THE DEGREES OF THE STANDARD IMBEDDINGS OF R-SPACES

Yoshihiro Ohnita

(Received November 4, 1982)

1. Introduction. R-spaces constitute an important class of homogeneous submanifolds in the Euclidean spheres: they are the orbits of the isotropy representations of symmetric spaces of noncompact type (cf. Takeuchi and Kobayashi [6]). This class includes many examples appearing in differential geometry of submanifolds. For example, all homogeneous hypersurfaces and all parallel submanifolds in spheres are realized as R-spaces.

Ferus [1] showed that the standard imbeddings of symmetric R-spaces have the parallel second fundamental forms and exhaust all submanifolds in spheres with the parallel second fundamental forms. So the following arises as a natural problem:

Problem. Characterize the standard imbedding of each R-space in the sense of differential geometry.

The first step in answering the Problem is to find many differential geometric properties of the standard imbeddings of R-spaces. In Kitagawa and Ohnita [3] we showed that the standard imbedding of every R-space has the parallel mean curvature vector.

Let M^n be a compact rank one symmetric space, that is, one of the following: S^n , RP^n , CP^n , QP^n and $CayP^{16}$. Let f_k be the standard minimal isometric immersion of M^n into a sphere $S^{m(k)}$ induced by the k-th eigenfunctions of the Laplace-Beltrami operator of M^n (cf. Wallach [7]). If k = 1, the immersion f_k is just the standard imbedding of a compact symmetric R-space of rank one. It is called a generalized Veronese submanifold except when M^n is a sphere. Wallach used the notion of its degree in studying the rigidity of a minimal isometric immersion. The degree of f_k coincides with k (cf. Wallach [7]) if M^n is a sphere, and with 2k (cf. Mashimo [4], [5]) otherwise. In particular, the degree of a generalized Veronese submanifold is 2.

In this note we show the following theorems:

Let Φ be the proper standard imbedding (cf. §2) of an R-space K/L.

THEOREM A. The degree of Φ is equal to 2.

THEOREM B. If Φ is regular (cf. §2), then there exists a normal

Y. OHNITA

frame field $\{\tilde{\xi}_1, \dots, \tilde{\xi}_p\}$ defined globally on K/L such that each $\tilde{\xi}_{\alpha}$ ($\alpha = 1, \dots, p$) is parallel with respect to the normal connection of Φ . In particular, the normal connection of Φ is flat.

The author thanks Professor H. Urakawa for valuable suggestion, and also thanks the referees for suggesting improvements.

2. Preliminaries. Let (g, θ) be an orthogonal symmetric Lie algebra of noncompact type (cf. Helgason [2]). Let $g = \mathfrak{k} + \mathfrak{p}$ be the Cartan decomposition of g, where $\mathfrak{k} = \{X \in \mathfrak{g}; \theta(X) = X\}$ and $p = \{X \in \mathfrak{g}; \theta(X) = -X\}$. Let a be a maximal abelian subspace of \mathfrak{p} . Let K be the analytic subgroup of the inner automorphism group $\operatorname{Int}(\mathfrak{g})$ corresponding to the Lie algebra $\operatorname{ad}(\mathfrak{k})$. \mathfrak{p} is invariant under K. Let ψ denote the Killing form of g and we consider $(\mathfrak{p}, \langle , \rangle)$ as a Euclidean space, where $\langle , \rangle = \psi|_{\mathfrak{p}}$. Put $S = \{X \in \mathfrak{p}; \langle X, X \rangle = 1\}$ and also denote by the same \langle , \rangle the Riemannian metric on S induced by \langle , \rangle . We denote by ∇° and $\overline{\nabla}$ the Riemannian connection of \mathfrak{p} and S, respectively.

For an arbitrarily fixed element H_0 in $S \cap \mathfrak{a}$, put $L = \{k \in K; k(H_0) = H_0\}$ and an imbedding $\Phi: K/L \to S$ by $\Phi(kL) = k(H_0)$. Then M = K/L is called an *R*-space and Φ its standard imbedding. If rank $(\mathfrak{g}, \theta) = 1$, Φ is the identity map. Φ is said to be proper if rank $(\mathfrak{g}, \theta) \ge 2$ and $\Phi(M)$ is not a great sphere of S. We can show that if $\Phi(M)$ is a great sphere of S then there are two orthogonal symmetric Lie algebras $(\mathfrak{g}_1, \theta_1)$ and $(\mathfrak{g}_2, \theta_2)$ such that (1) $(\mathfrak{g}, \theta) = (\mathfrak{g}_1, \theta_1) \bigoplus (\mathfrak{g}_2, \theta_2)$, (2) rank $(\mathfrak{g}_1, \theta_1) = 1$, (3) $H_0 \in \mathfrak{p}_1 =$ $\{X \in \mathfrak{g}_1; \theta_1(X) = -X\}$.

For an *R*-linear form λ on \mathfrak{a} , we put $\mathfrak{g}_{\lambda} = \{X \in \mathfrak{g}; (\operatorname{ad} H)X = \lambda(H)X$ for all $H \in \mathfrak{a}\}$. If $\mathfrak{g}_{\lambda} \neq \{0\}$, then λ is called a root of (\mathfrak{g}, θ) with respect to \mathfrak{a} . Let Δ be the set of all nonzero roots on \mathfrak{a} . We put $\psi_{\theta}(X, Y) = \psi(X, \theta(Y))$ for $X, Y \in \mathfrak{g}$. ψ_{θ} is a negative definite symmetric bilinear form on \mathfrak{g} . Then \mathfrak{g} has the following orthogonal direct sum with respect to $\psi_{\theta}: \mathfrak{g} = \mathfrak{g}_0 + \sum_{\lambda \in \mathfrak{d}} \mathfrak{g}_{\lambda}$. For an element $H \in \mathfrak{a}$, we put $\mathcal{A}_H = \{\lambda \in \mathcal{A}; \lambda(H) \neq 0\}$. If $\mathcal{A} = \mathcal{A}_H$, then H is called a regular element in \mathfrak{a} .

The standard imbedding Φ is called *regular* if H_0 is a regular element.

We now explain the notion of the degree of an isometric imbedding Φ of a Riemannian manifold $(M, \Phi^* \langle , \rangle)$ into a Euclidean sphere S. We denote by B the second fundamental form of Φ and let A be the shape operator of Φ defined by $\langle A_{\xi}X, Y \rangle = \langle B(X, Y), \xi \rangle$ for $X, Y \in T_x(M)$ and $\xi \in T_x(M)^{\perp}$. For $x \in M$, put $O_x^2(M) = \operatorname{span}_R\{B(X, Y): X, Y \in T_x(M)\}$ and let N_z be the orthogonal projection of $T_x(M)^{\perp} = O_x^2(M) \bigoplus (O_x^2(M))^{\perp}$ onto $(O_x^2(M^{\perp}))$, where $(O_x^2(M))^{\perp}$ is the orthogonal complement of $O_x^2(M)$ in $T_x(M)^{\perp}$. Let

500

R-SPACES

 $\mathscr{R}_1 = M$ and $\mathscr{R}_2 = \{x \in M; \dim O_x^2(M) \text{ is maximal in } \mathscr{R}_1\}$. We define a symmetric 3-tensor field B_3 on \mathscr{R}_2 by $(B_3)(X, Y, Z) = N_2((\nabla_x^*B)(Y, Z))$ for $X, Y, Z \in T_x(M)$, where $(\nabla_x^*B)(Y, Z) = \nabla_x^{\perp}(B(\tilde{Y}, \tilde{Z})) - B(\nabla_x \tilde{Y}, Z) - B(Y, \nabla_x \tilde{Z})$. Here ∇^{\perp} is the normal connection of Φ and \tilde{Y}, \tilde{Z} are vector fields defined locally around x with $(\tilde{Y})_x = Y, (\tilde{Z})_x = Z$. B_3 is called the third fundamental form of Φ . We can define $O_x^i(M), \mathscr{R}_j, B_j$ for $j = 2, 3, \cdots$, recursively. We call B_j the *j*-th fundamental form of Φ . There exists a natural number d such that $B_d \not\equiv 0$ on \mathscr{R}_d and $B_{d+1} \equiv 0$ on \mathscr{R}_d . We call d the degree of Φ .

For example, d = 1 means that Φ is totally geodesic. The degree of Φ is 2 if Φ has the parallel second fundamental form.

3. Proof of Theorems. Let l be the Lie algebra of L and m be the orthogonal complement of l in \mathfrak{k} with respect to ψ_{θ} . We identify the tangent space $T_o(M)$ at the origin $o = \{L\} \in M = K/L$ with m. Then the differential $\Phi_*: T_o(M) \to T_{\Phi(v)}(\mathfrak{p})$ is identified with the mapping $-\mathrm{ad}(H_0): m \to \mathfrak{p}$. Put $\mathfrak{p}_0 = \Phi_*(T_o(M)) = (-\mathrm{ad}(H_0))m$ and let \mathfrak{n} be the orthogonal complement of $\mathrm{span}_R\{H_0\} + \mathfrak{p}_0$ in \mathfrak{p} with respect to ψ_{θ} . Then the normal space $T_o(M)^{\perp}$ at the origin of M in S is identified with \mathfrak{n} . We have an orthogonal decomposition of \mathfrak{p} :

$$\mathfrak{p} = \operatorname{span}_{R} \{H_{0}\} + \mathfrak{p}_{0} + \mathfrak{n} .$$

Now we put

$$\mathfrak{h} = \sum_{\lambda \in \mathcal{I}_{H_0}} \mathfrak{g}_{\lambda}$$
, $\mathfrak{b} = \mathfrak{g}_0 + \sum_{\lambda \in \mathcal{I} - \mathcal{I}_{H_0}} \mathfrak{g}_{\lambda}$.

 \mathfrak{h} and \mathfrak{b} are invariant by θ since $\theta(\mathfrak{g}_{\lambda}) = \mathfrak{g}_{-\lambda}$. Hence we have $\mathfrak{g} = (\mathfrak{h} \cap \mathfrak{k}) + (\mathfrak{h} \cap \mathfrak{p}) + (\mathfrak{h} \cap \mathfrak{k}) + (\mathfrak{h} \cap \mathfrak{p})$. Then it is easy to show the following:

(3.1)
$$I = \mathfrak{b} \cap \mathfrak{k}, \quad \mathfrak{m} = \mathfrak{h} \cap \mathfrak{k}, \quad \mathfrak{p}_0 = \mathfrak{h} \cap \mathfrak{p},$$
$$\operatorname{span}_R\{H_0\} + \mathfrak{n} = \mathfrak{b} \cap \mathfrak{p}.$$

By $[\mathfrak{k}, \mathfrak{p}] \subset \mathfrak{p}$, $[\mathfrak{h}, \mathfrak{b}] \subset \mathfrak{h}$ and (3.1), we have (3.2) $(\mathrm{ad}(\mathfrak{m}))\mathfrak{n} \subset \mathfrak{p}_0$.

LEMMA. Let X be an element of m and ξ an element of n. We put $x_t = (\exp(tX)) \cdot o \in M$. If a normal vector field ξ_t along x_t is defined by $\xi_t = (\exp(tX)) \cdot \xi \in T_{x_t}(M)^{\perp}$ then we have $\nabla_t^{\perp} \xi_t = 0$.

PROOF. $\nabla_t^0 \xi_t = (d/dt)\xi_t = (\exp(tX)) \cdot [X, \xi]$. By (3.2) and $\overline{\nabla}_t \xi_t = \nabla_t^0 \xi_t + \langle \dot{x}_t, \xi_t \rangle x_t = \nabla_t^0 \xi_t$, we have $\overline{\nabla}_t \xi_t \in (\exp(tX)) \cdot \mathfrak{p}_0 = \varPhi_*(T_{x_t}(M))$. By Weingarten's fomula we obtain $\nabla_t^\perp \xi_t = 0$. q.e.d.

PROOF OF THEOREM A. If ϕ is proper, then $B \neq 0$. Since ϕ is K-

Y. OHNITA

equivariant, we have $\mathscr{R}_2 = M$. Let X, Y and Z be elements of $\mathfrak{m} = T_o(M)$. Put $x_t = (\exp(tX)) \cdot o, Y_t = (\exp(tX)) \cdot Y \in T_{x_t}(M)$ and $Z_t = (\exp(tX)) \cdot Z \in T_{x_t}(M)$. Then by the K-equivariance of Φ we have $B_{x_t}(Y_t, Z_t) = (\exp(tX)) \cdot B(Y, Z)$. Applying the Lemma to $\xi = B(X, Y) \in \mathfrak{n}$, we have $\nabla_t^{\perp}(B(Y_t, Z_t)) = 0$. Hence $(\nabla_x^*B)(Y, Z) = -B(\nabla_x Y_t, Z) - B(Y, \nabla_x Z_t) \in O_o^2(M)$. From the definition of the third fundamental form B_3 we have $(B_3)_o = 0$. B_3 vanishes everywhere by the homogeneity of M and the equivariance of Φ . q.e.d.

REMARK. If (t, l) is a symmetric Lie algebra, then Y_t and Z_t are parallel along x_t with respect to the Riemannian connection of M. From the above proof we have $\nabla^* B = 0$.

PROOF OF THEOREM B. It is known that the centralizer in K of a regular element of a coincides with the centralizer in K of a (for example, see Helgason [2, p. 289]). Thus L is the centralizer in K of a. Since $\Delta = \Delta_{H_0}$, we have $\mathfrak{b} = \mathfrak{g}_0$. By (3.1) and the maximality of a, we have $\operatorname{span}_R\{H_0\} + \mathfrak{n} = \mathfrak{b} \cap \mathfrak{p} = \mathfrak{a}$. Hence the action of L on $\mathfrak{n} = T_o(M)^{\perp}$ is trivial. Select an orthonormal basis $\{\xi_1, \dots, \xi_p\}$ of \mathfrak{n} . We can extend ξ_a to a K-invariant normal vector field $\tilde{\xi}_a$ defined globally on M. By Lemma we have $\nabla^{\perp} \tilde{\xi}_a = 0$. Thus $\{\tilde{\xi}_1, \dots, \tilde{\xi}_p\}$ is the desired normal frame field.

q.e.d.

References

- [1] D. FERUS, Symmetric submanifolds of Euclidean spaces, Math. Ann. 247 (1980), 81-93.
- [2] S. HELGASON, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, San Francisco, London, 1978.
- [3] Y. KITAGAWA AND Y. OHNITA, On the mean curvatures of R-spaces, Math. Ann. 262 (1983), 239-243.
- [4] K. MASHIMO, Degree of the standard isometric minimal immersions of complex projective spaces into spheres, Tsukuba J. Math. 4 (1980), 133-145.
- [5] K. MASHIMO, Degree of the standard isometric minimal immersions of the symmetric spaces of rank one into spheres, Tsukuba J. Math. 5 (1981), 291-297.
- [6] M. TAKEUCHI AND S. KOBAYASHI, Minimal imbeddings of R-spaces, J. Differential Geom. 2 (1968), 203-215.
- [7] N. WALLACH, Minimal immersions of symmetric spaces into spheres, in Symmetric Spaces (W. B. Boothby and G. L. Weiss, eds.), Marcel Dekker, New York, 1972, 1-40.

Mathematical Institute Tôhoku University Sendai, 980 Japan