty in extending the expansion beyond the fourth 

power of Ji; bu t such a refinement would have little  practical value.

The rules for taking the first step in the two types of solution are :—

Simple Differential Equation : Interpenetrating Lattices—(7.0) and (7.1).

Simultaneous Differential E q u a tio n s: Interpenetrating Lattices—(10.6) and

(10.7).

My thanks are due to Dr. R i c h a r d s o n  for inspiration, encouragement and advice.

* See P art I, § 1.
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