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§ 1. INTRODUCTION.

Various problems concerning infinitely many, infinitely small, parts, had been solved
before the infinitesimal calculus was invented ; for example, ARCHIMEDES on the circum-
ference of the circle.* The essence of the invention of the calculus appears to be that
the passage to the limit was thereby taken at the earliest possible stage, where diverse
problems had operations like d/dz in common. Although the infinitesimal calculus has
been a splendid success, yet there remain problems in which it is cambrous or unworkable.
When such difficulties are encountered it may be well to return to the manner in which
they did things before the calculus was invented, postponing the passage to the limit
until after the problem had been solved for a moderate number of moderately small
differences.

For obtaining the solution of the difference-problem a variety of arithmetical pro-
cesses are available. This memoir deals with central differences arranged in the simplest
possible way, namely, that explained by the writer in the papers cited in the footnote.}
Advancing differences are ignored, and so are the varieties of central-difference-process

_in which accuracy is gained by complicating the arithmetic at an early stage.

Confining attention to problems involving a single independent variable z, let A be the
“ step,” that is to say, the difference of & which is used in the arithmetic, and let ¢(z, %)
be the solution of the problem in differences. Let f(z) be the solution of the analogous
problem in the infinitesimal calculus. It is f(#) which we want to know, and ¢ (z, A)
which is known for several values of 4. A theory, published in 1910,} but too brief and
vague, has suggested that, if the differences are * centred ” then

¢ (@, h) = f(2) + B*f, (x) + B'f, (@) + B°fs (2) ... to infinity . . . . . (1)

odd powers of A being absent. The functions fy(z), fi(2), fi(z) are usually unknown.
Numerous arithmetical examples have confirmed the absence of odd powers, and have
shown that it is often easy to perform the arithmetic with several values of % so small
that f(x) -+ B*f, () is a good approximation to the sum to infinity of the series in (1).

* Many other arcs, areas and volumes are mentioned in ‘ Ency. Brit.,” IX Edn., vol. 13, pp. 5 to 8.

T For Diflerential equations—L. F. Ricmarpson, °Phil. Trans.,” A, vol. 210, pp. 307, 314, §1, §2.
See especially a summary in the ‘ Mathematical (azette’ for July, 1925. For an Integral Equation, see
‘ Phil. Trans.,” A, vol. 223, p. 361.

1 * Phil. Trans.,” A., vol, 210, pp. 310, 311, § 1.2,
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If generally true, this would be very useful, for it would mean that if we have found two
solutions for unequal steps %, ks, then by eliminating f,(x) we would obtain the desired
f(z) in the form

LI TCL R

This process represented by the formula (2) will be named the * A*-extrapolation ”
DEFN.
If the difference problem has been solved for three unequal values of % it is possible
to write three equations of the type (1) for &, hy, hs, retaining the term A'fy(z). Then
f(z) is found by eliminating both f, (#) and fi(z). This process will be named the
“ h*-extrapolation.”
The purpose of this investigation is to examine the Z2-extrapolation anew, looking for
exceptions and qualifications. Two questions pervade Part I:—

(1) Are the odd powers of A& always absent ?
(2) How small must 4 be in order that the A*-extrapolation may make an improve-
ment ?

The analysis has been found to be complicated, in contrast with the simplicity of the
arithmetical practice. The method employed.is to obtain a formula showing é(z, &)
as a quite explicit function of 2. An analogous formula is obtained for f(z), under the
restriction that f(z) must have z-derivatives of all orders at every point of the range.
The question whether L};)_ZEL&'G ¢ (z, h) is equal or not to f(z)is decided, usually in the

affirmative, by comparing the two analogous formulée, so that there is no need to bring
in the method of LipscHirz.*

Problems involving differential equations will be divided into the
“jury ” varieties. These wordsT have been used in the following sense: A “ marching ”
problem is one in which the arithmetical solution can be stepped out from one end of the
range of #. A “ jury ” problem is one in which the solution must be determined by refer-
ence to both ends of the range considered together just as the verdict has to satisfy all
the jurymen together. '

The third class of problem that will be treated is VoLTerRA’S integral equation of the
first kind. Various common interests such as the properties of p. and 8 are treated first.

Tlte deferred approach to the limit has also been considered by N. BocoLousorr and
N. KrYLOFF in a recent paper,f in Russian.

¢

“ marching ” and

* (GoursAT, * Cours d’Analyse * (1925), tome 2, art. 391.

t See “ Weather Prediction by Numerical Process ” (Camb. Press), p. 3 ; also * Math. Gazette,” July,
1925. '

1 N. Bocorousorr and N. Kryrorr, “ On the Ravieieu’s principle in the theory of the differential
equations of the mathematical physic and upon the Evner’s method in the calculus of variations,” * Acad.
des Seci. de I'Ukraine, Classe, Phys. Math.,” tome 3, fasc. 3 (1926).

282
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§ 2. REPLACEMENT OF DERIVATIVES BY DIFFERENCE-RATIOS.

If the problem is already expressed in the language of the calculus so as to determine a
function f (), the first process is to replace every derivative of f(z) by a difference-ratio
of which it is the limit. The function whose differences are taken will be denoted by
¢ (z, h). The replacement could be done in a variety of ways, but the only one used in
Part I will be that in which the derivative f*(«) is replaced by the central difference
ratio

{¢(+3B)—S(z—3R)}A . . . . . . . . (1

The notation may be shortened by the use of the operators 3 and p. defined, in accord-

ance with SHEPPARD,* to be such that if ¢ (z) is any function of z, then

3¢ () =¢d(x+3h)—P(x—3R), . . . . . . . (2
wop(x) =3{p(z+3h)+d(xz—3)} . . . . . . (3)

A most important property of 8 and p proved by SHEPPARD is that they follow the
ordinary laws of algebra, so that for instance

ud¢ (z) = dpéd (#) and p{¢(2) + ¥ (@)} = pé (2) + v (2).

We must always think of ¢ (#) as a numerical table with step Ainz. If ¢ (a) is a number
in this table, then we cannot compute 8¢ (@) in any simple way, because 8¢ () involves
¢ (@ -+ 3h) and ¢ (@ — 3A) neither of which are tabulated.

Two possible ways of arranging the arithmetic need to be distinguished. Borrowing
words from crystallography they may be named the methods of the single lattice and of
the interpenetrating lattices.

Interpenetrating lattices is the name now proposed for the method, formerly called
“ stepover,” in which there are two functions 0 (z), ¢ () tabulated at alternate points

thus ;—
TaBLe I.

¢ (0)

0 (3h) 5¢b (4)

é (k) 56 () 3t (k)

0 (2R) 3¢ (Lh) %0 (3h) &% (2h)
b (2h) 50 (2h) 8% (2h)

0 (5h) 5ch (3h)

¢ (3h)

At any point, say, z = 3/ there are both odd and even differences tabulated, so that
when we have an equation connecting odd with even differences there is no need to use
w. The * lattice ” consisting of ¢ and its differences is connected with the 0-lattice

* W. F. Surrrarp, “ Central Difference Formula,” * Lond. Math. Soc. Proc.,” vol. 31, p. 461 (1899), who
refers to P. A. Hansen, * Abhandlungen der kon. siichs. Ges.” (Leipzig), vol. xi, pp. 505-583 (1865) (vol. vii of
“ Abh. der. math.-phys. Classe’).
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only by way of the range- and boundary-equations. The writer* has found interpene-
trating lattices to be convenient in the arithmetic, but they need extra initial data,
hitherto provided by various arbitrary devices, giving rise to oscillatory errors.
Recently, however, Mr. J. A. Gaunt has discovered strict rules for taking the first
step, which he explains in Part II.

Single lattice, the only type discussed in Part I, is that in which ¢(z) is tabulated at
intervals 4 of z, exactly as in Table I omitting 6 and its differences.

The differences 3*¢ are centred at the values of # where ¢ is tabulated when » is even,
and midway between those values of z when # is odd. If we have to form an equation
involving both odd and even differences, and here ¢ itself would be reckoned as a difference
of zeroth even order, then it is simplest if we connect together either

¢: 5"8‘#: SZd,, “"83‘#---’
wé, 34, i, ...,

but not a mixture. This convention that p must precede either every odd power of 3
or else every even power, but not both, rules throughout Paxt L. . . . . . . . (4)

Differences arranged in either of these two sequences will be called ** alternating
differences,” and the set ¢, u5¢, 8¢, n.d3¢ will be said to be ** centered with #,” the other
set pg, 3¢, nd*¢ being “ centered with p¢.”

The highest derivative in the given range-equationt will be replaced by a difference which
s not modified by p..—To see why this is desirable let us consider here marching and jury
problems. Integral equations will be discussed in § 11.

Marching Problems.—Let the highest derivative in the given range-equation be f® (z).
To make a marching problem we must have given at some value z = « all lower deriva-
tives as well as f(«). That is to say f"V(a),...[f" (@), f (@), f(a). Suppose that
we were to put ws"é(x, h)/R" in place of f*(x) and 5" '¢ (z, k)/h" " in place of f"7 (x),
so that p occurred with the highest difference in the range-equation. Now let us make
a table to show what tabular values of ¢ are involved in p5"4.

or else

TasLe II.
z. & 54. ud. 5. udt.

(73 e

a - 3h o f—e

at b f = g —o g—2 +e |
a -+ 3h — 9—r — ) —9—Ff+e)
a - 2h g — ) —f) JI—29+f |
a -+ &h ——— J—4

R Sh 7

* “ Weather Prediction by Numerical Process ” (Camb. Press), ch. 7/2.
T “Range-equation’ means either the differential equation to be satisfied at every point of the range
or else its analogue in differences.



Downloaded from https://royalsocietypublishing.org/ on 09 August 2022

304 LEWIS F. RICHARDSON AND J. ARTHUR GAUNT ON

From the mode of formation of these differences it is seen that p.3"¢$ spreads itself over
n-1-2 tabular values of ¢, among which the extreme outlying values of ¢ are always
present. The highest difference given on the boundary is on this scheme 3"7'¢(a)
which does not involve either of the aforesaid pair of extreme outlying values. There-
fore when the boundary equations are substituted in the range equation we should have
only one equation which is insufficient to determine these two outliers ; and no further
progress could be made. For example if the range equation be p3¢ (2, &) = 1 and the
boundary equation be ¢ (0, #) = 0 we cannot march out the solution.

On the contrary, if the highest derivative in the range equation be 8"¢ it spreads itself
over only n+-1 tabular values of ¢ and we have sufficient equations to find all of them.
For example 3¢ (z, k) = 1 and p¢ (0, A) = 0 allow us to march.

Thus, if the highest derivative in the given range equation is of even order then the centering
of that equation must be with ¢, while if the highest derivative.is odd the centering of the
range equation must be with ¢ . . . . . . . S o L A )

Jury Problems.—In these the boundary condltlons are not all at one point # = a ; some
are at 2 =b. There is no objection to the same rule being adopted for jury problems
And it is easy to show by examples that if p were allowed to accompany the highest
power 3" in the range equation, difficulties would arise.

Thus, for n = 3 suppose that the boundary conditions were

fl@)=0, fla)=0, f(b)=0.
The corresponding statement in the difference problem is

bt =0. $la—)=0, @b =0.

TasLe III.
z—a= —3h| O | 43h| A | 3h | 20 | 3k | 3K | | 4 |
Bound- 3 : Bound-
ary ary
¢ T 0 0 i ¢] ¢I ¢3 0
0% 3 33
o wo®

These zero values of ¢ are shown in position in Table I1I together with unknown “ body-
values ™ ¢, ¢y, ¢5. The number of these is unimportant provided we know it. The
marks 8% and 8% are placed in all the positions at which the corresponding range- (alias
“body -) equation can be centered. If 3* is used there are three body-equations to
determine ¢, ¢,, by, that is just enough. If 133 is used, one necessary equation is
lacking.

For these reasons the rule (5) will be adopted throughout Part I.
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§ 3. UNCRITICAL SUCCESSES.
§ 3.0. Introduction.

The A*-extrapolation was discovered by a hint from theory followed by arithmetical
experiments, which gave pleasing results.

The better theory of the following sections is complicated, and tends thereby to suggest
that the practice may also be complicated ; whereas it is really simple. Hence the reader,
if not already familiar with arithmetical examples, is invited to attend to them before
proceeding further.

§3.1. An ancient problem retouched. To find the circumference of a circle of unit

radius.

Imagine that we are back in the time of ARcHIMEDES. As a first, and obviously very
crude, approximation, take the perimeter of an inscribed square = 44/2 = 5-6568. As a
second approximation, take the perimeter of an inseribed hexagon = 6 exactly. The
errors of these two estimates should be to one another as 1/4®:1/62, that is as 9: 4, if
the error is proportional to the square of the co-ordinate difference. Thus the extra-

polated value is
6 - % (6 — 5-6568) = 6-2746.

The error in the extrapolated value is thus only 1/33 of the error in the better of the two
values from which it was derived ; so that extrapolation seems a useful process. To get
as good a result from a single inscribed regular polygon it would need to have 35 sides,
and in the absence of any tables of sines, the calculation would take longer.

§ 3.2. Napier’s Exponential Base.

Next suppose that we were living at a time before logarithms or NAPIER’s base had been
calculated, and that it was required to find

v ool I NS .
e e

If we put — n in place of » the function (gn =1

n
> is unchanged, and so, if an expansion

like the following exists, valid for both signs of n

<2’”I+ 1>" — Lil]]it (2’”, + 1>" :I\u + "A—l + —l&_; + Sl ‘Ar iy
v n

2n — 1 n-s® 2n — 1 n"

then the odd coefficients A,, A, ... are necessarily zero. Also if the limit exists A, must
vanish. And by making » sufficiently large the term A, /n? will predominate.

So é, — Limit ¢, :ﬁ; T

n-»mxm
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On performing the multiplications it is found easily that the function runs as follows :---
M= 1 2 3 1 5

( g_::_ii) - 3-00000 277171 ‘ 274400 2-73261 272741

Now if the errors are proportional to »~2 the error of ¢, is to the error of ¢, as 25 is to
16. Therefore the extrapolated value is ¢; -+ 1% (¢, — ¢,). This works out to 2-71817.

Narier showed that the correct result is 271828, so that the error of our extra-
polation was — 0-00011, whereas the error of ¢, was - 0-00913, that is 82 times greater.
To get as accurate a result without extrapolation as we did with it we should have to
calculate ¢, that is ¢, a tedious process seeing that logarithms had not yet been
tabulated. So extrapolation is a great economiser of toil.

The following table is intended to show how #* { ¢, — Lt ¢, } approaches its limit which
we have called A,

n

! {fn — Lt du}

To find the limit A, we have 1/n log ¢ = log (1 + 1/2n) —log (1—1/2n). On expanding
the logarithms, rearranging, and taking antilogs it is found that

1 ‘ 2 b ‘ o0

3 4
‘ 0-2295 l 0-2283 0-2265

0-2817 0-2380 l 0+2315

¢y — e =e[12n® 4 terms in #»~* and higher even powers.

So A, =e¢/12 = 0-2265, which is entered in the table under .

§ 3.3. Correction to the Second Moment of Grouped Statistical Data.

We require the second moment

At

\ (et ="Ma, S8Y . « < Su aa et id)

but instead of f(z) being given, the data have been grouped so that we only know for

all integral values of »
sn+1)4

J,,,, f@).de=F(n+3Hh say ..........(@®

It is the custom to calculate
SO () =y’ BRY oo TSN N N ()

which is an approximation to the integral in (1) when X sums for all groups, and then to

adjust m,” for the grouping by applying “ SHEPPARD’S correction * which asserts that
Mmy=my —h®ZF (@) ............. (@

provided that f(x) and all its derivatives vanish as  goes off to both + » and — » . (5)

* SHEPPARD, ‘ Proc. Lond. Math. Soc.,” vol. 29, p. 353 (1898) ; K. Pearson, ‘Biometrika,” vol. 3, pp.
308 to 312; R. A. Fisueg, ‘ Phil. Trans.,” A, vol. 222, pp. 359 to 363 ; Wmrrtaker and Rosinson, ¢ Cal-
culus of Observations,” Blackie & Son, pp. 194 to 196.
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It is seen that this is a special case of our A*-extrapolation. SnepparD’s fact that the
coefficient is — {5 for curves of all shapes that satisfy (5) is indeed remarkable. If
mstead f(z) =1 when —a <z <« and f(z) = 0 elsewhere, then a theory, familiar in
connection with moments of inertia, shows that the coefficient is still {'; but with the
positive sign.

As a detailed illustration in marked contrast with the frequency curves to which
SHEPPARD'S correction is applicable, we may take the frequency y defined by y — a®
when — 1 =z =<1 and y = 0 elsewhere. Instead of high contact at the ends of the
range it has discontinuities.

If now the range between # = — 1 and = -1 be divided into % equal sub-ranges
each of %, so that h = 2/n, and the area under the curve in each range be treated as if
concentrated at the midpoint (nof at the centroid) of the sub-range of z, which is the
procedure contemplated by SHEPPARD, then it is found that the second-moment works
out as follows :—

n | 1 | 2 [ 3 ‘ 4 6 0
Second moment . \ 0 0-166606 0285322 0-333333 0-36968 0+ 40000
ERor® o e % s e 0+ 40000 0-23333 0-114678 0- 066667 0-03032 Z0T0
n® X (error) . . .| 0-4000 0:9333 1:0421 | 10667 1-091H

If there are 2m equal sub-ranges, the second moment derived from the concentrated
areas may be shown to be
1 s=m—1

— % {12s' 245 + 195 + Ts 41},
Glln.l &=\

It is seen from the numerical table that the raw moment has to be corrected by the

addition of about —14—1 h*. We have here an illustration of a general method of correcting

moments, applicable when SHEPPARD’S rule is not, namely, work the moment for two values
of b and extrapolate on the assumption that the error is proportional to h*. In practice it may
be difficult to make A small enough in comparison with the irregularities of the ohserved
frequency.

§ 3.4. Corrections to Fourier coefficients when the Data are Grouped.

When Fourier coefficients are calculated from hourly values, which represent 60-
minute means, the resulting amplitudes are too small, and correction-factors have to be
applied, which according to Darwin (* B.A. Report for 1883, p. 98) have the following
values :—

Period of wave in hours =T = 24 12 8 6
Factor=¢= . .. .. ... 1:00286 ‘ 101152 ' 102617 1-04720
VOL. CCXXVI.—A. 2 7
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Let us see whether the addition to unity is proportional to the square of step A, here of
one hour, when expressed in terms of the wave-period as unit of time.

(¢ —1)Te | I A (O T S

Thus this is another example in which an Z®-extrapolation would be valid.

§3.5. 4 Siath Order Linear Jury Problem.

The following problem was suggested to me by Dr. HaroLDp JerrrEYS,* F.R.S., who
met it while extending Ravreicu’s theory of the equilibrium of a viscous fluid when
the higher temperature is on the under side.

Given the *“ body equation *

d'v d'V

d*V o,
S8 ds NI A= el (1)

where A is independent of z and is unknown and has to be determined so as to make (1)
consistent with the boundary conditions

&, AV _

¥ =0, 7 ) E,I_O atbothz=-+1landz=—1. . . (2)

Representation of the boundary conditions by finite differences.—Let a b | ¢ d be values of
V at equally spaced values of z which increases towards the right. Take the boundary
midway in z between the points where V=10, V =e¢.

Then d*V [dz* = 0 is represented by d — 3¢+ 3b—a=0 . . . . (3)

Also d*V [dz® = 0 is represented by 4 (d — 2¢ + b) + 1 (¢ — 2b -+ a) =0,
that is

d—ec—b+a=0 (4)
Again V = 0 is represented by
S P e o S e et
From (4) and (5) we have
BFam=0 s oo st v v sartOs
From (3), (5), (6) we have
=30 . . i .8 e e m o KD

Thus, as might be immediately evident, there is only one degree of freedom among the
four boundary numbers which must run thus, b being arbitrary,

Bhy 1 B )1~ - Obemiatl ol SRE ot Failic)

These four numbers lie on a linear function of z.

* JEFFREYS has combined finite differences with a variable parameter, see ‘ Phil. Mag.,” Oct., 1926.
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Representation of the body-equation by finite differences.—Being of the 6th order the
corresponding difference equation involves 7 values of V. Let these be in sequence™

A S TR S R RS RSN U R ORIV S ()

equally spaced at intervals 7 of z.  Then centering the body-equation at the same point
as 9, it becomes
0="h"*(x—6p 4 15y — 203 | 15e — 6% 1) — 35~ — 4y + 65 —4ec | ¥)
+8h2(y—25+¢e)—8(1—2). . . . (10

The simplest problem in algebra, having one degree of freedom.—In the arrangement

3b B = Gl 8 Bl BB i bt ) (L1

let 3b, b, ete., represent values of V equally spaced at intervals 4 of z ; and let the vertical
lines indicate the positions of the two boundaries, which are located exactly midway
between pairs of values of V. Onreferring to (8) itis seen that the boundary conditions are
satisfied. There are also enough values of V to satisfy the body equation (10) at the
central point. That is to say, we equate each member of the set (11) to the corresponding
member of the set (9) and substitute these values into (10). When this is done it is found
that b cancels, that is to say the *“ amplitude * of the wave is arbitrary, and we are left
with a linear equation for A, which has for solution

pe=dalg, N e v o e e e (12

There are 3 steps of length 4 between the boundaries, so & = 2/3.

T'wo degrees of freedom.—We now increase by one the number of values of V between
the boundaries, so as to make A =2/4. Instead of (11) we consider the set

3b b | —b — 3b 3¢ ¢ | —¢ —8 . ... (13)
in which the numbers near both boundaries are of the form (8). It is now possible to
fit the set (9) on to the set (13) in two ways. We omit either the right hand or the left
hand member of (13) and in both cases equate the components that remain to the corre-

sponding components of (9) ; and then substitute in (10). This operation might be called
“ writing out the body-equation at the available centres.” In this way we obtain

0=(3376—30)b+2996¢c. . . .. ... .... (14
0= P00Bl E (3376 — 3000, o v o v w « s o s .« (15)
These equations are to be mutually consistent and so
0= (3375 — 32) 2996 |
2996 (3375 — 32)

* The operator & is not used in § 3.5, hence 3 is free to mean a value of V.

2T 2



Downloaded from https://royalsocietypublishing.org/ on 09 August 2022

310 LEWIS F. RICHARDSON AND J. ARTHUR GAUNT ON

This is a quadratic in A and has roots
A =196} lor 2Tgall L A 1 T)

If desired, we could then find b/c.

More degrees of freedom.—Keeping the boundary values always in the relation (8) we
may make n-|-2 steps between the boundaries ; then the body equation can be satisfied
at n tabular points. These n equations are homogeneous and linear in the values of V
and will be consistent only if the determinant of their coefficients vanishes. This is very
like LacraNGE's determinant in the theory of oscillations of a system having » degrees
of freedom. This determinant is an equation of the nth degree in 2. Very conveniently
it happens, owing to symmetry, that the cubic splits into a linear and a quadratic
equation, and the quartic splits into two quadratics.

(oLLECTION OF ROO0TS 0F DETERMINANTAL KQUATIONS.

| |
; Degrees :
of h ‘ (k) Aa(h) Aa(h) ha(h)
freedom. | \
1 2/3 H 141§
2 2/4 l 126} 2,123%
3 2/5 119-99 24574 10,963
1 2/6 ' 116-84 2,684-5 14,618 37,476

Laxtrapolation.

So far plain proofs have been indicated for all the statements in § 3.5. We now make
an assumption, namely that the smallest roots 2, (h) of all the determinantal equations
are approximations to an unknown 2, (0). In fig. 1 the smallest root is plotted against A2
and it is seen that the graph is nearly straight, thus suggesting that

A (B) = Ay (0) + Agk2
nearly. If we assume that more accurately
M(h) = 1(0) + Agh? - AR,
and substitute for the three smallest values of /4 in the above table we have

126§ = (0) + A, (2/4)2 + A, (2/4)"
119-99 = 2, (0) + A, (2/5)® -+ A, (2/5)"
116-84 = &, (0) + A, (2/6)® + A, (2/6)*

from which set of equations, on eliminating A, and A,, it is found that 2,(0) = 110-4,.
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Dr. JEFrrEYS by an entirely different process also found 2,(0) = 110.  So here again we
see that the extrapolation method is a convenient way of obtaining numerical results.

ey

A

140 4

130

T 120

10
0 (o) > 02 03 04 05
K —
Fig. 1.

This was an l'-extrapolation. It may be proved to be nearly equivalent to drawing a
circle through three given points on a diagram having 4% and 4 (z, &) as co-ordinates. See
the portion of a circle on fig. 1. The /*-extrapolation corresponds exactly to a straight
line on this diagram.

§ 4. FaiLures AND DIFFICULTIES.
§ 4.1. Discontinuities.

Let us see whether the person who is computing ¢ (z, /) by a numerical process would
receive in the course of the work any warning that the unknown function f(z) to which
he is approximating is likely to possess a discontinuity. For if any such danger-signal
should appear, it will often be possible to investigate f(z) analytically in a very short
range of # in which a discontinuity is suspected, even when analytic methods are not
convenient for finding f(z) over wide ranges of z. For purpose of illustration, however,
we must choose examples in which f(z) has been found exactly over a wide range.
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The position of discontinuities can often be foreseen, for instance, with regard to the

linear equation
d*u du

S PEE 1) . u=0,

Warrrager and Watson* prove that the solution « is analytic except where p(2) or
¢(z) is not. G. H. Harovyy classifies discontinuities into four chief varieties. If f(z)
tends to a limit as « - « from either side, these limits are denoted by f(a — 0) and f (@ +- 0).
For continuity it is necessary and sufficient that f(z) should be defined when z =« and
that f(e —0) = f(a) = f(a -+ 0).

Variety 1. f(e —0) =f(a + 0) but f(«) is either not defined or else differs from

fla—0) and f(a -+ 0). For example let f(z) = a* except when 2 =1. This variety

is not likely to arise in the solution of a problem in the calculus, and in the
arithmetical method all except discrete values are missing anyway, so no new difficulty
is likely to arise.

Variety 11. f(a — 0) is not equal to f(« - 0). This might arise in physical problems
where there is a discontinuity at an interface, but if so the problem is usually quite simply
arranged by adjusting two constants of integration, and need not detain us.

Varieties I11 and IV, the infinity and the oscillatory discontinuity, seem to present more
difficulty and so will each be illustrated by an example.

Variety 111.  Infinity.—7To illustrate an infinity and the convergence in its neigh-
bourhood, a graph is shown of the successive approximations to the function defined
jointly by dy/dz = 1]z and % =0 when z = 1. The solution, of course, is

y=f=[2

= log, ,

which goes off to — oo at & = 0. The corresponding problem in differences has been
solved by marching from & = 1 by n equal steps to # = 0. Thus A= 1/n. The above
integral is replaced by the sum of the reciprocals of @ at the centres of its steps. Let
suffixes to ¢ denote the number of steps. It is found thus that where s is an integer

between 0 and #
n "s" 2—2{ l e 1 — - 1 }
¢ <n> 28 + 1 * 23—{—2~i }_271,——1

ragprailo,
2n—1J°

and

ha(0)=—2{1+1+1.

-

The series for ¢, (0) diverges to — o as n > o thus showing the discontinuity. For
various values of z the results are set out in fig. 2.

* ¢ Modern Analysis,” 3rd edn., § 10.21.
T * Pure Mathematics,” Camb. Press, p. 178 (1925).
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The numbers next the points are the values of n. The function log, z is also plotted.
We see from the graph that whereas ¢, (z) has always an infinitely great error at the
point z = 0, yet if by equal finite steps we approach as wear to the infinity as possible, that s
to say only one step wway from it, the error of ¢, (x) is quite small. This, if true in general,

z —>
0() | 2 3 4 ‘5 ‘6 7 ‘8 -9, 10
T T ) T a T A ot T
4 5
3
3
2
5 4
P 08 3
-2¢
R
&
:
N
=3
—4 = - S
Fig. 2

or even usually, will be very important ; for it will mean that all but the last step can be
done by arithmetic. In the above example the error of ¢, (x) when expressed as a
fraction of f(x) actually becomes less as we approach the infinity of f(z), thus : —

at @ = 1/n where n = 2 3 | 1 5
"’—@—?jﬁ’l 0-038 0-028 0-025 0-022
(=) :

Suppose that the computer had not noticed that there was an infinity, but had calcu-
lated 4, (0) for n=1, 2, ... 8 and proceeded to make A2-extrapolations. Let ¢, () denote
the extrapolated value obtained from ¢, (z) and ¢, (z). The table shows what he would
find for # = 0 and z = 1.

r 8 ¢ (3) ¢ (0)
2 4 —0-69206 —3-581
4 6 —0-69299 —4-080

6 8 —0+69306 —4-413
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The marked contrast between the rapid convergence of ¢, () and the behaviour of
¢, (0) should make the computer suspicious about the latter.
Variety 1V.—Oscillatory discontinuity such as that of

f(m):sin<2—">.............. (1)

xr

as x — 0.
In order to make this function arise as the solution of a problem in the calculus we

note that
_f’(a:):—Q—ncos <2?"> also f(d=1 .. % . .- (2:(3)

Let (2) and (3) be the equations which it is required to solve by differences. Divide
the range between # = 0 and = = 4 into n equal steps each of %, so that

0V =t DR W, o i w = (4)

Let a difference-equation to replace (2) be formed at the centre of each step. These
centres are at @ = (s — }) h where s =1, 2, 3, ... n. In accordance with the rule laid

down in § 2 the replacement results in

$a {(S — ]) k} = ¢ (Sh) iy (S En%)z 7 cos {(S ETC%) h} xR Cha (5)

The process defined by equation (5) is equivalent to drawing a polygon on an (z, f)
diagram starting from the point z = 4, f(#) = 1, such that its sides have equal projections
on the z-axis, and are parallel to the tangent to the f(z) curve at the value which 2 has
at the midpoint of this projection. It is evident from a graph that the ¢(z) polygon
will have some resemblance to the f(z) curve if there is at least one step A per quarter
wave-length ; but that when steps are twice as long as this critical value, all resemblance
has ceased. °

The difference-problem yields a definite value of ¢ (0) in contrast with f(0) which
has any value between —1 and 1. The solution of the difference-problem is thus
misleading at the discontinuity ; but the warning given by the presence of 2 in equation
(2) is probably sufficient to prevent anyone being misled.

Incidentally it appears that k*-extrapolation is valid where there is at least one step
per quarter wave-length. This is shown by the values at & = 2 which are

¢ (2) = 0-3019, &,(2) =0-0726, ¢s(2)=0-0160, f(2)=0.

If we extrapolate from ¢, and ¢, we obtain 0-0039 ; or if we extrapolate from ¢, and ¢,
we obtain 0:0028 ; both of which are considerable improvements on the numbers from
which they are derived.
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On the contrary, to extrapolate at the discontinuity would lead us further away from
the truth, as the following numbers show

by (0) = — 5-28, ¢, (0) = 12-868, ¢, (0) = 23809, ¢, (0) = 47-186.

A peculiar case.—If dy/dz = q (x) . y. Then dy/dz must vanish where y does, unless

q () is infinite. 1f one of our steps ends at such a point there are likely to be difficulties.
But by rearranging things so that the special point lies in the middle instead of at the end
of a step these difficulties disappear. For example when the equation is

d 2n 2m

a-:—?; = —?00t<—5> /B
there is an infinity of cot (2r /) at x = 2/m where m is an integer. It is impossible to
avoid all these.

§4.2. Frills.

What is difficult by analysis is sometimes easy by arithmetic and vice versa. For this
reason ideas such as continuity and differentiability, which are so important in analysis,
may sometimes be merely flippant if applied to the arithmetical process. For example,
we have to deal with the function defined to be sin 2 cut off after the seventh decimal
place. This function has about twenty million discontinuities between # = 0 and z ==,
and its derivative is alternately zero and non-existent. Yet the computer finds it smooth
and pleasant to deal with.

Conversely the function sin z - sin (100 z) - sin (10000 z) is everywhere continuous
and differentiable to any order. The analyst finds it pleasant, but to the computer it is
an intractable horror. A step & which is large enough to allow satisfactory progress in
exploring the variation of sin x is far too large to reveal the detail of sin (10000 z). Let
us call these rapid oscillations, superposed on much slower variations, by the name
“ frills.”

To discover types of differential equation of which the computer should beware we can
take a primitive with a frill, say

PP ARNME L s w Lo s e o (1)

where A and m are constants and m > 20 say, and then proceed to form differential
equations by eliminating A or m or both between # and its derivatives y', ", ... with
respect to x.  Such differential equations include the following

m (cos mx) (y —sin @) = (sinmax) (y' —cosz) . . . . . . . .(2)

y'+miy=(@m* —1)sinze . ... .. .. .. (38)

(y — sin x)? (7 " +4-sin2) — (y' — cos @)? (y —sin ) = A%y +sinz) . . (4)
44 m r ; 2

VA o /XAy =y —enn

VOL. CCXXVI.—A. 2 U
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§ 5. STANDARDS OF NEGLECT.
§ 5.1. Introduction.

An error of form which is negligible in a haystack would be disastrousin a lens. Thus
negligibility involves both mathematics and purpose. In this paper we discuss the
mathematics, leaving the purposes to be discussed when they are known.

Suppose for the sake of argument that ¢ (z, &), the solution of the difference-problem,

is related to 4 by the formula
b (@, h) = f(@) +fo (@) . B+ R (2, B)

where R (z, ) when expanded in positive powers of A contains only powers higher than
2. By hypothesis an %2-extrapolation is to be made by taking two values A, h,, and
eliminating f,() so as to obtain

f (-‘7') - h,”, ¢ (‘l:y hl) —R (;17, hl}ZJ}; : Z::l{ ('T’ h’) — R ((B, k")} = o a0 (])

Thus it does not matter how large f,(x) may be. But R (z, ) must in some sense be made
small ; and that for both 4, and A,.

§ 5.2. Choice of Standard.

We have now to find a standard suitable for the measurement of R (x, #). Possible
standards are :—

(i) ¢ (x, h). 1f R were negligible in comparison with ¢ all would be well. In the
arithmetic ¢ is obtained simply. But in the analytical discussion ¢ often has to be
expressed in complicated algebra and f () is simpler.

(ii) f(z). If R were negligible in comparison with f(x) all would be well. But it is
impossible to satisfy this condition at 2 = ¢ if f(¢) = 0.

(ii1) The difference between the greatest and least values of f () in the range of # under
investigation. This has the advantage of never vanishing except in the unimpor-
tant case df/dz = 0. This standard is likely to suit many purposes. But, like
f(x) it is not known until the problem is fully solved, and is decidedly awkward
in the analysis.

(iv) All the subsequent investigations proceed by the expansion of f(x) in TAYLOR’S
series and the comparison of that series with another in which ¢ (z, ) is expanded
in the sequence of the central differences of ¢ («, &), which is not the sequence of
the powers of #. A simple and convenient standard, from the mathematical
aspect, is the difference between the greatest and least values of any one term in
TavLor’s series, in the range of z under investigation. This standard will be
adopted.
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(v) If a different type of expansion were in use, a correspondingly different standard
of error would be suitable.

§ 5.3. Application.

It will be proved in §§ 7, 9, 10, that these terms in differences of ¢ in the expansion
of ¢ (x, k) commonly involve 4 in forms such as a factor

(1 4 o,A%) (1 + . B?) (1 + 2h?) ... (1 + 2,4%)

(1 — 62 (1 — B4 ... (1 — g1 =J Y « » - o« (&)

When 4~ 0 then J ~1 and ¢ (z, k) ~ f(«) so that the coefficient of Jis the standard
which has just been adopted.
Now if J be expanded in ascending powers of A2

T =T (B b By vk B by bty e FE)BE =% . . . ... (@)

where £ involves 4, 2%, 1® ... but not &2 simply. The question is how small 4 must be
in order to make £ negligible compared with unity. The term in 42 is of no interest. It
may sometimes be not too laborious to calculate J exactly and so to settle the question.
Yet an easier rough rule is desirable, provided it keeps on the safe side, making A smaller
than is strictly necessary.

Since
(1 — Bt =1+ B2+ 820 ... + B,"A* ... to inf.,
therefore

Ji= (L= (T—=a¥) . (1—1,7&2){1+ 3 ({3,}42)"}{1 ~]-TT,(321;,2)"}~ .{1—:— ' (,e,hz)"}.

~ 48

The coefficient of %** in this continued produet consists of the sum of all possible products
of oy, oy ... %y By, Ba... B, taken n at a time with the proviso that each = may occur
once only in each product, but each § may occur any number of times. The varieties of
products would be more numerous if we removed the restriction that any « occurs only
once. Let (i be the greatest of the absolute values of «, ay, ... o, 1y o on B o . (3)

We work the first two terms of the expansion strictly, subtract them from J, and make
changes which, if anything, increase all the other terms.

Then

n-—*n

VEI =
_Z
1 S

7

I b4

T L e A [

9

a positive quantity where _, H, is, as usual, the number of n-combinations of (r |- s)
letters when any letter may be repeated any number of times up to n.
Now
r _(rt+s) (r+s+1)  (r+s+2) el gy — 1)
=) et ) !+_3+_> X . .. xd L :
2 U2

-~
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And the fractions in the second member are arranged in order of magnitude, the first

being the greatest.
So that . H, < (r 4 s)".

And
8] < = {GR(r+s)}" a geometric series.
n=2
Hence ( :
g G*h* (r + s)*
' : e T © g
IR = 7 (8)
Thus, when h appears only as a factor of the form J multiplying any difference-ratio of ¢,

an h2-extrapolation will be valid for the corresponding derivative if h* G (r - s) is small
compared with unity, G being defined by (3) and (r - s) being the total number of factors in
numerator and denomanator together . . . . . . . . . . . . . ... . (6)

§ 6. CENTRAL DIFFERENCE OPERATORS.

Before we can proceed with various necessary operations, we must be familiar with the
rules for  differencing ” as with those for differentiating. For instance, do the central
differences of a product behave like the derivatives in LriBN1Tz theorem ?

The differencer 3 and SnrEppArRD’S averager p have already been defined in § 2
equations (2), (3).

It will also be convenient to define the symbol | to mean that preceding operators do
not operate beyond this *“ wall,” as it will be called. Apart from preventing operators
going too far, a task which it shares with the |- sign, | will be defined to be a mere
multiplication sign.

SHEPPARD has shown that
=T =08 ., L h e e e )

As in the Infinitesimal Caleulus certain derivatives are obtained from first principles
while others follow from them by rules of operation such as LuisNirz’ theorem ; so it
is here with p and 3.

To find the first difference of @ product. From the definition of §

3{0(z) .2 (@)} =0(x+3h) .z (x4 3h) — 0 (x— h) . 1 (z — 3h)
— B X b — o p 4 a,

where 8, b, o, @ are equal respectively to the expressions above. Now by algebra

b—}—(t,(

2

g —a) +E%)Ul(b~co)iz Bb — aa,

But the first member is

pr, (2) | 80 () + 10 (2) | 3%, ().

30 )=l 180408« « . 5 5 o5 o (D)

Hence
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(C‘ontrast the analogous formula in which D = d/dz

D(6.y) =xD6 - 0Dy,
To find the mean of a product
0 {0(2) . 7 (o)} = b{8b + ua},

where @, b, «, @ have the same meanings as above.

Now by algebra
(b+“‘2(ﬂ+°‘)+(@_°‘)4(b—a)E_%_(ﬂb_i_aa).
Hence
p{0.x}=p0 ux+2808x . . . ... .. ... (3)

Higher means or differences of a product then follow by the algebraic properties of p and
8 from (1), (2), (3). Thus it may be proved that

wd{0.x} =(c+33%) | ud04-(6+3320) | pwdy . .. ... (4

In the second member of (4) occur differences 3%z, 320 of an order one beyond that of
the highest derivatives that we should find if we were taking d/dz instead of u8 of the
product. This extra order of difference appears, because p brings in 3, as shown by (3).

By a second application of (2) and (1) it follows that

it
~—

{0 .xr=10.8y+ 2p30 | udy 4 .30 433208 . ... (

the term 3520 | 82, makes (5) unlike the second derivative of a product.
Again
390 .7} = 30 | (uy - wd%) -+ 3ud20| By, - 330 wdty, - (u0 | p320)| 3% (6)

In the second member, 3% is the highest difference and the differences are centered with
wh or py.
Difference of a product of three factors.—By repeated application of (2) and (3)

3(0.0.7)=300p(xe) + w015(x.¢)
=30 uxlue+ w018z ue+ w0 luxlde + 33015213 . . . (7)

in which the factors of the separate terms are acted on once only by either p or else 3.
Many factors.

8(0.x.p.0...7)=p0)3(x.p.0...7) + 80 p(x.p-0...%) . . . (8)

p(@.x.p.0... ) =pblu(-p.0...7) +1013 0 .p.0...7) . . (9)
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Thus we have split off the first factor 0 leaving 3 and p of the product of the rest.
Similarly 7, p, o . .. can be split off in turn and each will be acted on once only by either
3 or by p but not by both § and p.. This fact will be of importance in § 9.3.

The advancing and retarding operators.—From the definitions of p and 3

(e +3)r@=x+3) .. ... ..c..... (10)

thus operating with p - 13 is equivalent to increasing « by 14.
In like manner

(b—3)x@)=xx—3%h). . ... . ... ... (11)

Operations on a reciprocal.—From the definition of &

(1] 1 1
slx(w} @+ 3 1 (z— k)

Reducing to a common denominator and using the advancing and retarding operators

o o — 3 (2) = — % (@) . (12)
(@) (e +38) @) (e —3)x @)  {wx @)} — {3z @)}

In like manner the mean of a reciprocal is found to be

>

115 e ,
p‘l‘/,J PR e DR T —, o e k28)

the denominator which is the same for p and § will be denoted by Z. The higher differ-
ences follow by repeated applications of these formule, and of those for products.

Thus ' '
G == = = e (g) - e g)
8% | wZ + udy | 3Z
(HZ) — 1 (8%)

Also it 18 found that
o=y (1 + 1 9%) and 3Z = 2y . udy.
So that

8»(1‘) I 8 e e 0 =L ES S SRR (14)
» \ %/ 7 (x4 38%2)° — 1 (udy)?
Limats as b - 0.

If 4 () is continuous then
,.I.J.ti) ey (@) = . ().
If 4 (x) is differentiable then
Lt 8y (x)/h = dy, (x)/dz,

h-+0

and pdy (z)/h has the same limit.
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If y () is *“ analytic ” throughout the range, then

,.,Iito uty (z) = Lt{y_(m) —I—]—: ﬁ};a,ﬂ} = le)

This p2 is the source® of & wherever it appears other than in the combination §/A, and
hence we obtain the right limits if we omit p. and put d/dex in place of every 3§ /h.

§ 7. Tae Two SERIEs ANALOGOUS TO TAYLOR’S.

These series will be required for the solution of marching problems in § 9, jury problems
in §10, and integral equations in §11.

To fit with the conventions which have been adopted in § 2 in order to keep the arith-
metic simple, the series must bring in p. with alternate powers of 3.

When the given range equation is of even order the required series is

¢ (a+nh) = ¢ (a) +npdd (a) +92_"2_! 3¢ (a) |- n (n? —1%) W5 (5)

31
_F”’(’i_!—l’lw(a)ﬁ(”’“1;)!(“2—2’) 4 e R ¢ 1

It is known as the “ NEwToN-StIrLING 1 formula and may be obtained by repeated
application of the advancing operator, thus,

¢ (@ -+ nh) = (v + 13)*"4 (a),

the expression (1 - 43)*" being expanded by the binomial theorem, and superfluous even
powers of u then removed by the aid of p? =1 |- 182
The general terms, according to WaITTAKER and RoBINSON, are

{47+ +r— 1), } 3% (@) + (0 + 7)5p 40 w8+ ¢ (@)

where (%), denotes
nm—1)(n—2)...n—r+1)r!l.

Let us now suppose that the integral ¢ (z, ) has been marched from z =a to z =a -1
by an integral number » of steps each of h.  We have then

A LR S M SR SO £ 7 )

and if we put
Wl =e NI . i . 5 s &8ss s ows (2)

* In § 6, but see also §8, §9.5.
T Warrraker and Rosinson,  The Calculus of Observations ' (Blackie & Son, Ltd.), p. 43.
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series (1) becomes

LB«ﬁ ) P ¥ (a) | [P ud(a) , I 3 (a)] "
#(@+1) = ¢ (o) + 12220 —1—5—,—5—-1—15“ T
i {% ——-"3:‘7;,,(“) + éi! 8"?,f“)f (T —aE—23.
_J e | l‘ﬁ(“‘) > 1a8d “')1 9352\ (1__9952 1 (e—1)2321
Ha— F(szs) o 121299 (1—30) .. {(1—(s—1)"»")
+ ... to an end specified below in (74), . ... . . . . . . .. . (3)

where s is a positive integer.

In comparison with TAvLOR’s series this contains difference-ratios in place of deriva-
tives, also the factors in ». Unlike TAyLOR’s series, (3) is not simply arranged in powers
of [, because A involves [.

When the given range-equation is of odd order, it has been shown in § 2 statement (5)
that the differences must be * centered with p¢.”” That is to say the boundary z =«
falls midway between two values of z at which ¢ is tabulated, and the tabular values are

p{at+m+3A =(r+3)@, . ....... (4
where » is an integer.
The required series is called the “ NewroN-BesseL ” formula.® It may be obtained
by operating on series (1) with p - 33 and afterwards re-arranging the terms according
to powers of 3

pla+(n-+Hh = pd(a) 4 (n + %) 8¢ (@) +- “("__“11) w 8% (a)
L (n+3) ();j— 1) 3°¢ (a)

e Un b DR, 50

4o (n —1)n(n 4 4 *1‘5)‘(" +1) (v +2) 8¢ (a)

Hh W onw e s a e e R

We observe that the coefficient of 8" contains r factors linear in » ; that these factors

are arranged symmetrically about (n--}) as centre ; but that (n-3}) appears only with
the odd differences.

Now if the integral has to be marched from 2 = a to » =« } k we must put

(n+%) b=
in order to have a tabular value at x =« |- .

* Warrraker and Rosinson,  The Caleulus of Observations ’ (Blackie & Son, Ltd.), pp. 39, 42, 47.
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Let
Bib= =t aus we o dalla a w0 i(6)

and eliminate » from the foregoing expansion, then it is found that

‘1’(“+k)=u¢(a)+k3¢$

LB udb() | B8 (a)
b | L 3! &

1
|
[ M 1 i O 7y

T e e e S > 57
-+ e
[ B wd*d(a) , K*"3*"4 (a)] ( K2> < 3’;(9) < 5’K3>
J HE 1 — i ) e
+ l(2s)! A* ' > J : 2 2¢ 2
.[1 _ (2a =10«
ot Fio
+ ... to an end specified below in (74), . . . . . . . . . (7)

where s is a positive integer. This series is not simply arranged in powers of £, because
x also involves £.

* Bxtended definition of ¢.—When the range a<z<a -+ lis divided into n equal steps
for the practical arithmetical process then the NEWTON-STIRLING series, because it
involves differences centered at @ = a, must involve discrete values of ¢ arranged sym-
metrically on the opposite sidef of # =«. Thatis2nr + 1 discrete values of ¢ altogether.
These suffice to define differences up to order 2n.

So far ¢(z, k) is undefined, except at these 2n - 1 equally spaced values of z. An
li2-extrapolation is so far possible only where there is a coincidence, the same value of z
occurring for two values of 4. This has hitherto restricted the usefulness of the
ht-extrapolation. However, the NewroN-StirLING series (3) defines a family of
continuous functions of z, each function passing through the 2n -- 1 discrete values of ¢,
which are given by the practical arithmetical process for solving the difference problem.
The members of the family vary from one another only in consequence of variations of
differences of ¢ («) of order higher than 2n. So far these higher differences are
undefined. They appear to be useless in practice and therefore we establish :—

A convention that at x = a differences of order higher than 2I/k are each zero in
series (3). Similarly those higher than 2k/h are zero in series (7). . . . . . . .(74)

These series are then polynomials of degree 2n in / and (2n |- 1) in & And it is the
object of the ordinary rules of interpolation} to pass a polynomial through the given

* Revised March, 1927, here and in its implications in § 9, § 10.
T Otherwise for economy z = ¢ might be at the midpoint of the practical range.
+ WarrTaker and Rosinson, ‘ Caleulus of Observations * (Blackie).

YOL. CCXXVI,—A. X
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points. Thusit will be an easy operation to find a small piece of a polynomial bridging
across a short gap for one set m,, so as to provide a coincidence with a point of
another set n,. The only uncertainty is that ordinary rules of interpolation may not
provide a polynomial of a degree as high as 2n. However, for a short bridge that is not
likely to be of importance.

The aim therefore of the following discussion will be to investigate the /*-extrapolation
from ¢ (2, k) and ¢(x, hy) both considered as continuous functions of = defined by series
(3)and (7). However, let ¢ (x, k) remain a discontinuous function of %, defined only for
discrete values of h, for the present ; although ultimately we shall obtain for ¢ (z, /)
an explicit function of 4 which defines ¢ for all values of &.

We may regard these series, analogous to TayLor’s, as finite, for the difference-ratios
conventionally vanish when s = » - 1. Then the number of terms in the series increases
steadily as 2 diminishes and tends to infinity as 2 - 0. For each particular value of /4
we have a particular formula for the aberration, different from the formule for all other
values of A : and comparison is difficult. It is often convenient, and equally correct,
to regard the series as consisting of infinitely many terms, each of which has a value for
all permissible values of 4. Excluding the arithmetically impracticable case of 7 = 0,
we can then always find a term such that all beyond it are zero, so that the series are
convergent.

The behaviour of any particular term as a function of % cannot be studied fully until
we know the behaviour of the alternating difference of ¢ («) which it contains as a factor.
But in the meantime let us study the factors in  or «.

The coefficients in (3) involving ».—For reference denote these by L defined thus

Loe = (1 — ) (1 —2022) (1 — 3%) ... {1 — (s — 1222} |
far fusim f s o R

s being a positive integer. When s is fixed Ly, is a polynomial in % and odd powers of
are absent. 1f we were to make the substitution » = A/l in accordance with (2) above,
then odd powers of h would be absent, for [ is fixed.

The result of § 5 shows that, as far as L,, alone is concerned, an /2-extrapolation would
be validif (s — 1) (s — 1) »* were small compared with unity. This condition is unneces-
sarily strict, as may be seen from the example s = 5. The condition then requires that
A should be small in comparison with 1/8. Now

Lye = Ly = 1 — 3952 -- 399" — 1261 2° - 9002°,

the largest of the set of discrete values of » for which L,, does not vanish is A = 1/5
and the terms of I, are then respectively
399 1261 , 900

+(?5 15625 | 390625

Even here the 3* term predominates over the higher powers.
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The fact that L,, vanishes'when A =+ 1/(s — 1) and when A = 4 1/(s — 2) shows that it
is not possible to choose 2, independently of s, so that L,, may remain approximately
of the form 1 — X2, where X is independent of A, as s - . Consequently, as far as
the polynomials Ly, are concerned, it is not possible to fix h so as to make an h*-extrapolation
valid for every s.  Bul for Ly, it will szqﬂ'we to make n, the number of steps in the range 1
large relatvvely to (s —1)%2. . . . . . . .. S SNSRI | ||

This condition 1s the same for all range (md bmmd(w Y eqemhom of even order. The
behaviour of 3% (a) /h** and p82*1¢ (a)/h2**Y must also be considered ; it is different in
different problems. 1f » be fixed while the integer s increases, then L,, vanishes as
soon as (s —1)> »* =1 and remains zero for all greater values of s. Let s, be the
greatest s for which L,, does not vanish. Then

828 =1 80 8, = N.

m

But differences of order higher than 2 are conventionally zero. Also L, is a coefficient
of 8*¢ (a) in the expansion (3).

Thus the iy, that are not even roughly of the form 1 -~ Xh? because they are zero when

L - XA is merely small, are just those Ly, that are multiplied by differences 3¢ (a) which
are conventionally zero. . . . . P e e 10

Usually f(2) will be represented by a series w1thout end and whether the termination
of the series for ¢ (x, A) is of importance, is a further question.

The coefficients in (7) involving k.—The discussion of series (7) is so like that of series
(3) that it need not be recorded in detail. In order that the terms in 13*¢ (a)/A* and
3%t (a)/h**" should be approximately of the form 1 -~ X«? where X is independent
of k it will suffice in accordance with § 5, that s%* should be small in comparison with
unity.

§ 8. Tue PErMISSIBLE STEP £ FOorR FUNCTIONS OF & BUT NOT OF A.

§ 8.1. General.

In the approximate solution of differential equations we meet not merely differences
taken with step A, but also differences of a function of A, namely, ¢ (x, £). Leaving aside
the latter question, § 8 treats of the differences of the given functions of z, independent of
h, which may occur as coefficients in the range-equation.

The necessary series are given by SHEpPARD.* When 5, p are treated as operators
along with D = d/dz the relations may be written in brief

8» 2 h 1
k—,.P(-'E) {jl——;d)—@} plE) o . S L ow o (1)
lJ;_"S,."’I)(z') = D {g&]&l})%h_])}" cosh #AD . p(z).. . . . . . (2)

* W. F. SuepparD, ‘ Lond. Math. Soc. Proe.,” vol. 31, p. 464 (1899).
2x 2
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The first members of these equations are difference-ratios. The first factor of the
second member if acting alone would produce the corresponding derivative. What is
important for present purposes is that the other factor of the second member can in all
cases be expanded in a series beginning with unity and proceeding by even powers of
hD. For example

ELS [ a2 _ AT)4 1 )6 ;
A= 11+"“) F1_20}’1)45040}&) }p(x)“ N EEIC)

P pla) = { B kD D () L @)
We shall have to apply the relations (1), (2) to coefficients p (x) occurring in the given
range-equation. The convergency of the resulting series cannot be investigated until
this function is defined. Three simple types of p () will, however, be discussed now, so
that they may be ready to serve as comparison-series (series majorantes). What we want
to know is how small % must be in order that the term in A2D? shall be the last that need

be taken into account. The coefficient of this term can be found thus

2sinh 34D _ 2 (AD | 1 /D |, KD
hD WD 2 1 -k2>+"',f_l~! 51 T

So by raising both sides to the power % it is seen that the series for (1) begins

2“ P () = D [1 ”.' D2 } PABY. e S R s 1 90B)
while because cosh 14D =1 + 2 22D? 4 ... | the series for (2) begins
‘Z—?u'p (2) = D" -{1 - (”'T—I;?’)lﬁDz ...}p (@ e et e i 18]

§ 8.2, Exponential Type.

A simple type that presents itself is that for which

PIPD(E) c=PURY & oot io v i e ol (1)

for then the separate terms of series such as § 8.1 (8), (4), (5), (6) have p () as a common
factor and (5) and (6) may be written

,L,, p(2) =Dp (). Jl+ } AT e

ks,. () = Dp (L){ ”;;3...}.. e owte w8
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At the same time the sum to infinity of the series in the bracket is given by putting
hD = 1in §8.1 (1), (2). The question then is: how small must & be in order that

(‘ZSinh%)“‘:l»!—%—l—.... . B e T )
and
nt3

ST TS S ()

(2sinh )" cosh} =1+

with satisfactory approximation at the last term stated ? The question involves the
purpose of the calculation, and so cannot be decided in general ; but some illustrations

will be given.
2 sinh 1 =1-0422,, cosh } = 1-12763

|
n (1-04220)". T (1-04220)" x1-12763. A
24 24
1 1-0422 1-0417 1-1752 1-1667
10 1-5119 1-4166 1-7048 1-5417

The table shows that even for tenth differences the terms »/24 and (n-}-3)/24 form the
greater parts of the excess above unity of the sum to infinity.

The convergence is faster if 22D?*p (z) < p(z). Thatis to say if p () = ¢ the conver-
gence will be faster than that indicated in the table provided that

[BE RIS e el dme v i 6 o (6)
But it is not possible to fix h so that the h*-extrapolation remains valid for oblaining 1)"e™
L e D ST e S U S e S ST L O R R ([

For on comparing §8.1 (5) with §8.1 (1), in view of the fact that De — ae”, the
question is whether
oo

ha 24
with sufficient approximation atthe last term shown ?  The first member is an exponential
function of n, the second member is a linear function of », and they cannot remain
approximately equal as n - o,

{2 sinh (ha/2)}" T nh'a®

§ 8.3. Cosine Type.
If #2D2p () = —p(x), we put AD =~/ —1 in §8.1 (1), (2), (5), (6), thus changing

hyperbolic to circular functions ; so that in place of § 8.2 (4), (5). we have

T S e S I EF | |

24

(QSin‘})"cosé=1—'”2%3 B R S e s e e - (2)
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Now
2 sin § = 095885, cos § = 0-87758.
. 05885)" _» 0- -87758. _ i3
" (0+95885)". 1 — (0-95885) % 0-877 1~
1 0-959 | 0-952 0-842 0-833
10 0-657 0-583 0-576 0-458

That is to say if p () = A cos (bz -- €) where A, b, = are independent of @, then the
convergence of SHEPPARD’S series will be faster than that indicated in the table
provided that

1B &l o abs o luil Beashdilet-a Sial

But it may be proved, as in §8.2, that it is not possible to fix 4 so that 273" cos (bz |- ¢)
should remain of the form D" cos (bx - <) 4 #2X, where X is independent of %, as
e R T R T /o SRR P o - AR BN LT e (4)

§ 8.4. [Revised March, 1927.]
Type p(x) =¢€*(ccosbr+ssinba)y oo v ol oL e (D)

where a, b, ¢, s are independent of z. It is not in general possible with this type of p ()
to make A*D?*p (z) small in comparison with p (z) by any choice of &, for p () vanishes
where D*p () does not. We must have some other standard of comparison. Let us
choose as the standard

e |/(¢* + %)

and let this be called the ** amplitude "of p(2). . . . . . . . . . . ... i e V2
Now
WD (7)== (AD = Ra)™ pla) o wodoshgys taniiihs (3)
a proof of which is given in Forsyra’s ‘ Treatise on Differential Equations’ (1903),
p- 56.
Also

hD (¢ cos ba + s sin ba) = hb (— ¢ sin bz + s cos bz)
so that the operation AD acting on (¢ cos bz +-s sin ba) changes the amplitude in
the ratio |Ab|.

Therefore A"D* acting on ¢** (¢ cos bz |- s sin ba) will decrease its amplitude if

P eia] -3 <3 . o0 - s L 6 ui te el (4]
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Now suppose that we take the series

p(x) -+ é:—t BD*p (z) - ...
p (@) + Z’%]ﬁlﬁp (x) 4 ...

the higher terms being defined as in § 8.1, and form other two series in which p (z), D?p (z),
D*p (x)... are replaced by their amplitudes. Then these latter series will converge
more rapidly than that tabulated in § 8.2 provided that (4) is satisfied. Now the actual
value of any quantity of the form e (¢ cos bz s sin bx) cannot exceed its amplitude.
Therefore the terms which we have neglected will be truly negligible to the extent shown
in the table of § 8.2 relative to the amplitude of the first term. The actual value of
the first term will be zero for some values of «.

§ 9. MarcHING ProBLEMS.
§ 9.1. Introduction.

The range and boundary equations taken together usually provide derivatives of f(z)
of any order at one end of the range, so that the expansion of f () in a TAYLOR series can
be formed.

We next arrange analogous processes in order to solve the corresponding difference-
problem. These give ¢ (x, h) as a series involving = and A together with differences of
the coefficients in the range equation. The differences of these given functions are
expressed as infinite series involving powers of £ and derivatives of the same functions by
means of SHEPPARD'S formulee of §8.

It is found that only even powers of % occur. As 4 is then explicit, it is possible to
discuss how small it must be in order to make the A*-extrapolation valid,

Formul@ applicable to an unrestricted range-equation would be cumbrous. It is more
convenient to show that the process as described above in words, is of very general
application, and then to illustrate it by formule in special cases.

§9.2. The expansion of f(x) in TAYLOR'S series.
T'he derivatives of f () at © = a to any order are usually determinate.
For, denoting the z-derivative of order » by f* () let the given range equation be

0= S (@), FE 7 @ P2 a), o f R Flo)zdk o oo (1)

where { denotes some specified function.
To make a marching problem it is necessary that for one point of the range, say =«
we should have given

.f"“”(a), R, TP Gal (g wevs v v i 0 (2)

Together with (1) these determine f” ().
On differentiating (1) once, whatever be the form of ¢, no derivative of f of order higher
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than fO*" () can appear. So f®*V (@) is usually determined. And so on to any order.*
Exceptions occur, see below for an example.
There are subtle questions{ connected with the expansion of f () in the form

flo+a) =f (@ +of (@ + 5 f @ + .
o

.+ =) !f""” (a) -+ U —ﬂ)u—l.f" (@-+40x), .. (3)

(n—1)!

where 0 is some suitably chosen number between 0 and 1.

(i) Does the series, omitting the 6z term, converge ?

(i1) If so, does the 0z term tend to zero as n —— w0 ?

In some cases it is possible, without solving the differential equation, to be sure that its
integral is analytic and therefore} that both questions (i) and (ii) have affirmative
answers. For example if the range-equation be

'@ +p@) . f @)+ q@) . fl@)=0
it is known that f(x) is analytic for values of z at which both p () and ¢ (z) are analytic.
And similarly for a linear differential equation of any order, the solution is analytic except

at the singularities of coefficients of the equation§ . . . . . . . . . . . . . . (4
In this connection let us consider the function
Flag) s2ig™ ¥ W B A SRS - )

the TavLor expansion of which, starting from z = 0 was shown by Cavcny|| to consist
only of the 6 term, all the other terms being zero, so that the answers to the questions
are (1) Yes, (i) No.  When z is real, ¢e7"* is zero at # = 0 and increases continuously to

unity as @ —— %. The singularity is revealed if we put z =y +/—1 and then let
y— 0; forit follows that f (0) —— = instead of to zero. Itis interesting to see what

would happen if we try to make this function arise as the solution of a marching
problem, starting from z = 0. Diflerentiating (5)

@ s P SR 7 2 s i8]

a linear equation, but with a coefficient, 223, having a singularity at =0 so that we
should be warned by (4). To define the marching problem we take f(0) =0 . . . (7)

If, ignoring the warning, we proceed in the usual way, putting =0 in (6) and sub-
stituting the value of f(0) from (7) we obtain f’ (0), but it is in the indeterminate form
0/0. As nothing further could be done, no error would be committed.

* For restrictions, see DE LA VaLuie Poussiy, * Cours d’Analyse” (1926), Ch. 1V.

T Goursar, * Cours d’Analyse’ (1924), art. 170 ; Voss, ‘ Encyk. Math. Wiss. IL.,” A, 2, art. 14.

i Warrraker and Warsox, © Modern Analysis ™ (1920), § 5.4,

§ Wairraker and Watson,  Modern Analysis * (1920), § 10.2, § 10.21.
|| Goursar, * Cours d’Analyse * (1924), art. 170.
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For non-linear equations the question (i) can be discussed in the particular cases after
the general term of the series has been found. But then there is no obvious way of
answering question (ii) ; for although we have a way of finding any derivative at 2 = a,
this tells us nothing about the behaviour of any derivative in the range of z, except in so far
as we assume that the derivative can be expanded in TAvLOR’S series ; and that brings
up question (ii) as regards the expansion of the derivative.

The “ Calcul des limites ”* of Cavcny* and the method of Lirscurrzf are both in a
rather similar difficulty ; for both assume that a certain upper bound M is known ; but
for non-linear equations M depends on f(z), and f(z) is unknown.

In § 9.4.3 a special device is employed.

To explore such questions would distract attention from the main purpose of this
memoir. It seems better to admit that, for non-linear equations, casualties may occur,
and to go on.

The following question (iii), relating to series in general, includes some of the finesse
of questions (i) and (ii), but, unlike them,{ question (iii) is also adapted to the practical
needs of the computer.

(iii) Are n terms of the series enough without any remainder term ?

For e ' in relation to its TAvYLOR series, the answer is no. If for another function
the answer be ** yes, when n = 10%" then the series is valid, but probably useless. If the
answer be * yes, when #n = 6 * then the computer can probably deal withit. In §9.4.1
and § 10 the question (iii) will be answered in some special cases.

§ 9.3. Finding the central differences of ¢ (x, h) at x = a from the range- and boundary
equations.

As we here regard 4 as fixed, ¢ (z, ) may be contracted to ¢ (z).

For the difference equation analogous to §9.2(1) we must choose a tabulation that
avoids p in the highest difference, for the reasons explained in § 2. Thus if » be even we
must use

_ @)  pd @) dy(a) () pB(n) L )
e qll % (g s FRER R YRR A ) ¢()» "r'j-(lA)

in which p occurs with differences of odd order, s being an integer. But if # be odd we
must use
14 (2) T ud(a) 34 ()
0= [ - p
q’ 1 hzn—l 3 hu;—g ] ka ] k ’ y‘qs (II‘),

:c}-, . . (1)

in which p occurs with the even orders,

* Goursar, ‘ Cours d"Analyse * (1924), art. 383.

T Goursar, ‘ Cours d’Analyse’ (1924), art. 391.

1 See H. Jevrreys, F.R.S.,  Phil. Mag.,” July, 1926.
VOL. CCXXVI.—A., 2°v



Downloaded from https://royalsocietypublishing.org/ on 09 August 2022

332 LEWIS F. RICHARDSON AND J. ARTHUR GAUNT ON

o

To make a marching problem, we must then have given at one end of the range all
differences belonging to the same alternating set of all lower orders down to and including
zero, namely, either for use with (1a)

ws* ¢ (@) _ = @D (q), Eﬁ;’l_(_“_) = f9a), dla)=fla), " . (2K)

h.’t 1

or else for use with (1B)

wd* ¢ (a (=) (
—————h =7 ()

o7

=Y (a), wla)=flak v n(28)

The boundary equations (24), in which the derivatives are given numbers, when inserted
in (1a) determine the numerical value of 3*¢ («). In like manner the conditions (2B)
when inserted in (1B) determine 8% '¢ («). But let us leave (1B) and (2B) aside for the
present.

To find the next higher difference we now seek a process analogous to differentiating
(1a) or (1B) and substituting the values of the derivatives of lower orders. In order to
simplify the discussion let ¢ be restricted to be a rational function of the * alternating ™
differences of ¢, the coefficients of the powers and products of these differences being any
sort of analytic functions of z, provided that they are known . . . . . . . . . . (3)

The possibility that these coefficients may be transcendental functions of # will be taken
into consideration later by the aid of SHEPPARD'S series as in § 8.

Say then for (1a)
P=TIV, o o TR e et st e SR SUR DR

| T:E.Ip," () <§}:—?>M<%>m...<”8¢> Oy A s . e S

and V is a similar sum of products with different p, @, b ... z, say p’, @', b’ ... 2

By §6 (2),

where

m ENC L am 1
8"1":!"||8<V>_‘_8||y’<\7> . . . . . . . . (6)
And by § 6 (12), (13)
b — — rT]8V - 3T pV
3 GVESEOVY. i e & It gt Gue (7)

The rules for differencing and averaging products can then be applied repeatedly to the
separate terms of 'I' and V until, in the expansion of 3¢, the operators 3 and p no longer
act on any product of functions of x, but act directly on ¢() and on the coefficients p,, (z).

), (z). Similar remarks apply to pw¢. Then p? =1 - 232 may be used to remove all
powers of p above the first. The effect of p. and & when acting on  is thus to produce
another rational function of differences of ¢. The argument can be extended from order

to order so that 8"¢ and p387-1¢ are also rational functions of the differences of ¢(),
where 7 is any integer.
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(‘onsider equations (1a) and (2a) which are centered with ¢. The next higher difference
that is so centered is p 8™ ¢. To produce this we first act on (1a) with 3. In view of
the previous discussion, especially (4), (5), (7) and the part in § 6 about ““many factors” the
operation § is seen to involve acting separately with both p and § on each of the differences
already present in the second member of (1), but not with both p and 8 on the same
difference. Thus because ¢ is a rational function of

S, wldh, B . . . @pd B . . .. ... . (8
Therefore d{ is some other rational function of
wd, u234, wd, . . . uEdNlh uig
and of - (9)
8¢5 153 82‘!” i 1% s 82“/” 82"“‘#
Putting p2 =1 + }5* in (9) we see that 3¢ is some third rational function of
o, 3b, woéd, . . . -1 ndp, N4 . . . . . (10)

which are all centered with p¢, unlike the given boundary values. To produce p.d{
we next act on 8¢ with p. The previous discussion shows that this involves acting on
each of the differences in the list (10) with p and 3 separately. Thatis to say pd¢is
some fourth rational function of

PR 8GNy oo L el phidtnd.  pidterld
' s (A1)
(& 8¢, 82({;, o 82"‘[’; " 21 gh 824+2¢

and of

and because p? = 1 - }3? therefore 3¢ is some fifth rational function of
¢, ¥, ¢, 8¢, wdrH, g, . . (12)

which are all centered with ¢, like the given boundary values.

Thus either of the operations w and 8, acting alone on a rational function of differences,
changes the centering, and therefore pd leaves the centering unchanged ; so does 3*. The
highest possible difference in p.3¢ is seen to be two orders beyond the highest difference
in ¢. One of these orders is brought in by § and the other by p via

w (0. x)=upb] ux + 15052

There is nothing like this in the analogous process with derivatives. Thus w8y =0
is one equation connecting given and found houndary values with the two unknowns
32424 (@) and p 3+ p(a). To find these separately we need another equation of no
higher order. This is obtained by returning to 3¢ and operating on it with 3
instead of p obtaining 8¢ = 0. The differences produced are the same whether & or p

2y2
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be the operator, namely, those set out in the list (12) but p3¢ and 32¢ will in general be
different rational functions of these differences, so that the two equations necessary for
the determination of 32**2¢ (@) and p 8**1¢ (@) are provided.

Let this process be continued. Starting with pd¢ =0 and 3§ = 0, each of which
contains no differences except those in the list (12), operate on each of them with 38 thus

obtaining the two equations
T R

B =10, oo e e e e e e (14)
The first operation § changes the list (12) to

8¢, (- 8275 .. D+l (b’ " 82‘+2¢, 82"+3¢) ]
together with st
weh, uldd . . . . . pRdHG, udirg  §WH4

And the second operation & changes the list (15) to

g gEle B ] wdBES BBEG  (16)

the last two of which can, therefore, be determined at x = a.

Proceeding in this manner the vequired differences can be found in pairs to any order at
@ =a, as functions of differences of the coefficients p,, (%), p’, (x) which are given functions
of .

The discussion of equations (18) and (28) would be very similar to that of (1) and (24)
and need not be recorded.

In the range and boundary equations every power of 3 is divided by the same power of
h. If in operations upon these we could always use A in the combination 8 /A, then the
result would involve A only in those forms which tend to derivatives as & > 0. This can
be done with one important exception arising from p* =1 4 14*(3*/h*). This brings in
even powers of h. Except in forms which tend to derivatives as h - 0, odd powers of h are
absent from the expressions for the differences of ¢ as functions of the coefficients of the range
and boundary equations.

Now if we compare these operations with p. 8 and § on the difference equation with the
analogous operations with I on the differential equation in the light of the remarks at
the end of § 6 it is seen that 8"¢(w, A)/h" and @ 8" $(a, &) /h" both tend to the same limit
d'f (x) [dx" as h - 0.

§ 9.4. Special Cases.
§ V.4.1. Ezponential type.—Let ,
Om= D (2) T pfAd] e s e e e .y

where p is independent of .

1\[3()
@)=t hed Ve A laditdig i Senie)



Downloaded from https://royalsocietypublishing.org/ on 09 August 2022

+ We replace these by

THE DEFERRED APPROACH TO THE LIMIT. 335

0 =8¢z WA+ p . wd(@h): . .« 200wy (3)
also
I e R e
From (3) and (4)
=SB RR AR ) s e L (5)

We operate on (3) with xd/h obtaining
= 1p. S + uB R+ pSHlh, . . . . . . (6)

and on (3) with 8%/A* obtaining

0= P¢/M + pudfl. . . . . . . .. et 3

Specialising (6) and (7) for # = « and using (5)

0 = Jph*33 ¢ (a) /M + p®d (@) /B2 —p2 . . . . . . . . . (8)
0=25¢(a)/R®+pudd(a)h®. . . . . . . ... .... (9)

Solving for the two unknowns p.3%¢ and 3%¢
wd (@) /2 = pJ(1 — p*hEe). . . .. (10)
¢ Bl = — PP JL— IR . .. (11)

In general when s is a positive integer it may be shown by continuing the process
described in § 9.3 that

psro@) it =1 — R . . . o o0 (12)
and
B2t (@) AP = — B — LR, . . . . ... (13)
Contrast
D*f(a) = p* aad. o DES@)=—9"" . w = s (14), (15)

These differences of ¢(«) are next inserted in the NewroN-BEsseL series § 7 (7) with the
result that
L [Bp* Bp?| 1—«2[2
¢ (atk, h) =1 kp—{-lz' 3T 1= — I
+ [(Ep)*  (Bp)*+' (1 —x?/4)(1—3%2/4)(1 —5°<2/4) ... {1—(2s—1)*k3/4}
[(28)! (2s-+1)!) (1 — ph2/4)"
U0 TR TR S RS M s sl B s s e e e e (16)

where, as before

e e e (17)

Here at last A is fully explicit. If we apply the test of § 5 to decide how smail A must be
in order that the Ah*-extrapolation may be valid up to at least the (2s |- 1)th power of p
we find that A2G2s must be small compared with unity, where (i is the greater of

{(2s — 1)/(2k) }* and p?/4.



Downloaded from https://royalsocietypublishing.org/ on 09 August 2022

336 LEWIS F. RICHARDSON AND J. ARTHUR GAUNT ON

For example if & =1, p = 1, 2s = 10, then G = 2025, and it will suffice if % is small in
comparison with 0-07.

Actually A is restricted by (17) in which » must be a positive integer. If n = 14,
h=1/14-5=0-069. Also k = 1/14-5. The first pair of neglected terms, for which
the /Z*-extrapolation begins to fail so that our hope depends on their smallness,
are those for s = 6, which for this value of k are

/ 1 32\ / 52\ / 72 02 112
SRRl e “2?2)““2?)@ o

12! ! 7 7
i =

The higher terms become steadily less until they vanish, when (2s 4 1) « > 2; also they
alternate in sign. Thus the sum to infinity of the neglected tail lies between 0 and 1/12 !

There may be quicker ways of discussing this special problem (see § 3.2), but they would
not illustrate the general process of § 9.3 so well.

§9.4.2. Linear equation with variable co(ﬁciuné. —Given

DA () pdz) AR =07 o i e w w e )
where p (x) is an analytic function.
Also
Df(g)=1 and f(@)=0. ... ... ... (2;(3)
As usual we replace these by
(@) +p@).d(®)=0 ... .. e el

also

pid(@)/h=1 and ¢(@)=0. .. ... ... (5),(6)

From (4) and (6) it follows that
SR =0 ¢ N i VR e a1

To find the higher alternating differences of ¢ (@) we hegin by taking w8 /h of (4) using
the rule for u8 of a product as given in § 6 and writing p, 4 for p (z), 6 (2, b).

wd B+ pdp B {$ 3R} + udd AT {p+ 45} =0. . (8)
In this on putting # = @ and using (5), (6), (7) there follows
udte (@) . b2 4 p(a) + S 4 {5p (@) 2} = 0. T TE
Again, taking 8*/;* of (4) using the rule for 5 of a product given in § 6,
¢ A - p. 3% A2 2u8ph7t | ude A d®p . A2 132 | B2pht=0. (10)
Now let & = « and use (5), (6), (7) obtaining

' (@) B +2u8p(a) A =0, . vl e (11)
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The alternating differences of ¢ (@) are here being determined singly instead of in the
usual pairs, because the derivative next below the highest is missing from the range
equation. The process can be continued indefinitely, giving the differences of ¢ as
functions of differences of p both at # = «¢. The expressions become lengthy unless p (z)
is some simple function. The fourth order will suffice for illustration.

Next the differences of ¢ () are inserted in the NEWTON-STIRLING series § 7 (3) with the
result that

o _L[ 1 128 (@) _3 U 2udpl@)(, _ 22
BlatD)=0+1+0— L p(o) + 220 @ h) = oy e <1 P\(m)

Lastly, to make & fully explicit u.8p (a), 3*p («) must be expressed in terms of derivatives
of p, by SHEPPARD’S series of § 8 giving

BlatD=1—ip@ + B0 LD kD p @) (1= F)
~ L watim s goanp@ (1 -B)r o)

Only even powers of & oceur. For the terms shown the A2-extrapolation will be valid if

h 1s not only much less than / but if also 2*D?*p («) is much less than p (@) as may be seen

by using the series of §8 for comparison; and possibly in other circumstances less stringent.
§ 9.4.3. Cube of dependent variable.—Suppose that we are given

it s e RO R 1

together with
o) =Landidfldr=0atiz="9. . . . « « . .« (2),(8)

- The solution may be shown* to be f(z) = enz when %, the modulus of this Jacopran

B DOEIROHOIARA (NN T e e sl e v e s e onos e s s o e n e (#)
CavLeY{ gives the first few terms of the expansion

Wm%f+““+ﬁ( R

mz
CNe — 1 —2—i 'I'w

The remainder R (#) can always be found, because enz is known from the tables of the
first elliptic integral. For example R (1) = — 0-002.
To see how the corresponding series for ¢ (z, h) begins, we replace (1), (2), (3) by

W28 = —¢%; ¢(0)=1; h'pds(0)=0. . . . (6),(7),(8)

These give immediately
WEBBIO = — . o« & = fs e e oy e e (8)

* Caviey, “ An elementary treatize on Elliptic functions’ (1895), art. 19.
F Loe. eil. p. b7, correcting the first term from u to 1.
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Knowing from the symmetry of (6), (7), (8) that the odd terms of the series all vanish,
we omit the operation 18 and act on (6) with £725* according to § 6 (5), obtaining

I = — g = — {3 4 20 | uA R B4 - 1009 | %),
A second application of § 6 (5), (4), gives
B3 = — B [{24 . % -+ 6 (uB) -+ § (RO} {419} + #g) (10)
Now specialising for # = 0 and substituting from (7), (8), (9) we have

bW¢@=ﬂ_¢m+§. ot e b (LY

Inserting these difference-ratios in the series §7, (3), it is found to begin thus

Sl x| 3 — 3h* + 1At h?
bah=1-2 z!ia(l—ﬁ\.....um

§9.4.4. f(x) single-valued, but ¢ (z) branching.—Let the problem be

afjozx = and flO)=1. . . 5 & <5 s 2 & & AE2)
The solution 1s
i) == THL @) v wuemes vl d b s nm ) e i8)

a single valued function except at . = 1.
The analogous problem in differences is

A 3¢ =(pdP and wd(@=1 ... .. .« 4,(5)

In accordance with §9.3 the differences p.3*¢ (0) and 3%¢ (0) have to be determined from
a pair of equations each of which involves both
unknowns. These equations are quadratic, so
that the differences are multivalued.

If we step out the values of ¢ by arithmetic,
they are determined by quadratic equations,
which have two real roots or none. So the

20—

10—
1 graph of ¢ (z) either bifurcates at each step or
hx02) comes to an end, thus resembling the branches

of some frees. 1In fig. 2a the seven large dots

show all the discrete real values of ¢ (z, 0:2)

L e J, Wwhen @ is positive. The lines joining the dots

Tia. 24, are merely to show the sequence, and do not

i represent ¢ as the polynomials of §7 would do.

The f (x) curve lies close to one branch. If 7 is reduced to 0-1 one branch continues
to fit f(x) well ; another is more steeply divergent.
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§9.5. Conclusion of the Marching Problem.

It has been shown that when ¢ (z, ) is expanded in a series arranged according to the
alternating differences of ¢ (a, A), then the separate terms of the series are functions of a
number of expressions of the form (1 -+ XA2 4 ...) where X is independent of 7, and
+ ... indicates possible terms in higher even powers of 4. These expressions arise in
three ways :—

(i) There are some factors like (1 4 X42...) which are the same for all range and boundary
equations. They have been discussed in §7. They bring in 2 in the form
kB j(x — a).

(ii) Other expressions like (1 + X742 -|- ...) are brought in by the differences of ¢(a, 4).
They depend upon the particular form of the range and boundary equations.
They do not involve . They may be divided into two sub-classes :—

(@) Some appear even if the coefficients of the derivatives in the given range
equations are independent of z, as in § 9.4.1, § 9.4.3.

(b) Others are produced by the variability of the coefficients in the range
equation, as in § 9.4.2.

The production of factors (1 + XA? - ...) may be traced back for classes (i) and (ii) (@)
to the formula p* =1 - }4® (8®/A*). Butin the class (ii) (b) the source of 42 is different, and
depends on the formule y = cosh 34D, 8 = 2 sinh 44D asin § 8.

How to choose % so that a conglomerate of expressions like (1 4 X#4%) may make the
h?-extrapolation valid, has been discussed in §5. It is shown in §7 that, for any fixed
h, the h*-extrapolation cannot in general remain valid for a derivative d'f/dz* as s - 0 .
This peculiarity may not hinder the purpose of the calculation.

> . §10. A Stvpre Jury PrROBLEM.

When there is only one independent variable, jury problems may be evolved from
marching problems. The peculiarity of a jury problem is that not all of the derivatives
of f (z) below the order of the highest in the range equation, are given at either end of the
range. However we put in symbols for those that are unknown at one end & = « and
write out the expansions of f(z) and of ¢ (x, &) as if it were a marching problem starting
from  =@. The unknowns are then determined by the given conditions at the other end
of the range.

To illustrate this process in a very simple case let it be given that

Downloaded from https://royalsocietypublishing.org/ on 09 August 2022

@ L fe)=0, f@=0 FfH=1.... 1)@, 0)
We replace these by
2
shfj’"f— ¢ =0, ¢ (a) =0, ¢d)y=1. . . .. .(4),(5) (6
Let
ndd (@) /b= L, anunknown. . . . . . . . . . .. (7)

VOL. CCXXVI.—A, 2 Z



Downloaded from https://royalsocietypublishing.org/ on 09 August 2022

340 LEWIS F. RICHARDSON AND J. ARTHUR GAUNT ON

Then by the process which has been described in § 9.3 and illustrated in § 9.4 it can be
shown that all the even differences of ¢ all vanish at # = ¢ and that for the odd

differences
i TU PSRRI R e ®)

i
where s is a positive integer.
To fit with the arithmetical practice we suppose that the range (b — @) is divided into
n equal steps thus fixing % to be equal to (b — @) /n. 'The NEWTON-STIRLING series § 7 (3)
then shows that,

ending at the term of degree 2n — 1, and in view of (6) this determines £ and thereby
reduces the jury problem to a marching problem.

The next question is to find how ¢ (2, ) depends on % at some intervening point. In
view of the extended definition of ¢ given in § 7 it does not matter whether this inter-
vening point can be reached by an integral number of steps from # = a. Let the point

be # = a -- I, and let » be defined by
Ub=w)r=gh. &2 D raiabl e sl (10)

Then by a second application of the NEWTON-STIRLING series

¢(a—}—l)=ﬂ[l——§!<l—:—2>+5Lf’!<1—712><1—?—:>...:|. o, ngid)

So that on eliminating 8 between (9) and (11)

T e TP e e
3! 7 5! gt
‘ﬁ((d—l-l):(b—“) —(b_a)3<l i l>+(b—“)5<1-—l><1 _g:)_
3! n® n? 7 -
both ending at terms in (20 — 1) !
The general terms of the series may be seen by reference to (8) and § 7 (3).
The value of 4 which is small enough to make the A*-extrapolation valid, may be
decided in the following way. An algebraic argument is
given concurrently with a numerical illustration in the

.. (12)

margin. As (b—a) is given, we may choose a positive b—a=2
integer s so that not only is (b — a)*~'/(2s — 1)! negligibly 2=
small but also (D=—=gy* s 1-8%10-°

@s—1)>|b—a]. . . . . . (18) | @s—1)!

The tail of the series in the denominator of (12) from and
including the term

b—ay[, R e | [ (s — 1R
(23—1)1{1 (b—a)ﬂ}{l Fan) i (b—a“)a‘}
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is then a series with alternating signs and terms steadily decreasing in modulus, because
the extra factors in /2, that come on in the higher terms, are all less than unity and
vanish altogether after a certain term. So the modulus of the sum to infinity of the
tail 1s less than the modulus of first term of the tail, which in turn is less than
|(b—a)*1)(2s—1)!|, which is negligible. Similarly the tail of the series in the numera-
tor of (12) from and including the term in /**-* must be negligible because |/| < |b—a].

Next we can choose % so that all the continued products in » and », which are not in
negligible terms, are of the form 1 --%* X (number independent of Z). For this it suffices,
according to the rule of §5 that A*G (s — 1) should be small
compared with unity, where Gz is the greater of (s—1)2/(b—a)?

and (s—1)%/I* ; that is to say A* should be small compared / =3
with B <1/6°
BRe =18 L L s . () h<1/15
n > 15

When 4 is thus restricted we may rearrange the numerator
and denominator of (12) according to powers of A, neglecting
powers beyond A*. It is thus found that

sin - B2F (1)

tarbb = e T ) ts)
in which
b B 5 i
F() = — 5 (1 +2) 1 (124 239 . HLy = oeisg
l'.’.f-l N
o Sy A Y <5 (I S = ¢ 92 2.l.42 . £ F(2)=0-:079
e e F P e p) (2)
+ ..tothe termin (2n —1)! . . . . . . (16)
2N F)_ 0-:155
Now by a reapplication of the rule of § 5 the second member S )
of (15) will be of the required form if 722G, 2 <1 where G, is F(2)
the greater of |F (I)/sin | and |F (b— a)/sin (b—a)| . (17) Sing (7289
We have thus in (14) and (17) three separate restrictions on thatotbre
h, and it suffices if the strictest be observed. | i 1
If sin(b— a) = 0 then G, - », and no value of % will make S 0-38
the A*-extrapolation valid. There is a corresponding pecu- h< 16

liarity in the solution of the problem in the infinitesimal
caleulus. To satisfy (1) and (2) f(#) = ¢ sin(z—a) where
cis an arbitrary constant. To satisfy (3) also 1 = ¢sin (b — «)
which determines ¢ unless sin (b — @) = 0.

Thus the case in which no suitable value of 4 can be found is that in which the problem
is indeterminate. Kxceptions of this type are usual in jury problems. Physically they
are connected with the disturbing effects of free periods of oscillation.

2z2

much less strict than
(14) in this case.
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§11. VoureErrA's INTEGRAL EqQuaTioN oF THE First Kinp.

§ 11.1. Introduction.
The given equation is

0= p(x) -}—A(:x(m,y).f(y)(ly e e e 4 )

in which p (x) and « (x, %) are given functions, and the problem is to find f(y). The
lt-extrapolation has been used in this connection previously,* but justification was
lacking.

The problem will now be approached by the aid of p and § and the NEwroN-BEsSELT
series. That is to say we shall compare two analogous processes ; in the one f(z) will
be expanded in derivatives of p (z) and of « (z, y) with powers of z in the coefficients ;
in the other derivatives of f(z) will be replaced by difference-ratios and means of ¢ (z, 4).

§ 11.2. The Expansion in Derivatives.}
In §11.1 (1) let &—~ 0; it follows that

D(0) =0 e pip LSS BUNL 9 RSN RIS
p () must be given thus, otherwise § 11.1 (1) is self-contradictory. We shall assume that
p(x) and x (z, y) possess derivatives to any order at all points of the range with respect
to all the variables that they contain . . . . o . S . (2)
The process is to take z-derivatives of equa,mou§ 11.1 (1) of ordem l 1 R a.nd
then to let 2 =0, so as to get rid of all the integrals. This leaves us with a set of linear
equations connecting f(0), f'(0), f(0), f'(0) ... with known derivatives of p (z) and of
K (@, ¥)-
Taking ¢ /cz of §11.1 (1)
o 2 .
:“1' LY e () - [Uf(g/).%y—)dy Ft
Let @ = 0 then
0= BP10) 4 wiavictopey Daluum ot dnad S G

o

which gives f(0) in terms of knowns,

Taking d/cx of (3)
&*p (v of (x N | g olE®
0= Z20 1 A0 ¢ (4,0) + () 200 () [ L) ”]

o

jf(J e gy (5)

* L. F. Ricaaroson, * Phil. Trans.,” A, vol. 223, p. 363 (1923).

T By mistake the nucleus & (z, y) has been printed as kappa instead of capital K. This kappa has of
course no connection with the same letter in the Newron-BrssSEL series.

{E. T. Warrrakeg, * Roy. Soc. Proc.,” A, vol. 94, p. 367 (1918), has discussed a less general type of
nucleus, namely, x (¢ — ¥).
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In the last we have to distinguish whether x is put equal to y before or after the
differentiation. A notation like 9« (0,0)/0z is ambiguous and causes mistakes. Let
x =0 then . |

0= o*p (0) . E’f(() (0, 0) -+ £(0) {(ax (a, x)) o o (yax(p, Y) ) | (6)

[ T S |
ox? \ 10T OB ey

which with (4) determines df (0)/éz.

This process can evidently be continued without end. The results may be written
compactly if we have an operator to mean “ put z =».” Try || for this purpose, so that
if F (2, y) is any function of 2 and ¥

| bty = T R R M T S (7)

The symbol || may be pronounced * equalised.” Then if D denote o/cx

D || is not in general equivalent to || D . . . . . . . .. (8)

Provided that f means f (z) except in the integrand, (3) may now be written

0=Dp+fll«+ juf(,,) 0 e (34)

in which | is the ** wall ” of § 6.
Similarly (5) may be written

0=D2p+Df x4 f1{D |« || De} -+ jlf(y) Deedy. | .« « (bA)
0
Now operating on (5a) with D we obtain
0=D%p +D2f |||k -+ DF 12D ||k~ | Dk £ {12 || -+ D || Die - || Do}

_ + j J(y) D? wdy. (9)
0
Operating on (9) with D

0=D* + D] || k + D] {3D || x + [ D} +Df | {8D2 || « + 2D || Die + || D2}
+F{D? [+ D2 | D+ D || D2 - [| Do} + | f(3) - Dedy, (10)

an equation which would be very cumbrous if written without the aid of [.  And so on.
When z = 0 the integrals all vanish, and what is left is a set of linear equations to deter-
mine f, Df, D*f ... at = 0. They are so arranged that f(0) is determined by the first
equation ; Df(0) by the second equation and f(0) ; D?f(0) by the third equation together
with f(0) and Df(0); and in general D"f(0) by the nth equation together with the
results already extracted from the previous » — 1 equations.

It will be assumed that fis such that it can be expanded by TAyLOR’s theorem . (11)

For example, if « (z, y) = 1 4+ ¢, an unsymmetrical kernel, it may be shown in this
way that the series for f(z) begins thus

f@)=—34 -{Dp (0) + «D*p (0) Dp (0) + (l)‘p (0) =4Dp (0)) + ... J (12)
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§ 11.3. The Analogous Process in Differences.

Along a vertical line on which « (2, %) . f(y) is tabulated we seek to define a sum AX ()
which shall be a simple but good approximation, vanishing at z = 0, to

| x (@ y) - f () - dy.
For brevity let « (x, %) . f () be denoted by
YO BT SRRE ieell L (1)

Let it be granted that 0 is tabulated at equally spaced values of y and that the only
alternative is that the ends of the range 0 < y < @ may either coincide with points where
0 is tabulated or fall midway between them. In either case let X (x) be defined, when
x is positive, to be the sum of the tabular values of 6 lying within the range, plus half
of the tabular values, if any, of 0 lying at the termini of the range. When z is negative

X () is defined as above but with the opposite sign . . . . . . . . . .5 v e K2
The integral equation is replaced by
= Oi8) F- BBl @5 & e w e (3)

The Tabulation.—The choice of tabulation is important. In the diagrams let the sloping
line be z =y and let the dots indicate the points at which « (z, ) and f(y) are both
tabulated. The z-axis is horizontal.

The co-ordinate lines are # = 4 nh, y = -+ nh, where n is an integer.

At first sight fig. 3 looks harmless. X (A) involves
[ (&) and f (0) by the rule (2). X (—4%) involves f(—Ah)
and f(0). At the origin we can put @ = 0 in (3), but
as both terms of the equation then vanish we get no
Fig. 5. information. Next, by operating with 1.5, and 3,2 in
which suffix # means that y is constant we can form
two equations
0= 1,3,p(0) + 3,2 (0),

- . . 1)282)0_!‘8220,

but these involve three unknowns f(— &), f(0), f ()
and so are insoluble. The next pair of alternating
differences ¢, 8% and d,;' would bring in two more
= unknowns f(—2h) and f(2h) ; and so on for higher
pairs. Thus the tabulation of fig. 3 produces an
indeterminate problem and must be rejected. We
have already met unworkable tabulations in § 2.

 / The above difficulty is avoided by the tabulation
of fig. 4, for with this, if we act on equation (3)
separately with u, and 3, we obtain two equations sufficient to determine f (k)
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and f(—3h) which are the only unknowns. Next p3,2 and 32 of (3) determine

f(3h) and f(— 3A), and so on, in pairs without end. But = (14) then depends on « at one

end only of the range of integration. This is an ill-balanced arrangement, likely to
produce error. Indeed, an investigation which would occupy two pages, shows that the
limit of 2718¢ as h - 0 is at the origin {Dp |D ||« — 1D%p ||| «} (|| )72 This does not
agree with Df, which according to § 11.2 (34, 54), is at the origin

Dp| O [« + D) —D2p || 6} ([l 2.

So if we were to use the tabulation of fig. 4, then the limit of ¢ as % - 0 would not be
a solution of the given integral equation.

A tabulation which avoids both the indeterminancy of fig. 3 and the wrong limit of fig. 4
is shown in fig. 5. It was used by the present writer in connection with * Spheres shot
upwards ¥ and will now be examined more critically.

The specialising operator.—In § 11.2 (8) we have begun to use an algebra which is in
part non-commutative. It is desirable for consistency that the symbols for all operations
should be written down in the sequence in which the operations are to be performed ;
or else in the reverse sequence, which happens to be customary; but not in a
mixture of the two sequences. Now such a mixture occurs if Df () be used to denote
the value of Df () when # = a. It should be (a) Df, or to make it more distinct we can
use a special bracket, writing [¢] Df. Here [a¢] means “putz =a.” . . . . . o ()
It may be called a “ localising ™ or “ specialising ” operator.

Similarly when we have two independent variables [, b] « will mean the value of
b R o T P S e SR L — (5)

With the aid of this new operator it is possible to avoid ambiguity.

On the same scheme we might use [z, z] to mean “ put y =2 But || is easier to write,
to read and to print and will be used instead.

The definitions of . and § now appear thus, where 0 is any function of

[]p0 =3[z+ 3]0 +3[=z—3A]0. . . . . . . . .. (6)
[]30 =[z-}3A)0 —[2—3A]0 . . ... ... .. (7)

Halving the second of the equations and adding, we obtain the advancing operator (p.--18)
in the relation

(] (e +38) 0 =[x} 3A]6. . . . . . N T (8)
And by subtraction the retarding operator p—348 thus

(e £ P U I S (9)

* “ Phil. Trans.,” A, vol. 223, p. 361 (1923).
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Formation of the sum £ (x).—Let the numerical values of 0 (z,%) be A, B, C, ... a, b, ¢ ...
arranged as in fig. 6.

e

Then in accordance with (2) we replace j 0 (z, y) dy by hX where, for example, at z = 3k
[

we have ¥ =D -+ E 4 F simply. We are con-

7 cerned only with means and differences in the
/ a-irection so that p. and 8 may be used to denote
these, without needing x as a suffix. Let us
o form in turn p.3, 8%, u8%, 8 ... of L at z = 0.
A B D The first pair p.8 and 3*—[0] 3% = 1 (A + «)
d b the plus sign oceurring because the termini of
integration cross one another at the origin. Now
o by (8) and (9)
: A= [h, 1410 = [4h, 18] (s -+ 43)
And
Pig. 6. a=[—h, —3h] 0 =[—3h, — 3h] (. — 33) 0.
Hence
A-ta= {[3h, 3h] 4+ [— 3b, — LR]} 00 + % {[3h, 1R] —[— 34, — 3R]} 0.
Therefore
[0] w3 =[0] {w || w6 +- 33 || 30}. (10)

Next for the second difference in like manner
[0]9¥E =A —a=[0]{5]| w0+ wl86}. . ...... (11)

Now 6 = ¢ (%) . k (x, ») in the ordinary notation ; and ¢ () behaves as a eonstant relative

to p and 3, that is to say
08 == Sl |vpieg e 5 Vo s g - D, (12)

180 = (@) I8k . o v v v v oot . (13)

We may now write ¢ simply for ¢ (z).
Next by the rules of § 6 for differencing and averaging products

pllpd=réullexc+ 236 |8]pe, . . . . . . .. (14)
Swd=pd |8 | we+ ddlullus .. ..... (15)
pl80 =pélullde+336]8 8k .. ..... (16)
51130 = u |83kt SPPullde .o .. (17)

Thus the *“ sum-equation ” (3) yields for the first difference
0 =[0] wd3h™p +-[O] {up | (v [| wre - 43 || 3k) +- 3¢ | (3 || e + w2 || 3K) }. . (18)
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Again, for the second difference, the sum equation yields
0=[0]3h2p + A7 [0] {wd I (3| i+ @ [| 3k) + 3¢ | (|| wre +-}5[[3x) }. . (19)

For insertion in the NEwToN-BESSEL series § 7 (7) we need p.¢ and 3¢ separately. They
are obtained from the pair of equations (18), (19) just as in the marching problem the
differences are in general found in pairs (§ 9.3).

b} 232

[0] o =[0] —& b pIAE}%Z]Las GECTRED b, ot oaven s (20)
== A -2
| [0] A3 = [0] L3P pAlaB_ yf:]};? i 1 (21)
in which
) Y S T e e A (22)
3 |

B:}—"“[J.K-r'p.”zk ........... (23)

The limits of p¢ and 2'8¢ when A — 0 are accordingly

[0] ¢ =[0] =2 “

(0] D¢ = oy 221D e ] f).f‘f =L | (25)

The infinitesimal calculus gives, in the analogous problem, equations §11.2 (34, 54),
which, on being solved for [0]f and [0] Df, become identical with (24) and (25) provided
that f= Limit ¢ as we should expect. It is here that the tabulation of fig. 5 succeeds,

h=0
while that of fig. 4 fails.

As with differential equations, we have next to make & fully explicit in (20), (21), (22),
(23) by expressing the means and differences of the known functions p and « in terms of
their derivatives by the aid of the series of §8. For p it suffices to refer to §8 (3, 4).
The case of x is complicated by ||. We have by §8 (1, 2) or SHEPPARD’S expansions of
them

LD e BD b )ik oo e (26)
%K=D(1 T TN T A U S 27)
Thus
|pe=|x+ 3 A2 || D2+ g || Déc+... . . . . . .. (28)
1357 e =D+ A B[ Do - 1 BID R A ee o e oo e (29)

VOL. CCXXVI.—A. 3 A
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And then, by putting || px in the place of x in (26),
w | pe = || 3 B2 [| D2+ g B | Dt A .
4+ 3 A2D ||k 4 g BD? || D2k - ...
s o Dl | e (30)

in which % is fully explicit as far as A*. In like manner Sh7|| 8h~" k, 87| pk,
v || 8%~k can be obtained, and so k& made fully explicit in the first two terms of the
NEwToN-BESSEL series. It is seen that only even powers of h occur. Also when p and
« are specified we have the formule ready to settle how small & must be, for these terms.
The higher pairs of terms can be treated similarly. For instance, referring to Fig. 6
on p. 346, '
[0]p»¥E =3 (B+C)—A—a+3(d+o
[0]8S = (B +C) —4A+4a—(b+0¢)

Now all the values A, B, C, a, b, ¢ can be transferred to the sloping line, # = y by means
of the advancing and retarding operators. When on the sloping line, values can be
expressed by the operator ||, and so can be brought into comparison with the corresponding
terms in the infinitesimal calculus of §9.1.

§ 12. SUMMARY AND ABSTRACT.

(1) This is an investigation of the validity of an arithmetical process, here called the
“ I2-extrapolation,” which has previously been used for solving differential and integral
equations. We obtain by arithmetic, often easily, ¢ (@, &) the solution of the analogous
problem in centered differences, made with step 2 = 8z. 1If it is possible to expand thus

¢ (z, b) = f () + kf; (@) + B*fs (2) + B*fs (2) +RYf, () ... to inf,,

then f () the limit of ¢ (z, k) as & - 0 is usually the desired solution of the problem in the
infinitesimal calculus. Now if the function f;, vanishes, and if further 4 can be made so
small that 42f,() is much larger than the sum to infinity of the higher terms of the series,
then after solving the difference-problem for two unequal steps &, A,, the unknown
fa (2) can be eliminated and f(z) found. This elimination is called the “ A*-extrapola-
tion.”

(2) The method of investigating its validity is to obtain ¢ (x, &) as a fully explicit
function of A. This is done by a study of the properties of the difference-operator 8
and of SHEPPARD’s averaging operator p, combined with the NEwroN-StTirRLING and
NewToN-BrsseL expansions in differences of ¢. There is a general resemblance to corre-
sponding operations in the infinitesimal calculus, but also a number of remarkable
contrasts, see, for example, § 9.4.4,
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(8) A particular arrangement of the arithmetic, which fits with the properties of p
and 8 is used throughout. See §2, §11.3.

(4) The investigation is restricted, except in §4.1, to functions f(») which can be ex-
panded by TavLor’s theorem.

(5) The definition of ¢ (z, &) is extended by interpolation in § 7 so as to make ¢ (z, &)
a continuous function of z, to which an A*-extrapolation can be applied at any value of .

(6) No exceptions have been found to the rule that odd powers of & are absent from
the expansion of ¢ (z, k).

(7) General methods for finding how small A must be, in ordér to make the A*-extra-
polation valid, have been indicated, and have been applied in detail to some simple
examples in §8, §9.4, §10, §11.

(8) In §4.1 and § 10 cases have been found in which it is not possible to choose A small
enough to make an A*-extrapolation valid for f(«), but this occurred only where f ()
became indeterminate. Some of the branches of the function in § 9.4.4 become more
divergent as & decreases.

(9) But it is not in general possible to fix A so that an A*-extrapolation may remain
valid for d"f (#)/da* as n - ». This remark applies both when f(z) is a given function
as in § 8, and when f(z) is the solution of a differential equation asin § 7, § 9.

(10) Isolated discontinuities are less inconvenient than frills (§ 4.2).

(11) In order to prevent ambiguity some new operators have been introduced in § 6,
§11. One of them is useful in solving integral equations by the infinitesimal calculus
and a non-commutative algebra.

(12) The laborious expansions in p and 8 of the present paper are not intended for
obtaining numerical results, but only for testing the validity of results obtained by
arithmetic in the simple way illustrated in § 3.

§13. PrAcEs WHERE RECURRING SYMBOLS ARE DEFINED.

z, Iy, [, 8§15 8, 0,825 G,§52; |, §65 1k kLo, §75 D, §85 ¢, §9.25 « (|, [0],
[a, b], § 11.

3 A2
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Part 11.—Interpenetrating Lattices.
By J. A. Gaunr, B.4., Scholar of Trinity College, Cambridge.
(Communicated by L. F. Ricnarpson, F.R.S.)
(Received November 6, 1926—Read January 20, 1927.)

1. INTRODUCTION,

This paper is supplementary to a paper by L. F. RicHARDSON,* in which he describes
arithmetical methods of solving differential equations by means of centred differences.
It will be best to explain one of these methods by an example.

We will take the simple differential equation, %Z = —y, with y =1 at =0, and find

the value of y at = 1. The interval (0=z=1) is divided into a number of equal steps,
say 10, and the following table calculated :—

z. Y. 0-2 d_y Error.
dz
0-0 100000 000000
0-1 0-90499 —0-18100 0-00015
0-2 0-81900 —0-16380 0-00027
0-3 0-74119 —0-14824 0-00037
0-4 0-67076 —0-13415 0-00044
0-5 0-60704 —0-12141 0-00051
0:6 0-54935 —0-10987 0-00054
0-7 0-49717 —0-09943 0-00058
0-8 0-44992 —0-08998 0-00059
0:9 0-40719 —0-08144 ' 0-00062
1-0 0+36848 000060

The method of obtaining the value of y at = 0-1 will be discussed later (§§ 7 and 9).

For the next step, we replace dy/dz in the differential equation by Z (0.23 ; y(©) , and

consider this value to hold at # = 0-1, the centre of the interval (0 =z=0-2). Note that
it is essential always to use centred differences. Our equation then gives : 7 (0-2) =  (0)
—0-2y(0-1). The second term on the right-hand side is tabulated in the third column,
opposite z = 0-1, and added to the value of y at = 0, to give the value of y at = 0-2.
This process is continued, until # = 1 is reached. This type of solution, in which each
value of y is obtained from the value two steps back, used to be called the *“ step-over
method ; but lately Dr. RicHARDSON has named it “ the method of the interpenetrating
lattices ”* (see Part I § 2).

* L. F. Ricaarpson, ‘ Phil. Trans.,,’ A, vol. 210, pp. 307 to 357. See also a summary in the * Mathe-
matical Gazette,” July, 1925, pp. 415 to 421.
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The difference between our approximate solution and the correct result, viz., y = e7%,
is tabulated in the last column. The errors would have been greater if we had not centered
our differences. Still greater accuracy, however, can be achieved if we can assume that
the approximate solution has the form

s T o R

where A is the length of the step. We calculate the value of y at # = 1, using steps of
twice the length, obtaining 0-37029. The error of this result should be four times the
error of the original result, if the terms of (1.0) decrease rapidly in importance.

Thus the value with large stepswas . . . . . . . ... ... 0-37029
the value with small stepswas . . . . . . . ... ... .. 0-36848
The difference 0-00181

should be three times the error with small steps, which is therefore  0-00060

and the corrected valueis . . . . . . . . . . . . . ... . 0-36788

This is accurate to five places of decimals.

There are two outstanding questions which this paper tries to answer. First, how is
the table to be started ? Secondly, can the approximate solution be expanded in a
power series in A, with odd powers missing, as in (1.0) ? In other words: how should
we take the first step ? and, is our final correction justified ?

We shall assume that an expansion in powers of 4 is possible, and prove that the odd
powers do not appear, and that the first step must be taken in a definite manner. §§ 2
to 8 give the detailed analysis for ordinary differential equations. §9 contains two
examples. §10 gives an outline of the work for simultaneous differential equations
and an example. In each case the method of solution is that of the interpenetrating
lattices, which has just been explained.

2. Tue RANGE- AND DIFFERENCE-EQUATIONS.

We will consider an ordinary differential equation in two variables, resolved with
respect to the highest derivative which appears :

d'l . d (lll_ll
#:B(m,y,%,...#), (2.0)
with initial conditions :
@-_?./ d__nln‘l? ol 7=10 2
Y, p LR ] are given as x = 0, (.,.1)

We suppose that F is differentiable, to an order which will be specified later (§ 8).
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Owing to the presence of F?{’ this equation is best solved by the interpenetrating
T

lattices.* The functions in the various columns of the table, headed by ¥, dy/dz,
d*y/dx?, ...d"y/ds", are only approximations. We will denote them by f; (),
fi(@),... fu(x), respectively. fo; fi, ... fa, may be called the approximate solution
and its difference ratios. They depend on the parameter & as well as @, and are defined
only at those points where z/h is an integer.

The rules for making the table are expressed mathematically by the following equa-
tions and conditions :

fialp+1h)—f_(p—1h) =2hf.(ph) (s=1,2, ... n; pisapositive integer). (2.2)
Gi=PAE fos Posss e )= % =5 u v i v (2i)

At =0: f,, fi, ... f,_, have the initial values of

dy d* 'y
9, 70 S A T SR (2.4)

At e=h: fy, fi, ... f,_, have values to be settled later, when we consider the first step
(§7).

(2.2) will be referred to as the “ difference-equation,” and (2.8) as the ““ range-equation.”

3. THE PROBLEM.

We propose to find necessary conditions that
¥ 5 he .. B3 ... Bt .
Jo (@) = 4, @) + by, (@) + 575, @)+ 258, @) + 5 {7, @) + <, (@, B)} (3.0)

for s =0, 1, ... n, where y,, 4,, #,, ¥, ¥, are independent of A, and differentiable to an
order to be specified later (§8) ; and, as % ~0, ¢, (%, k) >0 uniformly in 2.

In other words, we shall see under what conditions the approximations to y and its
derivatives can be expanded in power series in A, with remainders ; and we shall deter-
mine the coefficients in the expansion. In practice, ¢, would be the exact solution of the
problem ; and some knowledge of the size of 7,, ,, etc., would give an estimate of the
accuracy of our approximation.

To shorten the lengthy expressions which follow, dashes and upper suffixes will be
used to denote differentiation with respect to 2. Thus

T :%. lv__@_‘z,.
yl—dx’ y,:d‘v‘, y :dxn-

* The single lattice can be used ; but it involves, at each line of the table, the solution of a pair of
simultaneous equations, one of which is not in general linear (¢f. Part I § 9.3 and § 9.4.4).
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Also for partial differential coefficients we shall use :

il

te.
oy, oy, i

= F. =

4, SUBSTITUTION IN THE DIFFERENCE-FQUATION.
By (2.2)

2hf. (ph) =fer(p+18) —firs(p—1h) (s=1..m,p=1,2, ...).
Substitute from (3.0) :

Oh[y (oB) + Bite (pB) + = 5 (o) -+ 2 5 (o) + 2 (s (0B + <, (9, B}
20| Ys « (1 519 3!1-12) 1119 (Ph) + <, (ph, h
=[Y%a(Pp+18) — Yos(p — LB)] -+ B[ge-r(p + 1 k) — Your (p — 1 )]

o — . — Bl e e
T o1l P+ 1h) — Joa(p — 1 )]+ % (Yo (P41 ) = Yor (p — 1 4)]

4’&—!['3]._,(}) +1h) — Yuur(p —1B) +escr(p + 1 by B) — cor(p — 1 B, B)].

. }-

In order to make the arguments of most of the functions the same on both sides of the

equation, expand the right-hand side by TavLor’s theorem, at the point z = ph, with
remainders after terms in A, It becomes .

.‘)[k’ (h_ ha e k E ’}
2[hy's-1 (ph) F3Y" e (P) + 15 -1 (PR, )]

2B e () 2 45 () -+ s (9, W)}

202 ) 2,
57 % (A s (ph) *I—Z)L! Hemr (phy B)]

2h8 . ...,
i 3‘!" {Y's=1 (ph) + or (ph, B)}

ht .. —_— S
F il P B) b e T LB B) — s p— 1, B)] . . . (4.0)

where 1,y (@, &), -y (2, k), G-+ (2, B), Ny (@, k), 75 (2, h), all = 0 as b~ 0 for fixed z.

Coefficients of the same powers of & on the two sides of the equation are now equal.
For, dividing by A and making 4 -0 (keeping ph constant) we see that the coefficients
of h are equal, as all the other terms -~ 0. So for the coefficients of %2, /2, A*, and finally
the odds and ends. (The fact that the <’s are evaluated at p & 1k, and not at ph, presents
no difficulty, since the ¢’s - 0 uniformly.)
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By equating coefficients we obtain the following equations :

’ @
ys:ys—l
- J',,f FEE S R e (4.1)
?/ = a—1 1 ys 1
y S ?/ =1 }— Jr 1 J
Transforming slightly :
J.c B=== % {
ya U= J
7 g =1 1) R T~ = 4.2
1/*-1 -—./n_ &7/ . ( ) ( )
Yir=9%—9" |

5. SUBSTITUTION IN THE RANGE-EQUATION.

By (2.3) =T @ fo for o o

Expand by TavLor’s theorem at the point (z, y,, #;, ..« #._1), Which is independent
of A:
i n—1 . 1 n:l n-—‘l
f =K _I“ > 11y (f'_?/d) +2_g 32:"0 ‘3‘0 Fu-y: (fl e y’) (f‘ 3 yf)
1 =1 n=1 n-—-1 a
+ 3—' .EU ‘§0 u§u (]jy.y.y. + ")atu) (fn Y] yl) f = Jt (f Ju . (50)
where
Naw > 0 88 f; — y,, ete. > 0; v.e., as b~ 0.

Substitute for f, — y, from (3.0) and equate coefficients of A°, A, k2, k3, as in the last
section.

Yo =T )
n—1
?'/"= p) Fy.?]:
8=0
e n—=1 n—1
Yn :azoFy?' —F f:‘u 'Z BVVIJ'?/‘ e e (5.')
n=1 n—-1 n—1
Y :-}o Fuy + & %‘ : Ry (sdge -+ 4.90)
n—1 n=1 n-1
+Z X X Fvvm Yl
§=0 t=0u=0 J

where F, F,, etc., are evaluated at (z, y,, #1, s #0)-
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6. DETERMINATION OF ¥,, #,, s ¥,

(4.2) and (5.1) are differential equations in the unknown functions of (3.0). Also we
know their initial values at # = 0. For by (2.4), with (2.0) and (2.3),

f=4® atz=0 (6=0,1,...n).

Substitute in (3.0) and “ equate coefficients > as hefore':

AMz=0:
1= (s)
{‘ y ‘l(S — 0, 1, one ’)?:) (iL‘ — ()) [ ¢ (“.“)
g ===y =0
By (4.2), for any « :
y‘ = ?/',_1 — yll.'_2 i, yo(s).

Therefore by (5.1)
Y™ = F (%, Yo, Yo --- Yo" 7).

This is our original differential equation (2.0). The initial conditions are the same, by

(6.0). Therefore
o= =00 e=0,0,..cM). . s ownown (61)

The equations in #,’s, and their initial conditions evidently have the solution
== S o e s U e (6.8)

and the form of the equations is such that the solution is unique.*
The same now applies to #,’s :

g SO B IS A R s e s (838)

On substituting in (4.2) for y, by (6.1), and in (5.1) for 7, by (6.2), and by using the
initial condition (6.0), ¥, can be determined.

7. Tae First STEP.

In the solution of differential equations by interpenetrating lattices, it is generally
difficult to see a priori how to take the first step. Various empirical suggestions have
beenmade, such as the ““ algebraic first step,”” and the use of smaller steps at the beginning.
Our work so far, however, has been independent of any explicit method of taking the
first step. Yet it has sufficed to determine most of the functions on the right-hand
side of (3.0). This equation, if it is to hold for all (sufficiently small) @, determines the
way in which the first step must be taken ; for we have only to put z = A, to obtain f, (%).

*Bee Cu. J. pE 1A VaLnge Poussiy, ‘Cours d’Analyse Infinitésimale,” tome II, chap. 5, § 4
(bth edition).

T L. F. RicrArDsON, ‘ Mathematical Gazette,” July, 1925, pp. 417 to 418 ; also * Weather Prediction by
Numerical Process,” Camb. Univ. Press, chap. 7/2.

VOL, CCXXVI.—A. 3B
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The expression found for f, () can be put in the form of a power series in A, with a
remainder after the term in A4'. This remainder is indeterminate, because ¢, is indeter-
minate, and for convenience it may be chosen equal to zero. It is not necessary, however,
that the remainder should vanish.

We must first evaluate various functions at z = 0.

By (6.1) ¥, =y, Y t=yi, et (6=0,1,...m)

By (6.0) 9, =0ate=0, (8=0,1, ... n)
BY (42) ?],5 = ?].v+l it :]x?/”a+1 (S: O! 1’ e N — l)
— 3yt¥ at . =0. (8=0,1, ... 0 —1)
By (4'2) ?]’,.~ = ylnl E ?;?/”'”1 (S =0,1,..n— l)
= — 3y at 2 = 0. (8=0,1, .. . —2)

By (6.0) y, =0atx =0, (=0, 1, ... n).

Putting  — 4 in (3.0), and using (6.2) and (6.3) :

10 = .00 + 2. -+ B, )+ e, 1),

Therefore for s =0, 1, ... n — 2, by TAYLOR’S expansion

f (k) A ‘s)( ) }_ kJ(s-H) (0) h. (:+9> (0) + (x+3) (0) + { (s+4) (0) + 8
FEi[0 b 1@ + B g0 + 53 |+ K (54 i,

where 8, 3,,3,, > 0 as &> 0. Therefore

hﬂ

1.0 =420 + by o) + 2 "

43 (0) — §y(a+l) (0) (=0, L, ...t —2) (7.0)
if we choose ¢, (b, &) = — 5, — 63, — 5.,

For s = n — 1, we require 3", _, (0).
By (4.2) and (5.1)

Therefore at z — 0

b wi=1
?/II"_1 — :]s.y('l"'m + 2—:0Fy. ( s = %y(""s)).
Expanding as before : 5

Fues (B) = 39 (0) + iy (0) + L yo0 0) —

if we choose

h4

21 1 O +2S Ry )], (1)

=1 (k, h) = =8y == 6.8.,.—1 —"8“,._1.
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By the analysis of § 5, f, (%) is given, to the same order, by equation (2.3).

Equations (7.0) and (7.1) are important ; they differ from all the empirical rules men-
tioned above. Their application is not so complicated as might appear at first sight.
(See the example of § 9.)

8. PRECISE ASSUMPTIONS AS TO DIFFERENTIABILITY.

On looking through the work up to this point, it will be seen that we have assumed that

F is 3 times differentiable with respect to %y, 4, ... %, (§5)
Fy' 18 once % o g (=0,1,...0—1) (§7)
Y, 18 4 times = - x (§4)
Y, 18 3 times e - T e (§4)
y, 18 twice » 3 & e (§4)
Y, s once 3 ) x (§4)
also that ¥, is continuous inz  (s=10,1,...n — 1) (§ 4).
9. EXAMPLES.

(1) %:—y; y =1 when z =0.

This is the example of § 1. By comparison with (2.0), n =1 and F = — 4.

(7.0) does not apply.

(7.1) requires the valuesof y, %', ", ' and y" at & =0 ; y=1isgiven; y' =—y=—1,
by the differential equation.

Differentiating : ¥ = —y" = 1.

Similarly, "' = —1, y"=1.

Also F, = — 1.
Therefore

1
fo (k) =1 —h+gf— %[14-2( 1= 3]
Putting &= 0-1 we obtain 0-90499 to five places.

It is interesting to compare the results of §1, in which the above value is used for y
at = 0-1, with a similar solution using an incorrect first step. Suppose we take at
2 =0-1 the correct analytical value for y, in violation of equation (7.1). We might
expect greater accuracy, but the actual errors are as follows :—

N SR e TR - T 0:0° 01 02 03 04 06 06 07 0:8 09 10
Eerorh 100 L s 0 0 30 21 50 34 64 39 72 40 78
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The error is seen to oscillate, and is greater than that in § 1 at alternate points. The
result at 2 =1 is 4 =0-36866 ; the similar result, using steps of double the length, is
y = 0-36868. The method of approximation explained in §1 gives a corrected result
y =0-36865. The final error is 10=° X 77, as compared with zero in § 1.

(i1) 2—2% — y% =0; ate =0, y = — 109262, y' = 2-5969.
L ?

In this case n =2; F = yy/’.
fo (h) is determined by (7.0) ; f; (k) by (7.1).

We require various derivatives of y at = 0 (some of them only roughly)

y” = yy’ — — 92:838
y' =y’ +y* = 9845
y' =3yy" + yy" = — 32-87
y' =8y +ayy” +yyt = 162

Also
F, =y = 2-5969
F,=y — — 1-09262

Suppose we take & = 0-05, and substitute in

S

2
fo (/&) = y _:,_ ky’ + gi_ yl! - -8_ Y
2 4
fl (]") — ,"/’ - hy” - % y”’ — ;‘z[yv +2 (Fyym i F”ry")],

which are (7.0) and (7.1).
We obtain at # =0-05, f, =— 0-96629, f; = 2-4672.

We enter these in our table under y and dy/dz, and proceed happily ever after. In
the last column of the table is entered the difference between the approximate solution,
and the analytical solution, viz., y = 2 tan (z — }).

. Y. dy/dz. d%y[dz®. Error x 10°.
0-00 —1-09262 2-5969 —2-838 0
0-05 —0-96629 2:4672 —2-384 —17
0-10 —0-84590 2-3585 —1-995 —32
0-15 —0-73044 22677 —1-656 —38
0-20 —0-61913 2-1929 —1-358 —49
0-25 —0-51115 2-1319 —A47
0-30 —0-40594 —b4
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The value of y at 2= 0-3, using steps of double the length, is — 0-40729. The
corrected result is — 0-:40549, with an error of — 10~° X 9.
10. SIMULTANEOUS DIFFERENTIAL KQUATIONS.

Let ¢ be the independent variable ; #, ¥, z, ... dependent variables.
Resolve the equations with respect to the highest derivatives

e R L C T S e SR
g =8 r . o N G G T ) Sl ety (10.0)
ete.

where dashes and upper suffixes denote differentiation with respect to .

Use the interpenetrating lattices. Let f;, fi, ... , be the approximations to z, 2/, ... ;
Gos G915 +++ 5 0 4, ¥'5 ... ; and so on.

The difference-equations are (compare (2.2) )

fi@+10)—f,_.(p—10) =2hf,(ph) (s=1,2,...m)
(P18 —g.(p—1h) = 2hg,(ph) (s=1,2,...m) . . . .(10.1)
ete.
and the range-equations (compare (2.3) )
So=F(; for frs o fam13 Gos G15 o0 Gners +0)
=SOM N Sl R R G Rl Bt (10.2)

ete.

We assume (compare (3.0) )

a0 BE S o Rt gl il
f‘_l"+g3‘_!'l"+4—! .4 ... (8=0,1, ... m)
W Pl L R R R TR 10.3
(]«,=f/s‘l“‘2L!?/n‘1F4L!yw ‘_ ('SZO! l’ . ”) > ( )
ete. J
The analysis of § 4 holds good.
=T v =8 —~$3 (3=1,2; «.. m)

i =i Her =i =30 s Qe ) 3 v s, /(104)
ete. f
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By the method of § 5 I ’
& =P vt N :1;,,—}— E F”y,—}-,,,
=1
m—1
y" —_— (}; ?]n — s‘ G.r'a‘ + z G ‘?/ —_{ }- - . . . . . . (10.5)
ete. i

(If odd powers of & had been inserted in (10.3) their coefficients would have disappeared
exactly as in § 6.)
The analysis leading up to (7.0) holds good.
FB) =@ ey L e Wpeo (50,1, ... m—9) ]

2 8

(’I;) (‘) ! hJ(r.+l)+ J(H,g, ht

— gy(”"” (8=0,1, <..om —2) (10.6)
ete.

—

Finally, corresponding to (7.1)

2 ] m—1 n—1 =~
— lm=1) m) 1 ]_I*, A1) 4 (m+l) > (5443) (s+3)_[_
Sy (B) = 2™V 4 ho™ T 4 +2; F.z +22Fy o

2 4 m—1 n—1 =
T (h) e y(n—l) + ky(n) +%y(1a+1) = %[y(;«+:z) +2 > G“_':»L,(s-c-a) + 1oy Gﬂly(s+3)_f_“_]
Jo. §=0 §=0
ete. J
(10.7)
Ezample*— o
¥=—aVeEtypr—1;y=—yvar+ep ...... (108)

At =0, suppose z =0, y =1

Then by successive differentiation of (10.8) we have at ¢ =0

o= 1 Y = 1

7! — 1 Y = 2

gh=—3 y'=— 1

2= 15 yr = 29

F,=—1 F, = 0

= ) O G, =— 2

Substituting in (10.7), we get formulee for the first step

fW=o—n+2-Lusr2-n3+0 ]
g =1—h+% .‘>——[09+0+0(—0) =%

* Taken from L. F. Ricaarpson, “ Theory of the Measurement of the Wind by Shooting Spheres
Upward,” * Phil. Trans.,” A, vol. 223, p. 376, equations (6) and (7).
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If, for instance, we choose a step of length 0-1, we have

£(0-1) = —0-0951 ’\

7(0-1) =  0-9098 |

11. SUMMARY.

We have been considering the arithmetical solution, by means of centred differences,
of a certain class of differential equation. (Marching problems.)*

Assuming that the approximate solution can be expanded in powers of the length of
the step (with a remainder after the fourth power), and that the coefficients in the
expansion are conveniently differentiable (§ 8), we have shown that the odd powers must
be absent ( (6.2) and (6.3) ). This is the basis of a useful method of diminishing the
error (§1), named in Part I the A*extrapolation.

It is necessary, however, for the existence of such an expansion that the first step shall
be taken in accordance with certain formule ( (7.0), (7.1), (10.6), (10.7) ). Strictly speak-
ing, these formule may be varied by adding to the right-hand side any term that -0
more rapidly than A* (§ 7).

We may say that they are necessary “ to the order of 74'.”” If they are violated,
either the expansion in powers of / is impossible, or the coefficients are not differentiable
as in § 8 and their behaviour may be inconvenient. In practice, it is often found that if
the solution is started wrongly, the error oscillates with increasing violence (see §9,
example (i) ).

Incidentally, we have found equations determining the coefficients 7, in the expansion.
(§ 6, (10.4), (10.5) ). It will often be possible to form from them an estimate of the size
of these coefficients, and hence of the error of the solution.

There would be no essential difficulty in extending the expansion beyond the fourth
power of A ; but such a refinement would have little practical value.

The rules for taking the first step in the two types of solution are :—

Simple Differential Equation : Interpenetrating Lattices—(7.0) and (7.1).

Simultaneous Differential Equations: Interpenetrating Lattices—(10.6) and
(10.7).

My thanks are due to Dr. RicmarpsoN for inspiration, encouragement and advice,

*See Part 1, §1.




