¡ Open access • Journal Article • DOI:10.1215/S0012-7094-71-03852-X
The degree of convergence for entire functions - Source link $[$
John R. Rice
Institutions: Purdue University
Published on: 01 Sep 1971 - Duke Mathematical Journal (Duke University Press)

Related papers:

- Approximation and interpolation of entire functions
- Interpolation and Approximation by Rational Functions in the Complex Domain
- Polynomial approximation of an entire function and generalized orders
- On the ( $\mathrm{p}, \mathrm{q}$ )-type and lower ( $\mathrm{p}, \mathrm{q}$ )-type of an entire function.
- On approximation and interpolation of entire functions with index-pair (p,q)


# Purdue University 

## Purdue e-Pubs

# The Degree of Convergence for Entire Functions 

John R. Rice<br>Purdue University, jrr@cs.purdue.edu<br>\section*{Report Number:}<br>69-036

Rice, John R., "The Degree of Convergence for Entire Functions" (1969). Department of Computer Science Technical Reports. Paper 289.
https://docs.lib.purdue.edu/cstech/289

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

## THE DEGREE OF CONVERGENCE FOR ENTIRE FUNCTIONS

by
John R. Rice
CSD TR 36
June 1969

## ABSTRACT

Consider a doint set $C$ in the complex plane whose complement $k$ is connecter and regular (i.e. K possesses a Green's function with pole at infinity). Let $A_{\infty}$ clenote the transfinite diameter of $C$. Decall tleat $d_{\infty}=l / \phi^{\prime}(\infty) \mid$ where $\phi(2)$ rans $K$ onto the exterior of the unit circle. Equivalentiy, $d_{\infty}=\operatorname{Lim}_{n \rightarrow \infty}\left[| | T_{n}(z) \mid \|_{C}\right]^{1 / n}$ where $\left||g(z)|_{C}=\max \right| \nabla(z) \mid, z \in C$ and $T_{i f}(z)$ is the Tchebycheff polynomial (or Faber Dolynonial) for $C$. Given $f(z)$ defined on $C$, let $P_{n}^{*}(z)$ be the best polynomial approximation to $f(z)$ on $C$ i.e., $\left\|f(z)-P_{n}(z)\right\|_{C}$ is minimized for polynomials $P_{n}(z)$ of degree $n$. The purpose of this paper is to prove the

THEOREP We have
$\operatorname{Lim}_{n \rightarrow \infty} 1 / \rho| | f(z)-P_{n}^{*}(z) \|^{1 / n}=d_{\infty}(e \rho \tau)^{1 / \rho}$
if and only if $f(z)$ is entire of order $\rho>0$ and type $0<\tau<\infty$
The method of proof essentially combines basic techniques from the theory of entixe functions with machinery used to establish degree of convergence theorensfor polynomial approximations to analytic functions. Thus it is shown that this degree of converfence is achieved (with a factor $1+\varepsilon$, arbitrary $\varepsilon>0$ ) by a polynomial expansion of the form

$$
f(z) \quad \sum_{k=1}^{\infty} \quad \sigma_{k}(z) p(z)^{k-1}
$$

where $p(z)$ is a dolynomial of degree $\lambda$ and $a_{k}(z)$ is of derree $\lambda-1$. The level curves of $|p(z)|$ define a lenniscate which approximates the boundary of $C$. A number of lemmas are established which relate the nature of the coefficient polynomials $q_{k}(z)$ to the order and type of $f(z)$.

## JOIN R. RICE*

Dedicated to J. L. ilalsh

I. INTRODUCTION. The main result of this paper is to characterize the set of entire functions of order $p>0$ and type $0<\tau<\infty$ in terms of their degree of convergence on rather general sets. The preliminary results include extensions of some classical properties of entire functions. A generalization is indicated at the end for the approximation of a furction with a finite number of singularities by sequences of rational functions. It is assumed that the reader is familiar with the terminology and results of [1] and [4].

One may obtain results about the degree of approximation on disks by the direct application of techniques from the theory of entire functions. Let $p_{n}(2)$ be the best approximation to $f(z)$ on a set $D$. Set

$$
E_{n}=\left|\left|f(z)-P_{n}(z) \|_{D}=\max _{z \in D}\right| f(z)-P_{n}(z)\right|
$$

Then for $D=\{z \mid\{z \mid \leq r\}$ one sees that $f(x)$ is entire of order $\rho$ and type $\tau$ if and only if

$$
\lim _{n \rightarrow \infty} \sqrt[n]{E_{n}}=\frac{1}{r}\left(\frac{e \rho \tau}{n}\right)^{1 / \rho}
$$

These same techniques apply to more general sets, but the constants obtained are no longer sharp, see [3].

Bernstein [2] obtains similar results for approximation on [-1,1] by considering the expansion of $f(2)$ in terms of Tchebycheff polynomials of best least squares approximation with weimht $\left(1-x^{2}\right)^{1 / 2}$. He, horvever, does not obtain a sharp result in the sense that the constants are determined.

In this paper we establish the following
THEORFM 1. Let $C$ be a closedhounded noint set whose complement is connected and regular and let $d_{\infty}(C)$ be the transfinite diameter of C. Given $f(z)$ defined on $C$ then for the sequence of polymomials $P^{*}(z)$ of degree $n$ of best approximation to $f(z)$ on $C$ we have

$$
\lim _{\rightarrow \infty} n^{\frac{1}{\rho}}| | f(2)-P_{n}^{*}(z)| |_{C}^{1 / n}=d_{\infty}(C)(e \rho \tau)^{1 / \rho}
$$

if and only if $f(z)$ is entire of order $\rho>0$ and type $0<\tau<\infty$.
2. PRELIMINARY RESULTS. Let $p(z)$ be a polynomial of degree $\lambda$ and $\Gamma_{R}$ the lemniscate

$$
\Gamma_{R}=\{z|\quad| p(z) \mid=R\}
$$

The following result may be established about the length $\left\|\Gamma_{R}\right\|$ of $\Gamma_{R^{\prime}}$

$$
\text { LEMBIA } 1 \text { As } R \rightarrow \infty,\left|\left|\Gamma_{R}\right|\right|=2 \pi R^{1 / \lambda}(1+o(1)) .
$$

We consider expansions of the function $f(z)$ in terms of a power series in $p(z)$ with polynomial coefficients, e.g.

$$
\begin{equation*}
f(z)=\sum_{k=1}^{\infty} q_{k}(z)[p(z)]^{k-1} \tag{1}
\end{equation*}
$$

Where $q_{k}(z)$ is a uniquely determined polynomial of degree $\lambda-1$ or less. The following notation is useful:

$$
H\left(\Gamma_{R}\right)=\|f(z)\|_{\Gamma_{R}}
$$

We now obtain estimates of the coefficients in the expansion (1) in terms of $\cdot$ properties of $f(z)$.

LE'न $\Lambda$ 2. Let $f(z)$ be analytic in $\Gamma_{R}$. Then there exists a nolynomial
$Q(z)$ of degree $\lambda-1$, independent of $n$ and $R$, such that for $\alpha<R$,
(2)

$$
\left\|q_{n}(z)\right\|_{\Gamma_{\alpha}} \leq \frac{\left\|\Gamma_{R}\right\| M\left(\Gamma_{R}\right)}{2 \pi R^{n}}\|O(z)\|_{\Gamma_{R}} .
$$

Proof. We have

$$
f(z)-\sum_{k=1}^{n} q_{k}(z)[p(z)]^{k-1}=\frac{1}{2 \pi i} \frac{\int}{r} \frac{[p(z)]^{n} f(t) d t}{[p(t)]^{n}(t-z)}, z \text { interior } r_{R^{\prime}}
$$

which implies

$$
q_{n}(z)=\frac{1}{2 \pi i} \int_{R} \frac{[p(t)-p(z)] f(t) d t}{[p(t)]^{n}(t-z)}, z \text { interior } \Gamma_{R} .
$$

Now $p(t)-p(z)$ is a polynomial in $t$ of degree $\lambda$ with a zero at $t=2$. Hence $p(t)-p(z)=(t-z) Q(t, z)$ and we have

$$
\left.\left|\left\|q_{n}(z)\right\|_{\Gamma_{\alpha}} \equiv\left\|\frac{1}{2 \pi \dot{j}} \int_{\Gamma_{R}} \frac{Q(t, z) f(t) d t}{[p(t)]^{n}}\right\|_{\Gamma_{\alpha}} \leq \frac{\| \Gamma_{R}| | M\left(\Gamma_{R}\right)}{2 \pi R^{n}} \| Q(t, t)\right|\right|_{\Gamma_{R}}
$$

LEPBIA 3. $f(z)$ is an entire function of order $p>0$ and type $0<\tau<\infty$ if
and only if
(3)

$$
\overline{\lim }_{\mathrm{R} \rightarrow \infty} \frac{\log \mu\left(\Gamma_{R}\right)}{R^{\rho / \lambda}}=\tau
$$

Proof: From Lemma $l$ we have that $2 \varepsilon \Gamma_{R}$ implies that $|z|=R^{1 / \lambda}(1+o(1))$ as $R$ tends to $\infty$. Thus we have

$$
\begin{align*}
& \overline{\lim }_{\mathrm{R} \rightarrow \infty} \frac{\log M\left(\mathrm{r}_{\mathrm{R}}\right)}{R^{\rho / \lambda}}=\frac{\sum_{S_{i \rightarrow \infty}}^{\lim }}{} \quad \log \frac{M(|z|=S)}{S^{\rho}(1+o(1))^{\rho}} \\
& \text { if we set } S=R^{i / \lambda}(1+o(1)) \text {. The factor }(1+o(1) \rho \text {. tenc's. } \\
& \text { to } 1 \text { and it is well known [1] that the limit on the right is } \tau \text { if and only } \\
& \text { if } f(z) \text { is of order } \rho \text { and type } \tau \text {. } \\
& \text { COROLLARY } f(z) \text { is an entire function of order } \rho \text { if and only if } \\
& \sum_{R \rightarrow \infty} \frac{\log \log i\left(\Gamma_{R}\right)}{\log R}=\rho / \lambda \tag{4}
\end{align*}
$$

LEIPIA 4. Let $\alpha$ be fixed. Then $f(z)$ is entire of order $\rho>0$ if and only if
(5)

$$
\begin{aligned}
& \rho=\lambda \widetilde{\mathrm{Lim}} \\
& \text { n } 109 \text { n } \\
& { }^{\log } \frac{1}{\| \bar{q}_{\Omega}(z) T_{\Gamma_{\alpha}}}
\end{aligned}
$$

Proof. Let $\mu$ denote the lim sup and let $\rho$ denote the order of $f(z)$ as an entire function. !le first show that $\mu \leq \rho / \lambda$. !?e may assume $\mu>0$. Fiven $\mu / 2>\varepsilon>0$, (5) implies that there is an infinity of $n$ such that

$$
\log \left|\left|q_{n}(z)\right|\right|_{\Gamma_{\alpha}} \geqslant-\frac{n \log n}{p-\varepsilon}
$$

It follows from (2) that, for $R \geq \alpha$,

$$
\log \left[\frac{\left|\left|\Gamma_{R}\right|\right| i i\left(\Gamma_{R}^{y}\right.}{2 \pi R^{n}}||Q||_{\Gamma_{R}}\right] \geq \log | | q_{n}(z)| |_{\Gamma_{a}} \geq \frac{-n \log n}{\beta-E}
$$

or

$$
\log i\left(\Gamma_{\mathrm{R}}\right) \geq n \log R-\frac{n}{\mu-\varepsilon} \log n-\log \frac{\left\|\Gamma_{R}\right\|}{2 \pi}\|Q\|_{\Gamma_{R}}
$$

Take $P=e n^{\frac{l}{\mu-\varepsilon}}$. Then, for $n$ sufficiently larae, we have $p>\alpha$ and

$$
\log M\left(\Gamma_{R}\right) \geq\left(e R^{\mu-\varepsilon}-\log \frac{| | \Gamma_{R} \|}{2 \pi} \|\left. Q\right|_{\Gamma_{R}}\right.
$$

Thus, for these values of $R$, we have

$$
\log \log M\left(\Gamma_{R}\right) \geq(\mu-\varepsilon) \operatorname{lon} R+\mu-\varepsilon-\log \left[1-\left.(c R)^{\varepsilon-\mu} \log \frac{\left\|\Gamma_{R}\right\|}{2 \pi}\| \|\right|_{\Gamma_{R}}\right]
$$

It follows from Lemmas 1 and 2 that, as $? \rightarrow \infty$,

$$
\log \frac{\left\|\Gamma_{R}\right\|}{2 \pi}\|Q\|_{r_{R}}=\log [R(1+o(1))]
$$

Hence, as $R+\infty$,

$$
\frac{\log \log M\left(\Gamma_{R}\right)}{\log R} \geq N-\varepsilon+O(1)
$$

It follows from Lemna 3 that $\rho / \lambda \geq \mu-\varepsilon+O(1)$ as $R+\infty$ and completes the first part of the proof.

He now show that $\mu>\rho / \lambda$. We may assume that $\mu<\infty$. Fiven $\varepsilon>0$, there is an $N_{0}$ such that for all $n>N_{0}$

$$
\left\|q_{n}(z)\right\|_{\Gamma_{\alpha}} \leq r^{\frac{n}{\mu+\varepsilon}}
$$

The above inequality implies in (1) that $f(2)$ is entire. We may assume that this inequality holds for all $n$ by modifyinc̣ $f(z)$ by a polynomial (this does not affect the order of $f(z)$ as an entire function). We have, by [4, Lemma p. 77] that
$\dot{i}\left(\Gamma_{R}\right) \leq \sum_{n=1}^{\infty}\left|\left\|_{n}(z)| |_{\Gamma_{R}}\right\|\left\|_{p}(z)| |_{\Gamma_{R}}^{n}<\sum_{n=1}^{\infty}\right\| q_{n}(z) \|_{\Gamma_{\alpha}} R^{n+\lambda-1}\right.$ The maximun value of $n^{-\frac{n}{\mu+\varepsilon}} R^{n}$ occurs for $e^{-1} R^{\mu+\varepsilon}-1<N_{1} \leq e^{-1} p^{\mu+\varepsilon}$. lie have

$$
R^{\lambda-1} \sum_{n=1}^{N_{1}} n^{-\frac{n}{\mu+\varepsilon}} R^{n} \leq R^{n_{1}+\lambda-1} \sum_{n=1}^{\infty} n^{-\frac{n}{\mu+\varepsilon}} \leq K_{2} R^{N 1^{+\lambda-1}}
$$

where $K_{2}$ is a constant. Also

$$
R^{\lambda-1} \sum_{n=N}^{\infty} n_{1}^{-\frac{n}{\mu+\varepsilon}} R^{n} \leq R^{\lambda-1} .
$$

This implies that $M\left(\Gamma_{R}\right) \leq K R^{N}$ for some constant $K$ or

$$
\frac{\log \log M\left(\Gamma_{R}\right)}{\log P} \leq \mu+\varepsilon-\frac{1}{\log R}+\frac{\log \log R}{\log R}+\frac{\log \left[1+\frac{\log K}{\operatorname{Ni} \log R}\right]}{\log R}
$$

It follows from (4) that givon $n>0$ there is a sequence $R \rightarrow \infty$ such that

$$
\rho / \lambda-\eta \leq \frac{\log \log M\left(\Gamma_{R}\right)}{\log R}<\mu+\varepsilon+o(\lambda)
$$

This implies that $\rho / \lambda \leq \mu$ and concludes the proof.
Uith the aid of this fiemma we can now establisl a sharper result concerning the nature of the coefficient polynomials $q_{n}(z)$.

LEMAA 5. $f(z)$ is an entire function of order $\rho>0$ and type $0<\tau<\infty$ if
and only if
(6)

$$
\overline{\operatorname{Lim}}_{n \rightarrow \infty} n\left(| | q_{n}(z)| |_{\Gamma_{\alpha}}\right)^{\frac{p}{\lambda n}}=\frac{e \rho \tau}{\lambda}
$$

Proof: First assume that $f(2)$ is entire of order $\rho>0$ and type $0<\tau<\infty$. Throughout this proof we use the notation

$$
\mu=\overline{\operatorname{Lim}}_{\Gamma+\infty} n\left(| | q_{n}(z)| |_{r_{\alpha}}\right)^{\frac{\rho}{\lambda n}}
$$

and thus we are to show that $\mu=e \rho \tau / \lambda$. From Lemma 2 we have

$$
M\left(\Gamma_{R}\right) \geq \frac{2 \pi R^{n}\left\|q_{n}(z)\right\| \|_{\Gamma_{\alpha}}}{\left\|\Gamma_{R}\right\|| | Q(z) \|_{\Gamma_{R}}}
$$

Let $\varepsilon>0$ be given, then for infinitely many values of $n$ we have

$$
\begin{equation*}
n\left(\left|\left|q_{n}(z)\right|\right|_{\Gamma_{\alpha}}\right)^{\frac{\rho}{\lambda n}} \geq \mu-\varepsilon \tag{7}
\end{equation*}
$$

and for these values of $n$

$$
\begin{aligned}
& \text { I these values of } n \\
& M\left(\Gamma_{R}\right) \geq \frac{2 \pi\left(R^{\frac{1}{\lambda}} \frac{\mu-\varepsilon}{n}\right)^{\frac{\lambda n}{\rho}}}{\left\|r_{R}\right\|\|Q(z)\|_{\Gamma_{R}}}
\end{aligned}
$$

Choose a corresponding sequence of values of $R$ so that $p^{\frac{\rho}{\lambda}}=n e /(\mu-\varepsilon)$, then we have for these $R$

$$
H\left(\Gamma_{R}\right) \geq \frac{2 \pi e^{\frac{\lambda \pi}{\rho}}}{\left\|\Gamma_{R}\right\|\|Q(z)\|} \|_{\Gamma_{R}}
$$

and hence

$$
\frac{\log i\left(\Gamma_{R}\right)}{R^{\rho / \lambda}} \geq \frac{\lambda \pi}{\rho} R^{-\frac{\rho}{\lambda}}+o(1)=\frac{\lambda(\mu-\varepsilon)}{\rho e}+o(I)
$$

As $R$ tends to infinity the limit on the left is the type $\tau$ by Lemma 3 and hence $\mu \leq \rho e t / \lambda+\varepsilon$. A similar argument can be carried through by noting that for n sufficiently large we have

$$
\begin{equation*}
\pi\left(\|\left. q_{n}(z)\right|_{\Gamma_{\alpha}}\right)^{\frac{p}{\lambda n}} \leq \mu+\varepsilon \tag{8}
\end{equation*}
$$

and we obtain $\mu>\rho e \tau / \lambda-\varepsilon$. Since $\varepsilon$ is arbitrary, this establishes the only if portion of the lemma.

To establish the if portion note that aive $\varepsilon>0$ we have ( 8 ) for $n$ sufficiently large and hence

$$
\log \frac{1}{\prod_{n}(z) \prod_{\Gamma_{\alpha}}} \geq \frac{\lambda n}{\rho} \quad \log \frac{n}{\mu+\varepsilon}
$$

or

$$
\frac{\rho}{\lambda} \geq \frac{n \log \frac{n}{\mu+\varepsilon}}{\log \frac{1}{\prod q_{n}(2) \Pi_{\Gamma_{\alpha}}}}=\frac{(n \log n)(1+o(1))}{\log \prod_{q_{n}}(2) \|_{\Gamma_{\alpha}}}
$$

It follows from lemna 4 that $f(z)$ is of order at most $\rho$. Similarly for infinitely many values of $n$ we have (7) and hence $7_{1}^{\underline{x}} . \quad \therefore$.

$$
\frac{\rho}{\lambda} \geq \frac{(n \log n)(1+o(1))}{10 g} \frac{1}{T q_{n}(z) \|_{\Gamma_{\alpha}}}
$$

It follows from Lemma 4 that the order of $f(z)$ is at least $\rho$ and hence $f(z)$ is of order $\rho$.

To determine the type $\tau$ of $f(z)$ we have ( 8 ) for $n$ sufficiently large. ?e nay, in fact, assume that (8) holds for all $n$ because we can add a nolynomial to $f(z)$ without affecting its order or type. Then for $2 \varepsilon \Gamma_{R}$ we have

$$
\begin{aligned}
|f(z)| & \leq \sum_{n=1}^{\infty}\left|q_{n}(z)\right| R^{n-1} \leq \sum_{n=1}^{\infty}| | q_{n}(z)| |_{\Gamma_{\alpha} R^{n+\lambda-2}} \\
& \leq n^{\lambda-2} \sum_{n=1}^{\infty}\left(\frac{\mu+\varepsilon}{n}\right)^{\frac{\lambda n}{\rho}} n^{n}
\end{aligned}
$$

The maximum term in this series occurs for $n_{1}=(\mu+\varepsilon) R^{\lambda / \rho} /$ e. Choose $\mu_{1}$ so that $N_{1} \leq n_{1}<N_{1}+1$ and observe that

$$
\begin{aligned}
& R^{\lambda-2} \sum_{n=1}^{N_{1}}\left(\frac{\mu+\varepsilon}{n}\right)^{\frac{\lambda n}{\rho}} R^{n} \leq N_{1} R^{\lambda-2} e^{\frac{\lambda}{\rho}\left[(\mu+\varepsilon) R^{\lambda / \rho} / e\right]} \\
& R^{\lambda-2} \sum_{n=N_{1}+1}^{\infty} \quad\left(\frac{\mu+\varepsilon}{n}\right)^{\frac{\lambda n}{\rho}} R^{n} \leq R^{\lambda-2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Thus } \\
& \left.M\left(\Gamma_{R}\right)=\|\left. f(z)\right|_{\Gamma_{R}} \leq R^{\lambda-2} \overline{[ }(\mu+\varepsilon) R^{\lambda / \rho} e^{\frac{\lambda}{\rho}\left[(\mu+\varepsilon) R^{\lambda / \rho} / e\right]-1}+1\right]
\end{aligned}
$$

and it follows that

$$
\frac{\log M\left(\Gamma_{R}\right)}{R^{\rho / \lambda}} \leq \frac{\lambda(\mu+\varepsilon)}{\rho e}+o(1)
$$

From lemma 3 we have then $\rho \in \tau / \lambda \leq \mu+E$ :
For an infinite sequence of values of n.(7) holds and for each such value we cloose $R$ so that $R^{\lambda} / \rho=e n /(\mu-\varepsilon)$. Then from Lemma 2 we have for this $R$ and $n$

$$
\left(\frac{\mu-\varepsilon}{n}\right)^{\frac{\lambda n}{\rho}} \leq \|\left|q_{n}(z)\right|_{r_{\alpha}} \leq\left.\frac{\| \Gamma_{p}| | M\left(\Gamma_{R}\right)}{2 \pi P^{n}}| | Q(z)\right|_{\Gamma_{R}}
$$

or

$$
\begin{aligned}
& \log M\left(\Gamma_{R}\right) \geq \frac{\lambda n}{\rho} \log \left(\frac{\mu-\varepsilon_{R}^{\rho}}{e}\right)+\lambda \\
&=\frac{\lambda n}{\rho}+10 \pi \Gamma_{R}\| \| Q(z) \|_{\Gamma_{R}} \\
& \prod \Gamma_{R}\|\mid Q(z)\| \Gamma_{\Gamma_{R}}
\end{aligned}
$$

Thus

$$
\frac{\log M\left(\Gamma_{R}\right)}{R^{\lambda} / \rho} \geq \frac{\lambda(\mu-\varepsilon)}{\rho e}+o(1)
$$

and we have tlat $\tau \geq \lambda(\mu-\varepsilon) /(p e)$. Since $E$ is arbitrary in the inequalities

$$
\mu-\varepsilon \leq \frac{\rho e \tau}{\lambda} \leq \mu+\varepsilon
$$

we have established that $\mu=\rho e \tau / \lambda$ and the proof is complete.
The next lemma is a restatement of results established in [4, pages 68 through 76].

LEMMA 6. Let C be a closed limited point set whose complement is
connected and regular. Then given $\varepsilon>0$ there is a polynomial $P_{m}(z)$ degree $m$
so that the interior of the 1

$$
\Gamma_{\alpha}=\left\{z\left|\rho_{\pi}(z)\right|=\alpha\right\}
$$

contains $C$ and the distance from $\Gamma a$ to $C$ is Iess than $\varepsilon$. Furthermore

$$
\left[d_{\infty}(C)\right]^{m} \div a \leq\left[d_{\infty}(C)(1+\varepsilon)\right]^{m}
$$

where $d_{\infty}(C)$ is the transfinite diameter of the set $C$. If $\left\|\left\|_{m}(z)\right\|_{C-L}\right.$ then $\left\|q_{\text {. }}(z)\right\|_{C_{R}} \leq L R^{m}$ where $m$ is the degree of the polynomial $q_{m}(z)$ and $C_{R}$ is the level curve of the modulus of the mapping function associated with C.

T:c proof is not repeated here. The intuitive content of this lerna is that the boundary of $C$ can :o anproxinatod to vithins by a. Iemaseme and, further this lemniscate is rolatel to the transfinite diameter of $C$.

LEMMA 7. Sunjose

$$
f=\sum_{k=0}^{\infty} b_{k}
$$

and

$$
\left.\left(\frac{c^{\prime}}{n}\right)^{b^{\prime n}} \leq\left|f-\sum_{k=0}^{n} b_{k}\right| \leq i \frac{c}{n}\right)^{b n}
$$

where $b, b^{\prime}, c, c^{\prime}>0$. Then given $\varepsilon>0$ we have for $n$ sufiziciently large

$$
\left|b_{n+1}\right| \leq\left(\frac{c}{n}\right)^{b n}(1+\varepsilon)
$$

and for an infinite sequence of values of $n$

$$
\left|b_{n+1}\right| \geq\left(\frac{c^{\prime}}{n}\right)^{b^{\prime} n}(1-\varepsilon)
$$

The proof of this lemma is a straightforward exercise in manipulating. infinite series.
3. THE MAIN RESULT

THEOREM 1. Let $C$ be a closed bounded point set whose complement is connected and regular and let $\left.d_{\infty}: C\right)$ be the transfinite diameter of $C$. Given $\underline{f(z)}$ defined on $C$, then for the sequence of polynomials $P_{n}(z)$ of derree $n$ of best approximation to $f(z)$ on $C$ we have

$$
\begin{equation*}
\operatorname{Lim}_{n+\infty} n^{1 / p| | f(z)-P_{n}^{*}(z)| |_{C}^{1 / n}=d_{\infty}(C)(\varepsilon \rho \tau)^{1 / \rho}} \tag{9}
\end{equation*}
$$

if and only if $f(z)$ is entixe of order $\rho>0$ and type $0<\tau<\infty$ :
That is to say that $f(2)$ may be analytically extended to the whole complex plane so as to be entire of oxder $\rho$ and type $\tau$.

Proof. I! establish the if part first. Let $C_{R}$ denote the level curves of the modulus of the mapping function associated with the domain $C$.

Given $\varepsilon>0$ there is a lemniscate $r_{\alpha}=\{||p(z)|=\alpha\}$ so that
a) $r_{\alpha}$ is intexior to $C_{1+\varepsilon}$ and exterior to $C_{I}$
b) $a \leq\left[d_{\infty}(C)(1+\varepsilon)\right]^{\lambda}$

Where $\lambda$ is the degree of $p(z)$ and $C_{1}$ corresponds to the boundary of $C$. Since $\|g(z)\|_{C} \leq\|g(z)\|_{\Gamma_{\alpha}}$, we need only consider approximation on $\Gamma_{\alpha}:$ Let

$$
S_{n}(f, z)=\sum_{k=1}^{n-1} q_{k}(z) p(z)^{k-1}
$$

$$
\begin{aligned}
& \text { Ule have from Lemma } 5 \text { that } \\
& \qquad\left\|f(z)-S_{n}(f, z)\right\|_{\Gamma_{\alpha}} \leq \sum_{k=n}^{\infty}\left\|q_{k}(z)\right\|_{\Gamma_{\alpha}} \alpha^{k-1} \leq \sum_{k=n}^{\infty} \frac{\left(\frac{\varepsilon \rho \tau}{\lambda k}\right)^{\frac{\lambda k}{\rho}} \alpha^{k=1}}{} \\
& \leq a^{n-1}\left(\frac{\varepsilon \rho \tau}{\lambda n}\right)^{\frac{\lambda n}{\rho}} \sum_{k=0}^{\infty}\left[\left(\frac{\varepsilon \rho \tau}{\lambda(k+n)}\right)^{\frac{\lambda k}{\rho}}\left(\frac{n}{n+k}\right)^{n}\right]
\end{aligned}
$$

The ratio test shows that the infinite series on the right converges, and is $1+o(1)$ as n tends to infinity. Thus we have

$$
\| f(z)-\left.S_{n}(f, z)\right|_{\Gamma_{\alpha}} \leq a^{n-1}\left(\frac{\kappa \rho \tau}{\lambda n}\right)^{\frac{\lambda n}{\rho}} \quad(1+o(1))
$$

Note that $S_{n}(f, z)$ is a polynomial $P_{m}(z)$ of degree $m=\lambda n$ and that

$$
\begin{aligned}
\alpha^{n} \leq & {\left[d_{\infty}(C)\right]^{\lambda n}(1+\varepsilon)^{\lambda n} \text { and hence } } \\
& \left\|f(z) \leq P_{m}(z)\right\|_{r_{\alpha}} \leq\left[d_{\infty}(C)\right]^{m}\left(\frac{\varepsilon \rho t}{m}\right)^{\frac{m}{\rho}}(1+o(1))(1+\varepsilon)^{m_{\alpha}}-1
\end{aligned}
$$

This implies that

$$
\operatorname{Lim}_{n \rightarrow \infty} m^{1 / p}| | f(z)-\left.p_{m}(z)\right|_{r_{\alpha}} ^{1 / n} \leq d_{\infty}(C)(\varepsilon \rho T)^{\frac{1}{\rho}}(1+\varepsilon)
$$

Observe that as $\varepsilon$ tends to zero then the nore on $\Gamma_{\alpha}$ corverges to that on $C$ and the right side of this relation converges to the right side of (9).

In order to complete the first part of the proof, we must show that the limit in (9) is not a smaller constant than stated, say

$$
\begin{equation*}
c=\left(\varepsilon \rho \tau\left[d_{\infty}(C)\right]^{\rho}\right)^{\frac{1}{\rho}}(1-n) \tag{10}
\end{equation*}
$$

where $0<n<1$. Suppose there is a sequence $\left\{P_{m}(z)\right\}$ of polynomials of degree m which achieves the constant (10). We have then

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty}\left(P_{k+1}(z)-P_{k}(z)\right) \tag{11}
\end{equation*}
$$

and

$$
\left\|f(z)-\sum_{k=0}^{m}\left(P_{k+1}(z)-P_{k}(z)\right)\right\|_{C} \leq\left(\frac{c}{m}\right)^{\frac{m}{\rho}}
$$

IUe apply Lemma 7 to see that this series converges absolutely and we may rewrite it as follows

$$
\sum_{k=0}^{\lambda n-1} p_{k+1}(z)-P_{k}(z)=\sum_{k=1}^{n} q_{k, n}(z) p(z)^{k-1}
$$

:le see that, given $\varepsilon>0$, for $n$ sufficiently large we have
$\left\|\left(q_{k, n}(z)-q_{k}(z)\right) \quad p(z)^{k-1}\right\|_{c \leq\left(\frac{c}{\lambda n}\right)^{\frac{\lambda n}{\rho}}}^{(1+\varepsilon) \alpha^{-1}}$
Consider then the inequality
(12) $\quad\left\|f(z)-\sum_{k=1}^{n} a_{k}(z) p(z)^{k-1}\right\|_{C} \leq\left\|f(z)-\sum_{k=0}^{\lambda n-1}\left(p_{k+1}(z)-P_{k}(z)\right)\right\|_{C}$

$$
+\left\|\sum_{k=1}^{n}\left(q_{k, n}(z)-q_{k}(z)\right\} p(z)^{k-1}\right\|_{C}
$$

The right hand side is smaller than $\left[1+(n+1)(1+\varepsilon) \alpha^{-1}\right]\left(\frac{c}{\lambda n}\right)^{\frac{\lambda n}{\rho}}$. The 1eft hand side may be estimated from the fact that $f(2)$ is entire of order $\rho$ and type $\tau$ by means of Lemnas 5,6 and 7 .

From Lemma 5 we estimate the size of the terms $\left\|q_{n}(z)\right\|_{\Gamma_{\alpha}}$. We then choose $\lambda$ sufficiently large that

$$
\left\|a_{n}(z)\right\|_{C} \geq\left\|a_{n}(z)\right\|_{\Gamma_{\alpha}} \quad(1-\varepsilon)^{\lambda}
$$

(see Lemma page 77 of [4]) !!e use Lemma 6 to estimate $p(z)$ similarly and obtain $\|p(z)\|_{C} \geq d_{\infty}(C)^{\lambda}(1-\varepsilon)^{\lambda}$ We now apply Lempa 7 to see that the left side of (12) is greater than

$$
\left(\frac{\varepsilon \rho \tau}{\lambda n}\right)^{\frac{\lambda n}{\rho}}\left[(1-\varepsilon)^{2} d_{\infty}(C)\right]^{\lambda n_{\alpha}-1}
$$

Thus we have, comparing these upper ad lower bounds,

$$
(1-\varepsilon)^{2 \lambda n_{\alpha}-1} \leq(1-n)^{\frac{\lambda n}{p}}\left[1+(n+1)(1+\varepsilon) \alpha^{-1}\right]
$$

Recall that $\underline{\eta}_{\underline{1}}$ is fixed, but $\varepsilon$ is arbitrary. Clearily we can choose $\varepsilon$ so that $(1-\varepsilon)^{2}>(1-\eta)^{\frac{1}{\rho}}$ and a contradiction is reached. This concludes the first part of the proof.

We now show that (9) implies that $f(z)$ is entire of order $\rho$ and type $t$, The analysis is similar to that starting at (11) above and we have, similar to (12),

$$
\left\|f(z)-\sum_{k=1}^{n} q_{k}(z) p(z)^{k-1}\right\|_{C} \leq\left\|f(z)-\sum_{k=0}^{\lambda n-1}\left(P_{\hat{k}+1}^{*}(z)-p_{k}^{*}(z)\right)\right\|_{C}
$$

$$
+\| \sum_{k=1}^{n}\left(q_{k, n}(z)-q_{k}(z) p(z)^{k+1} \mid \|_{C}\right.
$$

Let $c=\left(E \rho \tau\left[d_{\infty}(C)\right]^{\rho}\right)^{\frac{1}{\rho}}$ and by hypothesis the first term on the right is less than ( $\frac{c}{\lambda n}$ ) ${ }^{\frac{\lambda n}{p}}$. The estimate above shows that, for $n$ and $\lambda$ sufficiently large, we have, for given $\varepsilon>0$,

$$
\left\|\left(q_{n, k}(z)-q_{k}(z)\right) p(z)^{k-1}\right\|_{r_{\alpha} \leq\left(\frac{c}{\lambda n}\right)^{\frac{\lambda n}{p}}(1+\varepsilon) \alpha \alpha^{-1}, ~}
$$

and hence

$$
\left\|f(z)-\sum_{k=1}^{n} q_{k}(z) p(z)^{k-1}\right\| \|_{C} \leq\left[1+(n+1)(1+\varepsilon) \alpha^{-1}\right]\left(\frac{c}{\lambda n}\right)^{\frac{\lambda n}{\rho}}:
$$

It follows from Lemma 7 then, for $k$ sufficnelty large,

$$
\left|\left|q_{n}(z) p(z)^{n-1}\right|\right|_{\Gamma_{\alpha}}<\left(\frac{c}{\lambda n}\right)^{\frac{\lambda \pi}{\rho}} \frac{\left[1+(n+1)(1+\varepsilon) \alpha^{-1}\right]}{(1-\varepsilon)^{\lambda n+\lambda}}
$$

Ne have from this

$$
\overline{\operatorname{Lim}_{n \rightarrow \infty}} n\left(\left|\left|q_{n}(z)\right|\right|_{\Gamma_{\alpha}}\right)^{\frac{\rho}{\lambda n}}<\frac{\varepsilon p \tau}{\lambda(1-\epsilon)^{\rho}}
$$

Since $\eta$ is arbitrary, it follows from Lemma 5 that $f(z)$ is of order $\rho^{\prime}$, $\tau^{\prime}$ where $\rho^{\prime} \leq \rho$ and, if $p^{\prime}=\rho, \tau \leq \tau$.

He see that if $\rho^{\prime}<\rho$ we have directly from Lemma 4 and Lemma 7 that

$$
\left\|f(z)-\sum_{k=1}^{n} q_{n}(z) p(z)^{k-I}\right\|_{C}=0\left\{\left(\frac{c^{\prime}}{\lambda n}\right)^{\frac{\lambda \pi}{p^{\prime}}}\right\}
$$

and contradicts the definition of $p_{m}^{k}(2)$ which do not achieve this order of convergence. Thus we have $\rho^{\prime}=\rho$. Now a direct application of Lemma 5 and Lemma 7 shows that if $\tau^{\prime}<\tau$ we again contradict the definition of $P_{\square}^{+}(z)$ as best approximations to $f(z)$ on $C$. This concludes the proof.
4. EXTENSION TO RATIONAL APPROXIMATION OF FUNCTIONS IMITH ESSENTIAL SINGULARITIES.

In this final section we point out that this analysis can be extended to cover rational approximation of functions with certain kinds of essential singularities. No attempt is made to obtain results as sharp as Theorem 1 , we merely indicate the degree of convergence possible.

Let $z_{o}$ be an isolated sincularity of $f(z)$, set $S_{E}=\left\{z| | z-z_{0} \mid=\varepsilon\right\}$ and $i(E)=\|\left.|f(z)|\right|_{S E}$. The following definition generalizes the concept of order of an entire function.

DEFINITION. The order of $f(z)$ at $z_{0}$ is

$$
\rho=\overline{\operatorname{Lim}} \frac{\log \log \operatorname{li}(E)}{\log \varepsilon}
$$

An analysis similar to parts of the proof of Theorem 1 leads to

THEORE: 2. Assume $f(z)$ has a finite number of singulatities of order $\rho$ or less, $\rho>0$, none of wich lie in $C . C$ is as in Theorem 1. Then there exists a sequence of rational functions $n_{n}(2)$ of total degree $n$ and a constant A so that

$$
\left\|f(z)-R_{n}(z)\right\|_{C}^{1 / n} \leq A^{-1 / \rho}
$$

5. REMARKS ON APPLICATIONS. The most common application occurs when $C$ is [a,b], a case already considered in [2]. We note that the transfinite diameter of an interval is one quarter of its lenfth, i.e. (b-ay. 4. Ne may use the above results to compare the best approximations with the Taylor's series expansions. Assume $f(z)$ is entire of order $\rho$ and let

$$
\begin{aligned}
& E_{T, n}=\left\|f(z)-\sum_{k=0}^{n} P_{T, n}(z)\right\|_{[a, b]} \\
& E_{n}^{*}=\left\|f(z)-\sum_{k=0}^{n} P_{n}^{*}(z)\right\|_{[a, b]}
\end{aligned}
$$

where $P_{T, n}(z)$ is the term of degree $n$ in the taylor's series expansion about $(a+b) / 2$. !!e have then

$$
\text { COROLLARY } \lim _{n \rightarrow \infty}\left[\frac{E_{T, m}}{E_{n}^{*}}\right]^{\frac{1}{n}}=2
$$

Thus the best approximations do better than the Taylor's series expansion by a factor of the oxder of $2^{-n}$. This difference is exhibited for even very small values of $n$ for the common entire functions e.g. $\sin (x), e^{x}$.

He see for approximations on disks that power series expansions give the same degree of approximation as the best approximations.

The next most interesting region for applications is the rectangle. Theorem 1 implies that one may obtain the best degree of convergence by simple expansion in texms of a polynomial which defines a lemniscate which approximate well the rectangle. Thus a practical procedure would seem to be to obtain such a lemniscate and associated polynomial and then obtain the expansion in terms of this polynomial by telescoping the Taylorts series expansion. A little reflection shows that this approach is equally applicable to the approximation of analytic functions in general.

Finally, we note that Theorem 2 implies that there are rational approximations of total degree $n$ which approximate $\cosh \left(\frac{1}{2}\right)$ on the interval $[1,2]$ with degree of approximation of order $\left(\frac{e}{4 n}\right)^{n}$.

REFERENCES
[1] R. P. Boas, Entire Functions, Chapter 2, Academic Press New York, 1954.
[2] S. Bernstein, Propxiétés extrémales et la meilleure approximation des fonctions analytiques d'une variable. Feele, Gauthier-Villars, Paris, 1926.
[3] J. R. Rice, The degree of convergence for entire functions, Abstract 64T-762, Notices Amer. Math. Soc. 11, (1964) p. 683.
[4] J. L. Valsh, Interpolation and Approximation, Chapters 3 and 4,
Colloquium Publications, vo1. 20, American Mathematical
Society, Providence, P. I., 1960

