
 Open access Proceedings Article DOI:10.1145/2682571.2797059

The Delaunay Document Layout Descriptor — Source link

Sebastien Eskenazi, Petra Gomez-Krämer, Jean-Marc Ogier

Institutions: University of La Rochelle

Published on: 08 Sep 2015 - Document Engineering

Topics: Document layout analysis, Document retrieval, Delaunay triangulation, Blossom algorithm and
Graph (abstract data type)

Related papers:

Voronoi-based compact image descriptors: Efficient Region-of-Interest retrieval with VLAD and deep-learning-
based descriptors

 Efficient Learning-Free Keyword Spotting

 Efficient Exemplar Word Spotting.

 Large Scale Sketch Based Image Retrieval Using Patch Hashing

 Optimizing Query Perturbations to Enhance Shape Retrieval

Share this paper:

View more about this paper here: https://typeset.io/papers/the-delaunay-document-layout-descriptor-
jk8wrr091w

https://typeset.io/
https://www.doi.org/10.1145/2682571.2797059
https://typeset.io/papers/the-delaunay-document-layout-descriptor-jk8wrr091w
https://typeset.io/authors/sebastien-eskenazi-43i270bhc7
https://typeset.io/authors/petra-gomez-kramer-3m8gmycpje
https://typeset.io/authors/jean-marc-ogier-3do611nky5
https://typeset.io/institutions/university-of-la-rochelle-1msdaood
https://typeset.io/conferences/document-engineering-pou3yb0l
https://typeset.io/topics/document-layout-analysis-13o7dpr8
https://typeset.io/topics/document-retrieval-irynqcp4
https://typeset.io/topics/delaunay-triangulation-26rbef49
https://typeset.io/topics/blossom-algorithm-3hnyroex
https://typeset.io/topics/graph-abstract-data-type-1ax3631y
https://typeset.io/papers/voronoi-based-compact-image-descriptors-efficient-region-of-483l57ik8f
https://typeset.io/papers/efficient-learning-free-keyword-spotting-2mmbydxq6n
https://typeset.io/papers/efficient-exemplar-word-spotting-3nm6s28fil
https://typeset.io/papers/large-scale-sketch-based-image-retrieval-using-patch-hashing-tbcr5u7wwn
https://typeset.io/papers/optimizing-query-perturbations-to-enhance-shape-retrieval-p9c8bo6t2z
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/the-delaunay-document-layout-descriptor-jk8wrr091w
https://twitter.com/intent/tweet?text=The%20Delaunay%20Document%20Layout%20Descriptor&url=https://typeset.io/papers/the-delaunay-document-layout-descriptor-jk8wrr091w
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/the-delaunay-document-layout-descriptor-jk8wrr091w
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/the-delaunay-document-layout-descriptor-jk8wrr091w
https://typeset.io/papers/the-delaunay-document-layout-descriptor-jk8wrr091w

HAL Id: hal-01225818
https://hal.archives-ouvertes.fr/hal-01225818

Submitted on 15 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

The Delaunay document layout descriptor
Sébastien Eskenazi, Petra Gomez-Krämer, Jean-Marc Ogier

To cite this version:
Sébastien Eskenazi, Petra Gomez-Krämer, Jean-Marc Ogier. The Delaunay document layout de-
scriptor. 2015 ACM Symposium on Document Engineering, Sep 2015, Lausanne, Switzerland.
฀10.1145/2682571.2797059฀. ฀hal-01225818฀

https://hal.archives-ouvertes.fr/hal-01225818
https://hal.archives-ouvertes.fr

The Delaunay document layout descriptor

Sébastien Eskenazi - Petra Gomez-Krämer - Jean-Marc Ogier
Laboratoire L3i

Avenue Michel Crépeau
17042 La Rochelle Cedex 1 - France

{sebastien.eskenazi; petra.gomez; jean-marc.ogier}@univ-lr.fr

ABSTRACT

Security applications related to document authentication re-
quire an exact match between an authentic copy and the
original of a document. This implies that the documents
analysis algorithms that are used to compare two documents
(original and copy) should provide the same output. This
kind of algorithm includes the computation of layout de-
scriptors, as the layout of a document is a part of its seman-
tic content. To this end, this paper presents a new layout
descriptor that significantly improves the state of the art.
The basic of this descriptor is the use of a Delaunay tri-
angulation of the centroids of the document regions. This
triangulation is seen as a graph and the adjacency matrix of
the graph forms the descriptor. While most layout descrip-
tors have a stability of 0% with regard to an exact match,
our descriptor has a stability of 74% which can be brought
up to 100% with the use of an appropriate matching algo-
rithm. It also achieves 100% accuracy and retrieval in a
document retrieval scheme on a database of 960 document
images. Furthermore, this descriptor is extremely efficient
as it performs a search in constant time with respect to the
size of the document database and it reduces the size of the
index of the database by a factor 400.

Keywords

layout, descriptor, Delaunay, stability, hashing, retrieval,
classification

1. INTRODUCTION
Many documents need to be secured, ideally by the means

of an electronic signature. If two documents have the same
signature, then they are authentic copies of each other and
if their signatures are different, one of the two documents is
fraudulent or at least different from the other one. This con-
cept works well for naturally born digital documents. How-
ever, nowadays a document, the so-called hybrid document,
is often used in electronic or paper form according to the
need. Hence, the hybrid document undergoes a lifecycle of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng ’15, Lausanne, Suisse
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

printing and scanning and thus different degraded versions of
the document exist as the printing and scanning process in-
troduces specific degradations in the document such as print
and scan noise [13]. Thus, the concept of electronic signa-
ture can not be applied. For this reason, our work intends to
develop an advanced electronic signature for the field of se-
curing hybrid documents, the so-called hybrid security. Our
idea is to extract the layout, the text and the images from
the document to compute a stable signature that will be the
same for all the authentic copies of the document.

To our knowledge, the closest work is a signature [18]
based on pixelwise signal analysis techniques which is not
satisfactory because of its large size. Other signatures such
as the 2D-Doc [3] require the emitter of the document to
precise the information used for signature computation, e.g.
the name and the address of the beneficiary in the context
of an invoice, and thus secures only partially the document
(the provided information, but for instance not the layout).
Thus, an ideal signature computation process is to auto-
matically extract the content of the document (text, layout,
graphics) and use it in the signature computation. A smaller
signature than [18] will result as the amount of information
to be secured is smaller since the image is not processed pix-
elwise. Anyhow, this signature will still allow to secure the
whole information of the document. In consequence, this
requires document analysis techniques with an extreme sta-
bility especially with regards to print and scan noise. The
first step in a document analysis process is often the seg-
mentation of the document. Hence we need to evaluate the
stability of a segmentation algorithm.

Before going any further it is important to understand
the difference between accuracy and stability. Accuracy re-
quires a groundtruth to evaluate how close a result is to this
ground truth. Accuracy can be evaluated with only one re-
sult as long as there is also a ground truth. Stability does
not require a ground truth. Stability requires at least two
results with similar inputs to see how close these results are
together compared to how close the inputs were. In our
case, similar inputs are photocopies of the same document.
A consequence of this is that an algorithm can be very sta-
ble and yet not be accurate, For instance an algorithm that
always makes the same mistakes, or namely in the case of
a layout descriptor always describes only one region, would
have an absolute stability and zero accuracy. The contrary
is not true. An algorithm with an absolute accuracy will al-
ways produce results that are identical to the ground truth
and hence identical between each other. A perfect layout
descriptor will also be perfectly stable.

Hence we do not need a ground truth to evaluate the sta-
bility of a segmentation algorithm but we still need a proper
metric or criteria to know when to outputs are similar or
not. This also raises the question of defining what are simi-
lar outputs of a segmentation algorithm. Our point of view
is that two segmentation results are similar if they contain
the same layout. This layout is also part of the semantic
content of the document that will need to be secured.
Since we make a difference between the segmentation and

the layout of a document, it is necessary to define it clearly.
According to [7], the physical layout of a document refers
to the physical location and boundaries of various regions
in the document image. The physical layout extraction typ-
ically relies on a page segmentation algorithm. The page
segmentation computes the boundaries of the various regions
in the document image. Then, based on these boundaries,
the layout extraction determines the spatial relationships
between these regions. We simplify the above definition by
only keeping the physical locations of the regions for the lay-
out. We consider that the position of the region boundaries
is the page segmentation. The region boundaries of page
segmentation vary in case of noise and are thus very unsta-
ble. Hence, we consider that the three segmentation results
shown in Figure 1 have different segmentation results but
identical layouts. This is of course a point of view which is
not unique but it allows us to achieve the required level of
stability.

Figure 1: Three layouts that we consider to be identical

Now we need a layout descriptor that is at least as stable
as the best segmentation algorithms. We can never measure
anything more stable than the descriptor, hence our quest
for stability. The Delaunay Layout Descriptor is made to
identify layouts with the highest level of stability. While its
original use is the evaluation of segmentation algorithms, its
performances allow many other uses.
It has been designed for document authentication. As-

suming we have a copy of a layout and the descriptor of
the original layout, the authentication process is as follows.
First we compute the layout descriptor on the copy. Then
we match it with the descriptor of the original layout.
It can also be used for document retrieval based on the

document layout with unprecedented results. For a doc-
ument retrieval scheme, we would have one layout and a
database of hashes of layout descriptors. We would retrieve
the layout by matching its descriptor with the database.
More generally, this descriptor can be efficiently used to

describe the relative spatial relationship between a set of
points as long as these points are not too numerous (below
30-40) and not too many of them are aligned.
We will now consider the state of the art under this new

perspective in section 2. Then we will present the compu-
tation and the matching algorithm for the Delaunay Layout

Descriptor (DLD) in sections 3 and 4. Section 5 presents
the metrics and the dataset used for the evaluation of the
descriptor. Finally, the last three sections 6, 7 and 8 de-
tail our results, discuss the pertinence of our descriptor and
conclude.

2. STATE OF THE ART
As far as we know, only a few work has been presented on

layout descriptors. For instance, the Description and MOd-
ification of Segmentation DMOS with the EPF grammati-
cal language [9] can be used to provide an original layout
description. It extracts content from a document by iden-
tifying its layout. The DMOS paradigm requires the user
to a priori define the layout with EPF and is not based on
the content of the document image to be processed. Hence
the layout description is not adaptive to the layout of the
document at hand.

Álvaro and Zanibbi [1] propose a layout descriptor for
handwritten math expressions. They use a polar histogram
and a support vector machine to classify the spatial rela-
tionship between two elements. There are five classes: hor-
izontal, superscript, subscript, below, and inside (e.g. in a
square root).

The other layout descriptors are made for document clas-
sification and retrieval. The MPEG-7 standard [14] includes
a color layout descriptor. It divides an image into an 8 by 8
grid, takes the mean color value of the grid, converts it into
the YCbCr color space and runs a discrete cosine tranform
on it. Esposito et al. [11] use a set of 7 quantized position
and size attributes (e.g. width, height, on top of) whose val-
ues can make 171072 combinations. Cesarini et al. [6] modify
the X-Y cut algorithm and use the cut sequence to encode
the layout. This descriptor is tied to the segmentation al-
gorithm and hence not very useful in a general case. There
are also many graph-based layout descriptors [4, 12, 17] us-
ing features such as distance, size, position, angles and other
metrics.

While the above presented descriptors do not consider ro-
bustness to noise, rotation and scale, Gordo and Valveny [12]
present one which is meant to be invariant to scale and ro-
tation. Unfortunately, by ’invariant’ the authors mean rea-
sonably invariant. For instance, if we consider two copies of
the same document, a small difference is accepted as long as
the descriptors of the copies can be matched. This ’weak’
invariance is not enough for security application which re-
quire an exact invariance, e.g. the values of the descriptor
should remain the same.

There is one last descriptor that is not made for lay-
out analysis but which presents some interesting features:
LLAH [19]. Nakai et al. designed it to retrieve text docu-
ments in a database with an image captured by a camera. It
describes the local layout around each word in the document.
It uses a set of affine invariants computed at the center of
each word in the document. The descriptors reflect the spa-
tial relationships between a word and its neighbors making
a word neighborhood descriptor. Each word neighborhood
descriptor is stored in a database with a hashing technique.
This technique allows constant time retrieval which in prac-
tice leads to real time retrieval. The matching is made with
a voting algorithm counting how many word neighborhoods
of the document can be matched in the database. It cannot
be used for layout description because it requires more cen-
troids than the number of regions that we would find in a

common document. Also it only retrieves one document per
query and cannot cluster identical documents.
The main drawback of state-of-the art layout descriptors

is the number of thresholds and parameters to adjust. The
more thresholds and parameters are used in the computa-
tion, the more unstable the descriptor will be. Thus, the
ideal stable descriptor neither uses thresholds nor parame-
ters.

3. THE DELAUNAY LAYOUT DESCRIPTOR
Considering our last comment, one should ban the use of

”continuous” values such as distances or areas. If a length
can vary between 1 and 100; then it has 99 thresholds. An in-
teresting descriptor without any threshold would be a graph
joining the centroids of the regions of the layout. One way to
compute such a graph is to use the Delaunay triangulation
of the centroids. There are three properties of a Delaunay
triangulation that influence its practical use and stability.

Property 1. Given a set of points, there always exists a
Delaunay triangulation except when all the points are aligned.

This property is of the highest interest as it proves that we
will always be able to compute a Delaunay triangulation.
Yet, it also highlights one case of instability: aligned points.
While this will never occur for the whole page, it can occur
locally and create local instabilities.

Property 2. The Delaunay triangulation tries to maxi-
mize the minimum value of the angles inside each triangle.

This leads to only few near flat triangles whose degenerated
form could lead to an instability.

Property 3. When a subset of four or more points can
be placed on the same circle, the Delaunay triangulation of
the points is not unique.

This means that in this case, the Delaunay triangulation is
not stable.
This is why, our descriptor is based on the Delaunay tri-

angulation of the centroids of the regions of the layout. This
triangulation is represented as a graph whose root node is
the top left centroid. From there we use a breadth first
traversing algorithm to order the graph and to compute its
adjacency matrix. The adjacency matrix is the descriptor
which we call the Delaunay Layout Descriptor (DLD). It has
no parameter and virtually no threshold.
The computation of the Delaunay Layout Descriptor is

based on a preliminary step: we extract the centroids of the
regions of the layout. Two steps follow: the triangulation of
these centroids and the computation of the adjacency matrix
of the triangulation which is seen as a graph.

3.1 Delaunay triangulation of the centroids
The algorithm adds three points outside of the document

image in order to compute the triangulation. One is far in
the top left direction and will be the root of the graph. These
points are the furthest points from the center of Figure 2.
The pseudo code algorithm of the triangulation is:

Delaunay(vertices set V)

vertex list Tv

triangle list Tt

create 3 outer vertices v1, v2, v3

Figure 2: Example of a delaunay triangulation produced by
opencv. The vertices in the center are the centroids of the
regions of the layout.

Tv.add(v1)

Tv.add(v2)

Tv.add(v3)

Tt.add([v1, v2, v3])

for all vertices a in V

Tv.add(a)

triangle list RemovedTri

for all triangles t in Tt

if a is inside the circum circle of t

Tt.remove(t)

RemovedTri.add(t)

end if

end for

update(Tv, Tt, RemovedTri)

delete RemovedTri

end for

The update method updates the removed triangles to in-
clude the new vertex a (the last vertex in Tv). This is done
by adding the vertex a to these triangles. This makes quad-
rangles that are split along one diagonal to make new tri-
angles that will be added to Tt. The condition to choose
along which diagonal to split the quadrangle is detailed in
the next section.

3.2 Graph transformation of the Delaunay tri-
angulation

The Delaunay triangulation can easily be seen as a graph
but this graph needs to be ordered in a stable manner. To
this intend we use a variant of the breadth-first search (BFS)
algorithm starting from the top left corner. Our algorithm
is described below in pseudo-code.

Del2Graph(graph G, start vertex v)

vertex list Vl

Vl.push(v)

mark v as done

for i=0; i<G.nbVertices -1

vertex list Children

for all vertices a in G.adjacentVtx(Vl(i))

if a is not done

Children.push(a)

mark a as done

end if

end for

order(Children)

for all vertices a in Children

Vl.push(a)

end for

delete Children

end for

return Vl

The top left corner is a good starting point because the
algorithm always generates it. Our algorithm differs from
the BFS in the ordering of the children of a given node. Let
us consider the situation of Figure 3 where A is a parent node
and B and C are its children. x is the horizontal axis. B

and C are ordered by increasing value of the angles
−̂→
Ax,

−→
AC

and
−̂→
Ax,

−→
AC in [−π;π]. Here, both angles are negative and

C comes before B.

Figure 3: One node with two children

Once the graph is ordered we compute its adjacency ma-
trix to obtain the DLD. The DLD can be hashed with any
hashing algorithm such as MD5 [20] or SHA-256 [5] in order
to reduce its size to 128 or 256 bits respectively. MD5 is
more compact than SHA-256 but cannot be used for secure
applications. It should only be used in a document classifi-
cation and retrieval scheme.

4. DLD MATCHING
We have created a descriptor with no threshold or param-

eter. However this is not sufficient for an absolute stabil-
ity. We have seen that there are three cases of instability:
aligned points, flat triangles and cocyclic points. Flat tri-
angles and aligned points cover the same geometric situa-
tion. There is also a fourth one related to the ordering of
the graph. Thus, we propose an appropriate matching algo-
rithm absorbing these possible sources of unstability of the
descriptor. It creates the possible variations of the descrip-
tor and finds the exact matches with the descriptor(s) that
we want to match. The way the matching algorithm handles
the flipping of edges inside a quadrangle, the instability due
to near aligned points and the instability due to the implicit
threshold at −π/π in the ordering of the graph is explained
in the following.

4.1 Edge flipping

The Property 2 can be achieved by appropriately choosing
the diagonal to split the quadrangles in the update function
of the triangulation algorithm. If we consider the quadran-
gle ABCD of Figure 4, it can be split along [AC] or along
[BD] to make two triangles. To choose which edge must be
created, the algorithm computes the sum of the opposing an-

gles: ÂBC+ĈDA and B̂CD+D̂AB. One of them is bigger
than 180◦ (this is a trivial mathematical property since their
sum is equal to 360◦). To statisfy P2, the quadrangle must
be split along the segment that joins the opposing angles

whose sum is the biggest. Here it is ÂBC + ĈDA = 200◦

and the quadrangle will be split along [BD].

Figure 4: Example of a quadrangle that needs to be trian-
gulated

One immediate source of instability comes when the sums
are both equal to 180◦. This means that all four vertices
are on the same (circum) circle and there are two possible
triangulations of the quadrangle. This explains Property 3.
The situation worsens in the digital world due to the dis-
cretization of of the coordinates in the integer pixel values.
This introduces an error on the angle measurements which
needs to be taken into account. There exists an instability
area when a couple of opposing angles forming a quadrangle
have a sum within [180◦ − ϵ; 180◦ + ϵ]. If this is the case, we
will flip [AD] to [BC] and try to match both possibilities of
splitting the quadrangle.

The parameter ϵ remains to be found and can be defined
by the user. The value of ϵ will be discussed in the next
section.

4.2 Aligned points
As stated in Property 1, for any number of aligned points

there exists no triangulation. If a subset of our centroids is
aligned, this will create a zone of instability as this subset
will be difficult to triangulate. Furthermore, we just stated
that there is an error margin on angle measurements. This
increases the zone of instability due to aligned points. Let
us consider the two situations of Figure 5, and the point of
view of the edge [BD].

Situation 5a occurs when ÂBD+ ÂDB < ϵ. In this case,
the edge makes a flat triangle with A. This should be trian-
gulated the other way (with [AC] splitting the quadrangle).
The situation 5b is a proper triangulation. However, it could
very well have been triangulated the other way around with
[AC] splitting the quadrangle. This situation occurs when

π + ϵ > ÂBD + D̂BC > π − ϵ.
We perform similar tests on both sides of the edge and

with both vertices of the edge. This defines the zone of

(a) [BC] makes a flat trian-
gle

(b) [AC] could make a flat
triangle

Figure 5: Two situations with nearly aligned points

instability related to the alignment of points. If this situa-
tion occurs for an edge, we flip the edge/diagonal inside the
quadrangle and try to match both splitting configurations.
To prevent this situation from occuring too often, one

should try to segment text columns rather than text para-
graphs or text lines. Text lines and paragraphs are usually
aligned in the same column.

4.3 Ordering implicit threshold
The algorithm to transform the Delaunay triangulation

into a graph contains a step when the children of a node are
ordered. This step contains an implicit threshold. With the

notations of Figure 3, let us consider that
−̂→
Ax,

−→
AC < −π+δ.

If we make an angle measurment error of ϵ > δ then we

can have
−̂→
Ax,

−→
AC < −π. This angle will be congrued back

inside [−π;π] to become
−̂→
Ax,

−→
AC + 2π < π. This changes

the ordering of C from being the first to being the last child.
To deal with this, we define an instability zone equal to

[−π;−π+ϵ]∪[π−ϵ;π]. If one or more children are within this
zone of instability, we change the ordering of the children of
the current node by performing a circular permutation. We
then try to match all the possible orderings of the graph.

4.4 Matching
Now that we have identified all the sources of instability,

we can test all their combinations to match the layout L.
When combining several instabilities we recompute them.

By instance, we apply one instability. Then we recompute
the instabilities and only after that do we apply a second
instability. This is motivated by the fact that applying one
instability in a quadrangle can create new instabitilities for
the edges of the quadrangle.
The number of instabilities due to the Delaunay triangula-

tion can be rather big (up to 28 in our experiments). As the
combinatorial of their combinations will grow exponentially,
we limit the number of simultaneous instabilities to a value
n. By instance, if n = 2, we will only consider the cases
when a maximum of two instabilities occur in the layout.
The ordering instabilities are quite rare as we start from

the top left corner and they occur for the children on the
left of the current node. Hence we will test all the ordering
instabilities. The matching procedure becomes:

Match(layout L, database S,

angle ϵ, nbInstabilities n)

list of indexes Matches

Matches.add(find L in S)

for all delaunayInstabilities(ϵ, n)

modify L

for all orderingInstabilities(ϵ)

modify L

Matches.add(find L in S)

end for

end for

return Matches

As the instabilities can be different from one layout to an-
other, the matching algorithm is not symmetric e.g. match-
ing a layout L1 with a layout L2 may not produce the same
results as matching L2 with L1.

5. EVALUATION
This section presents the metrics and the dataset we used

for the evaluation of the Delaunay Layout Descirptor.

5.1 Metrics
We chose to evaluate the Delaunay Layout Descriptor with

three criteria. The stability is the prime criteria for security
applications. It is usually quantified with the probability
of false positives. We studied a second scenario based on
document classification and retrieval. This scenario contains
two metrics: precision and recall. Finally, we also took into
account the computational complexity of the descriptor.

5.1.1 Probability of false positives

The probability of false positives (PFP) is the probability
that two identical layouts cannot be matched together. They
will be considered different and potentially fraudulent. If
this probability is too high, too many documents will have
to be manually verified and the system will be too expensive
and useless. The PFP of the layout descriptor will also be a
lower boundary for the PFP of the segmentation algorithms
that we could want to evaluate. The PFP should be as low
as possible. It is equal to 1− stability.

We consider a set of k copies of the same layout. We
want to match one against all. This produces k−1 matches.
We consider that a copy of a layout will not occur twice -
scanning a document twice never produces the exact same
image. Hence we should not match a layout copy with itself
and we substract one match.

Assuming t matches fail, the probability of false positives
is equal to:

PFP =
t

k − 1
(1)

We then take the average of the PFPs for all the copies of
all the layouts.

5.1.2 Classification and retrieval scheme

In this scenario we compute the descriptors for a database
of layout copies to obtain a set of m descriptors S. Some
layout copies can of course have the same descriptor. Then
we match each layout copy with this set of descriptors.

For a given query (layout copy), we are supposed to re-
trieve k layouts copies. Here we include matching the query
with itself as this is a classification task. Out of these only
q = k − t are retrieved and an extra p wrong results are
retrieved.

The precision and recall are given for one query by:

Precision =
q

q + p
(2)

Recall =
q

k − 1
= 1− PFP ×

k − 1

k
(3)

A precision of 1 means that no wrong results are returned
and a recall of 1 means that all the right results are returned.
We will also use the classification accuracy which can be

computed for the whole dataset (m layouts and m queries):

CAccuracy =
1

m

m∑

i=1

qi (4)

Where qi is q for the ith query.

5.1.3 Computational complexity

The computational complexity is of interest for both the
computation of the descriptor and the matching of the de-
scriptor. They are usually dependant on the number of re-
gions in the layout and the number of documents in the
database respectively.
We will also look at the size of the descriptors. This pa-

rameter is important as it affects the size of the signature
and it also affects the size of the index if we want to index
a database.

5.2 Testing dataset

Figure 6: Three layouts produced by PAL, JSEG and
Voronoi from left to right.

To test our algorithm we created a database of 15 lay-
outs similar to the ones in Figure 6. These layouts are the
results obtained by three segmentation algorithms PAL [8],
JSEG [10] and Voronoi [15] on the documents of the PRiMA
dataset [2]. Among these 15 layouts two of them are iden-
tical but obtained with a different segmentation algorithm:
they have the same number of regions with approximately
the same size and the same positions. The layouts contain
between 6 and 28 regions. For PAL we only used the block
information as we have already stated that text line segmen-
tation will create too much instability.
Figure 7 represents the creation process of the dataset. We

printed each layout twice on one printer (arrow number 1).
Then we photocopied the prints (arrow 2) making 4 pages
(2 prints + 2 copies). We photocopied these four pages
again (arrow 3) making 8 pages (2 prints, 4 copies, 2 double
copies). We then scanned in black and white these pages
twice on two scanners (arrows 4 for first scanner and 5 for the
second) making 32 layout images. We repeated this process
with an other printer making a total of 64 images of the same
layout. The total size of the dataset is then 15 × 64 = 960
images. The scanners added salt and pepper noise which
created many regions made of one or two pixels. Such noise
would not be produced by a segmentation algorithm and we
removed it from the dataset.
The dataset contains scale variations as the printers add

margins around the layout images and hence change their

scale. We also used batch scanners that have introduced a
surprisingly significant amount of skew (about 5− 10◦).

Figure 7: The creation process of our dataset.

This dataset will allow us to test the robustness and stabil-
ity of our descriptor to real print and scan noise. It is avail-
able on http://navidomass.univ-lr.fr/LayoutCopies/.

6. RESULTS
We compare the results of our descriptor with three other

methods: the one of Gordo and Valveny (G & V) [12], the
one of Bagdanov and Worring (B & W) [4] and the one of
Nakai et al. (LLAH) [19]. Table 1 summarizes all the results
except for precision and recall. The symbol ↓ indicates that
the metrics should be as low as possible to be good and ↑

means the contrary.

6.1 Probability of false positives

6.1.1 Intrinsic PFP

If we try to find an exact match for the descriptors without
any matching algorithm we obtain what we call the intrinsic
probability of false positives (iPFP).

As there has not been any previous evaluation of the sta-
bility of a layout descriptor we implemented the descriptor
of Gordo and Valveny [12] and tested it for comparison with-
out any matching algorithm. The descriptor contains four
informations:

• The angle between the edge joining the centroid of
a region and the centroid of all the regions and the
horizontal x axis

• The length of this edge

• The area of the region

• The type of the region (text or non text)

We only used the first three informations and set the fourth
one to text all the time as it was not available. This will
only increase the stability of the descriptor as there will be
one less variable per region.

Gordo and Valeveny’s descriptor has an iPFP of 1 while
the Delaunay Layout Descriptor has an iPFP of 0.26. The
result for Gordo and Valveny’s descriptor is expected as they

Table 1: Summary of the results

Metric DLD G & V B & W LLAH
iPFP ↓ 0.26 1.00 NA NA
PFP ↓ 0.00 NA NA NA
Classification accuracy ↑ 1.00 0.66 0.99 0.98
Computational cost of descriptor ↓ O(n log log n) O(n log n) O(n log log n) O(n)
Size of the descriptor ↓ O(1) O(n) O(n) O(n)
Computational cost of matching ↓ O(1) O(m) O(m) O(1)
Matching time ↓ 0.1-23.9s 5s 0.05-0.3s 0.05s
Memory use ↓ 284(96)Mo 4.7(3.9)Go NA 120(16.1)Go
Required number of regions <30-40 Any Any >100
Can be used in secure applications yes no no no

Figure 8: The values of the PFP for different situations and
sets of parameters.

use numeric values. Changing any angle/length/area by one
pixel will change the descriptor and make it unstable. This
would be the same for any other descriptor based on voting
or distance computation.
We did not implement Bagdanov and Worring’s algorithm

or LLAH as we are very confident they would produce the
same results. They both use ”continuous” values which will
lead to a very high level of instability.

6.1.2 PFP

The matching algorithm has two parameters: the error
on the angle measurment that we accept and the maximum
number of instabilities that can occur at the same time. The
angle error related to the digitization of the images can be
estimated to be below ϵ = 5◦. We found experimentally that
the angle variation introduced by the use of a second seg-
mentation algorithm for the same layout is 10◦ ≤ ϵ ≤ 15◦.
We tested the algorithm with n = 1, n = 2 and n = 3 insta-
bilities. We did not try to have more combinations as the
results were already perfect up to the fifth decimal. Figure
8 summarizes the results. The lines are named PFP5◦ or
PFP15◦ according to the value of ϵ. The adjunction of an
s (PFPs) means that each layout is the result of only one
segmentation algorithm and we removed the duplicate lay-
out that was the results of a second segmentation algorithm.
The vertical scale is logarithmic.
Having two instabilities at the same time is enough to have

a PFP below 1%. One can also notice that a 5◦ angle error
is sufficient if we use one segmentation algorithm per lay-
out. Two different layouts can be segmented with different

Figure 9: The values of the recall for different situations and
sets of parameters.

algorithms. This situation is usually the case in a digitiza-
tion framework. These values are (almost) perfect and don’t
need to be improved any further. Since there is no point in
achieving a PFP lower than the one we achieve we do not
find it necessary to compare it with the other algorithms.

6.2 Classification and retrieval

6.2.1 Precision and recall

Similarily to what we did for the probability of false posi-
tives, we can compute the precision and recall of our system.
The precision is always 100%. The recall is shown in Figure
9 for the same cases as the PFP.

Once again these results are nearly perfect and don’t need
to be improved.

6.2.2 Classification accuracy

As the other authors do not provide any probability of
false positive, precision or recall for their method, we also
use the one they provide. Gordo and Valveny [12] achieved
0.66 classification accuracy on a dataset of 823 documents.
Bagdanov and Worring [4] achieved 0.99 classification accu-
racy on 857 documents. LLAH [19] achieved 0.98 retrieval
accuracy on 1000 images. LLAH is not originally made for
classification purposes as it only and always retrieves one
result per query hence the authors do not provide any clas-
sification accuracy. The accuracy used by LLAh is defined
by

RAccuracy =
1

m

m∑

i=1

ti (5)

Where ti is a binary value equal to 1 when the result is
correct. This is the limit case of a classification accuracy in
the case where only one result is retrieved and each class is
a singleton. Thus, we can use it.
For the Delaunay Layout Descriptor (DLD), the classifi-

cation accuracy is always 1 except if we try to classify the
whole dataset with an angle tolerance of 5◦. If we consider
the scheme of LLAH, our accuracy is 1. We always retrieve
at least one identical layout.

6.3 Computational cost
We consider that n is the number of regions in a document

and m is the number of layouts in the database.

6.3.1 Descriptor computation

The worst case computational cost of the Delaunay tri-
angulation is O(n2) as implemented in opencv 2.4.91 but
it can brought down to O(n log n) with the sweep line algo-
rithm [16]. For most cases, it will actually be O(n log log n).
The transformation of the Delaunay triangulation into an or-
dered graph costs O(n) as each centroids is processed once.
The total computational cost of the descriptor is then O(n2)
in its current implementation and it can be optimized to
O(n log n) and to O(n log log n) in the general case.
Gordo and Valveny’s descriptor can be computed inO(n log n)

because of the sorting algorithm required to sort the fea-
tures by ascending order of their first value. Bagdanov and
Worring’s can be computed in O(n log log n) in the general
case as they also make use of the Delauny triangulation to
compute the Voronoi diagram of the layout. LLAH can be
computed in O(n) as each region is only processed once in-
dependantly from the other regions.

6.3.2 Size of the descriptor

The DLD has a constant size, hence its memory size is
O(1) with respect to n. The other descriptors are computed
region wise and hence, use a memory size of O(n).

6.3.3 Matching computation

Regarding the matching of one layout with the database,
for the DLD it can be achieved in O(1) with respect to
m. This is due to the use of cryptographic hashing (we are
looking for an exact match) and is similar to LLAH. The two
other descriptors require O(m) computations as the query
needs to be matched on a one by one basis with all the
layouts in the database.

6.4 Experimental results
In a practical case, there are two main criteria to compare

algorithms: how much time do they take to execute and how
much memory do they require.

6.4.1 Matching time

Computing the descriptor on an Intel Core i7 3740QM
with 8 cores at 2.7GHz takes on average 12 milliseconds.
Matching a layout with the whole database with an angle
error of 5◦ an a maximum of 2 simultaneous erros takes on
average 0.1 seconds and 1.5 seconds with 3 simultaneous
instabilities. If we use an angle error of 15◦, these values
go up to 0.8 and 23.9 seconds respectively. It should be
noted that this matching time is independant from the size
of the database and could be improved as the computation

1opencv.org

of the instabilities and of their combinations has not been
optimized at all.

Gordo and Valveny’s algorithm takes 5s to match a query.
Bagdanov and Worring’s algorithm and LLAH take respec-
tively 0.05 to 0.3s and 0.05s.

6.4.2 Memory usage

While the memory usage should be directly related to the
size of the descriptor, its practical implementation and im-
plementation constraints can change it significantly. One
should keep in mind that two descriptors using respectively
n bits and 1000× n bits scale up with O(n). Yet one uses a
thousand times more memory than the other.

To compute this metrics for all descriptors, we assume a
database of one million layouts and 20 documents/images
per layout. This makes a database of 20 million documents.
We also consider that each document contains 12 regions
on average and that an integer is stored on 32 bits (or 4
octets) of memory. The values in brackets in Table 1 indi-
cate theoretical values while the other values are obtained
experimentally.

The memory space taken by the DLD can be 128 bits for
non secure applications and 256 bits for secure applications.
Each layout will then require (128+ 20× 32)/8 = 96 octets.
128 bits for the descriptors and 20× 32 bits for the 20 num-
bers of the associated documents. The whole database will
then require 96Mo. This value does not take into account
implementation constraints such as memory alignment and
storage structure (unordered map in our case). We created
an index for a virtual database and it uses 284Mo of memory.

Gordo and Valveny’s descriptor contains 4 values per re-
gion plus one value to identify the document. Hence the the-
oretical size of the databse would be (4×12+1)×4×20e6 =
3.9Go. Experimentally we obtained a size of 4.7Go.

The descriptor of Bagdanov and Worring uses 6 integers
per region. It also creates a graph for each document. The
database is made of prototype graphs that represent each
class of layout. We would need to have an estimate of the
number of graphs per class and of edges per graph to esti-
mate the memory requirement to index the database. We
have none of these value and thus prefer not to make an
estimate.

LLAH stores one hash (one integer) per word in the doc-
ument. In Takeda et al.’s paper they consider a normal
number of words to be 200 words. Each word is associated
to a document which means that there are two integer values
per word: the hash and the number of the document.Hence
the theoretical size of the index is 2×4×200×20e6 = 32Go.
This value neglects the possible collisions e.g. the words that
have the same hash. For each collision, there is one hash/in-
teger less to store. Experimentally, Takeda et al. obtained
a size of 120Go.

6.5 Domain of application
When using or choosing an algorithm it is important to

know what are the constraints for its use and what it can be
used for.

The number of possible simultaneous instabilities increases
with the number of edges and in consequence with the num-
ber of regions. Raising the number of simultaneous insta-
bilities increases exponentially the number of combinations
to test. It would then be computationnaly prohibitive to
match the Delaunay Layout Descriptor for documents that

contain more than 30 or 40 regions.
As we have seen LLAH works best with at least 200 or so

words. We can safely assume that it does not work properly
if there are less than 100 regions. There would not be enough
points to properly describe the document.
The other descriptors do not seem to have any specific

limitations with respect ot the number of regions.
Since the Delaunay Layout Descriptor is the only one that

can be used with any cryptographic hashing, it is also the
only one that can be used for secure applications.

7. DISCUSSION
One could wonder about how much the adjacency matrix

of the delaunay triangulation of the layout is representa-
tive of this layout. The performance of the DLD proves this
representativeness. The DLD does not use the size of the re-
gions, neither does it use the distance between the centroids
of these regions. But, for a mostly convex region, the bigger
the region, the further its centroid will be from the other
centroids. Hence the area of a region is reflected by the dis-
tance between the centroids. The Delaunay triangulation is
directly dependent on these distances between the centroids
and their relative positions. Hence, the DLD indirectly con-
tains both informations. It is invariant to scale and to a
certain extent to rotation. This is expected as rotating a
layout too much can change this layout.

8. CONCLUSION
In this paper we present a stable document layout de-

scriptor (Delaunay Layout Descriptor) based on a Delaunay
triangulation of region centroids. It comes with a matching
algorithm to obtain outstanding performances.
We have shown that it improves the state of the art in

every aspect except for the matching time which could be
improved. Its stability, precision, recall and accuracy reach
100%. It also reduces by a factor 400 the memory required
to index a document database and can match a document
against a database of any size in less than a second up to 28
seconds depending on the required level of performance.
When using the Delaunay Layout Descriptor, one should

have in mind one tip to leverage all its power. The seg-
mentation algorithm should not produce too many aligned
regions. Hence, it should not segment text lines but rather
text paragraphs or even better: text columns. Our test
dataset contains layouts with as little as 6 regions and as
much as 28 regions which proves that the descriptor should
work in most cases.
Finally, the Delaunay Layout Descriptor is fast, stable,

robust, precise and concise beyond all expectations. From
our point of view, it solves the issue of describing a layout.
Its implementation could probably be improved as it has not
been extensively optimized especially regarding the combi-
nation of the instabilities. The next challenge is to have a
segmentation algorithm with the same level of performance
as it is no use to match a layout if the layout is wrong or
unstable. We could have attempted to create such a segmen-
tation algorithm before but the analysis of the stability of a
segmentation algorithm requires an extremely stable tool to
compare the layouts it produces. This is why we created the
Delaunay Layout Descriptor before trying to design a stable
segmentation algorithm.

9. REFERENCES
[1] F. Álvaro. A shape-based layout descriptor for

classifying spatial relationships in handwritten math.
In Proc. of the 2013 symposium on Document
engineering, pages 123–126. ACM, 2013.

[2] A. Antonacopoulos, D. Bridson, C. Papadopoulos, and
S. Pletschacher. A realistic dataset for performance
evaluation of document layout analysis. In Proc. of
10th International Conference on Document Analysis
and Recognition (ICDAR), pages 296–300. IEEE, 2009.

[3] ANTS. Spécifications techniques des Codes à Barres
2D-Doc. Technical report, ANTS, 2013.

[4] A. D. Bagdanov and M. Worring. First order Gaussian
graphs for efficient structure classification. Pattern
Recognition, 36:1311–1324, 2003.

[5] J. Bryson and P. Gallagher. Secure Hash Standard
(SHS), 2012.

[6] F. Cesarini, M. Lastri, S. Marinai, and G. Soda.
Encoding of modified X-Y trees for document
classification. Proc. of 6th International Conference on
Document Analysis and Recognition (ICDAR), 2001.

[7] B. B. Chaudhuri. Digital document processing. major
directions and recent advances. Springer, 2007.

[8] K. Chen, F. Yin, and C.-l. Liu. Hybrid page
segmentation with efficient whitespace rectangles
extraction and grouping. In Proc. of 12th International
Conference on Document Analysis and Recognition
(ICDAR), pages 958–962. IEEE, Aug. 2013.

[9] B. Coüasnon. DMOS, a generic document recognition
method: application to table structure analysis in a
general and in a specific way. In International Journal
on Document Analysis and Recognition (IJDAR),
volume 8, pages 111–122. Springer-Verlag, 2006.

[10] Y. Deng and B. S. Manjunath. Unsupervised
segmentation of color-texture regions in images and
video. Pattern Analysis and Machine Intelligence
(PAMI), 23(8):800–810, 2001.

[11] F. Esposito, D. Malerba, and G. Semeraro.
Multistrategy learning for document recognition.
Applied Artificial Intelligence an International
Journal, 8(1):33–84, 1994.

[12] A. Gordo and E. Valveny. A rotation invariant page
layout descriptor for document classification and
retrieval. In Proc. of the 10th International Conference
on Document Analysis and Recognition (ICDAR),
pages 481–485. IEEE, 2009.

[13] T. Kanungo, R. M. Haralick, and I. Phillips. Global
and local document degradation models. In Proc. of
2nd International Conference on Document Analysis
and Recognition (ICDAR), pages 730–734. IEEE, 1993.

[14] E. Kasutani and A. Yamada. The MPEG-7 color
layout descriptor: a compact image feature description
for high-speed image/video segment retrieval. In Proc.
of 2001 International Conference on Image Processing
(ICIP), volume 1. IEEE, 2001.

[15] K. Kise, A. Sato, and M. Iwata. Segmentation of page
images using the area voronoi diagram. Computer
Vision and Image Understanding, 70(3):370–382, June
1998.

[16] G. Leach and G. Leach. Improving worst-case optimal
Delaunay triangulation algorithms. In Proc. of 4th
Canadian Conference on Computational Geometry,

pages 340–346, 1992.

[17] J. L. J. Liang, D. Doermann, M. Ma, and J. Guo. Page
classification through logical labelling. In Proc. of 16th
International Conference on Pattern Recognition
(ICPR), volume 3, pages 477–480. IEEE, 2002.

[18] A. Malvido Garcià. Secure Imprint Generated for
Paper Documents (SIGNED). Technical Report
December 2010, Bit Oceans, 2013.

[19] T. Nakai, K. Kise, and M. Iwamura. Use of affine
invariants in locally likely arrangement hashing for
camera-based document image retrieval. Lecture Notes
in Computer Science (LNCS), 3872:541–552, 2006.

[20] R. Rivest. The MD5 message-digest algorithm.
Technical report, Internet activities board, 1992.

