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THE DEGREE OF THE BEST APPROXIMATION
IN BANACH SPACES
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Abstract. Direct theorems of Jackson type on estimating the degree of the best
approximation in Banach spaces are obtained by means of the moduli of continuity of
higher orders of elements having certain smoothness properties.

1. Introduction. Let C2 π denote the Banach space of all 2π-periodic, continuous
functions / defined on the real line R with the norm

||/||oo=max{|/(0|:UI<π}.

Let TV be the set of all natural numbers, and put 7V0 = 7Vu{0}. For each neN0, we
denote by 2Γn the set of all trigonometric polynomials of degree at most n. For a given
feC2π, we define

£ n (C 2 π ;/)=inf{ | | /-0 | | o o : ί ? ε<r n },

which is called the best approximation of degree n to/with respect to ϊFn.
The Weierstrass approximation theorem simply states that En(C2π; f) converges

to zero as n tends to infinity for all fe C2π. It does not say how fast En(C2π; f) tends
to zero. The following fundamental direct estimates due to Jackson (cf. [9]) assert that
En(C2π; /) approaches zero much faster when/is smooth: For all/e C2 π and all neN,

En(C2π;f)<Kω(C2π9f,\/n)9

where K is a positive constant independent of/ and n, and

denotes the modulus of continuity of/. If / e C 2 π has a continuous r-th derivative f(r)

for some r e N, then for all n e N

En(C2π,f)<Krn-rω(C2π;f
r\l/n),

where Kr is a positive constant depending only on r.
Similar estimates also hold for the Banach space LP2n consisting of all 2π-periodic,

/7-th power Lebesgue integrable functions f on R with the norm
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using the integral modulus of continuity (see, e.g., [1], [4], [21]).
The purpose of this paper is to extend these results to arbitrary Banach spaces,

and in particular, homogeneous Banach spaces (cf. [10], [15], [19]) which include C2π

and L\π, \<p<oo, as particular cases. For this purpose, we consider the following
setting:

Let X be a complex Banach space with norm || | |x, and let B[X~\ denote the Banach
algebra of all bounded linear operators of X into itself with the usual operator norm
II' \\B[XY Let Z denote the set of all integers, and let {Pj}jeZ be a sequence of projection
operators in B[X~\ satisfying the following conditions:

(P-l) The projections PpjeZ, are mutually orthogonal, i.e., PjPn = δjnPn for
ally, neZ, where δjn denotes Kronecker's symbol.

(P-2) {Pj}jeZ i s fundamental, i.e., the linear span of \JjeZPj(X) is dense in X.
(P-3) {Pj}jeZ is total, i.e., iΐfeX and Pj(f) = 0 for allyeZ, then / = 0 .
For each neN0, let Mn be the linear span of {Pj(X); \j\<n}. Note that Mn is a

closed linear subspace of X. For a given /ε X, we define

En{X',f) = iDf{\\f-g\\x:geMΛ}9

which is called the best approximation of degree n to /with respect to Mn. Obviously,

E0(X; f)>Ex{X; /)>••• >En(X; / ) > • > 0 ,

and Condition (P-2) implies that

\imEn(X;f) = 0 for every feX.
n-κχ>

In this paper, we relate the rapidity with which En(X;f) approaches zero to certain
smoothness properties of/, which can be described in terms of its moduli of continuity
of higher orders with respect to a strongly continuous group of multiplier operators on
X associated with Fourier series expansions corresponding to {Pj}.

2. Moduli of continuity. Let {Tt:teR} be a uniformly bounded strongly
continuous group of operators in B[X~\, i.e., a family of operators in B[X~\ satisfying
the following conditions:

(T-l) A = suV{\\Tt\\Bm'.teR}<oo.
(T-2) To = I (/= identity operator).
(T-3) Ts+t=TsTt for aΆs.teR.
(T-4) For each/e A; the mapping t\-+Tt(f) is strongly continuous on R, i.e.,

lim ί_J|Γ t(/)-Γ u(/) | | x = 0 for all ueR.
We define
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(1)
r - 0

whenever the limit exists in the sense of strong convergence, and let D(G) denote the

set of all/e Xfor which the strong limit in (1) exists. Evidently, D(G) is a linear subspace

of X and G is a linear operator of D(G) into X. This operator G is called the infinitesimal

generator of the group {Tt}. For r = 0, 1, 2,. . . , the operator Gr is inductively defined

by the relations

'-χ), Gr-\f)eD(G)}

and

(feD(G'l r=\, 2, 3,...).

Then for each reN, D(Gr) is a dense linear subspace of X and Gr is a closed linear

operator with domain D(Gr) (cf. [3, Propositions 1.1.4 and 1.1.6]). For further extensive

list of properties of semigroups of operators on Banach spaces, we refer to [3], [6],

[7] and [8].

For each reN0 and teR, we define

m = 0

which stands for the r-th iteration of Tt — I. Clearly, Λ\ belongs to B{X] and

where

If r G No, feX and δ>0, then we define

ωr(X;f,δ) = s\xp{\\Δr

t(f)\\x:\t\<δ},

which is called the r-th modulus of continuity of / with respect to the family {Tt}. This

quantity has the following properties:

LEMMA 1. Let reN and feX.

(a) ωr(X;f,δ)<Ar\\f\\x

forallδ>0.
(b) ωr(X; f, •) is a non-decreasing function on [0, oo) and ωr(X; / , 0) = 0.

(c) ωr+s(X;f,δ)<Arωs(X;f,δ)
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for all seN0 and all δ>0. In particular, we have

lim ωr(X;f,δ) = 0.
<5->+0

(d) ω,(X; f, ξδ) <A(l + ξ)'ωr{X; f, δ)

foraίlξ,δ>0.

(e) IfO<δ<ξ, then

ωr(X;f,ξ)/ξr<TAωr(X;f,δ)lδ'.

(f) 7//eZ)(Gr), then

ωr+s(X; f, δ)<Aδ'ωs(X; G'<J), δ)

for all seN0 and all δ>0.

PROOF. Statements (a) and (b) are obvious, (c) follows from the semigroup property

of Δ\ and (a), (d) is well-known if Δ't is fefined by the translation group, and the present

case is proved similarly. Since

= P Γ
JoJ

\ uιdu2- • dur

oJo Jo

(cf. [3, Proposition 1.1.6]), we have

Λ\+\f)= f P ltTiUί+U2 + ...+Ur)Δ
s

t(Gr(f))du1du2' dur,
JoJo Jo

and so

\W+s(f)\\x<A\t\r\\As

t(Gr(f))\\x,

which gives (f). q.e.d.

For re Wand α>0, an element feX is said to satisfy an r-th Lipschitz condition

of order α with constant M, M>0, or to belong to the class Lipr(Z; α, M) if

ωr(X; /, δ)<Mδa for all ^>0. Also, for reN and α>0 the class Lvpr{X\ α) consists of

all feLipr(X; α, M) for some constant M>0. Note that D(Gr)czLipr(X;r) for each

reN and that if α > r, then fe Lip,.^; α) if and only if ωr(X; f δ) = o(δr) as <5-> -h 0.

3. Multiplier operators and convolution operators. For any / e l , we associate

its (formal) Fourier series expansion (with respect to {Pj})

(2) / - Σ Pj(f).
j= - 0 0

An operator Te B[X~] is called a multiplier operator on X if there exists a sequence
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{τj}j<=z of complex numbers such that for every / e l ,

j=-oo

and the following notation is used:

(3) T~ Σ τfj
j=-oo

(cf. [5], [15], [16], [22]).

REMARK 1. The expansion (2) is a generalization of the concept of Fourier series

in a Banach space Xwith respect to a fundamental, total, biorthogonal system {/j,/*}jeZ

Here {fj}jez and {fj}jeZ are sequences of elements in X and X* (the dual space of X),

respectively such that the linear span of {/} :jeZ} is dense in X(fundamental), /*(/) = 0

for ally'eZimplies / = 0 (total), and/*(/„) = 5 ^ for ally, neZ(biorthogonal). Then (2)

reads

Σ
j=-cc

(cf. [2], [13], [20]).

Let M[Z] denote the set of all multiplier operators on X, which is a commutative

closed subalgebra of B[X~\ containing the identity operator /. Let {Tt: teR} be a family

of operators in M[J^] satisfying Condition (T-l) and having the expansions

(4) Γ,~ £
j=~O0

where {^}jeZ is a sequence of complex numbers. Then {Tt: teR} becomes a strongly

continuous group of operators in B\_X~\ and there holds

Gr(f)~ £ W / ) σeΛ(GO)
j=-oo

(cf. [15, Proposition 2]). Let φ: /?-»/? be a continuous function. If A: is a function in

L\π having the Fourier series expansion

W)~ Σ
j=

with its Fourier coefficients

2π J_

and if TeB\JC\, then we define the convolution operator (k*T)(φ; •) by
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(k*T)(φ;f) = —\ k(t)Tm(T(f))ώ <JeX),

which exists as a Bochner integral (cf. [15]). Clearly, (k*T)(φ; •) belongs to B[X] and

||(A

where

LEMMA 2. Let keL\π and let T be an operator in M[X~\ having the expansion (3).

Then (k*T)(φ; •) belongs to M[X~\ and

(5) {k*T){φ; )~ £ Cj(φ; k)τjPj( •),

1 Γn

Cj(φ; k) = k(t)exp(λj(p(t))dt

2π J_π

PROOF. Let jeZ and/GX. Then we have

l fπ

Pj((k*T)(φ;f)) = — k{i)Pj
2πJ_π1 Γ

= c/φ; k)Pβ{f)) = Φ; kytjPjif),

which implies (5). q.e.d.

For each n e No, we set

πn(φ) = {k ε L | π : c/φ; A:) = 0 whenever |j | > n} ,

which is a closed linear subspace of L\π. For asR, we define φa(t) = at, teR, and put

(*• Γ)α( •) = (** ΓXφ.; ) , πn,α = πn(<pJ .

Let reN,ke L\π and consider the following linear combination of the convolution
operators (k*Γ)p 1 <j<r,

Then we have the following key estimate for the operator Lkr.
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LEMMA 3. Let r e N, k e L\π , k Λ (0) = 1 an dfe X. Then

\\Lk,r(f)-f\\x<Aωr(X; f, δ) £ ([)δ~jμ(k;j)
j=o\j )

where

π \t\j\k(t)\dt
1 fπ

2π J_,

denotes the j-th absolute moment ofk.

PROOF. Since

r + l

and

Lk,r(f)-f=κ '' f k{t)Δ[<J)dt
2π J-π

U\(f) \\x<ωr(X;f, \t\)<A(\ +JiiYωr(^;/, δ)

k,r(f)-f\\x<Aωr(X;f,δ) £ (ΓVi^- Γ
j=o\jj 2 π J _

by Lemma 1 (d), we have

\\Lk

which implies the desired inequality. q.e.d.

4. Direct theorems. Recall that 2Γn is the set of all trigonometric polynomials

of degree at most n. In this section we suppose that

oo

(6) βΓn c P| πnm for each neN0.
m = l

REMARK 2. Let {λj}jeZ = {- ίj}jeZ.

(a) Fn c f | m 6 z \ { o } \ m for every n e Nθ9

and so (6) always holds.

(b) If φ = φm, m e Z\{0} , then (5) reduces to

(k*T)m~ Σ k>
j=-oo

and in particular if k e ^ , then

(k*τ)m= Σ *
UI<[«/M1



20 T. NISHISHIRAHO

where [A] denotes the largest integer not exceeding λ>0.

Now we have the following general estimate:

THEOREM 1. Let reN. Then for allfeX and all neN0,

En(X;f)<mf{\\LUf)-f\\x'

<Amf{ωr(X;f,δ)Σ

where

PROOF. Let ke$~n and/eX Then by Condition (6) and Lemma 2 we have

(k*I)Jf)= Σ φm;k)Pj(f)
j=~n

for all meN, and so Lkr(f) belongs to Mn. Therefore, we are done by Lemma 3. q.e.d.

Here we consider the generalized Jackson kernel given by

where the normalizing constant c π m >0 is taken in such a way that

1 Γπ

n > m

Λ ( 0 ) = - /.,.
π Jo

(cf. [12]). Note that

Λ, m

Λ (0)=- J.Jf)dt=\
JO

"Σ (l-— )exp(//0
j=i-n\ n

is the Fejer kernel, and so Jnfm(ή = cnmnmF™(t) is a non-negative, even trigonometric
polynomial of degree m(n— 1). Also, we have

π'2 n(2n2 + \) \ sm(t/2) J '

which is the Jackson kernel (cf. [9], [14]).

LEMMA 4. We have

2 m - l
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PROOF. By definition,

1 1 Γγ

The lemma follows from the well-known inequality

(7) (2/π)x < sin x < x (0 < x < Λ/2).

q.e.d.

LEMMA 5. We have

π \ 4 m / π 2 \ 2 m

PROOF. This follows from (7) and Lemma 4. q.e.d.

LEMMA 6. We have

\ 4 m 1 / 7+1 \0"+D/2m

PROOF.

l Γπ . l / Γα/fI Γπ \ l

π Jo 7ϋ VJo Jα/»/ π

say. By Lemma 5 we have

/ π \ 4 m ΛΛ/n

\2J Jo
and

Γ 0 0

Jam

π 2 α
2m-7-1

Choose α so that α = 2(0'+ l )/(2m-7- l )) 1 / 2 m . q.e.d.

We are now in a position to establish the following Jackson-type result:

THEOREM 2. Let re N. Then for all fe X and all nεN,

(8) En(X;f)<ACrωr(X;f9l/n),

where Cr = 2'3(n/2)2r+*.

PROOF. Let m = \_(r + 3)/2] and q = [n/rri] + 1 . Then Jqm belongs to F\. Therefore,

by Theorem 1 we have
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En(X;f)<Aωr(X; f, 1/n) £ ( \
j=o\J

By Lemma 6 we get our estimate. q.e.d.

COROLLARY 1. (a) IffeLipr(X; α, M)for some reN, then for all neN

En(X;f)<AMCrn-".

(b) If f e D(Gr) for some reN, then for allneN

(9) En(X;f)<A2Cr\\G'(f)\\χn-r.

(c) Iffe f|r°°= !^(G r), tf*e« for every λ > 0

The following result gives an improvement of the estimate (9) in terms of the moduli
of continuity of higher orders.

THEOREM 3. Let reN and fe D(Gr). Then for allneN and all s e No,

En(X; f)<A2Cr+sn~rωs(X; GΓ(/), 1/n).

PROOF. By Theorem 2 and Lemma 1 (f), we have

En(X; f)<ΛCr+sωr+s(X; / , \/n)<A2Cr+sn-'ωs(X; Gr(f), l/n).

q.e.d.

As an immediate consequence of Theorem 3 we have the following.

COROLLARY 2. Let reNand feD(Gr). IfGr(f) belongs to Lips(X; α, M)for some
seN, then for all neN

En{X f)<A2MCr+sn~(a+r).

For r=\ and s=l, 2 the above-mentioned results may be compared with our
previous results in [17] and [18], in which we employed the Fejer-Korovkin kernel
given by

n 2

ΣλnU)eijt (neN0,teR),

j=o

where

λn(j) = sin((j 4- l)π/(« + 2)) (J=0, 1, 2,..., ή)

and
• + A B

2 ( « ) ) - 1
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(cf. [11]). Note that fcπe^ί and

kn(t)= 1+2 Σ θn(m)cosmt,

where

θn(m) = An Y λn(j)λn(m +j) (m = 1, 2,..., ή)
j=o

with

0B(l) = cos(π/(/i + 2)).

Theorem 2 also yields other results on the best approximation as well as the
convergence of Fourier series (2):

THEOREM 4. Let {Un}neNo be a sequence of operators in B[X~\ satisfying Un(g) = g
for every g e Mn, and let reN. Then for all fΈX and all neN,

\\Un(f)-f\\x<(\\Un\\B[X]+l)En(X;f)

<ACr(\\Un\\B[X] + l)ωr(X;f,\/n).

PROOF. If g is an arbitrary element in Mn, then

\\Un(f)-f\\x<\\Un(f-g)\\x+\\g-f\\x

which implies

by virtue of (8). q.e.d.

COROLLARY 3. Let {Un}neNo be as in Theorem 4, and let feX. If

(10) l im| | t/ Π (/)-/ | | x = 0.
n-^oo

In particular, if Hm^^WUjB^ωXX; / , l/«) = 0 for some reN, then (10) holds.

Let {Sn}neNo be the sequence of the n-th partial sum operators associated with the
Fourier series (2), that is,

Sn= Σ Pj (nsN0).
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Then by Theorem 4 we have the following Lebesgue-type estimate for the n-th partial
sum operators Sn.

THEOREM 5. Let reN. Then for all feX and all neN,

\\Sn{f)-f\\x<{\\Sn\\Bm+\)En{X',f)

<ACr(\\Sn\\B[X]+l)ωr(X;f,l/n).

COROLLARY 4. If X\mn^^\\Sn\\BmEn(X; /) = 0, then the Fourier series of f con-
verges to f i.e.,

(11) •0 as «->oo.
X

r- Σ Pj(
j=~n

In particular, iflimπ^00||»Sπ||B[X]ωΓ(Ar; /, l/n) = Ofor some reN, then (11) holds.

Let σn, neNQ, be the «-th Cesaro mean operators, that is,

and let Vn be the de la Vallee-Poussin operator

Vn = (Sn + Sn+1+- +S2n-1)/n = 2σ2n-1-σn_1 (neN).

Suppose that {σn}neNo is uniformly bounded, i.e.,

C=sup{ | |σJ B m : «e7Vo}<oo .

Applying Theorem 4 to the case Un = Vn, we derive the following de la Vallee-
Poussin-type estimate:

THEOREM 6. Let re N. Then for all /e X and all neN,

E2n-1(X;f)<\\Vn(f)-f\\χ<OC+l)En(X;f)

<A(3C+l)Crωr(X;f,l/n).

5. Applications to homogeneous Banach spaces. Here we restrict ourselves to the
case where A" is a homogeneous Banach space, i.e.,

(H-l) Zis continuously embedded in L\π, i.e., there exists a constant M>0 such

that WfW^MWfWx for all feX.
(H-2) X is a Banach space with norm || | | x .
(H-3) The translation operator Tt defined by

= f( -t) (feX),

is isometric on X for each t e R.
(H-4) For each/eX, the mapping t\-+Tt(f) is strongly continuous on R.
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Typical examples of homogeneous Banach spaces are C2 π and Lp

2π, 1 <p<co. For
other examples see [15] (cf. [10], [19]).

Now we define the sequence {Pj}jeZ of projection operators in B[X~\ by

ifeX)9

which satisfies Conditions (P-l), (P-2) and (P-3) just as in Section 1 (cf. [10], [15]).
Note that each Tt has the expansion (4) with λ~ —if, and so for φ = φm, meZ, the
expansion (5) reduces to

00

(k*T)m~ Σ £Λ

and

qeZ\{0}

for each neN0 (cf. Remark 2). Furthermore, for feX we have

Consequently, in the above setting all the results obtained in the preceding sections
hold with A = 1. In particular, Theorems 2 and 5 and Corollary 4 for r — 1 and Corollary
1 (b) include Theorems 9.3.3.1 and 9.3.4.2 and Corollary 9.3.4.3 and Theorem 9.3.3.2
in [19], respectively.
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