
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 48, Number 2, April 1975

THE DEGREE OF PIECEWISE

MONOTONE INTERPOLATION

ELI PASSOW AND LOUIS RAYMON

ABSTRACT. Let  0 = xQ < x.<   "• < x, = 1 and let  y Q, y., • • •, y,   be

real numbers such that  y.   , * y., j = 1, 2, • • •, k.   Estimates are obtained

on the degree of an algebraic polynomial  p{x) that interpolates the given

data piecewise monotonely; i.e., such that (i) p{x .) = y ., / = 0, 1, • • •, k,

and such that (ii) p(x) is increasing on  I. =(x .     ,x ■) ií y . < y .     ,   and

decreasing on  /. if y . < y ._., j = 1, 2, • • •, k.   The problem is seen to be

related to the problem of monotone approximation.

Let  0 = x 0< x   < • • • < x, = 1 and let y 0, y,, • • •, y.   be real numbers

such that y ._, 7= y , / = 1, 2, • • • , fe.   It is a result of Wolibner [7], Kammerer

[2], and Young [8] that there exists an algebraic polynomial p(x) such that:

(i) Pixj) = y;.» 7 = 0| 1» • * " » *, and

(ii) p{x) is increasing on  /. = (x ._,, x .) if y . > y ._   , and decreasing on

7 if yj< y,_i» /'" ii2.-"» *'•
A polynomial p(x) with properties (i) and (ii) is said to interpolate

piecewise monotonely; in case y . > y .   , for all j (or if y • < y ■_ j for all /),

p{x) is simply said to interpolate monotonely.   The smallest degree of a

polynomial that interpolates the values   Y = jy0, y,,'" , y A at the points

X = jx0> x j, • • •, xA  (piecewise) monotonely is called the degree of (piece-

wise) monotone interpolation of Y with respect to X, and is denoted by  N =

N{X; Y).   Rubinstein has obtained estimates for the degree of monotone in-

terpolation for the special case  k = 2  [6].   We seek general estimates on

N{X; Y).   Let

y. — y .   .
A = MY) = min |y. -y.     |,    and    M = M(X; Y) = max

!<7<fe   !       >~L \<j<k x . — x .   ,
1        1-1

The estimates on  N(X; Y) ate found (not too surprisingly) to be related
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to the degree of monotone and comonotone approximation.   Let  / £ C[0, l],

with a finite number of relative extrema   0 = x 0 < *j < x2 < * * " < x •+ i = 1

(such a function is called a piecewise monotone function).   The relative

extrema  x,, x«, •• •, x. ate called the peaks of /.   The degree of comonotone

approximation of / by algebraic polynomials of degree < « is defined by

£*(/) = infill/- p\\: p £ Pi»; f)\     (sup norm on [0, l]),

where   P(t2; /) is the set of algebraic polynomials of degree < 72, monotone

on each of the subintervals   (x..,X.), i = 1, 2, • • •, j + 1, with the same

monotonicity as / on these intervals.   If / is monotone on [0, l], then E*(f)

is called the degree of monotone approximation of /.

Let S ., j = 0, 1, 2, • • •, be the set of all piecewise monotone functions

/ with / peaks such that

71\(1) sup
0sx,y< 1

/(*) - fiy)
X — y

< i.

The degree of comonotone approximation to S . is defined by

E*n{S ) ^ sup\E*{f): f £ S I22      J n ,

It is known that  lim E*(S .)= 0 [3], [4].   The smallest degree 72 such
22 —CO       72       7 °

that E*(S.)<8 will be denoted by re (¿5).
27      7 7

With given data X and Y we associate a piecewise linear function  L(x) =

L(X; Y; x) defined by L(x .) = y., i = 0, 1, • • • , k.   Let j be the number of

peaks of L.   We state our main results:

Theorem 1.   N(X; Y)< 72y(A/l2/Vf).

Theorem 2.   // y Q < y j < • • • < y,, then there exists an absolute constant

A such that N(X; Y)< AM4&.

We will first prove Theorem 1.   Theorem 2 will follow from Theorem 1

and estimates on the degree of monotone approximation.   The proof is based

on an idea of Kammerer [2, Theorem 4.1], later used by Ford and Roulier [l].

Proof of Theorem 1.   Let  e = 14A, and let S be the set of  2   +     piecewise

linear functions / such that f(x .) = y. + e or y . - i, i = 0, 1, • • • , k.   We

enumerate the functions in S and denote the ¿th function in S by f ■■   Note

that our choice of e guarantees that each  /.  is comonotone with   L(x)and that

|/.(*)-/.(v)| < 3M|x - y|/2 for all x, y e [0, l].   Thus  2/./3M 6 S ., so that

there exists  p. £ P[n .(A/12M); L] such that ||2/./3M - p{\\ < A/12M.   Let q. =

lMp./2.   Then q{ £ P[rey(A/12M); L] and ||/. - q .\\ < (3M/2)(A/12/M) = A/8 = <r/2.
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The vector  (yn, y., • • • , y,) is thus contained in the convex hull of the vec-

tors   (q .{x A, q .{x   ), • • • , q .{x  )), i = 1, 2, • • • , 2   +   , and therefore there exists

a convex linear combination of the q 's which will give rise to a polynomial

p which interpolates Y piecewise monotonely.   Since the degree of each

q . < 72 .(A/12M), we have  N(X; Y)<n .(A/12M).

Lemma (Lorentz and Zeller [3, Theorem 2]). There exists a constant c

such that  E*(Sr,)< c/n.

Proof of Theorem 2. From the Lemma we obtain re0(A/l2M)< 12c(M/A).

It follows from this and Theorem 1 that  N(X; Y) < AM/A.

While Theorem 2 may fail to give the exact value of N(X; Y) foi a par-

ticular configuration (e.g., if all the points lie on a straight line), it is best

possible in a classwide sense, as we shall show in Theorem 3.

Let G(M; A) be the set of all (X; Y) such that M(X; Y)<M and A(Y) >

A.   Let N(G) = sup\N(X; Y): (X; Y) £ G\.

Theorem 3.   Let yr)<y, < •••< y ,•   Then there exist constants  c  ,

c, > 0 such that

(2) c.M/A < Mg)< c,M/A.i - -    2

Proof.  For each  (X; Y) e G, N(X; Y)< AM{X;  Y)/A(Y), by Theorem 2.

Thus the upper bound in (2) holds with c2 = A.

For the lower bound, note that Theorem 2 was proved using estimates on

E*(S  ) and that this theorem, in turn, may be used to give estimates on

E*(S   ).   Indeed, if / e C[0, l]  is monotone and satisfies (1), we may choose

X = |0 = x 0, x  , • • •, x, = 1}  such that

(3) 1/re < fix) - fix._ j) < 2/22,        i= l,2,---, k.

Let   Y = \f{x0),f(xl),---,f(xk)\.   Then A(Y)>1/t2 and M(X; Y)<1   (by (1)),

so that, by Theorem 2, there exists a polynomial p £ P(An; f) such that

p(x.) = f(x.), i = 0, 1, • • • , k.   Since p is a monotone interpolation of Y and /

satisfies (3), we have   ||/ - p\\ < 2/w.   Thus  E*An(f)< 2/re, so that  E*(S Q) <

Aj/re, which is the result of Lorentz and Zeller contained in the Lemma.   If

N(C)= o(M/A), it would follow that there exists a sequence of polynomials

q    £ P(n; f) which would satisfy   ||/- q  || = 0(1/72).   Since the result of

Lorentz and Zeller is essentially unimprovable, this is impossible.   Thus,

there exists  Cj > 0 such that N(G)> c,M/A.

Remark.   It follows from [4] and [5] that there exists  c. > 0 such that
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(4) re(A/12M)<min   [c,P22pM/A](p+l)/^p->-1\
P>,+2     S

From this result we can obtain an estimate on  N{X; Y) in the general case

of j peaks.   We have, in particular, that for any  t > 0 there exists a constant

A .     such that

(5) MX; Y)< A.^iM/A)1«.

We believe, however, that this estimate is not the best possible one, since

(4) is probably short of best possible   In fact, the proof of the lower bound

(2) in Theorem 3 can be modified to show that in the general case of / peaks,

N{G)> c  M/A fot some constant c  .   We therefore conjecture that there exists

d. such that N{X; Y)< d.Nl/A, where / is the number of peaks of L(X; Y; x).

It may even be possible to replace  d. by an absolute constant d.
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