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THE DEGREE OF A SEVERI VARIETY 

ZIV RAN 

Consider the curves of some fixed degree d in the complex projective plane 
P 2 . These are parametrized by a projective space P^, projectivization of the 
vector space of homogeneous polynomials of degree d in three variables. By 
a Severi variety we mean either the (locally closed) algebraic subset of Pd 
corresponding to curves with a fixed number of nodes (i.e., points where the 
curve has two transverse smooth branches) and no other singularities, or the 
subset of the latter corresponding to irreducible curves. These varieties have 
received considerable attention since they were introduced by Enriques [1] 
and Severi [7]. For an expository account, see [2] or [5]. For instance the 
famous Severi problem, recently solved by Harris [3], is to prove the former 
authors' claim that a Severi variety parametrizing irreducible curves is itself 
irreducible. 

With the Severi problem now out of the way, the time seems ripe to begin 
asking some finer questions about the Severi varieties. One such question 
is: what is the degree, in F^, of a Severi variety? The purpose of this an
nouncement is to give a recursive procedure for answering this question. This 
procedure involves, even in its statement, a generalization of the Severi vari
eties to varieties of nodal curves on the blowup P 2 of P 2 at a point. We give 
a formula (see Theorem 2) for the degree of a generalized Severi variety for 
curves of given "type" (d, e), 0 < e < d — 2, and given number of nodes in 
terms of degrees of similar varieties for curves of various types (d', e') where 
e' > e or d' < d. Since the degree of a generalized Severi variety for curves of 
type (d,d — 1) is easily computed, this gives an effective procedure for com
puting the degree of any generalized Severi variety. Among the generalized 
Severi varieties, the "ordinary" ones are those for type (d, 0). Thus even if one 
only cares about the latter, he is led by the above procedure to the former. 

1. Setup. Let b: P 2 —• P 2 denote the blowing up of a point, with excep
tional divisor E, and for integers d > e > 0 let Ld,e denote the line bundle 
b*0(d){-eE) onP 2 . For 

(respectively, 

o< g < ( < *- 1 ) ( r f - 2 ) -^^) , 
denote by Vd'9>e (resp. V(d, #, e)) the (locally closed) subset of the complete 
linear system \Ld,e\ consisting of (possibly reducible) (resp. irreducible) nodal 
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curves of (geometric) genus g (or equivalently, with 6 nodes, 

6 = ( d - l ) ( d - 2 ) _ e(e - 1) _ 
z z 

note that the genus of a reducible curve is defined by the formula g{\J1Ci) = 
T,g{Ci) - k + 1. It is easily seen (cf. [4]) that Vd>g>e and V{d,g,e) are both 
nonempty, nonsingular and purely of dimension 3d + g — e — 1. The following 
result can be proved with a slight modification in the methods of [4]. 

THEOREM 1. V(d,g,e) is irreducible. 

Note that Vd,9>6 consists of V(d, g, e) plus other components which are the 
various products (in general, mixed cartesian-symmetric) of other 
V(d', g', e')'s corresponding to the ways a curve may split up. 

We now fix some notation and terminology concerning partitions. For 
us, a partition TT is given by a sequence of nonnegative integers (wi,..., iun), 
determined up to affixing a tail of zeros. A divisor on a smooth curve is of type 
TT if it has the form J27=i 2 7 = l Z A?' ^or s o m e distinct points P^. The weight 
of 7T is |7r| = J2^wi a n d the length is (TT) = J2wii ^so P u t M = M — (TT), 
(TT\ = w\. The notions of (vector) sum TT+TT', domination TT < TT' and difference 
TT' — TT (if TT < TT') are defined in the obvious way. If TT = ( w i , . . . ,wn) < 
TT' = (w[, ...,w'n), put (^.) = EI CO- Define a function F on partitions by 

F(ir) = l\iWi. Finally put JV(TT) = ( „ J . ^ J I I ^ S a n d n o t e t h a t t h i s i s t h e 

degree of the variety of divisors of type TT on P 1 . 
2. F o r m u l a . For (d, #, e) as in §1, we denote by A(d, #, e) (resp. A*(d, #, e)) 

the degree of Vd '0 'e (resp. V(d, #,e)) in the projective space |Ld,e|; oth
erwise set A(d, 0, e) or A*(d, #, e) to equal 0. More generally, denote by 
A(d, #, e,7rv,7T/,7rv,7r^) the degree of the locus of curves C in y d ' 0 ' e whose 
intersection with some fixed general line L (resp. the exceptional divisor E) 
consists of some fixed divisor of type 717 (resp. TT?) plus a variable divisor of 
type TTV (resp. 7rv), all supported at smooth points of C. Here \TTV + TT/1 = d, 
\TTV + 7pf I = e. Finally, define A u (d , #, e, 7r v , . . . , 7r^) analogously to A except 
that the curves are assumed not to contain any ruling. The following theorem 
yields a recursive procedure for computing all these functions. 

THEOREM 2. (i) We have A ( d , . . . ,7r /) = A n ( d , . . . ,TTf) = 0 unless 

and [TTV + TTV] + \nf + irf\ < 3d + g - e - 1. Also A u ( d , 0 , e , . . . ,wf) = 0 for 
g < e — d, and A*(d, gr, e) = 0 for g < 0. 

(ii) We have 

A ( d , —/l, d — 1, 7T„, . . . , 7T^) 

= v f(7r' h f< 7 r / | > i f2 d -ft _ [ 7 r » + ^ _ |îr'+ff/|>\ 
^ V rf J V r / y V h-rf-rf J 
•N(Trv-(h-rf))N(7Tv-(h-rf)); 
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here and elsewhere, a summand involving a difference ir' — TT where IT % ir' is 
taken to be zero. 

Att(d,-fc,d-l,...) = {J;(d,0,d-l,...), h = 0. 
(iii) We have 

Au{d,g,e,7rv,ir
v,7rf,irf) 

= Y (^f^ (^f^\ (3d + 9 " e " 1 " ^V + ̂  " | 7 r / + *f^\ 
\ rf ) \ r* ) \ r — rf — rf ) 

•Au(d — r, g + r, e — r, TTV — (r — rf), ir f — (r/), TTV — (r — r^), 7r̂  — (r-̂  )). 

(iv) We /iave 

AW»'e) = E^^(Bl.
B.JA^.ft.«i)-"^(di,iri,«r), 

£/ie sum being over all unordered collections (di,gi,e{), i = l , . . . , r with 
^di = d,Yl,ei = e,J2gi-r + l = g,3di + gi-ei-l = ni,n = Ylni, and 
where rrij denotes the number of times some distinct triple (dj,gj,ej) appears 
in the above collection. 

(v) Suppose e < d — 2 and g > 3 — 2d + 2e, and fix any pair of integers 
ni > d + 1, ri2 > e -f 1 tt^/i ni + n2 = 3d + g — e — 1. Then we have 

A(d,0,e,7r,,,7r/,7ru,7r/) 

=£^.+<;)(;i)(;io)(;;) 
• A(d - |*5 + ̂ U ' + |4 + 7r?|,e' - ir°v + *?, 

7TV - 7TV,7T/ - 7Ty,7Ti -f7To,7T2 + 7TQ ) 

• A(e' -1*8 W U " + ko + 4 U - K + ̂ l , 
7T2 + 7T°, 7Ti + 7T^, 1TV - 7TV - Tfg, 7Tf - 7 T £ ) , 

Me summation being subject to the restrictions e < e' < d, g' + g" = g — e' + 
Tri + 7T2 + 1, 3d + g' - e' - 1 > m + [TTI + 7rg] + |TT2 + TT£|, 3e' + #" - e - 1 > 
n2 + |TTI + 7T̂ | + [TT2 + TT§] and TTI + TT2 + TT° + ?rj + TT§ + TTJ[ = e'. 

REMARKS. 1. The hypothesis g > 3 — 2d + 2e guarantees the existence of 
at least one pair (ni,n2) as in (v). 

2. It is easy to translate the theorem into an algorithm for computing A, 
Aw, and A1: namely, first, (i), (ii) and (iii) immediately yield their values for 
e = d — 1. Next, suppose we know their values for all (do, go,eo) with do < d 
or eo > e, for some (d, g,e) with e < d—1. If g < 2 — 2d+2e (which is < e — d), 
then a combination of (i) and (iii) immediately yields the values of A and Au 

and then (iv) yields A*. If g > 3 — 2d + 2e, then (v) first yields the value of 
A, then an application of (iii) and (iv) yield the values of Au and A*. 

3. It is also straightforward to translate the theorem into a closed-form for
mula for any of the A-functions. However, such a formula would be quite com
plicated. Prom the computational viewpoint, the recursive approach seems 
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more practical. Of course, the possibility still remains that a simple, closed-
form formula exists. 

4. Example: Let f{d) = A(d, ^ ~ ^ , 0 ) . Taking m = d + 1, the above 
yields 

/(d) = A(d ,0 ,d - l ) / (d - 1) + A(d, - l , d - l)A f d - 1, ( d ~ 2 ) ( d ~ 3 ) , o ) 

+ 2A(d, 0, d - 1, (0), (0), (0), (0,1)) A(d - l , ( d ~ 2 )
2

( d ~ 3 ) , (0,1), (0), (0), (0)) 

= / ( d - l ) + 2 d - l + 4(d-2) 

= ƒ (d - 1) + 6d - 9. 

Since / ( I ) = 0, we recover the well-known result f(d) = 3(d — l) 2 . 
5. Analogous formulas may be given for other related loci of curves, such as 

those with n nodes and 1 cusp (resp. 1 tacnode, resp. 1 triple point). Details 
will be given elsewhere. 

3. Sketch of proof. Parts (i)-(iv) of Theorem 2 are trivial, and have 
been included only for the sake of completeness. The main point is part (v). 
Its proof is based on the method used in [4] to prove the irreducibility of 
V(d, g, e). Consider a 1-parameter degeneration with general fibre P 2 and 
special fibre P 2 U P 2 with P 2 D P 2 — E the exceptional divisor on P 2 and 
a line-section on P 2 , and the limit of Vd>9>e in this family, say in the sense 
of the Hilbert scheme (the method of generalized linear systems [6] provides 
another, somewhat clearer way of taking this limit, but this is not essential). 
The methods of [4] show that this limit consists of the various loci of curves 
of the form d U C2 with d e Vd>g'*e' on P?, Ci 6 Ve'>9">e on P% with 
e < e' < d, g' + g" = g - e' + t + 1, and Ci n E = C2 fl E a divisor of type TT 
smooth on Ci and C2, with g' + g" — g — e' + [ir] + 1 , this locus appearing with 
multiplicity ^(71-). For simplicity, assume TT = (0, £). The contribution of the 
latter locus to A(d, g,e) is then computed by identifying the set of ^-tuples 
on E with P* and using the Kunneth decomposition of the diagonal class on 
P* x P*. More general cases are done similarly. 
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