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THE DEGREE OF PIECEVWISE
MONOTONE INTERPOLATION

ELI PASSOW AND LOUIS RAYMON

ABSTRACT. Let 0=x0 <xy< cer< X, = 1 and let Yo Y s Vi be
real numbers such that Yis1%Yp j=1,2,°++, k. Estimates are obtained
on the degree of an algebraic polynomial p(x) that interpolates the given
data piecewise monotonely; i.e., such that (i) p(xj) =Y j=0, 1,00, k,
and such that (ii) p(x) is increasing on I =(xi-l’x1') if Yi<Yi_p and
decreasing on [ if Y <Y j=1,2,°++, k. The problem is seen to be

related to the problem of monotone approximation.

Let 0=x,<x; <:.+<x,=1landletygy,, *,y, be real numbers

such that y,_, £ Yjpi=1,2,+++, k. Ttis a result of Wolibner [7], Kammerer
[2], and Young [8] that there exists an algebraic polynomial p(x) such that:
i) p(xi)= Y j=0,1,+-< k, and

(ii) p(x) is increasing on I’. = (x]._l, xj) if Y; > Yo and decreasing on
Lify, <y, _j,i=1,2, ", k.

A polynomial p(x) with properties (i) and (ii) is said to interpolate
piecewise monotonely; in case Y; > Y1 for all j (or if Y; < Yia1 for all j),
p(x) is simply said to interpolate monotonely. The smallest degree of a
polynomial that interpolates the values Y ={yg, y;,*++, y,} at the points
X =lxgx,,++,x,} (piecewise) monotonely is called the degree of (piece-
wise ) monotone interpolation of Y with respect to X, and is denoted by N =
N(X; Y). Rubinstein has obtained estimates for the degree of monotone in-
terpolation for the special case k=2 [6l. We seek general estimates on
N(X; Y). Let
Yi=Yi-1

A=A(Y)=min|y. —y. - . -
l<jsk|y1 )’,_ll, and M= M(X;Y) lr;x?:k

X, - %,
i Ti=1
The estimates on N(X; Y).are found (not too surprisingly) to be related
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to the degree of monotone and comonotone approximation. Let f € C[0, 1],
with a finite number of relative extrema 0= xg<x <x,<eee< Xip1= 1
(such a function is called a piecewise monotone function). The relative
extrema X, X,, ¢+, X are called the peaks of f. The degree of comonotone
approximation of [ by algebraic polynomials of degree < 7 is defined by
EX(/) = inft||/ - pll: p € P(n; f)}  (sup norm on [0, 1]),

where P(n; f) is the set of algebraic polynomials of degree < n, monotone
on each of the subintervals (xl._l, x,.), i=1,2,e¢¢,7+ 1, with the same
monotonicity as f on these intervals. If f is monotone on [0, 1], then E:([)
is called the degree of monotone approximation of f.

‘Let S]., j=0,1,2,---, be the set of all piecewise monotone functions

[ with j peaks such that

[ - 1)
x-y

) <L

Osx,y=<1

The degree of comonotone approximation to S]. is defined by
EX(S) = suplEX(): [ € 5 ).

It is known that limn_'wE:(S].)= 0 (3], [_4]° The smallest degree n such
that E:(S].)< 0 will be denoted by n].(3).

With given data X and Y we associate a piecewise linear function L(x)=
L(X; Y; x) defined by L(x,)=y,, i=0,1,-++, k. Let j be the number of

peaks of L. We state our main results:
Theorem 1. N(X; Y)< n].(A/IZM).

Theorem 2. If y <y, <-+-<y,, then there exists an absolute constant
A such that N(X; Y)< AM/A.

We will first prove Theorem 1. Theorem 2 will follow from Theorem 1
and estimates on the degree of monotone approximation. The proof is based
on an idea of Kammerer [2, Theorem 4.1], later used by Ford and Roulier [1].

Proof of Theorem 1. Let ¢= %A, and let S be the set of 2°*1 piecewise
linear functions f such that f(xl.)= y;teory, —6i= 0,1,¢++, k. We
enumerate the functions in § and denote the ith function in § by /l Note
that our choice of € guarantees that each f, is comonotone with L(x)and that
If,6)= 1.0/ < 3Mlx — y|/2 for all x, y € [0, 1]. Thus Z/i/3M €S, so that
there exists p, € Pln;(A/12M); L] such that [|2f,/3M - p || < A/12M. Let g, =
3Mp,/2. Then gq; € Pln (A/12M); L] and |/, - ¢, < BM/2)(A/12M) = A/8 = ¢/2.
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The vector (yg ¥q»°°*, yk) is thus contained in the convex hull of the vec-
tors (ql.(xo), qi(xl)’ e qi(xk))’ i=1,2,0, ok +1

a convex linear combination of the qi’s which will give rise to a polynomial

, and therefore there exists

p which interpolates Y piecewise monotonely. Since the degree of each
q,< n],(A/]2M), we have N(X; Y)< nJ,(A/lZM).

Lemma (Lorentz and Zeller [3, Theorem 2]). There exists a constant c
such that E*(S )< c/n.

Proof of Theorem 2. From the Lemma we obtain n,(A/12M) < 2c(M/A).
It follows from this and Theorem 1 that N(X; Y)< AM/A.

While Theorem 2 may fail to give the exact value of N(X; Y) for a par-
ticular configuration (e.g., if all the points lie on a straight line), it is best
possible in a classwide sense, as we shall show in Theorem 3.

Let G(M; A) be the set of all (X; Y)such that M(X; Y)< M and A(Y) >
A, Let N(G)=supiN(X; Y): (X; Y) € Gi.

Theorem 3. Let y < ¥y <+ <y, Then there exist constants c
c,> 0 such that

l)

@ e M/A < NG) < ¢ ,M/A.

Proof. For each (X; Y)€ G, N(X; Y)< AM(X; Y)/A(Y), by Theorem 2.
Thus the upper bound in (2) holds with ¢, = 4.

For the lower bound, note that Theorem 2 was proved using estimates on
E:(SO) and that this theorem, in turn, may be used to give estimates on
E:(SO). Indeed, if f € C[0, 1] is monotone and satisfies (1), we may choose
X =1{0= Xgs Xyt ty %, = 1} such that

3) l/ngf(xi)—/(xi__l)SZ/n, i=1,2,..., k.

Let Y =1{f(xy), fG;), -+, f(x,}. Then A(Y)>1/nand M(X; Y)<1 (by (1)),
so that, by Theorem 2, there exists a polynomial p € P(An; f) such that
px,)= /(xi), i=0,1,---, k. Since p is a monotone interpolation of Y and f
satisfies (3), we have [/ - p|| < 2/n. Thus E% (/)< 2/n, so that EX(S )<
Al/n, which is the result of ‘Lorentz and Zeller contained in the Lemma. If
N(G) = o(M/A), it would follow that there exists a sequence of polynomials
q, € P(n; f) which would satisfy [[f - ¢_|| = o(1/n). Since the result of
Lorentz and Zeller is essentially unimprovable, this is impossible. Thus,

there exists c¢; > 0 such that N(G) > CIM/A'

Remark. It follows from [4] and [S] that there exists cy > 0 such that
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(4) n].(A/IZM) < min [C3P22PM/A](P+1)/(P-j—1).
Pzj +2

From this result we can obtain an estimate on N(X; Y) in the general case
of j peaks. We have, in particular, that for any ¢ > O there exists a constant

A . such that
7€

9!

(5) NX; V) <A (M/A)!.

We believe, however, that this estimate is not the best possible one, since
(4) is probably short of best possible. In fact, the proof of the lower bound
(2) in Theorem 3 can be modified to show that in the general case of j peaks,
N(G) > c4M/A for some constant €y We therefore conjecture that there exists
d]. such that N(X; Y)< d,' M/A, where j is the number of peaks of L(X; Y; x).

It may even be possible to replace dj by an absolute constant d.
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