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Abstract

In recent years, there has been an increasing interest in extending stream processing engines with rule-based temporal rea-
soning capabilities. To ensure correctness, such systems must be able to output results over the partial data received so far as
if the entire (infinite) stream had been available; furthermore, these results must be streamed out as soon as the relevant data is
received, thus incurring the minimum possible delay; finally, due to memory limitations, systems can only keep a limited his-
tory of previous facts in memory to perform further computations. These requirements pose significant theoretical and practical
challenges since temporal rules can derive new information and propagate it both towards past and future time points; as a result,
streamed answers can depend on data that has not yet been received, as well as on data that arrived far in the past. Towards
developing a solid foundation for practical rule-based stream reasoning, we propose and study in this paper a suite of decision
problems that can be exploited by stream reasoning algorithms to tackle the aforementioned challenges, and provide tight com-
plexity bounds for a core temporal extension of Datalog. All of the problems we consider can be solved at design time (under
reasonable assumptions), prior to the processing of any data. Solving these problems enables the use of reasoning algorithms
that process the input streams incrementally using a sliding window, while at the same time supporting an expressive rule-based
knowledge representation language and minimising both latency and memory consumption.
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1. Introduction

Query processing over data streams is a key aspect of Big Data applications. For instance, algorithmic trading relies on
real-time analysis of stock tickers and financial news items [3], oil and gas companies continuously monitor and analyse data
coming from their wellsites in order to detect equipment malfunction and predict maintenance needs [4], and network providers
perform real-time analysis of network flow data to identify traffic anomalies and DoS attacks [5].

In stream processing, an input data stream is typically seen as an unbounded, append-only, relation of timestamped tuples,
where timestamps are either added by the external device that issued the tuple or by the stream management system receiving it
[6, 7]. Data is only available for processing in a single pass and information stored by the system is thus inherently incomplete.
Streaming jobs are long-running: standing queries are deployed once and continue to produce results as a stream until removed.
Most applications of stream processing require near real-time analysis using limited resources, which poses significant challenges
to stream management systems. On the one hand, to ensure correctness, systems must be able to compute query answers over the
partial data received so far as if the entire (infinite) stream had been available; furthermore, they must stream query answers out as
soon as the relevant data is received, thus incurring the minimum possible delay. On the other hand, due to memory limitations,
systems can only keep a limited history of previously received input facts in memory to perform computations. These challenges
have been addressed by implementing various extensions of traditional database query languages with window constructs, which
declaratively specify the finite part of the input stream relevant to the answers at the current time [8].

A growing body of research has recently focused on extending stream management systems with reasoning capabilities [1, 9–
16]. Languages well-suited for stream reasoning applications can be formalised as temporal extensions of Datalog [17, 18]—a
prominent language with a rich tradition in the database and knowledge representation communities, which is frequently being
used in advanced applications that mix AI and data management techniques. Datalog programs can be used to represent in a
succinct and declarative way domain knowledge as ‘if-then’ rules where it holds that, if all atoms in the antecedent of a rule are
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satisfied, then the atom in the consequent part of the rule must also be satisfied. An important feature of Datalog rules is that they
can be recursive: the application of a rule can (possibly indirectly) trigger an application of the same rule.

Well-known temporal extensions of Datalog include Datalog1S [19] and DatalogMTL [20]. In this paper, we consider a core
temporal rule-based language, which we call Temporal Datalog. Our language is an extension of negation-free Datalog where
predicates are equipped with a special time sort interpreted over the non-negative integers, and allowing for terms of the form
t + k with t a time variable and k an integer. Under unary coding of integers, our language can be seen as a syntactic fragment of
Datalog1S as defined by Chomicki and Imieliński [19]. In particular, in contrast to Datalog1S, the language we consider imposes
a guardedness condition on time arguments ensuring that rule application to a stream is localised, in the sense that facts matching
a rule’s antecedent cannot be arbitrarily far apart in the stream. Our language is expressive enough to capture prominent temporal
formalisms [21, 22], and the guardedness condition makes it naturally well-suited for incremental stream processing [13, 15].1

The following examples illustrate the use of Temporal Datalog rules in streaming applications.

Example 1.1. Consider a computer network which is being monitored for external threats using an intrusion detection policy
(IDP). Bursts (unusually high amounts of data) between any pair of nodes in the network are detected by specialised monitoring
devices and streamed to the network’s management centre as timestamped facts. A monitoring task in the centre is to identify
nodes that may have been hacked according to a specific IDP, and add them to a blacklist of nodes. In this setting, one may want
to know the contents of the blacklist at any given point in time in order to decide on further action. This task is captured by a
Temporal Datalog program consisting of the rules given next:

Burst(x, y, t) ∧ Burst(z, y, t + 1)→ Attack(x, y, t + 1) (1)
Attack(x, y, t) ∧ Attack(x, y, t + 1) ∧ Attack(x, y, t + 2)→ Black(x, t + 2) (2)

Black(x, t)→ Black(x, t + 1) (3)
Attack(x, y, t)→ Grey(x, l3, t) (4)
Grey(x, l3, t)→ Grey(x, l2, t + 1) (5)
Grey(x, l2, t)→ Grey(x, l1, t + 1) (6)

Grey(x, l, t) ∧ Burst(x, y, t)→ Black(x, t). (7)

Rule (1) identifies two consecutive bursts from nodes x and z to a node y in the network as an attack on y originated by x.
Rule (2) implements an IDP where three consecutive attacks from x on y result in x being added to the blacklist, where it remains
indefinitely (Rule (3)). Rules (4)–(7) implement a second IDP where an attack from x on any node leads to x being identified as
suspicious and added to a “greylist”. Such a list comes with a succession of three decreasing warning levels, where the maximum
is represented by the constant l3. As time goes by, the warning level decreases; however, if at any point during this process node
x generates another burst to any other node in the network, then it gets blacklisted.

Example 1.2. Consider the management of a wind farm in the North Sea. Each turbine is equipped with a sensor, which
continuously records temperature levels of key devices within the turbine and sends those readings to a data centre monitoring
the functioning of the turbines. Temperature levels are streamed by sensors using a ternary predicate Temperature, whose
arguments identify the device, the temperature level, and the time of the reading. A monitoring task in the data centre is to track
the activation of cooling measures in each turbine, record temperature-induced malfunctions and shutdowns, and identify parts
at risk of future malfunction. This task is captured by the following set of rules:

Temperature(x, high, t)→ Flag(x, t) (8)
Flag(x, t) ∧ Flag(x, t + 1)→ Cool(x, t + 1) (9)
Cool(x, t) ∧ Flag(x, t + 1)→ Shutdown(x, t + 1) (10)

Shutdown(x, t)→ Malfunction(x, t − 2) (11)
Shutdown(x, t) ∧ Near(x, y, t)→ AtRisk(y, t) (12)

AtRisk(x, t)→ AtRisk(x, t + 1). (13)

Rule (8) ‘flags’ a device whenever a high temperature reading is received. Rule (9) says that two consecutive flags on a device
trigger cooling measures. Rule (10) says that an additional consecutive flag after activating cooling measures triggers a pre-
emptive shutdown. By Rule (11), a shutdown is due to a malfunction that occurred when the first flag leading to shutdown was
detected. Finally, Rules (12) and (13) identify devices located near a shutdown device as being at risk at the current time point
as well as at all future time points.

1As we will discuss in Section 3, the reasoning problems we propose in this paper can be formulated and studied for other temporal rule-based languages.
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As already mentioned, stream processing applications require near real-time response using limited resources. This becomes
especially challenging in the context of rule-based stream reasoning since, as seen in our examples, rules may derive new
information and recursively propagate it both towards past and future time points. As a result, the output of a Temporal Datalog
program at a particular time point τ can depend on data that has not yet been received, as well as on data that arrived far back in
the past. This can critically handicap the design of a real-time stream reasoning system, due to the following reasons.

• The system may not be able to determine whether all facts for time point τ have already been derived, thus introducing a
(potentially unbounded) delay on applications that rely on the availability of all such facts.

• The system may be forced to store a (potentially unbounded) input history to ensure correctness, thus precluding the use
of efficient stream processing techniques based on a sliding window.

Towards developing a solid foundation for practical rule-based stream reasoning, we propose and study in this paper a suite
of decision problems that can be exploited by stream reasoning algorithms to tackle the aforementioned challenges.

We take as a starting point a generic stream reasoning algorithm, which we describe in Section 3. The algorithm extends
traditional stream processing techniques based on a sliding window to the stream reasoning setting while, at the same time,
abstracting away from all implementation details. The algorithm is parametrised with a Temporal Datalog program Π, a delay
d, and a window size w. It accepts as input a stream S of timestamped facts and outputs as a stream a subset of the logical
consequences of Π ∪ S , which is determined by the values of the parameters d and w. As the algorithm receives and stores
in memory the input stream at time point τ, it computes all implicit facts holding at τ − d using only the facts currently held
in memory. The computed facts are first added to the memory and subsequently streamed as part of the output. Finally, the
algorithm updates the memory by discarding all facts holding at τ − w.

For the algorithm to be correct, the output stream must include all logical consequences of Π ∪ S , for any input stream S .
Such an assurance, however, can only be given for certain values of the delay and window size parameters. Hence, we formally
define the notions of a valid delay d and a valid window size w as properties of the program Π, which are independent from the
input stream S , and show that the algorithm parametrised with Π, d and w is correct if and only if d and w are valid.

There are, however, programs for which a valid delay does not exist, and hence for which our algorithm is not applicable.
We show in Section 3 that, if a program does admit a valid delay, then it must admit a valid window size as well. Thus, the
computational task of interest in our setting is to first check whether a program Π admits a valid delay and, if it does, to then
compute the corresponding minimal delay and window size values. Reducing the delay and window size is important in practice,
as it ensures that a correct algorithm will keep to a minimum the number of facts stored in memory at any point in time, and
will minimise latency by returning each output fact as early as possible. We therefore study the computational properties of the
following decision problems for a given input program Π.

• Delay existence: Decide whether there exists a valid delay for Π.

• Delay validity: Decide whether a given d ≥ 0 is a valid delay for Π.

• Window size validity: Given a valid delay d for Π and w ≥ d, decide whether w is a valid window size for Π and d.

We then define the class of backward-bounded programs, which preclude temporal recursion towards past time points. This is a
useful fragment of Temporal Datalog, which can be recognised in polynomial time, and where programs are guaranteed to admit
a valid delay of size at most linear in the size of the program.

In Section 4, we explore the limitations of our approach and establish a number of undecidability results. For this, we show
that the decision problems we consider are closely related to program containment—a fundamental problem in static analysis and
query optimisation, which is well-known to be undecidable already for non-temporal Datalog programs. To regain decidability,
we consider the situation where the set of domain objects that can occur in a stream is fixed in advance. In Example 1.1 this
assumption amounts to fixing the nodes in the network, and in Example 1.2 it amounts to fixing the set of sensors generating
temperature readings. This is a rather mild assumption in practice; it is appropriate, for instance, in applications where the set
of data-generating devices remains fixed during a query session—or more generally, where we can establish upfront an upper
bound to the number of such devices. It allows us to ground the object variables of the program to a set of known objects; such
grounding is exponential and results in an object-ground program where all variables are time variables.

In Section 5 we characterise delay existence, delay validity and program containment in terms of languages over finite
words. In Sections 6 and 7 we exploit this characterisation to show, using automata-based techniques, that delay existence, delay
validity, and window size validity are solvable in ExpSpace under the aforementioned assumption that the object domain of the
input streams is fixed, and regardless of whether numbers in the input program are coded in unary or in binary; furthermore, the
complexity of all problems drops to PSpace if we assume that object variables have been grounded and that numbers in rules are
coded in unary. Finally, in Section 8 we show that these results are tight by providing matching lower bounds.

We believe that our results constitute a first step towards the development of robust and scalable stream reasoning engines with
provable correctness guarantees. Although all of the problems we consider are computationally intractable, they can be solved
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“offline” at design time prior to the processing of any data. Solving these problems enables the use of reasoning algorithms that
process the input streams incrementally using a sliding window while, at the same time, supporting an expressive rule-based
knowledge representation language and minimising both latency and memory consumption.

This paper builds on some of the results presented in earlier conference publications [1, 2]. In particular, our main technical
contribution is to extend the stream reasoning framework and complexity results in [2] to include a much broader class of
Temporal Datalog programs, and to consider also the complexity of all relevant problems under both unary and binary coding of
numbers. A detailed discussion will be provided in Section 9.3.

2. Temporal Datalog

We recapitulate the syntax and semantics of Datalog with a time argument, which we call Temporal Datalog. We assume
familiarity with the basics of complexity theory, logic, and rule-based languages for databases and knowledge representation.

As usual in First-order Logic, we assume mutually disjoint and countably-infinite sets of predicates (written P, Q, R, etc.),
objects (written a, b, c, etc.), object variables (written x, y, z, etc.), and time variables (written t, t1, t2, etc.). Each predicate
comes with a non-negative arity; as usual, we assume an infinite supply of predicates of each arity.

A constant is either an object or a time point τ ∈ N (where N includes zero). An object term is an object or an object variable.
A time term is a time point or an expression of the form t + k where t is a time variable and k is an integer (the offset); we write
t − k for t + k′ with k′ the opposite of k, and we abbreviate t + 0 as t. A term is either an object term or a time term. An atom is
an expression P(s1, . . . , sn) where P is an n-ary predicate, each si for 1 ≤ i ≤ n − 1 is an object term, and sn is a time term.

A fact is an atom where each term is either an object or a time point. For a (possibly infinite) set of facts F and an interval ρ
of Z, we denote with F�ρ the subset of facts in F holding in ρ, that is, F�ρ = {P(a, τ) ∈ F | τ ∈ ρ ∩ N}; we write F�τ for F�[τ,τ].
A rule r is a first-order sentence of the form (14), where the body ϕ of r is a conjunction of atoms and the head α is an atom:

∀x.ϕ→ α. (14)

As usual, we will omit universal quantifiers when writing rules and require that rules are safe, i.e., that each variable in a rule
occurs in its body. Furthermore, we impose a temporal guardedness condition on rules, which requires that all the atoms in a
rule mention the same time variable. A program is a finite set Π of (safe and temporally guarded) rules.2

Intuitively, guardedness ensures that an application of a rule to a stream is localised, in the sense that the time arguments
of all facts in the stream matching the antecedent of the rule are close to each other (with the maximum distance depending
on the radius of the rule). Temporal guardedness formally captures within our framework a principle underlying all stream
query languages based on sliding-window constructs—e.g., CQL [8]—where each query evaluation considers only time points
at constant distance from the current evaluation time point.

Example 2.1. The rules in Examples 1.1 and 1.2 satisfy our guardedness condition. In contrast, rule r = P(t1) ∧ Q(t2) → R(t2)
does not as it contains two different time variables in the body, where only one of them is propagated to the head. Intuitively, r
derives a fact R(τ) for a time point τ if Q holds at the same time point and P holds somewhere in the stream. Thus, fact R(τ) may
be justified by a fact about P that appears arbitrarily far away into the future, and hence a stream reasoning algorithm would
need to wait indefinitely in order to be certain as to whether R(τ) holds or not. It is worth noticing that rule r can be rewritten
into rules with a single time variable by introducing fresh predicates and recursion, thus obtaining rules Q(t) ∧ P′(t) → R(t),
P(t) → P′(t), P′(t) → P′(t + 1), and P′(t) → P′(t − 1). Such rewriting, however, can easily turn a program admitting a valid
delay (as will be defined later on in Section 3) into a program with no valid delay, thus making our stream reasoning algorithms
not applicable to the resulting rewriting.

We distinguish between extensional (EDB) and intensional (IDB) predicates, where only the former can occur in data and
only the latter can occur in rule heads. Formally, a predicate is IDB in program Π if it occurs in the head of a rule of Π, and it is
EDB otherwise. An atom is IDB (respectively, EDB) in Π if so is its predicate; we will often not mention Π when referring to
EDB or IDB predicates or atoms when it is clear from the context. A term, atom, rule, or program is ground if it has no variables,
object-ground if it has no object variables, and object-free if it has no object terms.

The forward radius of a rule r of the form (14) is the maximum between zero and k − k′ for k the offset in α and k′ the
minimum offset of an atom in ϕ; similarly, the backward radius of r is the absolute value of the minimum between zero and
k − k′′, with k′′ the maximum offset of an atom in ϕ. A rule is forward-propagating if its backward radius is zero, and a program
is forward-propagating if so are all of its rules.

A substitution σ is a finite partial mapping of variables to terms of the suitable sort. For α a term, an atom, a rule, or a set
thereof, ασ denotes the result of replacing each variable x in α (and defined in σ) with σ(x). If σ is defined on all variables of α,
then ασ is an instance of α. We write ↓ τ for the substitution that maps all time variables to a time point τ.

2Note that, strictly speaking, Temporal Datalog is not a syntactic extension of Datalog, as it does not allow for atoms without a time argument; it is, however,
straightforward to encode any Datalog program into Temporal Datalog so that entailment is preserved in a well-understood way.
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Figure 1: The first labelled tree from the left is a derivation δ of Q(6) from Π ∪ D with Π = {A(t) ∧ B(t + 1) → P(t), P(t) → P(t + 1), P(t) ∧ C(t) → Q(t)} and
D = {A(5), B(6),C(6)}. Each node has its label right next to it. Considering the same labelling for the other trees, the second tree is a P(6)-subderivation of δ,
which is also strict and immediate; the third tree is a P(5)-subderivation of δ, which is strict but not immediate; finally, the fourth tree is a partial derivation, but
not a derivation because it has no P(5)-subderivation.

A (Herbrand) interpretation is a (possibly infinite) set of facts. An interpretation I satisfies a ground atom α, written I |= α,
if evaluating the numeric term in α by computing the relevant addition yields a fact in I. Interpretation I satisfies a conjunction
of ground atoms if it satisfies each of the conjuncts, and it satisfies a rule of the form (14) if, for each ground instance ϕσ→ ασ
of the rule we have that I |= ϕσ implies I |= ασ. Finally, I satisfies a set of rules and/or facts if it satisfies each element of the
set. For E an atom, a conjunction of atoms, a rule, a program, or a set of facts, an interpretation I is a model of E if I satisfies
E; a program Π and a set of facts D entail E, written Π ∪ D |= E, if each interpretation satisfying both Π and D satisfies E.

As customary in the treatment of database query languages, we often see a program Π as a transformation that maps each set
D of facts to the set of all IDB facts that are entailed by Π ∪ D, which we denote as Π(D).

Fact entailment is the problem of checking Π∪D |= α for a given program Π, a finite set of facts D, and a fact α as input. The
data complexity of fact entailment is the complexity when Π and α are considered fixed and only D is considered as the input.
Fact entailment in Datalog1S is PSpace-complete in data complexity [19]. Under unary coding of numbers, Temporal Datalog
can be seen as a fragment of Datalog1S where a term t + k corresponds to k applications of the successor function symbol to t. It
is worth noticing, however, that our temporal guardedness does not make standard reasoning easier: using essentially the same
complexity lower bound proofs as for Datalog1S it is immediate to show that fact entailment over Temporal Datalog remains
PSpace-hard in data complexity, even if numbers are coded in unary.

Entailment of α from Π∪D can be characterised in terms of existence of a derivation of α from Π∪D, where such derivation
δ is a finite node-labelled tree satisfying the following properties: (i) each node is labelled with a ground instance of a rule in
Π ∪ D (where a fact in D is seen as a rule whose body is empty); (ii) fact α is the head of the rule labelling the root; and (iii) for
each node v, the body of the rule labelling v contains an atom β if and only if β is the head of a rule labelling a child of v. A
β-subderivation of δ is a subtree of δ that is itself a derivation of β. We say that the subderivation is strict if it is not δ itself, and
it is an immediate subderivation of δ if it is rooted in a child of the root of δ. In some of our constructions later on in the paper, it
will be useful to consider partial derivations, where condition (iii) is weakened to only require that each head of a rule labelling
a non-root node v must occur in the body of the rule labelling the parent of v. The former notions are illustrated in Figure 1. We
then say that a fact α depends on a fact β in a ground program Π (via n ≥ 1 steps) if there is a partial derivation of α from Π∪ {β}
having height n; and that α has rank k in Π if k is the mininum non-negative integer such that α depends on no fact in Π via more
than k steps.

Example 2.2. In a ground program Π = {A(5) → P(5), B(6) ∧ P(5) → Q(5)}, fact P(5) depends on A(5) via one step, and fact
Q(5) depends on A(5) via two steps and on B(6) via one step; furthermore, the rank of fact Q(5) is two, and the rank of P(5) is
one; finally, the rank of A(5) and B(6) is zero because they depend on no fact.

In addition to fact entailment, we will also consider the program containment problem for input programs Π1 and Π2 with
the same set of EDB predicates. We say that Π1 is contained in Π2, written Π1 v Π2, if Π1(D) ⊆ Π2(D) for each set D of EDB
facts; then, program containment is the problem of checking Π1 v Π2 given Π1 and Π2 as input. Note that our definition of
containment considers possibly infinite sets of facts, which is required to capture streams. This does not change the nature of the
problem—due to the compactness and monotonicity properties of first-order logic, the well-known undecidability result for the
containment of Datalog programs (with respect to finite sets of facts) transfers to our setting [23, 24].

3. A Generic Stream Reasoning Algorithm

In this section, we describe a generic stream reasoning algorithm that is compatible with a wide range of expressive rule
languages. Indeed, the properties of our algorithm rely only on the following assumptions about the underpinning rule language.
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Algorithm 1: Stream reasoning
Parameters: program Π, non-negative integers d (the delay) and w (the window size) with w ≥ d.
Input: EDB stream S for Π.
Output: IDB stream for Π.

1 Assign M := ∅ and τ := 0;
2 loop
3 Receive S �τ and set M := M ∪ S �τ;
4 Compute Π(M)�τ−d and set M := M ∪ Π(M)�τ−d;
5 Stream out all IDB facts in M�τ−d;
6 Remove from M all facts in M�τ−w;
7 τ := τ + 1;

1. A discrete timeline, such as the non-negative integers; stream reasoning over dense timelines (such as the rationals) is a
substantially different problem, and we refer the reader to [25] for first results in this direction.

2. Data represented as timestamped facts both in the input and during processing by the algorithm; in particular, it is assumed
that the algorithm ingests, stores and streams out timestamped facts only and that all the facts stored by the algorithm are
logically entailed by the program and input stream (this latter requirement could potentially be relaxed by allowing the
algorithm to store additional information). The notion of a timestamp can be seen as a syntactic artifact ensuring the more
fundamental requirement of an order between the pieces of information received and processed by the algorithm.

3. Monotonicity of the entailment relation, which ensures that answers proved to hold over the partial data received so far will
continue to hold regardless of the data that may be received in the future.

Our algorithm relies on the notion of a sliding window to process the input stream incrementally, while at the same time
abstracting away from many details that are not fundamental to the overall approach.

We start by providing a formal definition of a stream. Intuitively, we see streams as infinite datasets with a finite projection
to each specific time point.

Definition 3.1. A stream is a (possibly infinite) set of facts S such that S �τ is a finite set for each time point τ. The object domain
of S is the set of objects occurring in S . An EDB stream (respectively, IDB stream) for a program Π is a stream where all facts
are EDB (respectively, IDB) with respect to Π; we will often omit the reference to Π where it is clear from the context.

A stream reasoning algorithm receives as input a (possibly unbounded) stream S of timestamped facts, where we assume that
facts in the stream arrive in non-decreasing order of timestamp; although facts may arrive with a delay in a distributed system,
modern stream processors exploit a number of techniques (such as low watermarks [26]) to check whether all facts up to a given
time point have been received. The stream reasoning algorithm then implements the transformation Π(S ) for a fixed program
Π, where the output facts are also returned as a stream. In addition to program Π, Algorithm 1 is also parametrised with a non-
negative delay d and window size w. The delay parameter influences the latency of the algorithm, as it determines when exactly
the derived IDB facts are streamed out; in turn, the window size parameter w determines memory consumption. The algorithm
is initialised in Line 1, where the memory M is set empty and the current time τ is set to zero. The core of the algorithm is an
infinite loop, where each iteration of the loop processes a single time point τ in the input; the current time τ is incremented at the
end of each iteration. More precisely, each iteration of the main loop consists of the following steps.

1. The set of all input stream facts holding at τ is received and loaded into memory (Line 3).

2. All (implicit) IDB facts holding at τ − d are computed and stored in memory (Line 4).

3. All IDB facts holding at τ − d are read from memory and streamed as part of the output (Line 5).

4. All facts (EDB or IDB) holding at τ − w are removed from memory (Line 6).

The first important feature of the algorithm is that old facts falling outside the sliding window are discarded in Line 6 and
never reconsidered again; this has the key advantage of limiting the number of facts that the algorithm needs to reason about at
any point in time, and hence favours fast processing. The use of a sliding window, however, carries the risk of missing IDB facts
α entailed by Π ∪ S if the facts that α depends on are removed from memory too early.

The second feature of the algorithm is that output facts are streamed in increasing order of timestamp; indeed, all output facts
for a given timestamp are returned (in Step 3) during the same iteration of the main loop. This has the advantage that applications
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do not need to wait indefinitely for output facts, but carries the risk of missing IDB facts α with timestamp τ entailed by Π∪ S if
the facts in S that α depends on have not been received yet by the time the algorithm generates the output for τ.

Finally, the third important feature of the algorithm is that it keeps in memory a complete materialisation of the window—
that is, all input EDB facts and entailed IDB facts for the relevant time points. Computing and incrementally maintaining a full
materialisation is a common reasoning approach adopted by many rule-based systems [27–31].

Clearly, the delay and window size parameters must be chosen to be as small as possible (thus maximising the algorithm’s
efficiency) while at the same time ensuring that all facts entailed by Π ∪ S will be returned as part of the output stream. The
following example illustrates how a poor choice of parameters may compromise the algorithm’s correctness.

Example 3.2. Consider Algorithm 1 parametrised with program Π = {P(t) → Q(t − 5)}, delay d = 0 and window size w = 0.
Consider also the input stream S consisting of a fact P(10). We have that Π ∪ {P(10)} |= Q(5), so the algorithm is required to
eventually output Q(5). The algorithm, however, will output all consequences for τ = 5 in the sixth iteration of the main loop
(and will never attempt to compute them again later on); in this iteration, no input fact will have been received yet and the
memory M will be empty as a result. Thus, fact Q(5) will not be returned. By contrast, Algorithm 1 parametrised with Π as
above, d = 5 and w = 0 will output Q(5) in the eleventh iteration of the main loop. Similarly, Algorithm 1 parametrised with
Π′ = {P(t)→ Q(t+5)}, d = 0 and w = 0 will not output Q(15) on S even though Π′∪{P(10)} |= Q(15); in order for the algorithm
to return Q(15), the window size parameter w needs to be increased to 5.

We are now ready to define validity of a delay d for a program Π. We define delay validity as a property of a program Π,
and hence our definition is not tied in any way to Algorithm 1. Intuitively, d is a valid delay if, in order to compute the logical
consequences of Π ∪ S up to time τ − d, one does not need to consider any future facts in S with timestamp exceeding τ. As
a result, Algorithm 1 does not need to wait indefinitely before it can determine with certainty that all entailed IDB facts have
already been computed for a given time point.

Definition 3.3. A non-negative integer d is a valid delay for a program Π if, for each EDB stream S and each time point τ ≥ d,
we have that Π(S )�τ−d ⊆ Π(S �[0,τ]).

Note that, by definition, if d is a valid delay for Π, then so is each d′ > d; hence, we will be interested in determining whether
Π admits a valid delay and, if so, in computing the smallest valid delay.

We next define the notion of a valid window size w as a property of a program Π having valid delay d. Again, we define
window size validity exclusively as a property of Π; thus, our definition is not tied to Algorithm 1. Intuitively, the definition
ensures that, in order to compute a logical consequence α of Π ∪ S at time τ − d, one does not need to consider any fact (EDB
or IDB) older than τ − w, and hence such old facts can be safely “forgotten” by a procedure such as Algorithm 1. Furthermore,
the definition ensures that the IDB facts in the interval (τ − d, τ] entailed by Π ∪ S are not required in order to derive α, which
implies that an algorithm only needs to keep in memory a full materialisation in the interval between τ − w and τ − d.

Definition 3.4. Let Π be a program and d a valid delay for Π. We say that w ≥ d is a valid window size for Π and d if, for each
EDB stream S and each τ ≥ d, the following inclusion holds, where N = Π(S �[0,τ]), τd = τ − d, and τw = τ − w:

N�τd ⊆ Π(N�[τw,τd−1] ∪ S �[τw,τ]).

Note that, as in the case of delay, if w is a valid window size for Π and d, then so is each w′ > w. Hence, in practice we will
be interested in computing the minimum such w.

We next show that delay and window size validity as introduced in Definitions 3.3 and 3.4 characterise the correctness of
Algorithm 1—that is, the algorithm will correctly output Π(S ) for each S if and only if d is a valid delay for Π and w is a valid
window size for Π and d. Before establishing this result formally, we prove a technical lemma, which describes the contents Mτ

of the memory at any point τ during the execution of the algorithm in terms of the logical consequences of Π ∪ S .

Lemma 3.5. Consider the execution of Algorithm 1 parametrised with Π, d and w on an input stream S . For τ a time point,
let Mτ be the value of the memory variable M in the (τ + 1)-th iteration of the main loop of the algorithm right after executing
Line 4. Then, the following containment holds, where N = Π(S �[0,τ−1]), τd = τ − d, and τw = τ − w:

Mτ ⊆ Π(N�[τw,τd−1] ∪ S �[τw,τ])�[τw,τd] ∪ S �[τw,τ].

Proof. Note that, by definition of the algorithm, Mτ satisfies the following recursive equation for each τ ≥ 0 where M−1 = ∅:

Mτ = Mτ−1�[τw,∞) ∪ S �τ ∪ Π(Mτ−1�[τw,∞) ∪ S �τ)�τd . (15)

We show the claim of the lemma by induction on τ. In the base case, we have τ = 0. Then, M0 = Π(S �0)�τd ∪ S �0, which
implies the claim since S �0 = S �[−w,0].
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In the inductive case, we have τ > 0, and we assume that the claim holds for τ − 1. By (15), it suffices to show the following
inclusion, for T = Π(N�[τw,τd−1] ∪ S �[τw,τ])�[τw,τd] ∪ S �[τw,τ]:

Mτ−1�[τw,∞) ∪ S �τ ∪ Π(Mτ−1�[τw,∞) ∪ S �τ)�τd ⊆ T.

Clearly, S �τ ⊆ T , and thus it remains to be shown that Mτ−1�[τw,∞) ⊆ T and Π(Mτ−1�[τw,∞)∪S �τ)�τd ⊆ T . For the former inclusion,
note that the inductive hypothesis yields the following inclusion, for N′ = Π(S �[0,τ−2]):

Mτ−1�[τw,∞)

⊆ (Π(N′�[τw−1,τd−2] ∪ S �[τw−1,τ−1])�[τw−1,τd−1] ∪ S �[τw−1,τ−1])�[τw,∞)

= Π(N′�[τw−1,τd−2] ∪ S �[τw−1,τ−1])�[τw,τd−1] ∪ S �[τw,τ−1].

However, we have Π(N′�[τw−1,τd−2] ∪ S �[τw−1,τ−1]) ⊆ N, and hence the above implies

Mτ−1�[τw,∞) ⊆ N�[τw,τd−1] ∪ S �[τw,τ−1] ⊆ T (16)

as required. For the remaining inclusion, note that the first inclusion in (16) immediately yields

Π(Mτ−1�[τw,∞) ∪ S �τ)�τd ⊆ Π(N�[τw,τd−1] ∪ S �[τw,τ])�τd ⊆ T

which concludes the proof.

With Lemma 3.5 at hand, we are ready to characterise correctness of Algorithm 1 in terms of delay and window size validity.

Theorem 3.6. Algorithm 1 parametrised with Π, d, and w outputs Π(S ) for each input stream S if and only if d is a valid delay
for Π and w is a valid window size for Π and d.

Proof. (⇐) Assume that d is a valid delay for Π and that w ≥ d is a valid window size for Π and d, and let S be an arbitrary
input stream. We show that the algorithm outputs Π(S ). Let τ be a time point with τ ≥ d and let τd, τw and Mτ be defined as in
Lemma 3.5. Note that the algorithm outputs an IDB fact α with time argument τ if and only if α ∈ Mτ+d; thus, it suffices to show
that Π(S )�τd ⊆ Mτ. Furthermore, since d is assumed to be a valid delay for Π, it suffices to show that

S �[τw,τ] ∪ N�[τw,τd] ⊆ Mτ where N = Π(S �[0,τ]).

We show this claim by induction on τ. In the base case, we have τ = 0, and hence either d = 0 or τd < 0. In the latter case,
we have N�[τw,τd] = ∅, while in the former case, we have N�[τw,τd] = Π(S �0)�0 ⊆ M0 by (15). Furthermore, in both cases we
have S �[τw,τ] = S �0 ⊆ M0 by (15). In the inductive case, we have τ > 0 and we assume that the claim holds for τ − 1. First,
S �[τw,τ] ⊆ Mτ by (15) and the inductive hypothesis. Second, note that, for N′ = Π(S �[0,τ−1]),

N�[τw,τd−1] ⊆ N′�[τw,τd−1] ⊆ Mτ−1�[τw,∞) ⊆ Mτ

where the first inclusion holds since d is a valid delay, the second inclusion holds since N′�[τw−1,τd−1] ⊆ Mτ−1 by the inductive
hypothesis, and the last inclusion holds by (15). Hence, it remains to be shown that

N�τd ⊆ Mτ.

To this end, note that, since w is a valid window size, we have

N�τd ⊆ Π(N�[τw,τd−1] ∪ S �[τw,τ])�τd (17)

where the latter set can be equivalently written as Π((N�[τw−1,τd−1] ∪ S �[τw−1,τ−1])�[τw,∞) ∪ S �τ)�τd . Furthermore, since d is a
valid delay for Π, we have N�[τw−1,τd−1] = N′�[τw−1,τd−1], and hence N�[τw−1,τd−1] ⊆ Mτ−1 by the inductive hypothesis. Since also
S �[τw−1,τ−1] ⊆ Mτ−1 by the inductive hypothesis, then, by monotonicity of entailment, inclusion (17) implies

N�τd ⊆ Π(Mτ−1�[τw,∞) ∪ S �τ)�τd

and the claim follows since Π(Mτ−1�[τw,∞) ∪ S �τ)�τd ⊆ Mτ by (15).

(⇒) We show that Algorithm 1 does not output Π(S ) for any input S if either (i) d is not a valid delay for Π or (ii) d is a valid
delay for Π but w is not a valid window size for Π and d. As observed before, in either case it suffices to show that Π(S )�τd * Mτ.

In the first case, let S be an input stream, let τ ≥ d be a time point, and let α be a fact in Π(S )�τd \ Π(S �[0,τ])—such S , τ and
α exist because d is not a valid delay for Π. We have (Mτ \ S �[0,τ]) ⊆ Π(S �[0,τ]) by Lemma 3.5, and hence α < Mτ, as required.

In the second case, let S be a stream, let τ ≥ d, let N = Π(S �[0,τ]), and let α ∈ N�τd \ Π(N�[τw,τd−1] ∪ S �[τw,τ]), which exist
since w is not a valid window size for Π and d. By Lemma 3.5, α < Mτ, and the claim follows since N�τd ⊆ Π(S )�τd .
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Unfortunately, as illustrated by the following example, there are programs for which a valid delay does not exist, and hence
to which our algorithm is not applicable.

Example 3.7. Consider Π = {P(t)→ Q(t),Q(t)→ Q(t − 1)}, which does not admit a valid delay. Indeed, for each non-negative
integer d, we can define S d = {P(d + 1)}, and obtain Π ∪ S d |= Q(0), while Π ∪ S d�[0,d] 6|= Q(0) since S d�[0,d] = ∅. Intuitively, Π

lacks a valid delay because the rules in Π can recursively propagate information towards past time points in an unbounded way.

We can show, however, that if a program Π does admit a valid delay d, then it must admit a valid window size w as well.
Furthermore, the window size is bounded linearly in d and the forward radius of Π. The proof of this theorem critically relies on
our temporal guardedness assumption; indeed, a program with multiple time variables may admit no valid window size even if it
admits a valid delay. This is the case for the program consisting of rules A(t) → P(t), P(t) → P(t + 1), and P(t) ∧ A(t′) → Q(t);
indeed, an input fact A(0) can never be deleted. The same is true for rules mentioning time points, such as A(0) ∧ B(t)→ C(t).

Theorem 3.8. Let Π be a program, let d be a valid delay for Π, and let ρ be the maximum forward radius of a rule in Π. Then,
w = d + ρ is a valid window size for Π and d.

Proof. Let S be an EDB stream, τ ≥ d a time point, w = d + ρ, τd = τ − d, τw = τ − w, and N = Π(S �[0,τ]). We show
that every fact α that has time argument τ′ ≥ τd and is entailed by Π ∪ S �[0,τ] is also entailed by Π ∪ N�[τw,τd−1] ∪ S �[τw,τ] by
induction on the height of a shortest derivation δ of α from Π ∪ S �[0,τ]; the main claim is then immediate. Let α, τ′, and δ be as
required. In the base case, we have α ∈ Π ∪ S �[0,τ], and hence α ∈ S �[0,τ] as Π contains no facts. Consequently, α ∈ S �[τw,τ] as
τ′ ≥ τd ≥ τw, and the claim follows. In the inductive case, let r be the rule labelling the root of δ and let β be an arbitrary atom in
the body of r with time argument τ′′. It suffices to show Π ∪ N�[τw,τd−1] ∪ S �[τw,τ] |= β. Note that, since Π is temporally guarded,
τ′′ ≥ τ′ − ρ ≥ τd − ρ = τw. Thus, we distinguish two cases: τ′′ ∈ [τw, τd − 1] and τ′′ ≥ τd. In the former case, the claim follows
since Π ∪ S �[0,τ] |= β, and hence β ∈ N�[τw,τd−1] ∪ S �[τw,τ], while in the latter case, the claim follows from Π ∪ S �[0,τ] |= β by the
inductive hypothesis as β has a derivation that is strictly shorter than δ.

It is important to notice, however, that the valid window size provided by Theorem 3.8 may not be the minimal one.

Example 3.9. Consider the program consisting of rules A(t) → P(t + 1) and P(t) ∧ B(t + 1) → Q(t). The program admits
a minimum valid delay of one, and its maximum forward radius is one as well. As a result, w = 2 is a valid window size by
Theorem 3.8. We can show, however, that the minimum window size of this program is one.

It follows from our previous discussion that the computational task of interest in our setting is to first check whether a program
Π admits a valid delay and, if it does, to subsequently compute the corresponding minimal valid delay d for Π and the minimal
valid window size w for Π and d. Reducing delays and window sizes is important in practice, as it ensures that a correct algorithm
will keep to a minimum the number of facts stored in memory at any point in time, and will minimise latency by returning each
output fact as early as possible. Therefore, in the remainder of this paper, we will focus on the following decision problems.

Definition 3.10. We define the following decision problems for an input program Π.

• Delay existence: Decide whether a valid delay for Π exists.

• Delay validity: Decide whether a non-negative integer d is a valid delay for Π.

• Window size validity: Given a valid delay d for Π, and w ≥ d, decide whether w is a valid window size for Π and d.

We conclude this section by introducing the class of backward-bounded programs. Intuitively, these programs ensure exis-
tence of a valid delay by precluding the kind of temporal recursion towards past time points illustrated in Example 3.7.

Definition 3.11. The weighted dependency graph of a program Π is an edge-weighted graph having a node for each predicate in
Π and an edge 〈P,R,w〉 whenever P and R are predicates occurring in the body and head of a rule in Π, respectively, and where
w = min{ k − k′ | (P(s′, k′) ∧ ϕ → R(s, k)) ∈ Π}. Program Π has backward bound k (for k ≥ 0) if, for each path in the weighted
dependency graph of Π that starts in an EDB predicate, the sum of the edge weights is at least −k; Π is backward-bounded if it
has a backward bound.

Our motivating Examples 1.1 and 1.2 are backward-bounded; moreover, the program in Example 1.1 has backward bound
zero as it is forward-propagating. Note that, while forward-propagating programs have backward bound zero, there are programs
with backward bound zero that are not forward-propagating, e.g., the program {A(t)→ B(t + 1), B(t)→ C(t − 1)}. Note also that
checking whether a program is backward-bounded and, if so, computing the least backward bound is feasible in polynomial time
using standard graph algorithms. We next show that the backward bound of a program Π is guaranteed to be a valid delay for Π.

Theorem 3.12. Let Π be a program with backward bound k. Each integer d ≥ k is a valid delay for Π.
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Proof. Assume that d ≥ k is not a valid delay for Π. We show that k is not a backward bound for Π. By the definition of valid
delay, there is a stream S , a time point τ ≥ d, and a fact β with time argument τ − d such that β ∈ Π(S ) \ Π(S �[0,τ]). As a result,
there exists a fact α with time argument τ′ > τ such that β < Π(S \ {α}). By a simple induction on the height of a derivation of
β from Π ∪ S we can show existence of a path from the predicate Pα of α to the predicate Pβ of β in the weighted dependency
graph of Π having weight τ − d − τ′. Note that τ − d − τ′ < τ′ − d − τ′ = −d ≤ −k, where the first inequality holds since τ′ > τ
and the second one since d ≥ k. Thus, the weighted dependency graph of Π has a path of weight strictly smaller than −k, and
hence k is not a backward bound for Π.

It follows from Theorem 3.12 that delay existence, as given in Definition 3.10, is trivial for backward-bounded programs.
Delay and window size validity checking, however, remain important for these programs since the valid delay established by the
theorem may not be minimal.

Example 3.13. The program consisting of rules A(t)→ B(t) and A(t)∧C(t+5)→ B(t) is backward-bounded with least backward
bound 5; however, d = 0 is a valid delay. In fact, the second rule is redundant, and hence can be removed to obtain a program
with backward bound 0.

4. Undecidability Results

In this section, we explore the limitations of our approach and establish undecidability results for all the reasoning problems
we consider. Our proofs are obtained by reduction from program containment, which is well-known to be undecidable already
for non-temporal Datalog [23, 24]. We start by establishing undecidability of delay existence.

Theorem 4.1. Delay existence is undecidable.

Proof. We provide a reduction from containment of forward-propagating programs, which is undecidable (containment of non-
temporal programs is already undecidable). Our reduction maps a pair of forward-propagating programs 〈Π1,Π2〉 to a program
Π such that Π1 v Π2 if and only if Π admits a valid delay. We construct Π as follows. For each predicate P, let P1, P2, AP and
BP be fresh predicates of the same arity as (and uniquely associated to) P. Let Π′1 (respectively Π′2) be the program obtained
by replacing each IDB predicate P in Π1 (respectively in Π2) with P1 (respectively with P2). Then, Π is the program extending
Π′1 ∪ Π′2 with the following rules, where A and B are fresh unary (EDB) predicates:

• Rules (18)–(21) for each IDB predicate P of Π1:

P1(x, t) ∧ A(t)→ AP(x, t) (18)
AP(x, t)→ AP(x, t + 1) (19)

AP(x, t) ∧ B(t)→ BP(x, t) (20)
BP(x, t + 1) ∧ AP(x, t)→ BP(x, t). (21)

• Rules (22) and (23) for each IDB predicate P occurring in Π2:

P2(x, t) ∧ A(t)→ BP(x, t) (22)
BP(x, t)→ BP(x, t + 1). (23)

Let Π1 v Π2. We argue that zero is a valid delay for Π. For this, observe that Π1 v Π2 implies that, for each set of EDB
facts and each IDB P, the extension of P1 will be contained in that of P2 by our construction. Thus, Rules (20) and (21) become
subsumed by (22) and (23) and hence can be removed from Π without altering fact entailment; in doing so, we can observe that
Π would become forward-propagating since so are Π1 and Π2, and hence it would admit zero as a valid delay by Theorem 3.12.

Assume now that Π1 @ Π2 and fix any d; we argue that d cannot be a valid delay for Π. By our assumption, there must
be a set D of EDB facts and facts P1(o, τ) and P2(o, τ) such that Π′1 ∪ D |= P1(o, τ) but Π′2 ∪ D 6|= P2(o, τ). Let D′ be the set
extending D with facts A(τ) and B(τ + d + 1). But then, we have that BP(o, τ) follows from Π ∪ D′ but BP(o, τ) does not follow
from Π ∪ D′�[0,τ+d], because B(τ + d + 1) < D′�[0,τ+d]. Therefore, d cannot be a valid delay.

We next show undecidability of the delay validity problem. Our undecidability result holds even for backward-bounded
programs, which, by Theorem 3.12, always admit a valid delay of linear size.

Theorem 4.2. Delay validity is undecidable, even if restricted to backward-bounded programs.
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Proof. We provide a reduction from containment of backward-bounded programs. The reduction maps a pair of backward-
bounded programs 〈Π1,Π2〉 to a program Π and a number k such that Π1 v Π2 if and only if k is a valid delay for Π.

We assign k to the maximum between the least backward bounds of Π1 and Π2. To define Π, we proceed by defining Π′1 and
Π′2 as in the proof of Theorem 4.1 and by introducing also a fresh unary (EDB) predicate A. Then, Π extends Π′1 ∪ Π′2 with two
rules of the form (24) and (25), respectively, for each IDB predicate P in Π1 ∪ Π2:

P1(x, t) ∧ A(t + k + 1)→ AP(x, t) (24)

P2(x, t)→ AP(x, t). (25)

Clearly, Π is backward-bounded since so are Π1 and Π2 and predicate AP is fresh.
We next argue that the reduction is correct. Let us assume Π1 v Π2. We argue that k is a valid delay for Π. For this,

observe that Π1 v Π2 implies that, for each finite set of EDB facts (and hence for each infinite one) and each IDB predicate
P, the extension of P1 is contained in the extension of P2 by our construction. As a result, Rule (24) becomes subsumed by
Rule (25) and hence can be removed from Π without altering fact entailment; in doing so, we can observe that Π would admit k
as a backward bound, and hence as a valid delay by Theorem 3.12.

Assume now that k is a valid delay for Π. Let D be a finite set of EDB facts, let α be an IDB fact of the form P(o, τ), and
assume that Π1∪D |= α. We argue that Π2∪D |= α, which implies that Π1 v Π2. Since Π1∪D |= αwe have that Π′1∪D |= P1(o, τ).
Let D′ = D∪{A(τ+k +1)}; clearly, Π∪D′ |= AP(o, τ) since Rule (24) becomes applicable. It follows that Π∪D′�[τ+k] |= AP(o, τ)
since k is a valid delay for Π. It follows that Π ∪ D′�[τ+k] |= P2(o, τ) since AP occurs only in Rules (24) and (25), and Rule (24)
requires A(τ + k + 1) to derive AP(o, τ), but Π ∪ D′�[τ+k] 6|= A(τ + k + 1). It follows that Π2 ∪ D′�[τ+k] |= P(o, τ), and hence
Π2 ∪ D�[τ+k] |= P(o, τ) as required, since D′ \ D = {A(τ + k + 1)} and predicate A does not occur in Π2.

We conclude by showing undecidability of window size validity checking. Our undecidability result applies even to forward-
propagating programs, which admit zero as a valid delay (see Theorem 3.12) and a linear valid window size (see Theorem 3.8).

Theorem 4.3. Window size validity is undecidable, even if restricted to forward-propagating programs.

Proof. We provide a reduction from containment of forward-propagating programs. The reduction maps a pair of forward-
propagation programs 〈Π1,Π2〉 to a program Π with valid delay zero and a number w such that Π1 v Π2 if and only if w is a valid
window size for program Π and delay zero.

In our reduction, we assign w to the maximum forward radius of a rule in Π1 ∪ Π2. To define Π, we proceed by constructing
Π′1 and Π′2 as in the proofs of Theorems 4.1 and 4.2, and by introducing also a fresh unary (EDB) predicate A. Then, Π extends
Π′1 ∪ Π′2 with two rules of the form (26) and (27), respectively, for each IDB predicate P occurring in Π1 ∪ Π2:

P1(x, t) ∧ A(t − w − 1)→ AP(x, t) (26)

P2(x, t)→ AP(x, t). (27)

Clearly, Π is forward-propagating if so are Π1 and Π2 and hence admits zero as a valid delay.
We next argue that the reduction is correct. Assume that Π1 v Π2, let S be an EDB stream for Π1, let α be a fact with time

point τ, and assume that Π∪ S �[0,τ] |= α. We show that Π∪N�[τw,τ−1] ∪ S �[τw,τ] |= α, with N = Π(S �[0,τ]) and τw = τ−w, which is
sufficient to establish that w is a valid window size for program Π and delay zero. The claim clearly holds if α is a fact of the form
Pi(o, τ) as a direct consequence of Theorem 3.8 and our definition of w. So, assume that α is of the form AP(o, τ). Since AP occurs
in Π only in the head of rules (26) and (27), we have that either Π∪ S �[0,τ] |= P2(o, τ) or Π∪ S �[0,τ] |= {P1(o, τ), A(τw − 1)}. In the
first case, we have Π∪N�[τw,τ−1]∪S �[τw,τ] |= P2(o, τ) again as a consequence of Theorem 3.8 and hence Π∪N�[τw,τ−1]∪S �[τw,τ] |= α
by rule (27), as required. In the second case, we have Π ∪ S �[0,τ] |= P1(o, τ), which implies Π1 ∪ S �[0,τ] |= P(o, τ). Since
Π1 v Π2 by assumption, we then have Π2 ∪ S �[0,τ] |= P(o, τ), and Π ∪ N�[τw,τ−1] ∪ S �[τw,τ] |= P2(o, τ) by Theorem 3.8; thus,
Π ∪ N�[τw,τ−1] ∪ S �[τw,τ] |= α by rule (27), as required.

Assume now that w is a valid window size for program Π and delay zero. Let D be a finite set of EDB facts, let α be an IDB
fact of the form P(o, τ), and assume that Π1 ∪ D |= α. We argue that Π2 ∪ D |= α, which suffices to show that Π1 v Π2. Since
Π1 ∪ D |= α, we have that Π ∪ D |= P1(o, τ), and hence Π ∪ D |= AP(o, τ) by rule (26). Let N = Π(D�[0,τ]). It follows that
Π ∪ N�[τw,τ−1] ∪ D�[τw,τ] |= AP(o, τ) since w is a valid window size for Π and zero. Hence, Π ∪ N�[τw,τ−1] ∪ D�[τw,τ] |= P2(o, τ)
since AP occurs in Π only in rules (26) and (27) and Π ∪ N�[τw,τ−1] ∪ D�[τw,τ] 6|= A(τw − 1). As a result, we have Π ∪ D |= P2(o, τ)
by the definition of N and the monotonicity and transitivity of entailment. We then have Π2 ∪ D |= P(o, τ), as required.

In the following sections, we show that decidability of all our reasoning problems can be regained by making rather mild
assumptions on the input streams. In particular, we consider the situation where the set of domain objects that can occur in
a stream is fixed in advance. This is a reasonable assumption in many applications; for instance, in Examples 1.1 and 1.2, it
amounts to assuming that the nodes in the network and the sensors generating temperature readings remain the same throughout
a given query session.
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Figure 2: Encoding of fact-entailment instances as words. An instance consisting of a finite set of facts S and a fact G(i) is encoded as the word σ0 . . . σn where
n is the maximum between i and the largest time point occurring in S . Each symbol σ j is a pair where the first component is the set of predicates S j occurring
in S � j, and the second component is either the predicate G or the blank symbol �.

From a technical point of view, fixing the object domain allows us to rewrite any program Π as an object-free program ζ(Π)
by means of an exponential grounding transformation. Formally, we associate a unary predicate Po to each n-ary predicate P and
n-tuple of objects o over the fixed object domain. Then, function ζ maps each object-ground atom P(o, s) to Po(s); each set D
of facts to

⋃
α∈D ζ(α); and each program Π to the program ζ(Π) obtained by first grounding Π over the object domain and then

replacing each (object-ground) atom α with ζ(α). For notational convenience, we also define ζ(P) for a set of predicates P as
the set of all unary predicates Po in the range of ζ where predicate P is in P. Clearly, transformation ζ preserves entailment of
facts—that is, Π ∪ D |= α if and only if ζ(Π) ∪ ζ(D) |= ζ(α).

We proceed as follows.

• In Section 5 we characterise delay existence and delay validity for a program Π in terms of languages over finite words
defined for the object-free program ζ(Π); similarly, we characterise program containment in terms of finite word languages
defined over their corresponding object-free programs.

• In Section 6, we show that the aforementioned languages relative to object-free programs expressed in a suitable normal
form can be recognised by finite automata, and we also analyse the complexity of constructing such automata.

• In Section 7, we exploit these automata to establish upper bounds for delay existence, delay validity, and program contain-
ment for both arbitrary and object-free programs. In each case, we provide upper bounds for both unary and binary coding
of numbers in the input program.

• Finally, in Section 8 we establish the corresponding matching lower bounds.

5. Language-Theoretic Characterisation of Delay Existence, Delay Validity, and Program Containment

In this section, we describe word languages that can be used to characterise delay existence, delay validity, and program
containment. These languages are defined for an object-free program Ω and a subset J of its IDB predicates. As illustrated in
Figure 2, their alphabet is constructed so that each word represents an instance of the fact entailment problem with respect to Ω,
given as a pair 〈S , α〉 consisting of a set S of input EDB facts (representing a stream prefix) and a fact α with predicate in J.

Intuitively, the language implies(Ω, J) will contain all words representing an instance 〈S , α〉 such that Ω∪ S |= α; in this way,
the language captures the logical J-consequences of Ω when applied to an arbitrary stream. Dually, the language notimplies(Ω, J)
will contain all words representing 〈S , α〉 such that Ω∪ S 6|= α. Finally, as illustrated in Figure 3, language delay(Ω, J) is defined
in terms of languages implies(Ω, J) and notimplies(Ω, J) so that it contains a word of length d if and only if d is not a valid delay
for Ω with respect to J.

Definition 5.1. Let Ω be an object-free program, let E′ be the set of all EDB predicates in Ω, let J be a set of IDB predicates in
Ω, and let � be a fresh symbol. We write Σ(Ω, J) for the set 2Ω× (J∪{�}). Elements of Σ(Ω, J) are called letters. A letter 〈E, b〉 is
an answer letter if b , �. For E0, . . . , En ∈ 2E′ , i ∈ [0, n], and P ∈ J, we write 〈i, P, E0, . . . , En〉 for the word 〈E0, b0〉 . . . 〈En, bn〉

over Σ(Ω, J) where bi = P and b j = � for each j , i.
We define the following languages over the aforementioned alphabet:

• implies(Ω, J) consists of each word 〈i, P, E0, . . . , En〉 such that Ω ∪ D |= P(i), where D = {A( j) | A ∈ E j, 0 ≤ j ≤ n}.

• notimplies(Ω, J) consists of each word 〈i, P, E0, . . . , En〉 such that Ω ∪ D 6|= P(i), where D = {A( j) | A ∈ E j, 0 ≤ j ≤ n}.

• delay(Ω, J) consists of each word u1 for which there is a word u2 ending with an answer letter such that u2u1 is in
prefimplies(Ω, J) ∩ notimplies(Ω, J), for prefimplies(Ω, J) the language containing all prefixes of words in implies(Ω, J).

The following theorem characterises program containment, delay validity, and delay existence for arbitrary programs (i.e.,
not necessarily object-free) in terms of the languages in Definition 5.1.
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Figure 3: The delay language. A word w1 = c1 . . . cd is in the language delay(Ω, J) if it can be extended to a word w2 = b1 . . . bnaw1 of notimplies(Ω, J) for a
encoding an answer fact over a predicate in J, and in addition w2 can be extended to a word w3 = w2v1 . . . vm of implies(Ω, J). This means that w3 encodes a
stream S and a fact α holding at τ − d such that Ω ∪ S |= α, and w2 encodes that Ω ∪ S �[0,τ] 6|= α. Thus, the length d of w1 is not a valid delay for Ω, and hence
words in delay(Ω, J) witness the non-validity of delays via their length.

Theorem 5.2. Let Π1 and Π2 be programs with the same set of EDB predicates, and let I be the set of IDB predicates in Π1.
Furthermore, let Ω1 = ζ(Π1), let Ω2 = ζ(Π2), and let J = ζ(I). Then, the following statements hold:

1. Π1 v Π2 if and only if implies(Ω1, J) ∩ notimplies(Ω2, J) = ∅.

2. A non-negative integer d is a valid delay for Π1 if and only if each word in delay(Ω1, J) is of length at most d − 1.

3. Π1 has a valid delay if and only if delay(Ω1, J) is a finite language.

Proof. We show each of the statements in the theorem.
Let Π1 v Π2 and let u be a word in implies(Ω1, J) of the form 〈i, Pa, E0, . . . , En〉. By the definition of implies(Ω1, J), we have

Ω1 ∪ ζ(D) |= Pa(i) for D = {A(o, j) | Ao ∈ E j, 0 ≤ j ≤ n}, and hence Π1 ∪ D |= P(a, i). Since Π1 v Π2, we have Π2 ∪ D |= P(a, i),
hence Ω2∪ζ(D) |= Pa(i) and u < notimplies(Ω2, J). For the converse direction, assume implies(Ω1, J)∩notimplies(Ω2, J) = ∅ and
let Π1∪D |= P(a, i) for i a time point, D a finite set of EDB predicates and P an IDB predicate. Let n be the largest time point in D,
and let E0, . . . , En be sets of predicates such that ζ(D) = {Ao( j) | Ao ∈ E j, 0 ≤ j ≤ n}. Consider the word u = 〈i, Pa, E0, . . . , En〉,
which belongs to implies(Ω1, J), since Ω1 ∪ ζ(D) |= Pa(i). By our assumption, we have that u < notimplies(Ω2, J), hence
Ω2 ∪ ζ(D) |= Pa(i) by the definition of notimplies(Ω2, J), and hence Π2 ∪ D |= P(a, i), as required.

For the second statement, assume that u1 ∈ delay(Ω1, J) and |u1| ≥ d; we show that d is not a valid delay for Π1. Since
u1 ∈ delay(Ω1, J), there is u2 ending with an answer letter and satisfying u2u1 ∈ prefimplies(Ω1, J) ∩ notimplies(Ω1, J). Since
u2u1 ∈ notimplies(Ω1, J), there are sets E1, . . . , En of predicates, an integer p ∈ [1, n], and a predicate Pa such that u2u1 =

〈i, Pa, E0, . . . , En〉. Since u2 ends with an answer letter and u2u1 has exactly one answer letter, we have that u1 is of the form
〈Ei+1,�〉, . . . , 〈En,�〉. Furthermore, since u2u1 ∈ prefimplies(Ω1, J), there must exist u3 such that u2u1u3 ∈ implies(Ω1, J);
furthermore, u3 will be of the form 〈En+1,�〉, . . . , 〈Em,�〉 for some m ≥ n. Let S = {A(o, j) | Ao ∈ E j, 0 ≤ j ≤ m}. It follows
that Ω1 ∪ ζ(S ) |= Pa(i) since u2u1u3 ∈ implies(Ω1, J), and hence Π1 ∪ S |= P(a, i); furthermore, Ω1 ∪ ζ(S )�[0,n] 6|= Pa(i) since
u2u1 ∈ notimplies(Ω1, J), and hence Π1 ∪ S �[0,n] 6|= P(a, i). Since S �[0,i+d] ⊆ S �[0,n] (note that n − i ≥ d is the length of u1), it
follows that Π1 ∪ S �[0,i+d] 6|= P(a, i) by the monotonicity of first-order logic, and hence d is not a valid delay for Π1.

For the other direction, assume that d is not a valid delay for Π1; we show that delay(Ω1, J) contains a word of length at
least d. By the definition of valid delay, there exists a stream S , a predicate P, a tuple of objects a, and a time point i with
i ≥ d such that Π1 ∪ S |= P(a, i − d) and Π1 ∪ S �[0,i] 6|= P(a, i − d). By compactness of first-order logic, we can assume
w.l.o.g. that S is finite. Let n be the maximum time point occurring in S and let E0, . . . , En be sets of predicates such that
ζ(S ) = {Ao(i) | Ao ∈ Ei, 0 ≤ i ≤ n}. Let u1 = 〈i − d, Pa, E0, . . . , En〉, and let u2 = 〈i − d, Pa, E0, . . . , Ei〉. We have that
Π1 ∪ S �[0,i] 6|= P(a, i − d) implies Ω1 ∪ ζ(S )�[0,i] 6|= Pa(i − d), and hence u2 ∈ notimplies(Ω1, J). Furthermore, Π1 ∪ S |=
P(a, i − d) implies Ω1 ∪ ζ(S ) |= Pa(i − d), and hence u1 ∈ implies(Ω1, J). Thus, u2 ∈ prefimplies(Ω1, J) since u2 is a prefix
of u1. Let σ0, . . . , σn be such that u1 = σ0, . . . , σn. Let u3 = σi−d+1, . . . , σi, and let u4 = σ0, . . . , σi−d. It suffices to show
u3 ∈ delay(Ω1, J), for which it remains to show that the following two conditions hold: (i) the last letter of u4 is an answer letter,
and (ii) u4u3 ∈ prefimplies(Ω1, J) ∩ notimplies(Ω1, J). The last letter of u4 is σi−d, which is an answer letter by its definition and
the definition of u1. We have u4u3 ∈ prefimplies(Ω1, J) ∩ notimplies(Ω1, J) since u4u3 = u2 and we have already argued both
u2 ∈ prefimplies(Ω1, J) and u2 ∈ notimplies(Ω1, J).

Finally, note that Statement 3 is an immediate corollary of the second statement.

In the following we will focus on constructing automata that accept the languages we just described. For this, it will be
helpful to restrict ourselves to programs in a normal form where the magnitude time offsets occurring in rules is at most one.

Definition 5.3. A program is normal if it contains only rules of the form
∧

i Pi(si, t + ki)→ P(s, t) with each ki ∈ {−1, 0,+1}.
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The following two theorems show that our restriction to normal programs is without loss of generality. Theorem 5.4 is for
arbitrary programs, and Theorem 5.5 is a refinement for object-free programs. In fact, Theorem 5.4 assumes an object domain
with at least two objects, and it considers a normalisation that always introduces object variables. These two aspects of the
theorem clash with the object-free case, thus motivating a separate theorem for object-free programs.

Theorem 5.4. Assume that the object domain contains at least two objects. Let Π1 be a program and let I1 be the set of IDB
predicates in Π1. Then, there exists a normal program Π2 such that the following conditions hold, where Ω1 = ζ(Π1), Ω2 = ζ(Π2)
and J1 = ζ(I1):

1. implies(Ω1, J1) = implies(Ω2, J1);

2. notimplies(Ω1, J1) = notimplies(Ω2, J1);

3. delay(Ω1, J1) = delay(Ω2, J1).

Furthermore, Π2 can be computed from Π1 in polynomial time.

Proof. We show how to construct Π2 from Π1 and then prove that it satisfies the relevant properties. We first introduce a program
Πsucc that defines the successor relation over (binary encodings of) numbers in the interval [0,max(ρ f , ρb)], where ρ f and ρb are
the forward and backward radius of Π1, respectively. Let m be the number of bits required to encode max(ρ f , ρb). Program Πsucc
consists of rules (28)–(31) and a rule of the form (32) for each i ∈ [0,m − 1] where A is a fresh unary predicate, Bit is a fresh
binary predicate, succ is a fresh (2m + 1)-ary predicate, 0̄ and 1̄ are two distinct objects—intuitively standing for zero and one,
respectively—each x j is a fresh object variable, each x j is the list of variables x1, . . . , x j, each 1̄ j and each 0̄ j is the list of 1̄’s and
0̄’s, respectively, having length m − j − 1:

A(t − 1)→ A(t) (28)
A(t + 1)→ A(t) (29)

A(t)→ Bit(0̄, t) (30)
A(t)→ Bit(1̄, t) (31)∧i

j=1 Bit(x j, t)→ succ(xi, 0̄, 1̄i, xi, 1̄, 0̄i, t). (32)

The key property of Πsucc is that, for each time point τ, and each time point τ′, Πsucc ∪ {A(τ)} |= succ(i, j, τ′) if and only if i and j
are m-tuples over {0̄, 1̄} encoding two numbers i, j ∈ [0, 2m] such that and i + 1 = j.

Then, the normal program Π2 is obtained by extending Πsucc with the following rules for each predicate P occurring in Π1,
where P+ and P− are fresh predicates uniquely associated with P and having the arity of P increased by m:

P(x, t)→ A(t) (33)

P(x, t)→ P+(x, 0̄, t) (34)

P(x, t)→ P−(x, 0̄, t) (35)
P+(x, y, t − 1) ∧ succ(y, z, t)→ P+(x, z, t) (36)
P−(x, y, t + 1) ∧ succ(z, y, t)→ P−(x, z, t), (37)

and the following rule for each rule in Π1 of the form
∧

i Pi(ui, t + ki) → P(u, t + k), where bi is the binary encoding of |ki − k|
and si ∈ {+,−} is the sign of ki − k (plus if zero): ∧

i

Psi
i (ui,bi, t)→ P(u, t). (38)

We claim that Π1 ∪ D |= α if and only if Π2 ∪ D |= α, for each set D of facts and each fact α over predicates in Π1. The first
two statements in the theorem follow as a straightforward consequence of this claim, the properties of ξ, and the definition of the
relevant languages; in turn, the third statement follows by the definition of the delay language and the previous two statements.

It is straightforward to show, by induction on i from 0 to max(ρ f , ρb), that

Π2 ∪ D |= P(o, τ) if and only if Π2 ∪ D |= {P+(o, i, τ − i), P−(o, i, τ + i)} (39)

for each P in Π1, each object tuple o, and each set D of facts over predicates in Π1, with i the binary encoding of i.
Assume now that Π1 ∪ D |= α. Let δ be a derivation of α from Π1 ∪ D. We show Π2 ∪ D |= α by induction on the height h

of δ. In the base case, we have h = 0 and hence α ∈ Π1 ∪ D. But then, since Π1 does not mention time points, α ∈ D, and hence
Π2 ∪ D |= α. In the inductive case, we have h > 0, and we assume that the claim holds for h − 1. Let r be the rule labelling
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the root of δ, and let r′ be a rule in Π1 such that r is an instance of r′. Then r′ has the form
∧m

i=1 Pi(ui, t + ki) → P(u, t + k) and
r is of the form

∧m
i=1 Pi(oi, τ − k + ki) → P(o, τ) (where τ and τ − k + ki are time points and P(o, τ) = α). By construction, Π2

contains a rule of the form
∧m

i=1 Psi
i (ui,bi, t)→ P(u, t) where si is the sign of ki − k and bi is the binary encoding of |ki − k|. Thus,

it suffices to show Π2 ∪ D |= Psi
i (o,bi, τ) for each i ∈ [1,m]. To this end, note that, by assumption, for each i ∈ [1,m], we have

Π1∪D |= Pi(oi, τ−k +ki), hence Π2∪D |= Pi(oi, τ−k +ki) by the inductive hypothesis, and hence Π2∪D |= Psi
i (oi,bi, τ) by (39).

Assume Π2 ∪ D |= α. Let δ be a derivation of α from Π2 ∪ D, and let ]δ be the maximum number of nodes on a root-to-leaf
path in δ that are labelled with an instance of a rule of the form (38). We show Π1 ∪ D |= α by induction on ]δ. In the base case,
we have ]δ = 0, and hence α ∈ D. Consequently, Π1∪D |= α, as required. In the inductive case, let r be the rule labelling the root
of δ, and let r′ be a rule in Π2 such that r is an instance of r′. By assumption, r′ has the form

∧m
i=1 Psi

i (ui,bi, t)→ P(u, t), and thus
r has the form

∧m
i=1 Psi

i (oi,bi, τ)→ P(o, τ). Moreover, Π contains a rule of the form
∧m

i=1 Pi(ui, t+ki)→ P(u, t+k) such that si the
sign of ki − k and bi the binary encoding of |ki − k|. Therefore, it suffices to show Π1 ∪D |= Pi(oi, τ+ ki − k) for each i ∈ [1,m]. To
this end, note that, by assumption, for each i ∈ [1,m], we have Π2∪D |= Psi

i (oi,bi, τ), and hence Π2∪D |= Pi(oi, τ+ki−k) by (39).
Moreover, by the definition of Π2, the subderivation of δ deriving Psi

i (oi,bi, τ) must include a derivation δ′ of Pi(oi, τ + ki − k),
and consequently ]δ′ < ]δ. Hence, the inductive hypothesis applies to δ′ yielding Π1 ∪ D |= Pi(oi, τ + ki − k), as required.

Theorem 5.5. Let Ω1 be an object-free program, and let J1 be the set of IDB predicates occurring in Ω1. There exists an
object-free normal program Ω2 such that:

1. implies(Ω1, J1) = implies(Ω2, J1);

2. notimplies(Ω1, J1) = notimplies(Ω2, J1);

3. delay(Ω1, J1) = delay(Ω2, J1).

Furthermore, program Ω2 can be computed from Ω1 in time polynomial in the size of Ω1 and the value of ρ f + ρb, where ρ f and
ρb are the forward and backward radius of Ω1, respectively.

Proof. The construction of Ω2 from Ω1 is similar to the one of Π2 from Π1 given in the proof of Theorem 5.4, with the difference
that the one here does not involve objects. Let Pi be a fresh unary predicate uniquely associated with P and i ∈ [−ρ f , ρb]. Program
Ω2 consists of the following rules for each predicate P occurring in Ω1:

P(t)→ P0(t) (40)

Pi(t + 1)→ Pi+1(t) ∀i ∈ [0, ρb − 1] (41)

Pi(t − 1)→ Pi−1(t) ∀i ∈ [−ρ f + 1, 0] (42)

and the following rule for each rule in Ω1 of the form
∧

i Pi(t′ + ki)→ P(t′ + k):∧
i

Pki−k
i (t′)→ P(t′). (43)

As in the proof of Theorem 5.4, Statements 1–3 follow from the claim that Ω1 ∪ D |= α if and only if Ω2 ∪ D |= α, for each set
D of facts and each fact α over predicates J1. To see that the claim holds, it suffices to draw a comparison with the construction
of Theorem 5.4. Namely, rules (40)–(42) are analogous to rules (34)–(37) (which also require additional rules to count), and
rules (43) correspond to rules (38).

6. Automata Construction

In this section, we show that all the languages given in Definition 5.1 can be recognised by finite automata. For convenience
we assume that programs have already been grounded and normalised, so let us consider an object-free normal program Ω and a
subset J of its IDB predicates.

Our first step will be to define a non-deterministic automaton A[implies(Ω, J)] recognising implies(Ω, J). Intuitively, the
automaton checks whether an input word corresponds to a finite stream prefix S and fact α such that Ω ∪ S |= α by guessing a
finite set of facts M such that Ω ∪ S |= M and α ∈ M. The key challenge in the construction ofA[implies(Ω, J)] is making sure
that each fact in M can be derived from Ω ∪ S ; indeed, a derivation of a fact from Ω ∪ S may involve facts at many different
time points, whereas A[implies(Ω, J)] can only check whether a fact holding at τ is entailed by facts holding at [τ − 1, τ + 1].
Thus, the transition relation of the automaton will ensure that M satisfies Ω ∪ M�τ−1 ∪ S �τ ∪ M�τ+1 |= M�τ for each such τ.
This alone, however, is not enough to ensure Ω ∪ S |= M; for instance, for Ω = {A(t − 1) → B(t), B(t + 1) → A(t)} and S = ∅,
set M = {A(0), B(1)} satisfies the aforementioned property yet is clearly not entailed by Ω ∪ S . It is easily seen that all such
spurious sets contain a fact that can only be derived using itself as an assumption; to exclude these sets, we will enrich the states
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Figure 4: An execution of the automaton A[implies(Ω, J)] for some program Ω and some subset J of its IDB predicates. Below the timeline, we have an input
word encoding an EDB stream S = {A(0), B(1),C(2),D(4), E(5)} and the answer fact Q(3). Above the timeline, we have a set of facts M0 ∪ · · · ∪ M6 which
encodes a derivation of Q(3) from S ∪ Ω. Each predicate X in the figure aligned with a point τ of the timeline encodes the fact X(τ); for instance, A encodes
A(0). A box labelled with Mτ encloses the content of Mτ; for instance, the left-most box encodes the content {A, F} of M0. Arrows denote how IDB facts are
derived from other facts, where multiple incoming arrows are to be interpreted as ‘logical and’; for instance, F(0) is derived by the rule A(0)∧ B(1)→ F(0). The
automaton keeps track of the transitive closure of the graph induced by the derivation, and prevents cycles from appearing in the closure, so to have a well-formed
derivation. For instance, when the automaton processes time 6, it may consider deriving H(6) from N(5), but it avoids to do so because this would yield a cycle
as indicated by the red dashed arrow in the figure.

of the automaton with dependency information and require that no fact depends on itself in a minimal derivation. The automaton
encodes time by exploiting the natural order of states in a run; for instance, the automaton encodes M�τ using the set Mτ of
predicates occurring in M�τ. Due to such encoding of sets of facts as sets of predicates, it is convenient to introduce the notation
X(τ) = {P(τ) | P ∈ X} for X a set of unary predicates and τ a time point; for instance, this notation allows us to easily write the
relationship M�τ = Mτ(τ) between M�τ and Mτ. Figure 4 illustrates these concepts.

Definition 6.1. Let Ω be an object-free normal program, let P be the set of all predicates in Ω, and let J ⊆ P be a set of IDB
predicates. Then,A[implies(Ω, J)] is the non-deterministic finite automaton over alphabet Σ(Ω, J) defined as follows.

• A state is a 5-tuple 〈a, X,Y,Ω′,Γ〉 where a ∈ {1, 2, 3}, X,Y ⊆ P, Ω′ ⊆ Ω ↓ 1 and Γ ⊆ P × P.3

• The set of initial states consists of each state of the form 〈1, ∅, X, ∅, ∅〉.

• The set of final states consists of each state of the form 〈a, X, ∅,Ω′,Γ〉 with a ∈ {2, 3}.

• The transition relation ∆ ∪ ∆ε is defined as follows. ∆ consists of each transition 〈a1, X,Y,Ω1,Γ1〉
〈U,b〉
−→ 〈a2,Y,Z,Ω2,Γ2〉

satisfying the following conditions:

(2.1) if b ∈ I then b ∈ Y, a1 = 1, and a2 = 2;

(2.2) if b = � then a1 = a2 = 1 or a1 = a2 = 2;

(2.3) X(0) ∪ U(1) ∪ Z(2) ∪Ω2 |= Y(1);

(2.4) Γ2 contains the transitive closure of the binary relation consisting of each pair 〈P,R〉 such that either

(2.4.1) P(1) depends on R(1) in Ω2, or
(2.4.2) there exists a predicate T such that P(1) depends on T (0) in Ω2 and T (1) depends on R(2) in Ω1, or
(2.4.3) there exists 〈T1,T2〉 ∈ Γ1 such that P(1) depends on T1(0) in Ω2 and T2(1) depends on R(2) in Ω1.

(2.5) there exists no predicate P such that 〈P, P〉 ∈ Γ2;

3We remind the reader that ↓ τ is the substitution that maps all time variables to the specified time point τ.
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In turn, ∆ε consists of each transition 〈a, X,Y,Ω1,Γ1〉
ε
−→ 〈3,Y,Z,Ω2,Γ2〉 satisfying the following conditions:

(3.1) a ∈ {2, 3};

(3.2) X(0) ∪ Z(2) ∪Ω2 |= Y(1);

(3.3) Conditions (2.4) and (2.5) hold.

AutomatonA[implies(Ω, J)] computes in three stages. In the first stage, it expects to read a (non-ε) input letter and eventually
an answer letter. In the second stage, it has read an answer letter, it expects to see no other answer letter, and it has not performed
any ε-transition yet. In the third stage, it has performed an ε-transition and it does not expect to see an input letter anymore.

The components of an automaton state 〈a, X,Y,Ω′,Γ〉 have the following meaning: the integer a describes in which of the three
stages the automaton currently is; the two sets X and Y represent two consecutive subsets M�τ and M�τ+1 of the set M described
above; Ω′ is an instance of Ω over the time interval [0, 2] which encodes labels of the derivation the automaton (implicitly) builds;
the pairs in Γ describe how the derived facts depend on each other, i.e., a pair 〈P,R〉 specifies that P(τ) depends on R(τ) for τ
the (implicit) current time point. Time in X and Y is implicit in the position they occur in a run, whereas time in Ω′ is relative
and can be mapped to absolute time through the position Ω′ occurs in a run; specifically, time 1 in Ω′ stands for the current time
point, time 0 for the previous time point, and 2 for the next time point. Each Ω′ is subset of Ω ↓ 1, which denotes the instance of
Ω obtained by substituting the time variable with 1.

The transitions of A[implies(Ω, J)] serve three main purposes. First, they progress through the different stages. Second,
they enforce the aforementioned property Ω ∪ M�τ−1 ∪ S �τ ∪ M�τ+1 |= M�τ; in particular, the transitions in ∆ read S �τ from
the input word, and the ε-transitions in ∆ε allow to reason beyond the time points of the input, implicitly taking S �τ = ∅.
Third, they incrementally maintain the dependency information in Γ and avoid the presence of cycles. Considering a transition
〈 , X,Y, , 〉 −→ 〈 ,Y,Z, , 〉, we can see that X represents the facts already checked to hold at the previous time point, Y
represents the facts to be checked now, and Z represents a set of facts that we assume to hold for the next time point and we
promise to check at the next transition. Following this line of reasoning, a state 〈a, X,Y,Ω′,Γ〉 is initial if no facts have been
derived in the previous time points, and hence if it has X = Ω′ = Γ = ∅; and it is final if an answer fact has been read and all
assumptions have been proved, and hence if it has a ∈ {2, 3} and Y = ∅.

Theorem 6.2. AutomatonA[implies(Ω, J)] recognises the language implies(Ω, J).

Proof. The proof is given in Appendix A.

The automaton A[implies(Ω, J)] can be computed in polynomial space because each of its elements (input letter, state, or
transition) is of polynomial size, and we can guess a candidate element at a time and check whether it belongs to the automaton.

Theorem 6.3. Automaton A[implies(Ω, J)] can be computed in polynomial space with respect to the size of Ω for each J;
furthermore, the size of each input letter, each state, and each transition of A[implies(Ω, J)] is polynomial in the size of Ω.

Proof. Clearly, each input letter, state, and transition of A[implies(Ω, J)] is of polynomial size in Ω. We next show how to
compute the transitions in ∆ (see Definition 6.1) in polynomial space using a ‘generate and filter’ algorithm—the remaining
transitions, the input alphabet, the states, and the final states of A[implies(Ω, J)] can be computed similarly. Checking whether

a triple 〈a1, X1,Y1,Ω1,Γ1〉
〈U,b〉
−→ 〈a2, X2,Y2,Ω2,Γ2〉 is a transition of A[implies(Ω, J)] is feasible in polynomial time with respect

to the size of the triple since checking Condition (2.3) amounts to checking fact entailment for propositional Horn clauses. We
check each of these triples one by one while reusing space in each check and we output those triples corresponding to valid
transitions. Clearly, this computation takes polynomial space since each considered triple is of polynomial size.

We next define the automaton A[notimplies(Ω, J)], which recognises notimplies(Ω, J). Similarly to the algorithm for fact
entailment by Chomicki and Imieliński [19], the automaton checks whether an input word corresponds to a finite stream prefix S
and fact α such that Ω ∪ S 6|= α by determining whether S can be extended to an infinite model M of Ω ∪ S not containing α. To
this end, we first define a family of automataA[notimplies(Ω, J), n], for n ≥ 0, which accept words representing a stream prefix
S and a fact α such that S can be extended to a partial model Mn that contains every fact in S , does not contain α, and is closed
under the rules of Ω on the interval [0, τmax + n], for τmax the maximum time point in S . It is then argued that, when n exceeds a
certain exponential bound in the number of predicates in Ω, any such partial model Mn exhibits a periodic pattern and can thus
be extended to an infinite model of Ω ∪ S . We therefore define A[notimplies(Ω, J)] as A[notimplies(Ω, J), n] for a value of n
corresponding to the aforementioned exponetial bound.

Definition 6.4. Let Ω be an object-free normal program over predicates P, let J ⊆ P be a set of IDB predicates, and let n ≥ 0.
ThenA[notimplies(Ω, J), n] is the non-deterministic finite automaton over alphabet Σ(Ω, J) defined as follows.

• A state is a 4-tuple 〈a, X,Y, i〉 where a ∈ {1, 2, 3}, X,Y ⊆ P, and i ∈ [0, n].
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• The set of initial states consists of each state in S of the form 〈1, ∅, X, 0〉.

• The set of final states consists of each state in S of the form 〈3, X,Y, n〉.

• The transition relation ∆∪∆ε is defined as follows. ∆ consists of each transition 〈a1, X,Y, 0〉
〈U,b〉
−→ 〈a2,Y,Z, 0〉 satisfying the

following conditions:

(2.1) if b ∈ I then b < Y, a1 = 1, and a2 = 2;

(2.2) if b = � then a1 = a2 = 1 or a1 = a2 = 2;

(2.3) X(0) ∪ Y(1) ∪ Z(2) |= Ω ↓ 1 ∪ U(1);

In turn, ∆ε consists of each transition 〈a, X,Y, i〉
ε
−→ 〈3,Y,Z, i + 1〉 satisfying the following conditions:

(3.1) a ∈ {2, 3};

(3.2) X(0) ∪ Y(1) ∪ Z(2) |= Ω ↓ 1.

We define N = 22·|P| andA[notimplies(Ω, J)] asA[notimplies(Ω, J),N].

Although A[notimplies(Ω, J)] shares many elements with A[implies(Ω, J)], it operates rather differently. Each transition
of A[notimplies(Ω, J)] checks, for increasing time points τ, whether the portion M�[τ−1,τ+1] of the guessed facts M satisfies the
program and input facts, while making sure that the answer fact α is not in M. In order to ensure that a sufficient number of time
points have been checked after reading the last letter of the input, automatonA[notimplies(Ω, J)] maintains a counter in its state
which has value zero as long as the automaton performs non-ε-transitions and, then, it is incremented at every ε-transition.

Theorem 6.5. AutomatonA[notimplies(Ω, J)] recognises the language notimplies(Ω, J).

Proof. The proof is given in Appendix A.

We are now ready to show that automatonA[notimplies(Ω, J)] can be computed in polynomial space.

Theorem 6.6. Automaton A[notimplies(Ω, J)] can be computed in polynomial space with respect to the size of Ω for each J;
furthermore, the size of each input letter, each state, and each transition of A[notimplies(Ω, J)] is polynomial in the size of Ω.

Proof. Clearly, the size of each input letter, each state, and each transition ofA[notimplies(Ω, J)] is polynomial in the size of Ω.
Automaton A[notimplies(Ω, J)] can be computed in polynomial space with the respect to the size of Ω through a ‘generate and
filter’ algorithm similar to the one described in the proof of Theorem 6.3. Note that checking Conditions 2.3 and 3.2 amounts to
model checking in propositional logic, which is feasible in polynomial time.

Finally, we define an automatonA[delay(Ω, J)] recognising the language delay(Ω, J). To this end, we first define an automa-
ton A[prefimplies(Ω, J)] for the language prefimplies(Ω, J) and show that it can be computed in polynomial space with respect
to the size of Ω. We then useA[prefimplies(Ω, J)] to defineA[delay(Ω, J)], and show thatA[delay(Ω, J)] can also be computed
in polynomial space.

Definition 6.7. Automaton A[prefimplies(Ω, J)], for Ω an object-free normal program and J a set of IDB predicates in Ω, is
obtained fromA[implies(Ω, J)] by redefining the final states as those occurring in some accepting run ofA[implies(Ω, J)].

Automaton A[prefimplies(Ω, J)] captures the prefix language of implies(Ω, J) because, by construction, its accepting runs
can be completed into accepting runs ofA[implies(Ω, J)].

Proposition 6.8. AutomatonA[prefimplies(Ω, J)] recognises prefimplies(Ω, J).

The construction ofA[prefimplies(Ω, J)] requires checking reachability in the graph induced by the automaton. The follow-
ing lemma shows that this is feasible in polynomial space using an adaptation of the well-known NLogSpace algorithm for graph
reachability [32] to the case where the input graph is concisely given as a polynomial space computable function.

Lemma 6.9. Let S be a set and g a total function from S to labelled directed graphs computable in polynomial space and such
that, for each x ∈ S , the size of each node and each edge of g(x) is polynomial in the size of x. The problem of checking, given
some x ∈ S and two nodes u, v of g(x), whether v is reachable from u in g(x) can be solved in polynomial space.
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Proof. Given x ∈ S and nodes u, v in g(x), we first establish the number n of nodes in g(x) by enumerating and counting them.
We then initialise a counter i to 0 and store u in a variable p. While i < n, we repeat the following loop. We check if p = v, in
which case we accept. Otherwise, we guess an integer j ∈ [1,m] and enumerate the edges of g(x), picking the j-th edge 〈a, σ, b〉.
If a , p, we reject. Otherwise we increment i by one, set p to b, and repeat the loop. If the loop terminates with i = n, we reject.

The correctness of the algorithm is immediate since v is reachable from u in g(x) if and only if it is reachable by a path of
length at most n − 1. Finally, we argue that the algorithm runs in polynomial space with respect to the size of x. By assumption,
we can enumerate each node and each edge of g(x) in polynomial space, and each such node and edge is of polynomial size. It
follows that polynomial memory suffices to represent p, a, σ, and b. It also follows that the number of nodes and edges is at most
exponential, and hence polynomial memory suffices for the counters i and j.

The result in Lemma 6.9 makes it easy to computeA[prefimplies(Ω, J)] fromA[implies(Ω, J)].

Lemma 6.10. Automaton A[prefimplies(Ω, J)] can be computed in polynomial space with respect to the size of Ω for each J;
furthermore, the size of each input letter, each state, and each transition ofA[prefimplies(Ω, J)] is polynomial in the size of Ω.

Proof. The second claim follows by Theorem 6.3 as the input alphabet, the states, and the transitions of A[prefimplies(Ω, J)]
coincide with those of A[implies(Ω, J)]. To compute the final states of A[prefimplies(Ω, J)], we enumerate all triples 〈s, s′, s′′〉
of states of A[implies(Ω, J)] where s is initial and s′′ is final; for each such triple, we check whether s′ is reachable from s
and whether s′′ is reachable from s′ in the labelled directed graph induced by the transitions ofA[implies(Ω, J)]; if both checks
succeed, we add s′ to the set of final states of A[prefimplies(Ω, J)], and otherwise we ignore the triple. This can be done in
polynomial space with respect to the size of Ω by Lemma 6.9 and Theorem 6.3.

The automaton for the delay language can now be defined starting from the automata we have defined above.

Definition 6.11. AutomatonA[delay(Ω, J)] is obtained from the product automatonA[prefimplies(Ω, J)]×A[notimplies(Ω, J)].
by introducing a fresh initial state sI and a transition sI

ε
−→ s whenever the product automaton admits a run ending with a

transition into s labelled with an answer letter.

The construction of A[delay(Ω, J)]—apart from capturing the intersection of two languages by means of the well-known
cross-product construction—captures string suffixes similarly to the way automatonA[prefimplies(Ω, J)] captures prefixes. One
difference is that here we are interested in specific suffixes—the ones starting right after an answer letter.

Theorem 6.12. AutomatonA[delay(Ω, J)] recognises delay(Ω, J) and can be computed in polynomial space with respect to the
size of Ω for each J; furthermore, the size of each input letter, state, and transition is polynomial in the size of Ω.

Proof. The only statement in the theorem that doesn’t follow directly from previous results and the construction ofA[delay(Ω, J)]
is that the newly introduced transitions can be computed in polynomial space. To do so, we enumerate the transitions s

σ
−→ s′

in the product automaton A[prefimplies(Ω, J)] × A[notimplies(Ω, J)] and output the transition sI
ε
−→ s′ if σ is an answer letter

and s is reachable from an initial state of the product automaton; this check is feasible in polynomial space by Lemma 6.9.

7. Complexity Upper Bounds

In this section, we provide complexity upper bounds for our reasoning problems assuming that all the EDB streams (and sets
of EDB facts) are over the same finite object domain. In the next section, we will provide matching lower bounds.

We start by establishing upper bounds for delay existence and validity. Intuitively, since the length n of a word in a delay lan-
guage witnesses the non-validity of n as a delay, we can check: (i) delay existence by checking whether words in the language are
of bounded length (i.e., whether the language is finite), and hence whether the corresponding automaton has no cycle reachable
from the initial state, involving the final state, and containing a non-ε-transition; (ii) validity of a delay d by checking whether
words in the language have length at most d − 1, and hence checking for absence of a path in the corresponding automaton from
the initial state to a final state involving at least d − 1 non-ε-transitions. The proof also involves normalisation and grounding
over the fixed object domain, since our automata are applicable to object-free normal programs only.

Theorem 7.1. Delay existence and delay validity are in ExpSpace if the object domain of streams is considered fixed. The two
problems are in PSpace when restricted to object-free programs with offsets coded in unary.

Proof. We prove upper bounds for delay existence and delay validity separately. For each problem, we first show a PSpace upper
bound for the case of a normal object-free program Ω having IDB predicates J. Let us call it the core case. Then, we show the
claimed bounds by reduction to the core case.
Delay Existence. By Theorem 5.2, program Ω admits a valid delay if and only if delay(Ω, J) is finite. Furthermore, by
Theorem 6.12, the automaton A[delay(Ω, J)] recognises delay(Ω, J), and delay(Ω, J) is finite if and only if each cycle of each
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accepting run of A[delay(Ω, J)] is over ε-transitions only. Therefore, to show a PSpace upper bound, it suffices to provide
a non-deterministic polynomial space algorithm that takes Ω as input and accepts if and only if there is an accepting run of
A[delay(Ω, J)] having a cycle that contains a non-ε transition. The algorithm computes the initial state s0 of A[delay(Ω, J)],
after which it guesses a pair of states 〈s, s′〉, and accepts if s and s′ are states in A[delay(Ω, J)] such that s′ is a final state, s
is reachable from s0, s′ is reachable from s, and s is reachable from s through a path containing at least one edge whose label
is different from ε. The algorithm can be realised in polynomial space. Indeed, by Theorem 6.12, we can check in polynomial
space whether a state belongs to the automaton and whether it is a final state; furthermore, each of the reachability checks can
be performed in polynomial space in the combined size of Ω, s0, s, and s′ by Lemma 6.9. Now we show the other bounds. The
problem restricted to object-free programs with offsets in unary (resp., binary) is in PSpace (ExpSpace) since it reduces to the
core case in polynomial (exponential) time by Theorem 5.5. If the object domain is fixed and contains at most one object, we can
ground in polynomial time and hence the problem is in ExpSpace since it reduces to the previous case; otherwise, the problem is
in ExpSpace since it reduces to the core case via normalisation and grounding in exponential time by Theorem 5.4.
Delay Validity. Let d be a non-negative integer. By Theorem 5.2, d is a valid delay for Ω if and only if each word in delay(Ω, J)
is of length at most d − 1. Since automaton A[delay(Ω, J)] recognises delay(Ω, J) by Theorem 6.12, d is a valid delay for Ω if
and only if each accepting run ofA[delay(Ω, J)] consists of at most d − 1 non-ε transitions. To show the PSpace upper bound, it
suffices to provide a non-deterministic polynomial space algorithm for the complement of the problem, and hence an algorithm
that takes Ω and d as input and accepts iff there is an accepting run of A[delay(Ω, J)] consisting of at least d non-ε transitions.
The algorithm computes Ω and the initial state s0 of A[delay(Ω, J)]; then, it guesses a state s and accepts if s is a final state of
A[delay(Ω, J)] and it is reachable from s0 via a path containing at least d non-ε edges. The aforementioned reachability check is
feasible in polynomial space in the combined size of Ω, s0, s, and d by a straightforward generalisation of Lemma 6.9, and hence
in space polynomial in the combined size of Ω and d, since s0 and s are of size polynomial in the size of Ω by Theorem 6.12. The
other bounds are easily obtained via normalisation and grounding using the same arguments as in the case of delay existence.

Theorem 7.2. Program containment is in ExpSpace if the object domain of streams is considered fixed. It is in PSpace when
restricted to object-free programs with offsets coded in unary.

Proof. We prove the PSpace upper bound for containment of normal object-free programs, and then the claimed bounds are easily
obtained via normalisation and grounding using the same arguments as in Theorem 7.1. Let Ω1 and Ω2 be normal object-free pro-
grams with the same set of EDB predicates. By Theorem 5.2, Ω1 v Ω2 if and only if implies(Ω1, J)∩ notimplies(Ω2, J) = ∅ with
J the set of IDB predicates in Ω1. Furthermore automatonA[implies(Ω1, J)] recognises implies(Ω1, J) by Theorem 6.2, and au-
tomatonA[notimplies(Ω2, J)] recognises notimplies(Ω2, J) by Theorem 6.5. LetA be the product automatonA[implies(Ω1, J)]×
A[notimplies(Ω2, J)]. We have thatA recognises implies(Ω1, J)∩notimplies(Ω2, J), and hence implies(Ω1, J)∩notimplies(Ω2, J) =

∅ if and only if A has no accepting run. Summing up, we have that Ω1 v Ω2 if and only if A has no accepting run. Clearly,
checking this is feasible in polynomial space since reachability between an initial state and a final state can be checked in space
polynomial in the combined size of Ω1 and Ω2.

The following upper bound proof for window size validity amounts to modelling the definition of valid window size as the
containment Π1 v Π2 where Π1 and Π2 capture the left-hand and right-hand side, respectively, of the inclusion in Definition 3.4.
The construction is as follows. We first define a program Πcount that, given a fact Now(τ), derives facts spanning the interval
[τ − m, τ]. Specifically, it first derives the binary encoding of zero at τ; then, if it has derived the binary encoding of an integer n
at time τ′, either n = m and it stops, or it derives the binary encoding of n + 1 at time τ′ − 1. As a result, the program derives the
encoding of every i ∈ [0,m] at time τ − i, and no fact at time τ′ < τ − m. In essence, Πcount labels time points with their distance
from the time point τwhere Now(τ) holds—note that we guarantee τ to be unique via the flooding technique. We use the labelling
above to define a program Πintervals, which further labels time points according to whether they belong to each of the intervals
mentioned in the definition of window size validity. Finally, we include in the construction two copies of the original programs,
with each copy restricted so as to consider facts over different intervals, following the definition of window size validity.

Theorem 7.3. Window size validity is in ExpSpace if the object domain of streams is considered fixed. It is in PSpace when
restricted to object-free programs with offsets coded in unary.

Proof. We provide a logarithmic space reduction from window size validity to program containment. The reduction preserves
object-freeness, and hence the bounds follow by Theorem 7.2. Our reduction ϕmaps an instance 〈Π, d,w〉 of window size validity
to a pair 〈Π1,Π2〉 of programs (defined below) if w < d + ρ, with ρ be the maximum forward radius of Π, and to 〈∅, ∅〉 otherwise.
We next show how programs Π1 and Π2 in our reduction ϕ are constructed from Π, d and w. Let Now and Continue be fresh
unary predicates. Let k be the number of bits required to encode w. For each i ∈ [1, k], let Zeroi, Onei, Loweri, Middlei and
Upperi be fresh unary predicates. Furthermore, for each i ∈ [1, k], let Bi be Zeroi if the i-th bit of the binary encoding of w is one
and let it be Onei otherwise. We define Πcount as the program consisting of the following rules.

Now(t)→ Zeroi(t) for each i ∈ [1, k] (44)
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One1(t)→ Lower1(t) (45)
Loweri−1(t) ∧ Onei(t)→ Loweri(t) for each i ∈ [2, k] (46)

Zero1(t)→ Middle1(t) (47)
Loweri−1(t) ∧ Zeroi(t)→ Middlei(t) for each i ∈ [2, k] (48)

Middlei−1(t)→ Upperi(t) for each i ∈ [2, k] (49)
Upperi−1(t)→ Upperi(t) for each i ∈ [2, k] (50)

Bi(t)→ Continue(t) for each i ∈ [1, k] (51)
Continue(t) ∧ Loweri(t)→ Zeroi(t − 1) for each i ∈ [1, k] (52)

Continue(t) ∧Middlei(t)→ Onei(t − 1) for each i ∈ [1, k] (53)
Continue(t) ∧ Upperi(t) ∧ Zeroi(t)→ Zeroi(t − 1) for each i ∈ [1, k] (54)
Continue(t) ∧ Upperi(t) ∧ Onei(t)→ Onei(t − 1) for each i ∈ [1, k] (55)

The construction of Πcount ensures that, for each EDB stream S containing at most one fact about Now, each time point τ, each
m ∈ [0,w], and for predicates B1, . . . , Bk where Bi is Zeroi if the i-th bit in the binary encoding of m is zero and Onei otherwise,

Πcount ∪ S |= {B1(τ), . . . , Bk(τ)} if and only if Now(τ + m) ∈ S .

We next define Πintervals as the extension of Πcount with rules (56)–(64), where each predicate of the form ~T� is a fresh unary
predicate that intuitively stands for the time interval (or single time point) denoted by T ; furthermore, for each i ∈ [1, k], Biti is a
fresh unary predicate, and Ci is Zeroi if the i-th bit of the binary encoding of d is zero and Onei otherwise—i.e., the Ci’s encode d.

C1(t) ∧ · · · ∧Ck(t)→ ~now − d�(t) (56)
Zeroi(t)→ Biti(t) for each i ∈ [1, k] (57)
Onei(t)→ Biti(t) for each i ∈ [1, k] (58)

Bit1(t) ∧ · · · ∧ Bitk(t)→ ~now − w, now�(t) (59)
~now − d�(t)→ ~0, now − d − 1�(t − 1) (60)

~0, now − d − 1�(t)→ ~0, now − d − 1�(t − 1) (61)
~0, now − d − 1�(t) ∧ ~now − w, now�(t)→ ~now − w, now − d − 1�(t) (62)

Now(t)→ ~0, now�(t) (63)
~0, now�(t)→ ~0, now�(t − 1) (64)

Noting that w ≥ d by definition of the problem, it is easy to see that, by the construction of Πintervals, for each EDB stream S
containing at most one fact about Now and each time point τ, we have Now(τ) ∈ S if and only if all the following points hold:

1. Πintervals ∪ S |= ~now − d�(τ − d);

2. Πintervals ∪ S |= ~now − w, now�(τ′) for each τ′ ∈ [τ − w, τ];

3. Πintervals ∪ S |= ~0, now − d − 1�(τ′) for each τ′ ∈ [0, τ − d − 1];

4. Πintervals ∪ S |= ~now − w, now − d − 1�(τ′) for each τ′ ∈ [τ − w, τ − d − 1];

5. Πintervals ∪ S |= ~0, now�(τ′) for each τ′ ∈ [0, τ].

Let Π′ and Π′′ be the programs obtained from Π by renaming each predicate P to fresh predicates P′ and P′′, respectively. Let
Πaux be Π′ ∪Π′′ ∪Πintervals extended with a rule of the form (65) for each EDB predicate P occurring in Π, a rule of the form (66)
for each EDB predicate P occurring in Π, and a rule of the form (67) for each predicate P occurring in Π.

~0, now�(t) ∧ P(t)→ P′(t) (65)
~now − w, now�(t) ∧ P(t)→ P′′(t) (66)

~now − w, now − d − 1�(t) ∧ P′(t)→ P′′(t) (67)

By construction, Πaux satisfies the following properties for each EDB stream S containing at most one fact about Now, each pair
of time points τ and τ′, and each predicate P:

1. Π ∪ S �[0,τ] |= P(τ′) and Now(τ) ∈ S if and only if Πaux ∪ S |= P′(τ′);
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2. Π ∪ N�[τ−w,τ−d−1] ∪ S �[τ−w,τ] |= P(τ′) and Now(τ) ∈ S if and only if Πaux ∪ S |= P′′(τ′), where N = Π(S �[0,τ]).

Let Πflood be the program consisting of rules (68)–(72) together with a rule of the form (73) for each IDB predicate P occurring
in Π, where ~now + 1,∞� and Flood are fresh unary predicates.

Now(t)→ ~now + 1,∞�(t + 1) (68)
~now + 1,∞�(t)→ ~now + 1,∞�(t + 1) (69)

~now + 1,∞�(t) ∧ Now(t)→ Flood(t) (70)
Flood(t)→ Flood(t + 1) (71)
Flood(t)→ Flood(t − 1) (72)
Flood(t)→ P′′(t) (73)

Clearly, for each stream S that contains two facts about Now, Πflood ∪ S entails each fact about P′′ for P a predicate in Π. Finally,
program Π1 (respectively, Π2) is defined as the extension of Πaux ∪ Πflood with a rule of the form (74) (respectively, of the form
(75)) for each predicate P occurring in Π, where GoalP is a fresh unary predicate.

~now − d�(t) ∧ P′(t)→ GoalP(t) (74)
~now − d�(t) ∧ P′′(t)→ GoalP(t) (75)

The construction of these programs ensures that the following statements hold for each EDB stream S containing at most one
fact about Now, each time point τ, and each predicate P:

1. Π ∪ S �[0,τ] |= P(τ − d) and Now(τ) ∈ S if and only if Π1 ∪ S |= GoalP(τ − d);

2. Π ∪ N�[τ−w,τ−d−1] ∪ S �[τ−w,τ] |= P(τ − d) and Now(τ) ∈ S if and only if Π2 ∪ S |= GoalP(τ − d), where N = Π(S �[0,τ]).

This completes the description of our reduction ϕ. Clearly, ϕ can be computed in logarithmic space: k is linear in the size of
w, and Π1 and Π2 have size polynomial in k and the size of Π.

We conclude by arguing correctness of ϕ. If w ≥ d + ρ then, by Theorem 3.8, w is a valid window size for Π and d and, as
required, the containment ∅ v ∅ holds trivially. Let us now consider the case where w < d + ρ.

Assume Π1 v Π2; we show that w is a valid window size for Π and d. Let S be an EDB stream, let τ be a time point with
τ ≥ d, let S ′ be S ∪ {Now(τ)}, let α be a fact with time argument τ − d, let N = Π(S �[0,τ]), and let N′ = Π(S ′�[0,τ]). We assume
w.l.o.g. that S contains no fact about Now, and hence S ′ contains one fact about Now. Assume that Π ∪ S �[0,τ] |= α, where α has
the form P(τ − d). It suffices to show Π ∪ N�[τ−w,τ−d−1] ∪ S �[τ−w,τ] |= α. By monotonicity, we have Π ∪ S ′�[0,τ] |= P(τ − d), and
hence Π1 ∪ S ′ |= GoalP(τ− d) by the aforementioned property of Π1. It follows that Π2 ∪ S ′ |= GoalP(τ− d) since Π1 v Π2. But
then, Π ∪ N′�[τ−w,τ−d−1] ∪ S ′�[τ−w,τ] |= P(τ − d) by the properties of Π2, and hence Π ∪ N�[τ−w,τ−d−1] ∪ S �[τ−w,τ] |= P(τ − d), as
required, since no fact about Now occurs in Π.

Finally, assume that w is a valid window size for Π and d, and that Π1 ∪ S |= α for S an EDB stream and α a fact. It suffices
to show Π2 ∪ S |= α. If α is not a fact about any GoalP, then Πaux ∪ S |= α and hence Π2 ∪ S |= α since Πaux ⊆ Π2. Now
assume that α is of the form GoalP(τ). If S contains two facts about Now, then Π2 ∪ S |= P′′(τ) by the properties of Πflood, and
hence Π2 ∪ S |= GoalP(τ) by rule (75), so suppose that S contains at most one fact about Now. Then, Π ∪ S �[0,τ+d] |= P(τ)
and Now(τ + d) ∈ S by the properties of our construction stated above. Furthermore, for N = Π(S �[0,τ+d]), it holds that
Π ∪ N�[τ+d−w,τ−1] ∪ S �[τ+d−w,τ+d] |= P(τ), since w is a valid window size for Π and d. As a result, Π2 ∪ S |= GoalP(τ) by the
properties of Π2, as required.

We conclude by giving upper bounds for the problem of computing a minimum valid delay and window size. The proof of
the theorem combines the previous results in a straightforward manner.

Theorem 7.4. There exists an algorithm running in exponential space that, for a fixed object domain for streams, takes as input
a program Π and computes the smallest valid delay d for Π and the smallest valid window size for Π and d whenever Π admits a
valid delay, or rejects Π if it does not admit a valid delay. Furthermore, the algorithm runs in polynomial space if Π is object-free
with offsets coded in unary.

Proof. On input Π, the algorithm performs the following steps:

1. It checks whether Π admits a valid delay, and it rejects the input if it does not.

2. If Π is object-free with offsets in unary, then it normalises program Π into a program Ω following Theorem 5.5, and
it computes the set J of the IDB predicates of Π. Otherwise, it normalises and grounds program Π into a program Ω

following Theorem 5.4, and it computes the grounding J of the IDB predicates of Π.
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3. It computes the number k of states in the automatonA[delay(Ω, J)] where Ω and J are as follows. If Π is object-free with
offsets in unary, then Ω is the normal program for Π according to Theorem 5.5, and J is the set of IDB predicates of Π.
Otherwise, Ω is the grounding of the normal program for Π according to Theorem 5.4, and J = ζ(I) for I the set of IDB
predicates of Π.

4. It computes the smallest valid delay d by iteratively incrementing d from 0 to k, and stopping as soon as the resulting value
is a valid delay for Π.

5. It computes the smallest valid window size w by iteratively incrementing w from 0 to d + ρ, with ρ the maximum forward
radius of a rule in Π, and stopping as soon as the resulting value is a valid window size for Π and d.

6. It outputs d and w.

Correctness of the algorithm follows directly from the following observations. Recall that if Π admits a valid delay then accepting
runs of A[delay(Ω, J)] cannot involve a cycle over a non-ε transition, as argued in the proof of Theorem 7.1. As a result, if Π

admits a valid delay d, then d cannot be larger than the number k of states of the automaton A[delay(Ω, J)], which justifies
Step 2. Furthermore, by Theorem 3.8, if d is a valid delay then d + ρ is a valid window size, which justifies Step 3.

We now argue that the algorithm runs in exponential space when Π is not object-free or offsets are coded in binary; it is then
immediate to see that all bounds are reduced by one exponential in the complementary case of Π object-free and with offsets in
unary, where Theorem 5.5 applies instead of Theorem 5.4. The first step is clearly feasible in exponential space by Theorem 7.1,
and the second step by Theorem 5.4. For Step 3, note that the number of states inA[delay(Ω, J)] is exponentially bounded in the
maximum size of a state, which is exponential. As a result, we can do no more than doubly-exponentially many delay validity
calls in Step 3, each of which feasible in exponential space in Π and the tested value d (which can be stored in binary using only
exponential space in the size of Π). Finally, Step 4 involves no more than d + ρ window size validity tests, each of which also
takes exponential space (again, note that each tested w requires only exponential space in Π).

8. Complexity Lower Bounds

We next show that the upper bounds established in the previous section are tight. For this, we first establish lower bounds
for containment of forward-propagating programs over a fixed object domain. In particular, we show that the problem is
ExpSpace-hard under both unary and binary coding of time offsets; furthermore, if we consider forward-propagating object-
free programs, then the problem is ExpSpace-hard under binary coding and PSpace-hard under unary coding. We then combine
these results with the reductions from program containment to delay existence, delay validity, and window size validity devel-
oped in Section 4, concluding that all three problems are ExpSpace-hard over a fixed object domain, PSpace-hard for object-free
programs under unary coding, and ExpSpace-hard for object-free programs under binary coding.

The ExpSpace lower bound for containment over a fixed object domain follows from the fact that temporal Datalog programs
capture succinct regular expressions (SREs)—see, e.g., [33]. Specifically, for a given SRE, we construct a program that encodes
a one-pass scan over an input word, deriving a special fact if the word is in the language of the corresponding SRE. The program
is built following the inductive structure of SREs. The concatenation and alternation operators are easily captured due to their
correspondence to logical and and or, respectively. The Kleene plus operator is captured via recursion. Finally, the exponentiation
operator of SREs is captured via recursion and binary counting to keep track of the number of recursive steps—where binary
counting can be expressed by rules. Binary counting makes use of objects, but it is not required if there is no exponentiation.
Thus, object-free programs capture regular expressions, and this implies the PSpace lower bound for object-free programs.

Theorem 8.1. Containment of forward-propagating programs with respect to a fixed object domain is ExpSpace-hard. Further-
more, containment of object-free forward-propagating programs is PSpace-hard. In both cases, the mentioned hardness holds
already when the only time offsets allowed in rules are 0 and 1.

Proof. We show the first claim by providing a reduction from containment of succinct regular expressions (SREs) to containment
of forward-propagating programs. The language of SREs extends regular expressions with the exponentiation operator, which
allows one to write expressions of the form Rk where R is an SRE and k is a non-negative integer; the expression Rk matches any
concatenation of k words matched by R. The containment problem for SREs, which assumes exponents to be coded in binary, is
known to be ExpSpace-complete [33]. Formally, we consider SREs over a given alphabet Σ generated by the grammar

R ::= ∅ | ε | σ | R ∪ R | R ◦ R | R+ | Rk

where σ ranges over Σ and k ≥ 1. Our reduction maps a pair 〈R1,R2〉 of SREs to a pair of programs 〈Π1,Π2〉 such that
L(R1) ⊆ L(R2) if and only if Π1 v Π2, for L(Ri) the language of Ri. Programs Π1 and Π2 consist of several components, which
we describe next.
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• For each m ≥ 1, program Πm
succ implements a binary counter with m bits. It consists of rules (76)–(79) and a rule of the

form (80) for each i ∈ [0,m − 1] where F and A are unary predicates, B is a binary predicate, succm is a (2m + 1)-ary
predicate, 0̄ and 1̄ are fresh objects, intuitively standing for zero and one, respectively, |x| = i, and |1̄| = |0̄| = m − i − 1:

F(t)→ A(t) (76)
A(t)→ A(t + 1) (77)
A(t)→ B(0̄, t) (78)
A(t)→ B(1̄, t) (79)∧i

j=1 B(x j, t)→ succm(x, 0̄, 1̄, x, 1̄, 0̄, t) (80)

Formally, for each m ≥ 1, each time point τ, and each τ′ ≥ τ, it holds that Πm
succ ∪ {F(τ)} |= succm(i, j, τ′) if and only if i

and j are m-tuples over {0̄, 1̄}, and i + 1 = j for i and j the numbers encoded by i and j, respectively.

• For a given SRE R over alphabet Σ, program ΠR is constructed inductively as follows, where G is a fresh unary predicate,
Aσ is a fresh unary predicate for each σ ∈ Σ, and φ(Π) and ψ(Π) are the programs obtained from an arbitrary program Π

by renaming each predicate P to fresh predicates Pφ and Pψ, respectively, unless P is of the form Aσ or succm.

– If R = ∅, then ΠR = ∅.

– If R = ε, then ΠR consists of the rule
F(t)→ G(t). (81)

– If R = σ for σ ∈ Σ, then ΠR consists of the rule

F(t) ∧ Aσ(t)→ G(t + 1). (82)

– If R = S ∪ T , then ΠR extends φ(ΠS ) ∪ ψ(ΠT ) with the rules

F(t)→ Fφ(t) (83)

F(t)→ Fψ(t) (84)

Gφ(t)→ G(t) (85)

Gψ(t)→ G(t). (86)

– If R = S ◦ T , then ΠR extends φ(ΠS ) ∪ ψ(ΠT ) with the rules

F(t)→ Fφ(t) (87)

Gφ(t)→ Fψ(t) (88)

Gψ(t)→ G(t). (89)

– If R = S +, then ΠR extends φ(ΠS ) with the rules

F(t)→ Fφ(t) (90)

Gφ(t)→ Fφ(t) (91)

Gφ(t)→ G(t). (92)

– If R = S k with k ≥ 1, then ΠR is constructed from ΠS as follows. First, we replace each atom P(p, s) with P′(p, x, s),
with P′ fresh and |x| = m for m the number of bits required to encode k, unless P is of the form Aσ or succm. Then,
we extend the resulting program with the following rules where a is the encoding of k − 1 as a binary string over 0̄
and 1̄ using m bits:

F(t)→ F′(0̄, t) (93)
G′(a, t)→ G(t) (94)

G′(x, t) ∧ succm(x, y, t)→ F′(y, t) (95)

Then, Π1 and Π2 are defined as follows, where Πsucc is the union of all Πm
succ such that succm occurs in ΠR1 ∪ ΠR2 , program Π′R2

is obtained from ΠR2 by renaming each IDB predicate P to a fresh predicate P′ (in particular, G is renamed to G′), and G∗ is a
fresh unary predicate:
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• Π1 = ΠR1 ∪ Π′R2
∪ Πsucc ∪ {G(t)→ G∗(t)}

• Π2 = ΠR1 ∪ Π′R2
∪ Πsucc ∪ {G′(t)→ G∗(t)}

We next argue correctness of the reduction. For this, we first show that our construction captures the language of the relevant
SREs in the sense of the following two claims.

Claim 1. Let s = σ1 . . . σn be a word in L(R) and let D be a finite set of EDB facts. If Πsucc includes each Πm
succ such that succm

occurs in ΠR, F(τ) ∈ D, and Aσi (τ + i − 1) ∈ D for each i ∈ [1, n], then ΠR ∪ Πsucc ∪ D |= G(τ + n).

We show the claim by induction on R. Consider the base cases. Clearly, R , ∅ as s ∈ L(R). If R = σ, we have s = σ; but
then, Aσ(τ) ∈ D implies ΠR ∪ D |= G(τ + 1) by rule (82). If R = ε, then s = ε (and hence n = 0); but then, ΠR ∪ D |= G(τ) by
rule (81). Next, we consider the inductive cases.

• R = S ∪ T and s ∈ L(S ) ∪ L(T ). If s ∈ L(S ), then ΠS ∪ Πsucc ∪ D |= G(τ + n) by the inductive hypothesis; in this case,
φ(ΠS ) ∪ Πsucc ∪ D ∪ {Fφ(τ)} |= Gφ(τ + n) by the definition of φ(ΠS ), and hence ΠR ∪ Πsucc ∪ D |= G(τ + n) by rules (83)
and (85). The case s ∈ L(T ) proceeds analogously using rules (84) and (86).

• R = S ◦ T and s = s1s2 with s1 = σ1
1 . . . σ

1
n1
∈ L(S ) and s2 = σ2

1 . . . σ
2
n2
∈ L(T ). By the inductive hypothesis,

ΠS ∪ Πsucc ∪ D |= G(τ + n1), hence φ(ΠS ) ∪ Πsucc ∪ D ∪ {Fφ(τ)} |= Gφ(τ + n1) by the construction of φ(ΠS ), and
hence ΠR ∪ Πsucc ∪ D |= Fψ(τ + n1) by rules (87) and (88). Furthermore, again by the inductive hypothesis, we have
ΠT ∪Πsucc∪D∪{F(τ+ n1)} |= G(τ+ n1 + n2), hence ψ(ΠT )∪Πsucc∪D∪{Fψ(τ+ n1)} |= Gψ(τ+ n1 + n2) by the construction
of ψ(ΠT ), and hence ΠR ∪ Πsucc ∪ D |= G(τ + n1 + n2) by rule (89).

• R = S + and s = s1s2 . . . sk with si = σi
1 . . . σ

i
ni
∈ L(S ) for each i ∈ [1, k]. By a straightforward induction on i, which

uses the outer inductive hypothesis applied to S together with rules (90) and (91) applied in the base and inductive case
respectively, we can show ΠR∪Πsucc∪D |= Gφ(τ+

∑i
j=1 n j) for each i ∈ [1, k]. This implies ΠR∪Πsucc∪D |= Gφ(τ+

∑k
i=1 ni),

and hence ΠR ∪ Πsucc ∪ D |= G(τ +
∑k

i=1 ni) by rule (92).

• R = S k and s = s1s2 . . . sk with si = σi
1 . . . σ

i
ni
∈ L(S ) for each i ∈ [1, k]. We show by induction on i ≥ 1 that

ΠR ∪ Πsucc ∪ D |= G′(b, τ +
∑i

j=1 n j) for b the binary encoding of i − 1; this implies ΠR ∪ Πsucc ∪ D |= G′(b, τ +
∑k

i=1 ni),
and hence ΠR ∪ Πsucc ∪ D |= G(τ +

∑k
i=1 ni) by rule (94). In the base case (i = 1), we have ΠR ∪ Πsucc ∪ D |= F′(0̄, τ) by

rule (93), and hence ΠR ∪Πsucc ∪D |= G′(0̄, τ+ n1), because ΠS ∪Πsucc ∪D |= G(τ+ n1) by the outer inductive hypothesis
for S , and by the construction of ΠR. For i > 1, the inner inductive hypothesis yields ΠR ∪ Πsucc ∪ D |= G′(c, τ +

∑i−1
j=1 n j)

where c is the binary encoding of i − 2. Hence, ΠR ∪ Πsucc ∪ D |= F′(b, τ +
∑i−1

j=1 n j) where b encodes i − 1, by rule (95)
and by the construction of Πsucc. But then, ΠR ∪ Πsucc ∪ D |= G′(b, τ +

∑i
j=1 n j) follows by the construction of ΠR from

ΠS ∪ D ∪ {F(τ +
∑i−1

j=1 n j)} |= G(τ +
∑i

j=1 n j), which holds by the outer inductive hypothesis for S .

Claim 2. Let D be a finite set of EDB facts and let τ be a time point. If ΠR ∪ Πsucc ∪ D |= G(τ), then there exists a word
s = σ1 . . . σn ∈ L(R) such that F(τ − n) ∈ D and Aσi (τ − n + i − 1) ∈ D for each i ∈ [1, n].

We show the claim by induction on R. For the base cases, note first that ΠR ∪Πsucc ∪ D |= G(τ) implies that R , ∅. If R = σ,
we take s = σ since {F(τ − 1), Aσ(τ − 1)} ⊆ D by the construction of ΠR. Finally, if R = ε we take s = ε since F(τ) ∈ D by the
construction of ΠR. We now consider the inductive cases.

• If R = S ∪ T , we have ΠR ∪ D |= Gφ(τ) or ΠR ∪ D |= Gψ(τ). By the construction of ΠR and the inductive hypothesis, it
follows that there is a word s = a1 . . . an ∈ L(S ) ∪ L(T ) such that Aai (τ − n + i − 1) ∈ D for each i ∈ [1, n] and either
ΠR ∪ D |= Fφ(τ − n) or ΠR ∪ D |= Fψ(τ − n), which both imply F(τ − n) ∈ D as required.

• If R = S ◦ T , we have ΠR ∪ D |= Gψ(τ). By the construction of ΠR and the inductive hypothesis, there is a word
s1 = a1 . . . an ∈ L(T ) such that Aai (τ− n + i− 1) ∈ D for each i ∈ [1, n] and ΠR ∪D |= Fψ(τ− n). Then, ΠR ∪D |= Fψ(τ− n)
implies ΠR ∪ D |= Gφ(τ − n), and hence, again by the construction of ΠR and the inductive hypothesis, we have that there
is a word s2 = b1 . . . bn′ ∈ L(S ) such that Abi (τ− n− n′ + i− 1) ∈ D for each i ∈ [1, n′] and ΠR ∪D |= Fφ(τ− n− n′), which
implies F(τ − n − n′) ∈ D. Finally, note that s = s1s2 ∈ L(R), and hence s and D are as required.

• R = S +. By the construction of ΠR and the inductive hypothesis, ΠR ∪ D |= Gφ(τ′) with τ′ ≤ τ implies that there is a word
σ1 . . . σn ∈ L(S ) such that ΠR∪D |= Fφ(τ′−n) and Aσi (τ

′−n+ i−1) ∈ D for each i ∈ [1, n]. By generalising the argument
for R = S ◦ T , we can then deduce the existence of words s1, . . . , sk (for k ≥ 1) such that, for each i ∈ [1, k]:

– si = σi
1 . . . σ

i
ni
∈ L(S ),

– ΠR ∪ D |= Fφ(τ −
∑k

j=i n j),
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Figure 5: Pointer’s moves for the expression (ab)3c on input word abababc. Each tape cell spans 4 time points, since the exponent requires 2 bits. Solid arrows
denote pointer’s moves to the next cell with no change in its relative position within a cell (and hence no change in counter values). Dashed arrows denote
within-cell moves, to increase the counter by one when subexpression ab has just been matched. The dotted red arrow denotes a pointer’s move to the next cell
with a counter reset, hence a move to the beginning of the cell. The right-most arrow, ending with an asterisk, denotes that the given SRE has been matched.

– Aσi
j
(τ + j − 1 −

∑k
`=i n`) ∈ D for each j ∈ [1, ni],

– F(τ −
∑k

i=1 ni) ∈ D.

Then, s = s1 · · · sk and D are as required.

• R = S k for k ≥ 1. By the construction of ΠR and the inductive hypothesis, the assertion ΠR ∪ Πsucc ∪ D |= G′(b, τ′)
implies the existence of a word s = σ1 . . . σn ∈ L(S ) such that ΠR ∪ Πsucc ∪ D |= F′(b, τ′ − n) and Aσi (τ

′ − n + i − 1) ∈ D
for each i ∈ [1, n]; furthermore, by the construction of Πsucc, if ΠR ∪ Πsucc ∪ D |= F′(b, τ′) with b encoding k ≥ 0 then
ΠR ∪ Πsucc ∪ D |= G′(c, τ′) with c encoding k − 1 due to rule (95). Considering that ΠR ∪ Πsucc ∪ D |= G′(a, τ) with a
the binary encoding of k − 1, due to rule (94), the two properties above imply (as it can be shown by a straightforward
induction on i from k to 1) the existence of words s1, . . . , sk such that, for each i ∈ [1, k]:

– si = σi
1 . . . σ

i
ni
∈ L(S );

– ΠR ∪ Πsucc ∪ D |= F′(b, τ −
∑k

j=i n j) where b is the binary encoding of i − 1; and

– Aσi
j
(τ + j − 1 −

∑k
`=i n`) ∈ D for each j ∈ [1, ni].

Then, s = s1 · · · sk and D are as required. This concludes the proof of the claim.

We now show correctness. Assume first that L(R1) ⊆ L(R2). Pick an arbitrary finite set D of EDB facts and a fact α such
that Π1 ∪ D |= α. We show Π2 ∪ D |= α, which is sufficient to establish Π1 v Π2. It is clear that Π2 ∪ D |= α if α is not a fact
about G∗, so assume that α has the form G∗(τ). It follows that Π1 ∪ D |= G(τ), and hence ΠR1 ∪ Πsucc ∪ D |= G(τ). By Claim 2,
there is a word s = σ1 . . . σn ∈ L(R1) such that F(τ − n) ∈ D and Aσi (τ − n + i − 1) ∈ D for each i ∈ [1, n]. Then, by assumption,
s ∈ L(R2), and hence ΠR2 ∪ Πsucc ∪ D |= G(τ) by Claim 1. Consequently Π′R2

∪ Πsucc ∪ D |= G′(τ), and thus Π2 ∪ D |= G∗(τ).
Assume now that Π1 v Π2. We show L(R1) ⊆ L(R2). Let s = a1 . . . an be a word in L(R1) and let D be the set consisting of

the fact F(0) and a fact Aai (i−1) for each i ∈ [1, n]. It follows that ΠR1 ∪Πsucc∪D |= G(n) by Claim 1, and hence Π1∪D |= G∗(n).
By assumption, this implies Π2 ∪ D |= G∗(n), and hence, by construction, ΠR2 ∪ Πsucc ∪ D |= G(n). Then, by Claim 2, there is
some s′ = b1 . . . bn′ ∈ L(R2) such that F(n − n′) ∈ D and Abi (n − n′ + i − 1) ∈ D for each 1 ≤ i ≤ n′. Furthermore, n′ = n since
F(0) is the only fact about F in D by the definition of D, and, for each i ∈ [1, n], we have bi = ai since Aai (i − 1) is the only fact
in D of the form Aσ(i − 1). Therefore, s′ = s, and hence s ∈ L(R2), as required. This completes our ExpSpace-hardness proof.

We conclude by arguing that containment of object-free forward-propagating programs is PSpace-hard. In this case, we
reduce from containment of standard regular expressions (without exponentiation), which is a well-known PSpace-hard problem.
The reduction is a special case of our reduction from SRE containment: it suffices to observe that we no longer need the program
component Πsucc, without which the program becomes object-free. The correctness arguments transfer verbatim.

Our next goal is to show that, also for forward-propagating object-free programs, the containment problem is ExpSpace-hard
if time offsets are coded in binary. Again, we would like to find a reduction from containment of SREs. To do so, we have to
encode exponentiation taking advantage of binary time offsets, instead of objects as done above. The idea is still to encode a
pointer that scans an input word and derives a special fact if the word is in the language of the corresponding SRE. But now,
time should encode both the position of the pointer over the word and the value of the several counters that keep track of how
many times an exponentiated expression has been matched. The first issue is that, if input words are encoded as in the previous
reduction, moving the pointer to change the value of one of the counters will also make it point to a different letter. To deal with
this, we consider input letters to appear every 2c·k time points, with c the number of occurrences of exponents in the SRE and
k the maximum number of bits required to encode any of the exponents; then we propagate a letter appearing at time τ to the
time points [τ, τ + 2c·k − 1], i.e., to all time points preceding the next letter. These propagated letters are marked so that they
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can be distinguished from any spurious letter that may appear in the gap between two valid letters. This way, with respect to
reading a letter, it matters in which interval the pointer is, and not exactly at which time point within the interval. We see each of
these intervals as a tape cell containing one input letter. Each cell, however, consists of 2c·k − 1 time points. We use the relative
position of the pointer within the cell to encode counter values. The relative position uses up to c · k bits, which can be used to
encode counter values. In particular, the i-th counter is represented by the bits at positions [i · k, (i + 1) · k − 1]. All of the above
makes use of a subprogram that—via standard techniques for binary counting in logic—starting from a time point where a start
fact holds, it labels every following time point with the distance from the start fact modulo 2c·k. This way we can always check
the pointer’s relative position within a cell, in order to check, e.g., counter values, and whether the pointer is at the beginning
of a cell and hence it has to read an input letter or it is in the middle of a cell and hence an already propagated letter has to be
further propagated from the previous time point. Then, to move the pointer to the next cell without changing the value of any
counter, its position is increased by 2c·k. To increase the value of the i-th counter by one, the pointer is increased by 2i·k. If the
value of the i-th counter was less than 2k − 1 before the increase, then it does not overflow, and hence the other counters are
not affected nor the pointer gets moved to a different cell. To check the value of the i-th counter, we check the value of bits
[i · k, (i + 1) · k − 1] of the label at the current pointer’s position. Furthermore, we need a reset mechanism for counters, since
we may need to reuse a counter. Since the maximum value that is relevant for a counter is the value of the exponent the counter
was allocated for, a simple thing to do would be to decrease the value of a counter by the exponent value when such a value is
reached. However, this means moving the pointer backwards, and it would introduce backward-propagating rules, whereas our
goal is to find a forward-propagating program; thus, we need a slightly more sophisticated solution. We include an automatic
reset in the mechanism that moves the pointer from one cell to the next one. Instead of increasing the pointer by 2c·k as discussed
above, we increase the pointer by 2c·k − e, where e is the sum of all exponents whose counters have reached the exponent value.
This solution simultaneously moves the pointer to the next cell and resets counters. As a final note, the mentioned pointer is
not represented explicitly in the program, but it is the result of the interplay of two predicates, F and G, under their various
renamings. The pointer’s moves for a simple case are depicted in Figure 5.

To clarify how a single number a can be used to encode all counter values a0, . . . , ac−1 while being able to operate on a certain
ai without affecting any other a j, we state the following properties. An integer a ∈ [0, 2c·k−1] can be expressed as a =

∑c−1
i=0 ai ·2i·k

for some integers a0, . . . , ac−1 ∈ [0, 2k − 1], and hence it admits a (c · k)-bits binary encoding obtained as the concatenation of the
k-bit binary encodings of a0, . . . , ac−1. Furthermore, for each i ∈ [0, c − 1] and each b ∈ [0, 2k − 1 − ai], the binary encoding of
a + b · 2i·k differs from the one of a only in the bits at positions [i · k, (i + 1) · k − 1], which now encode ai + b.

Theorem 8.2. Containment of object-free forward-propagating programs is ExpSpace-hard if time offsets are coded in binary.

Proof. The proof is given in Appendix A.

Theorem 8.3. Delay existence, delay validity, and window size validity with respect to a fixed object domain are ExpSpace-hard
regardless of the coding of time offsets. Furthermore, when restricted to object-free programs, the problems are ExpSpace-hard
if time offsets are coded in binary, and PSpace-hard if time offsets are coded in unary. The bounds for delay validity hold already
for backward-bounded programs, whereas the bounds for window size validity hold already for forward-propagating programs.

Proof. The proof of Theorem 4.1 defines a reduction f1 from program containment to delay existence. The proof of Theorem 4.2
defines a reduction f2 from program containment to delay validity for backward-bounded programs. Finally, the proof of The-
orem 4.3 establishes a reduction f3 from program containment to window size validity for forward-propagating programs. The
properties of these reductions do not rely on whether the object domain is considered fixed, and they do not rely on the number
coding either. Furthermore, when given object-free programs as input, the reductions produce object-free programs.

The statement of the theorem then trivially follows from Theorems 8.1 and 8.2, since the former establishes ExpSpace-
hardness of containment for forward-propagating programs with respect to a fixed object domain, as well as PSpace-hardness
of containment for object-free forward-propagating programs, and the latter establishes ExpSpace-hardness of containment for
object-free forward-propagating programs assuming binary coding of time offsets.

9. Related Work

In this section, we review related work in stream query processing, stream reasoning, and temporal deductive databases.

9.1. Languages for Stream Query Processing in Databases and Semantic Web

The formal underpinnings of stream query processing in databases were established in [7, 8]. Arasu et al. [8] proposed the
Continuous Query Language (CQL) as an extension of SQL with window constructs, which specify the input data relevant for
query processing at any point in time. CQL has since become the core of many other stream query languages, including languages
for the Semantic Web, such as Streaming-SPARQL [34], C-SPARQL [35], CQELS [12], RSP-QL [36], EP-SPARQL [11],
SPARQLstream [10], and STARQL [14].
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Database views expressed in CQL always admit zero as a valid delay, and hence delay existence and delay validity check-
ing are trivial problems for CQL. At the same time, CQL is expressive enough to capture forward-propagating non-recursive
programs; thus, it follows from our previous work [1] that window size validity checking for a set of CQL views is coNExp-hard.

9.2. Temporal Extensions of Datalog

There have been many proposals for extending Datalog with temporal features. In this line of work, the focus is typically not
on stream reasoning, but rather on standard database research problems such as determining data complexity of fact entailment
[19, 37, 38] and establishing the expressive power of the language [22, 38]. In addition, many of these works also consider
problems specific to temporal deductive databases such as computing finite specifications of infinite query answers [19, 39].

Under the assumption that numbers are coded in unary, the language considered in this paper is a notational variant of
Chomicki and Imieliński’s Datalog1S [19] with the additional temporal guardedness condition. Chomicki and Imieliński assume
in their technical results that Datalog1S rules mention at most one time variable; hence, our guardedness condition only imposes
the additional requirement that rules do not mention explicit time points. Datalog1S was proposed as a language for temporal
deductive databases, which have been surveyed in [22]. The language proposed by Toman and Chomicki [40] extends Datalog
with integer periodicity constraints, which can be used to encode and store information about periodic activities in temporal
databases.

Templog is an extension of Datalog with temporal modal operators [21]. As shown by Baudinet et al. [22], Templog and
Datalog1S are inter-reducible, and hence both languages are equivalent in terms of expressive power. Baudinet [41] studied the
expressive power of Templog and showed that it expresses exactly the finitely regular ω-languages—that is, those languages
recognised by finite-acceptance automata on infinite words, where a finite-acceptance automaton is a classical finite automaton
that is applied to prefixes of infinite words. This coincides with the expressive power of the µTL+ fragment of Vardi’s [42]
fixpoint calculus µTL without negation or greatest fixpoints. Furthermore, Templog with stratified negation expresses exactly the
ω-regular languages, and hence its expressiveness coincides with the one of full µTL.

Under unary coding of numbers, our language can also be seen as a fragment of bidirectional ASP programs, which ex-
tend Datalog with disjunction, non-monotonic negation under the stable model semantics, and function symbols [43, 44] while
ensuring decidability of standard reasoning tasks. A bidirectional program restricts the syntax of ASP programs with function
symbols to ensure tree-shaped stable models. In particular, each rule r must contain a variable x such that the first position of
each atom in r is either a constant, variable x, or a unary function term f (x), and every other position is occupied by either a
constant or a variable different from x; our Temporal Datalog programs are clearly bidirectional since we can choose variable
x in each rule to be the unique temporal variable t. It was shown in [43] using automata-based techniques that reasoning over
disjunctive (resp. non-disjunctive) bidirectional programs is 2-ExpTime-complete (resp. Exp-complete) under bounded predicate
arity; furthermore, if we additionally allow for a single unary function symbol (which suffices to model time), reasoning over
disjunctive (resp. non-disjunctive) programs becomes ExpSpace-complete (resp. PSpace-complete).

The PSpace upper bound for inconsistency of core bidirectional programs with one function symbol can be used to establish
our PSpace upper bound for containment of object-free Temporal Datalog programs under unary coding of numbers, and thus
also our upper bounds to window size validity and delay validity (which are both reducible to containment) also under unary
coding.4 To see how containment reduces to inconsistency checking over bidirectional programs, consider arbitrary object-free
programs Π1 and Π2 in normal form (cf. Definition 5.3), and let s be a unary function symbol. We transform each rule of the
form P(t + 1) → P′(t) to P(s(t)) → P′(t), each rule of the form P(t − 1) → P′(t) to P(t) → P′(s(t)), and we leave all other rules
unchanged. The programs we obtain are core bidirectional programs with a single function symbol. Furthermore, let us rename
each intensional predicate P in Π1 into P1, and each intensional predicate P in Π2 into P2. Consider then program Π consisting
of all the rules obtained as above, a rule of the form (96) for each intensional predicate P from Π1, and rules (97) and (98), where
G ia a fresh predicate and 0 a fresh constant.

G(t)← P1(t), not P2(t), (96)
G(t)← G(s(t)), (97)
G(0)← not G(0). (98)

Each stable model of Π must contain G(0) because of rule (98), and the latter fact is derived exactly when one can derive a fact
P1(τ) without deriving P2(τ). Thus, every stable model of Π encodes a counter-example for the containment Π1 v Π2.

In contrast to containment, delay validity and window size validity, it does not seem possible to easily reduce delay existence
to reasoning over bidirectional programs. Furthermore, the automata-based techniques in [43] do not seem suitable for checking
delay existence either. In particular, their automaton operates on a language of infinite words (with each word encoding an
intepretation and an instance of the program), while in our approach to checking delay existence it seems essential to operate

4We thank an anonymous referee for pointing out the potential relationship between our work and reasoning over bidirectional ASP programs.
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on languages of finite words with each word encoding a finite set of extensional facts and an answer fact, and to encode any
additional information in the states of the automata.

DatalogMTL [20, 38, 45] is an extension of Datalog where atoms in rules can mention operators from Metric Temporal
Logic (MTL) interpreted over the rational timeline. DatalogMTL has been studied in the contexts of querying temporal data
[20, 38] and stream reasoning [25]. DatalogMTL has also been recently studied over the integer timeline [46]; in this setting,
DatalogMTL remains a powerful KR language, which subsumes our Temporal Datalog language with binary coding of numbers,
as well as certain Horn fragments of Linear Temporal Logic [47]. It follows from the complexity results in [46] that reasoning
in Temporal Datalog under binary coding of numbers remains in PSpace for data complexity, and hence the representation of
numbers does not influence the complexity of standard reasoning. This result, however, does not immediately provide insights
into whether delay existence and window size validity remain in PSpace if numbers in the input program are coded in binary.

9.3. Rule-Based Stream Reasoning

Barbieri et al. [9] consider stream reasoning over non-temporal Datalog programs that are temporally interpreted as if each
atom holds at the current time; this can be easily encoded in our framework by replacing each (non-temporal) atom A(s) with
the atom A(s, t) for t a fixed time variable. In this setting, both the delay and the window size problems are trivial since rules
refer only to the present time point and hence zero is always a valid delay and window size. In contrast to our work, where data
facts involve single time points, Barbieri et al. consider facts annotated with a validity interval [τ1, τ2], where τ1 and τ2 represent
insertion and expiration time, respectively.

Wałȩga et al. [25] propose a stream reasoning algorithm for a forward-propagating fragment of DatalogMTL, which admits
valid delay zero. Wałȩga et al. do not consider the window size problem in their work, and their stream reasoning algorithm
relies on a window size derived through a syntactic condition similar to ours based on the maximum rule radius. Wałȩga et al.
address in their algorithm a number of additional difficulties stemming from the fact that DatalogMTL is a richer language than
Temporal Datalog, and that it is interpreted over the non-negative rational numbers rather than the natural numbers.

Zaniolo [13] proposes Streamlog: a language for representing standing queries that underlies the stream reasoning system
ASTRO [48]. Streamlog extends Temporal Datalog with non-monotonic negation while at the same time restricting the syntax
so that only facts over time points mentioned in the data can be derived. Each atom in a Streamlog rule has a single time variable,
and time variables can occur in inequality conditions involving also other variables and arithmetic operations. The paper focuses
on sequential programs, which are locally stratified by restricting the use of inequality conditions so that the time argument of a
positive body literal is at most the time argument of the head, and the time argument of a negative body literal is strictly smaller
than the time argument of the head. As a result, sequential programs admit a unique stable model, which can be computed by
increasing values of time. Such programs thus have delay zero; furthermore, if parametrised with a valid window size, they can
be evaluated by a variant of our stream reasoning algorithm that considers each past fact that has not been derived as false—in
line with Zaniolo’s progressive closing world assumption (PCWA).

LARS [15] is a temporal rule-based stream reasoning language featuring built-in window constructs. LARS formulas extend
propositional logic with temporal and window operators, and LARS programs are defined as ASP programs allowing for LARS
formulas in place of atoms. A stream is seen as function from a finite interval of the natural numbers to sets of propositions,
thus streams in LARS are intrinsically bounded. The issues stemming from reasoning over unbounded streams in LARS have
been addressed only in [49, 50]. Beck et al. [49] describe a LARS-based system where reasoning over streams is reduced to
repeated reasoning over datasets, with the latter task solved by a logic-programming reasoner. Laser [50] is a stream reasoner
supporting a fragment of LARS, called plain LARS, first introduced in [51]. In contrast to our work, the semantics implemented
by Laser requires only that the system derives the consequences that do not depend on future facts; specifically, a consequence
holding at time τ will be output if and only if it can be derived by reasoning over the interval [0, τ]. By the properties of plain
LARS—that can propagate into the past, but cannot distinguish the past from the present—this semantics can be implemented by
an algorithm that does not propagate information backwards in time. As a consequence, the delay validity problem is not relevant
in this setting. Other works on LARS address one-off [15] and incremental [51, 52] reasoning over (finite) datasets, program
equivalence [53], and translation of other languages into LARS [16].

Our results build on our prior conference publications [1, 2]. Our stream reasoning algorithm is a variant of the “offline”
algorithm in [1], where the main difference is that the algorithm in [1] only keeps in memory EDB facts from the input stream
(and hence does not retain derived IDB facts from one iteration to the next). As a result, the delay and window size validity
notions are defined differently. Despite these differences, however, the reductions from the containment problem to delay and
window size validity problems presented in this paper (see Theorems 4.2 and 4.3) are very similar to those in [1]. Finally, our
focus in [1] was on non-recursive programs, which are much weaker than backward-bounded programs. The stream reasoning
algorithm we present in this paper was first introduced in [2] for forward-propagating programs, which always admit delay zero.
Therefore, in [2] we focused on window size validity and showed that window size validity and containment are inter-reducible
for forward-propagating programs. Furthermore, we established tight complexity bounds for containment of forward-propagating
programs; in particular, the lower bounds for the containment problem presented here in Theorem 8.1 were proved in [2]. This
paper extends [2] to programs that are not necessarily forward-propagating by generalising the stream reasoning algorithm,
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studying the window size validity problem in the extended setting, studying for the first time the problems associated with the
notion of program delay, and considering the complexity of all relevant problems under both unary and binary coding of numbers.

9.4. Related Problems and Techniques

A question closely related to stream reasoning is that of checking dynamic integrity constraints for relational databases [54].
In contrast to standard database constraints, dynamic constraints can refer to different states of a database, which are determined
by the relevant sequence of transactions. Chomicki [54] considers First-Order Temporal Logic (FOTL), which extends First-
Order Logic with past-only temporal operators, as a language to express such dynamic constraints. Chomicki also proposes
an incremental update algorithm for checking dynamic FOTL constraints. Chomicki’s algorithm builds on the observation that
FOTL admits an inductive definition over time, where the truth of sub-formulas at the current time point can be derived from the
truth of sub-formulas at the previous time point. As a consequence, the algorithm only needs to store a polynomially-bounded part
of the update history (considering the constraints fixed). When applied to forward-propagating programs, our stream reasoning
algorithm behaves similarly to Chomicki’s: it computes and stores all (EDB and IDB) consequences of the input program for
increasing time points while keeping in memory only a polynomially bounded set of facts (considering the program fixed).

There is a connection between delay existence and checking boundedness of a Datalog program, that is, checking whether a
program is (semantically) recursive. Intuitively, a Temporal Datalog program admits a valid delay if and only if it is non-recursive
with respect to temporal backward propagation, and hence delay existence can be seen conceptually as a boundedness check with
respect to temporal recursion towards past time points; note, however, that it is hard to establish formal reductions between delay
existence and boundedness, as it is unclear how to check recursion towards the past while ignoring recursion towards the future.
Cosmadakis et al. [55] established complexity bounds for monadic Datalog programs using techniques similar in spirit to those
in Section 6, where automata are used to recognise languages related to the fact entailment problem and its complement. The
automata defined in Section 6 are also related to the algorithm in [19] used by Chomicki and Imieliński to establish the data
complexity of Datalog1S, where the algorithm searches for counter-models over an exponentially-sized prefix of the timeline
using a sliding window of polynomial size.

Stream reasoning is also related to runtime verification [56–59]—an area in software verification that deals with the problem
of checking whether the current execution of a program violates a given correctness property expressed as a temporal formula ϕ.
In contrast to standard verification, where the main goal is to check whether all possible runs of a system satisfy a correctness
property, the focus in runtime verification is on concrete executions, which naturally correspond to finite traces (or equivalently to
finite prefixes of a run). Similarly to the soundness and completeness requirements of our stream reasoning algorithm, a monitor
in runtime verification must check whether ϕ will hold or not based only on a finite trace of the system. On the one hand, if the
monitor reports a verdict on ϕ based on a finite trace, then every possible continuation of that trace must lead to the same verdict;
on the other hand, if ϕ holds (or doesn’t hold) on the complete run, then the monitor must report the same result by examining
only a finite execution. Additionally, the problem of monitorability of a temporal property in runtime verification—to check
whether a verdict about the property can be safely determined looking only at a finite trace—is conceptually related to our notion
of delay. There are, however, important differences between stream reasoning and runtime verification. First, the properties that
we study are checked at design time—that is, when given a valid delay and window size our generic stream reasoning algorithm is
sound and complete for every possible input stream; thus, we are not concerned with concrete executions of the algorithm and no
checks are performed at runtime. Second, we are also concerned about forgetting parts of the history that are no longer relevant
to future query answers whereas, to the best of our knowledge, this is not a main concern in the context of runtime verification.
Finally, in our setting we are interested in reasoning over a set of temporal rules, whereas in runtime verification the focus is on
checking whether a temporal LTL or first-order temporal logic formula holds. Although rules have also been considered in the
context of runtime verification [60], the head of these rules consists of an action that updates the database by either adding or
deleting; thus, such rules are much closer to database triggers than to Datalog.

10. Conclusions and Future Work

In this paper, we have proposed and studied a suite of decision problems which enable the use of incremental stream reason-
ing algorithms based on a sliding window, while ensuring correctness and minimising both latency and memory consumption.
Although these problems are undecidable for Temporal Datalog, we have shown decidability and established tight complexity
bounds under the assumption that the set of objects that may occur in an input stream is fixed. We believe that our results consti-
tute a first step towards the development of robust and efficient stream reasoning engines with provable correctness guarantees.

We see many interesting avenues for future work. First, it is unclear how to extend our results to deal with programs that
do not satisfy our temporal guardedness condition. A key aspect of such an extension would be to deal effectively with multiple
time variables in rules. As we already mentioned, such rules can be rewritten into rules with a single time variable by introducing
fresh predicates and recursion; such rewriting, however, can easily turn a program admitting a valid delay into a program with
no valid delay. Furthermore, a program with multiple time variables may admit no valid window size even if it admits a valid
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delay. We conjecture that such challenges could be tackled by extending the stream reasoning algorithm to also store witnesses
for existentially quantified time variables, as well as all facts for the time points occurring explicitly in the input program.

Second, in some scenarios it may not be reasonable to assume a fixed object domain. An interesting direction would be
to explore liftings of our fixed object domain assumption, and the work on bounded theories in the situation calculus seems
especially relevant to this effect [61]. In particular, the assumption in [61] can be cast in our setting by requiring that the domain
of facts that our algorithm keeps in memory is bounded by a constant, which is a strictly less stringent requirement than our
assumption that the entire stream mentions a bounded number of objects. Another possibility would be to investigate recursive
fragments (other than object-free Temporal Datalog) for which the delay and window size problems become decidable. A natural
choice is to restrict programs so that IDB predicates have at most one object argument; such programs extend monadic Datalog
[55], for which containment is known to be decidable.

Third, it would be interesting to extend our framework from Section 3 to cover programs featuring non-monotonic negation.
In such extended framework, our generic stream reasoning algorithm would remain largely unmodified; however, the associated
notions of valid delay and valid window size (as well as the claim of Lemma 3.5) would need to be strengthened by replacing
inclusions with equalities in order to take into account that the algorithm may now output unsound results if parametrised with
an invalid delay or window size. Additionally, the updated notions of delay validity and window size would yield new decision
problems that are at least as hard as those we consider here; the work on bidirectional ASP [43] could provide an ideal starting
point to investigate the complexity of delay and window validity in this setting. Another possible way forward in this direction
would be to consider an extension of the language in line with Zaniolo’s sequential programs [13].

Finally, our framework can be adapted to other temporal rule languages, yielding corresponding delay and window size
problems that can then be studied. In particular, it would be interesting to consider temporal languages with a dense model of
time such as DatalogMTL [20, 25, 38].
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[25] P. A. Wałȩga, M. Kaminski, B. Cuenca Grau, Reasoning over streaming data in Metric Temporal Datalog, in: Proc. 33rd AAAI Conference on Artificial

Intelligence (AAAI 2019), AAAI Press, 2019, pp. 3092–3099.
[26] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman, R. Lax, S. McVeety, D. Mills, P. Nordstrom, S. Whittle, MillWheel: Fault-tolerant stream

processing at internet scale, PVLDB 6 (2013) 1033–1044.
[27] B. Motik, Y. Nenov, R. Piro, I. Horrocks, Combining rewriting and incremental materialisation maintenance for Datalog programs with equality, in: Proc.

24th International Joint Conference on Artificial Intelligence (IJCAI 2015), AAAI Press, 2015, pp. 3127–3133.
[28] B. Motik, Y. Nenov, R. Piro, I. Horrocks, D. Olteanu, Parallel materialisation of Datalog programs in centralised, main-memory RDF systems, in: Proc.

28th AAAI Conference on Artificial Intelligence (AAAI 2014), AAAI Press, 2014, pp. 129–137.
[29] B. Motik, Y. Nenov, R. Piro, I. Horrocks, Maintenance of Datalog materialisations revisited, Artif. Intell. 269 (2019) 76–136.
[30] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, F. Scarcello, The DLV system for knowledge representation and reasoning, ACM Trans.

Comput. Log. 7 (2006) 499–562.
[31] J. Baget, M. Leclère, M. Mugnier, S. Rocher, C. Sipieter, Graal: A toolkit for query answering with existential rules, in: Proc. 9th International RuleML

Symposium (RuleML 2015), volume 9202 of LNCS, Springer, 2015, pp. 328–344.
[32] C. H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.
[33] M. Sipser, Introduction to the Theory of Computation, 2nd ed., Thomson Course Technology, 2006.
[34] A. Bolles, M. Grawunder, J. Jacobi, Streaming SPARQL: Extending SPARQL to process data streams, in: Proc. 5th European Semantic Web Conference

(ESWC 2008), volume 5021 of LNCS, Springer, 2008, pp. 448–462.
[35] D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, M. Grossniklaus, C-SPARQL: A continuous query language for RDF data streams, Int. J. Semantic Computing

4 (2010) 3–25.
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Appendix A. Proofs

Theorem 6.2. AutomatonA[implies(Ω, J)] recognises the language implies(Ω, J).

Proof. We first prove that A[implies(Ω, J)] accepts each word in implies(Ω, J). Our proof relies on properties of derivations in
Temporal Datalog, as well as on the connection between certain types of derivations and runs in the automaton. These properties
are formalised and proved in Claims 3 and 4, respectively. We say that a derivation δ is uniform if, for each (ground) atom
α occurring in δ, all the α-subderivations of δ coincide, and it is straightforward to show that any derivation of a fact can be
transformed into a uniform derivation of the same fact (whenever a derivation has two distinct subderivations of the same fact,
one can safely replace one with the other and still obtain a derivation).

Claim 3. For Π a program, D a set of EDB facts, and α a fact, let δ be a uniform derivation of α from Π ∪ D, and let Πδ be the
set of labels of δ. Then no fact depends on itself in Πδ.

It suffices to show that, if β and γ are facts such that β depends on γ in Πδ, then the (unique) β-subderivation of δ has a strict
γ-subderivation. This is shown by induction on the height k ≥ 1 of the partial derivation justifying the dependency relation. In
the base case, k = 1 and there is a rule r ∈ Πδ such that β is the head of r and γ is in the body of r. Consider a subderivation δ1
of δ whose root has label r. Clearly, δ1 is a β-subderivation of δ and, moreover, has an immediate γ-subderivation, as required.
In the inductive case, k > 1, and hence there is a fact ψ and a rule r ∈ Πδ such that β is the head of r, ψ is in the body of r, and
ψ depends on γ in Πδ via k − 1 steps. Consider a subderivation δ1 of δ whose root has label r. Then δ1 is a β-subderivation of δ
and has an immediate ψ-subderivation δ2. Furthermore, by the inductive hypothesis, δ2 (which is the unique ψ-subderivation of δ
since δ is uniform) has a strict γ-subderivation δ3. Thus, δ3 is a strict subderivation of δ1, which concludes the proof of the claim.

Claim 4. For each finite set of EDB facts D, each uniform derivation δ of a fact P(τ) with P ∈ J from Ω ∪ D, and each m ≥ −1,
the sequence s−1σ0s0 . . . sm−1σmsm is a run ofA[implies(Ω, J)] where:

• for each i ∈ [−1,m], si = 〈ai, Xi, Xi+1,Ωi,Γi〉 where, for Ω′i the set of all rules labelling δ that are not facts and have time
point i in the head,

– ai = 1 if i < τ, ai = 2 if τ ≤ i ≤ τmax, and ai = 3 if i > τmax for τmax the maximum time point in D ∪ {P(τ)};

– Xi = {Q | Q(i) ∈ F} for F the union of D with the set of all rule heads occurring in δ (note that X−1 = ∅);

– Ωi is obtained from Ω′i by replacing each time point τ′ with τ′ − i + 1 (note that Ω−1 = ∅ as Ω′
−1 = ∅);

– Γi = {〈Q,R〉 | Q(i) depends on R(i) in
⋃i

j=0 Ω′j} (note that Γ−1 = ∅);

• for each i ∈ [0, τmax], σi = 〈Ui, bi〉 where Ui = {Q | Q(i) ∈ D}, bi = � if i , τ, and bτ = P;

• for each i ∈ [τmax + 1,m], σi = ε.

If m = −1, the claim holds since s−1 = 〈1, ∅, X0, ∅, ∅〉, and hence s−1 is an initial state of A[implies(Ω, J)]. Hence, without
loss of generality, let 0 ≤ n ≤ m be arbitrary. It suffices to show that the transition sn−1

σn
−→ sn is in ∆ if n ≤ τmax, and in ∆ε

otherwise. We consider the two cases separately.
Suppose n ≤ τmax. Then σn = 〈Un, bn〉. It suffices to show satisfaction of Conditions (2.1)–(2.5) in the definition of ∆.

Condition (2.1). Assume bn ∈ I. Then bn = P and n = τ, and hence it suffices to show P ∈ Xτ, aτ−1 = 1, and aτ = 2. We have
P ∈ Xτ because δ contains a rule with head P(τ), while aτ−1 = 1 and aτ = 2 is immediate by definition.

Condition (2.2). Assume bn = �. Then n , τ. If n < τ, we have an−1 = an = 1 by definition, while n > τ implies n − 1 ≥ τ, and
hence an−1 = an = 2, as required.

Condition (2.3). We show that Xn−1(0) ∪ Un(1) ∪ Xn+1(2) ∪ Ωn |= Xn(1). To this end, by construction, it suffices to show that
Xn−1(n− 1)∪Un(n)∪ Xn+1(n + 1)∪Ω′n |= Xn(n), which can be equivalently restated as F�n−1 ∪D�n ∪ F�n+1 ∪Ω′n |= F�n. In turn,
F�n−1 ∪ D�n ∪ F�n+1 ∪Ω′n |= F�n can be shown by a straightforward induction on derivations.

Condition (2.4). By the definition of Γn, it suffices to show that, for each pair of predicates Q and R, Q(n) depends on R(n) in⋃n
j=0 Ω′j if any of the following conditions holds:
(a) Q(1) depends on R(1) in Ωn,
(b) there exists a predicate T such that Q(1) depends on T (0) in Ωn and T (1) depends on R(2) in Ωn−1, or
(c) there exists 〈T1,T2〉 ∈ Γn−1 such that Q(1) depends on T1(0) in Ωn and T2(1) depends on R(2) in Ωn−1.
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We consider the three cases separately. In Case (a), Q(n) depends on R(n) in Ω′n, and hence also in
⋃n

j=0 Ω′j. In Case (b), Q(n)
depends on T (n − 1) in Ω′n and T (n − 1) depends on R(n) in Ω′n−1, and hence Q(n) depends on R(n) in

⋃n
j=0 Ω′j. In Case (c), Q(n)

depends on T1(n−1) in Ω′n and T2(n−1) depends on R(n) in Ω′n−1. Furthermore, since 〈T1,T2〉 ∈ Γn−1, we also have that T1(n−1)
depends on T2(n − 1) in

⋃n−1
j=0 Ω′j, and hence Q(n) depends on R(n) in

⋃n
j=0 Ω′j.

Condition (2.5). The condition holds by Claim 3 since δ is uniform.

Next, suppose n > τmax. Then σn = ε. It suffices to show satisfaction of Conditions (3.1)–(3.3) in the definition of ∆ε.

Condition (3.1). By definition, we have an = 3, an−1 = 2 if n = τmax + 1 and an−1 = 3 if n > τmax + 1, as required.

Condition (3.2). Similarly to the case of Condition (2.3), it suffices to show F�n−1 ∪ F�n+1 ∪ Ω′n |= F�n. This follows from the
corresponding claim in Condition (2.3)—F�n−1 ∪ D�n ∪ F�n+1 ∪ Ω′n |= F�n—since the claim also holds for n > τmax and since
D�n is empty (as n > τmax).

Condition (3.3). The arguments for Conditions (2.4) and (2.5) do not depend on n ≤ τmax, so both conditions hold for n > τmax.
This concludes the proof of Claim 4.

Let now w = 〈τ, P,U0, . . . ,Un〉 be a word in implies(Ω, J). We show thatA[implies(Ω, J)] accepts w. By definition, we have
Ω ∪ D |= P(τ) for D = {A( j) | A ∈ U j, 0 ≤ j ≤ n}. Let δ be a uniform derivation of P(τ) from Ω ∪ D, and let m be the maximum
between n and the maximum time point occurring in δ. By Claim 4, ρ = s−1σ0s0 . . . sm−1σmsm is a run ofA[implies(Ω, J)] where
(i) w = σ0, . . . , σn, (ii) σi = ε for each i ∈ [n + 1,m], and (iii) sm = 〈a, X,Y,Ω,Γ〉 where a ∈ {2, 3} and Y(m + 1) is the set of atoms
with time argument m + 1 occurring in either D or δ. Note that Y = ∅ since D and δ contain no fact with time argument m + 1 by
the choice of m. Thus, sm is a final state, meaning that ρ is an accepting run ofA[implies(Ω, J)] on w.

We finally show that implies(Ω, J) contains each word accepted by A[implies(Ω, J)]. Let w = σ0 . . . σn be a word accepted
by A[implies(Ω, J)]. Then there exists a run s−1σ0s0 . . . sm−1σmsm of A[implies(Ω, J)] where m ≥ n and sm is final. Since
sm is final, by the definition of A[implies(Ω, J)], there exist an integer k ∈ [0, n], a predicate P ∈ J, and sets U0, . . . ,Un of
EDB predicates such that σk = 〈Uk, P〉, σ j = 〈U j,�〉 for each j ∈ [0, n] with j , k, and σ j = ε for each j ∈ [n + 1,m]. It
follows that w = 〈k, P,U0, . . . ,Un〉. Thus, it remains to show that Ω ∪ D |= P(k), for D =

⋃n
j=0 U j( j). Let, for each i ∈ [−1,m],

si = 〈ai, Xi,Yi,Ωi,Γi〉. Since σk = 〈Uk, P〉, we have P ∈ Xk, and hence it suffices to show that, for each i ∈ [0,m], Ω ∪ D |= Xi(i).
To this end, we first show the following claims, where, for each i ∈ [0,m], Ω′i =

⋃i
j=0 Ω ↓ j.

Claim 5. For each i ∈ [0,m], Γi contains each pair 〈P,R〉 such that P(i) depends on R(i) in Ω′i .

We show the claim by induction on i. In the base case (i = 0), whenever P(0) depends on R(0) in Ω′0, we have that P(1)
depends on R(1) in Ω0, and hence 〈P,R〉 ∈ Γ0 by Condition (2.4.1). In the inductive case, we have 0 < i ≤ m and we assume that
the claim holds for i − 1. Suppose that P(i) depends on R(i) in Ω′i via k steps. We show 〈P,R〉 ∈ Γi by induction on k. In the base
case (k = 1), the claim again holds by Condition (2.4.1) since P(1) depends on R(1) in Ωi. In the inductive case, we have k > 1
and we assume that the claim holds for k − 1. Then there is a rule r ∈ Ω′i with head P(i) and a body atom T ( j) that depends on
R(i) in Ω′i via k − 1 steps. We have j ∈ {i − 1, i}, since Ω is normal and no rule of Ω′i has head time argument i + 1. If i = j, then
〈P,T 〉 ∈ Γi by Condition (2.4.1) since P(1) depends on T (1) in Ωi, and 〈T,R〉 ∈ Γi by the inner inductive hypothesis; 〈P,R〉 ∈ Γi

then follows by the transitivity of Γi. Next, assume j = i − 1. Since Ω is normal, either T (i − 1) depends on a fact R′(i) via one
step in Ω′i−1 or T (i − 1) depends (via possibly more then one step) on a fact T ′(i − 1), which in turn depends on a fact R′(i). We
consider the two cases separately. In the first case, we have 〈P,R′〉 ∈ Γi by Condition (2.4.2) since P(1) depends on T (0) in Ωi

and T (1) depends on R′(2) in Ωi−1. Furthermore, either R′ = R (which immediately implies the claim) or R′(i) depends on R(i) in
Ω′i via at most k− 1 steps, which implies 〈R′,R〉 ∈ Γi by the inner inductive hypothesis. Thus, 〈P,R〉 ∈ Γi holds by the transitivity
of Γi. In the second case, we have 〈P,R′〉 ∈ Γi by Condition (2.4.3) since P(1) depends on T (0) in Ωi, 〈T,T ′〉 ∈ Γi−1 by the outer
inductive hypothesis, and T ′(1) depends on R′(2) in Ωi−1. Then, as before, either R′ = R or R′(i) depends on R(i) in Ω′i via at
most k − 1 steps, and hence, once again, 〈P,R〉 ∈ Γi. This concludes the proof of Claim 5.

Claim 6. For each i ∈ [0,m], we have D�[0,i] ∪ Yi(i + 1) ∪Ω′i |= Xi(i).

We show the claim by induction on i. The base case (i = 0) holds by Condition (2.3) as X−1 = ∅ because s−1 is an
initial state. In the inductive case, we have 0 < i ≤ m and we assume D�[0,i−1] ∪ Yi−1(i) ∪ Ω′i−1 |= Xi−1(i − 1), or, equivalently,
D�[0,i−1]∪Xi(i)∪Ω′i−1 |= Xi−1(i−1) since Yi−1 = Xi. By Conditions (2.3) and (3.2), we have Xi−1(i−1)∪U(i)∪Yi(i+1)∪Ω ↓ i |= Xi(i)
for U = Ui if i ≤ n and U = ∅ otherwise. Thus, it suffices to show D�[0,i] ∪ Yi(i + 1) ∪ Ω′i |= α for α a fact with time argument i
that is entailed by Xi−1(i − 1) ∪U(i) ∪ Yi(i + 1) ∪Ω ↓ i. We show this by induction on the rank k of α in Ω′i , which exists because
no fact depends on itself in Ω′i by Claim 5 and Condition (2.5). In the base case, we have k = 0, hence α does not depend on any
fact in Ω′i , and hence α ∈ U(i) ⊆ D�[0,i]. In the inductive case, we have k ≥ 1 and we assume that the claim holds for k − 1. Let δ
be a derivation of α from Xi−1(i − 1) ∪ U(i) ∪ Yi(i + 1) ∪ Ω ↓ i, r be the rule labelling the root of δ, and β be a body atom of r. It
suffices to show D�[0,i] ∪Yi(i + 1)∪Ω′i |= β. Let j be the time argument of β. We have j ∈ {i−1, i, i + 1} since Ω is normal, and we
consider the three cases separately. In the first case, we have j = i, and hence the claim holds by the inner inductive hypothesis
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since β has rank at most k − 1 in Ω′i . In the second case, we have j = i + 1, and hence β ∈ Yi(i + 1) since β is not an instance of a
head in Ω ↓ i. In the third case, we have j = i − 1, and hence β ∈ Xi−1(i − 1) since β is not an instance of any head in Ω ↓ i. The
outer inductive hypothesis yields D�[0,i−1] ∪ Xi(i) ∪ Ω′i−1 |= β, and hence D�[0,i−1] ∪ A ∪ Ω′i−1 |= β for A the subset of Xi(i) where
each fact has rank at most k − 1 in Ω′i . Then, D�[0,i] ∪ Yi(i + 1) ∪ Ω′i |= A holds by the inner inductive hypothesis, and hence the
claim follows by transitivity of entailment. This concludes the proof of Claim 6.

Finally, we show Ω ∪ D |= Xi(i) by induction on m − i. In the base case, we have i = m, thus Ω ∪ D ∪ Ym(m + 1) |= Xm(m)
by Claim 6, and hence Ω ∪ D |= Xm(m) since Ym = ∅ (as sm is final). In the inductive case, we have i < m, and we assume
Ω ∪ D |= Xi+1(i + 1). By Claim 6, we have Ω ∪ D ∪ Yi(i + 1) |= Xi(i). But then, since Yi = Xi+1, the inductive hypothesis
immediately yields Ω ∪ D |= Xi(i), as required.

Theorem 6.5. AutomatonA[notimplies(Ω, J)] recognises the language notimplies(Ω, J).

Proof. Let w = σ0 . . . σn be a word in notimplies(Ω, J). We show thatA[notimplies(Ω, J)] accepts w. By definition, there exist
i ∈ [0, n], P ∈ I, and sets E0, . . . , En of EDB predicates in Ω such that w has the form 〈i, P, E0, . . . , En〉, where Ω∪D 6|= P(i) for D =

{A( j) | A ∈ E j, 0 ≤ j ≤ n}. Thus, there is a model M of Ω∪D that does not contain P(i). Let ρ = s−1σ0s0 . . . σnsnεsn+1 . . . εsn+N ,
where each state si = 〈ai, Xi, Xi+1, ci〉 satisfies the following for τmax the maximum time point in D:

• ai = 1 if i < τ, ai = 2 if τ ≤ i ≤ τmax, and ai = 3 if i > τmax;

• Xi = {Q | Q(i) ∈ M}; and

• ci = 0 if i ≤ τmax and ci = i − τmax otherwise.

We argue that % is an accepting run of A[notimplies(Ω, J)]. First note that sn+N is a final state as it has the form 〈3, X,Y,N〉.
It now suffices to see that the transition sn−1

σn
−→ sn is in ∆ if n ≤ τmax and in ∆ε otherwise. If n ≤ τmax, then we can check that

Conditions (2.1)–(2.3) in the definition of ∆ hold, where the interesting case is Condition (2.3). Since M is a model for Ω ∪ D,
we have M |= Ω ↓ n ∪ D�n, and hence M�n−1 ∪ M�n ∪ M�n+1 |= Ω ↓ n ∪ D�n as Ω is normal and hence each time point occurring
in Ω ↓ n ∪ D�n is in [n − 1, n + 1]; equivalently, this can be written as Xn−1(n − 1) ∪ Xn(n) ∪ Xn+1(n + 1) |= Ω ↓ n ∪ En(n), as
required. If n > τmax, then σn = ε, an−1 ∈ {2, 3}, an = 3, cn = cn−1 + 1, and cn ∈ [1,N], as required; furthermore, the justification
of Condition (2.3) above also proves Condition (3.2) since D�n = ∅. As a result, ρ is an accepting run.

We next show that notimplies(Ω, J) contains each word accepted by A[notimplies(Ω, J)]. Let w = σ0, . . . , σn be a word
accepted by A[notimplies(Ω, J)]. Then there exists a run ρ = s−1σ0s0 . . . σn+N sn+N of A[notimplies(Ω, J)] where sn+N is final,
and s j = 〈a j,Y j,Z j, c j〉 for j ∈ [0, n + N]. Since sn+N is final, by the definition ofA[notimplies(Ω, J)] there exists k ∈ [0, n] such
that σk = 〈Uk, P〉 with P ∈ J, σ j = 〈U j,�〉 for each j ∈ [0, n] with j , k, and σ j = ε for each j ∈ [n + 1, n + N]. It follows that
w = 〈k, P,U0, . . . ,Un〉. Thus, it remains to show that Ω ∪

⋃n
j=0 U j( j) 6|= P(k), which we do next by constructing a model M of

Ω ∪
⋃n

j=0 U j( j) such that P(k) < M. To this end, we first show the following claim.

Claim 7. There exist integers φ ∈ [0,N] and T ∈ [1,N − φ] such that, for each i ≥ 1, ρi = s−1σ0 . . . σn+φsn+φεs′1 . . . εs′i is an
accepting run ofA[notimplies(Ω, J), φ + i], where s′j = 〈3,Yn+φ+( j mod T ),Yn+φ+( j+1 mod T ), φ + j〉 for each j ∈ [1, i].

Since ρ is a run of A[notimplies(Ω, J)], there exist integers j1 and j2 in [n, n + N] with j1 < j2 such that Y j1 = Y j2 and
Z j1 = Z j2 ; indeed, |[n, n + N]| = N + 1 while there are at most N distinct pairs 〈Y,Z〉 such that, for a ∈ {2, 3} and some integer c,
〈a,Y,Z, c〉 is a state of A[notimplies(Ω, J)]. Let φ = j1 − n and T = j2 − j1. Clearly, φ ∈ [0,N] and T ∈ [1,N − φ], as required.
For the rest, letAi = A[notimplies(Ω, J), φ+ i] for each i ≥ 0. For 1 ≤ i ≤ T , ρi is an accepting run ofAi as it is a prefix of ρ and
as s′i = sn+φ+i is final inAi. So, without loss of generality, let i > T . Let us refer to sn+φ as s′0. Clearly, s′i is again final inAi so it

suffices to show that, for each j ∈ [T, i], s′j−1
ε
−→ s′j is a transition of Ai. This follows as s′j−1 mod T

ε
−→ s′j mod T is a transition of

Ai, s′j−1 coincides with s′j−1 mod T in its second and third component, s′j coincides with s′j mod T in its second and third component,
and the first and last components of s′j−1 and s′j are as required by ε-transitions ofAi. This concludes the proof of Claim 7.

Let now φ and T be as asserted by the claim. We define

M =

n+φ⋃
j=0

Y j( j) ∪
⋃
j≥1

Yn+φ+( j mod T )(n + φ + j)

We conclude the proof by showing that M is as required. First, we have P(k) < M by Condition (2.1). Second, we have⋃n
j=0 U j( j) ⊆

⋃n
j=0 Y j( j) ⊆ M, where the first containment holds by Condition (2.3). Third, we show M |= r for an arbitrary

rule r ∈ Ω. Since Ω is normal, it suffices to show, for each i ≥ 0, M�[i−1,i+1] |= r ↓ i. Let k j = j for j ≤ n + φ, and k j =

n + φ + ( j − n − φ mod T ) for j ≥ n + φ + 1. Then, M�[i−1,i+1] |= r ↓ i can be restated as Yki−1 (i − 1) ∪ Yki (i) ∪ Yki+1 (i + 1) |= r ↓ i,
which holds by Claim 7 together with Conditions (2.3) and (3.2).
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Theorem 8.2. Containment of object-free forward-propagating programs is ExpSpace-hard if time offsets are coded in binary.

Proof. We provide a reduction from containment of succinct regular expressions (SREs). Our reduction maps a pair 〈R1,R2〉 of
SREs over a finite alphabet Σ to a pair 〈Π1,Π2〉 of object-free forward-propagating programs such that Π1 v Π2 if and only if
L(R1) ⊆ L(R2), with L(Ri) the language of Ri. Programs Π1 and Π2 consist of the following components, where e0, e1, . . . , ec−1
are the exponents (with repetitions) occurring in R1 or R2, and k is the maximum number of bits required to encode any of them.

• Program Πcount implements a binary counter, and it consists of the following rules, where Start, Flipi, NoFlipi, Zeroi, and
Onei are fresh unary predicates:

Start(t)→ Zeroi(t) ∀i ∈ [1, c · k] (A.1)(∧i−1

`=1
One`(t)

)
∧ Zeroi(t)→ Flip j(t) ∀i ∈ [1, c · k], ∀ j ∈ [1, i] (A.2)(∧i−1

`=1
One`(t)

)
∧ Zeroi(t)→ NoFlip j(t) ∀i ∈ [1, c · k], ∀ j ∈ (i, c · k] (A.3)

Zeroi(t) ∧ Flipi(t)→ Onei(t + 1) ∀i ∈ [1, c · k] (A.4)
Onei(t) ∧ Flipi(t)→ Zeroi(t + 1) ∀i ∈ [1, c · k] (A.5)

Zeroi(t) ∧ NoFlipi(t)→ Zeroi(t + 1) ∀i ∈ [1, c · k] (A.6)
Onei(t) ∧ NoFlipi(t)→ Onei(t + 1) ∀i ∈ [1, c · k] (A.7)

Let us say, for a given set D of EDB facts, that a time point τ encodes an integer m ∈ [0, 2c·k − 1] if Πcount ∪ D |=
{B1(τ), . . . , Bc·k(τ)} where Bi is Zeroi if the i-th bit in the binary coding of m is zero and Onei otherwise. Then, the
construction of Πcount ensures that, for each set D of EDB facts, each time point τ, and each integer m ≥ 0, if Start(τ) ∈ D
then τ + m encodes m mod 2c·k. Conversely, for each D, each time point τ such that there is at most one time point τ′ ≤ τ
with Start(τ′) ∈ D, and each m ∈ [0, 2c·k − 1], if τ encodes m then Start(τ − m − a · 2c·k) ∈ D for some a ≥ 0.

• Program Πinput consists of the following rules, where Aσ and A′σ are fresh unary predicates for each σ ∈ Σ:5(∧c·k

i=1
Zeroi(t)

)
∧ Aσ(t)→ A′σ(t) ∀σ ∈ Σ (A.8)(∨c·k

i=1
Onei(t)

)
∧ A′σ(t − 1)→ A′σ(t) ∀σ ∈ Σ (A.9)

The construction of Πinput ensures that, for each set D of EDB facts, each time point τ, and each letter σ ∈ Σ, Πcount ∪

Πinput ∪ D |= A′σ(τ) if and only if Aσ(τ′) ∈ D with τ′ the largest time point smaller than or equal to τ that encodes zero.

• Program Πinitial consists of the following rule, where F is a fresh unary predicate:

Start(t)→ F(t). (A.10)

• For a given SRE R over alphabet Σ, program ΠR is constructed inductively as follows, where G is a fresh unary predicate,
and φ(Π) and ψ(Π) are the programs obtained from an arbitrary program Π by renaming each predicate P to fresh predicates
Pφ and Pψ, respectively, unless P is of the form A′σ, Zeroi, or Onei.

– If R = ∅, then ΠR = ∅.

– If R = ε, then ΠR consists of the rule
F(t)→ G(t). (A.11)

– If R = σ for σ ∈ Σ, then ΠR consists of the rule, where each Fi is a fresh unary predicate, each Bi
` is Zero` if the `-th

bit in the binary coding of ei is zero and Onei otherwise, and, dually, each predicate B̄i
` is One` if the `-th bit in the

binary coding of ei is zero and Zeroi otherwise.5

F(t) ∧ A′σ(t)→ F0(t) (A.12)(∧((i+1)·k)−1

`=i·k
Bi
`(t)

)
∧ Fi(t)→ Fi+1(t + (2k − 1) · 2i·k − ei · 2i·k) ∀i ∈ [0, c − 1] (A.13)

5We use disjunction in the body of rules (A.9), (A.14), and (A.27), for the sake of clarity. Each rule of this kind can be easily rewritten into a set of
disjunction-free rules, with each rule having one of the disjuncts in place of the disjunction.
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(∨((i+1)·k)−1

`=i·k
B̄i
`(t)

)
∧ Fi(t)→ Fi+1(t + (2k − 1) · 2i·k) ∀i ∈ [0, c − 1] (A.14)

Fc(t)→ G(t + 1) (A.15)

Intuitively, Πσ mimics reading a letter σ at the current pointer’s position and then moving the pointer to the next cell.
Furthermore, it resets those counters that have reached the value of the corresponding exponent, according to the
integer coded by the time point where rule (A.12) is fired. Rules (A.13) and (A.14) for the same i are complementary,
in the sense that just one of them fires; also, the two rules check and set the value of the i-th counter independently
from the others. If no counter is to be reset, no rule of the form (A.13) is fired, and the pointer is moved by 1 +∑c−1

i=0 (2k − 1) · 2i·k = 2c·k time points; this leaves the value of each counter unchanged. If instead a rule of the
form (A.13) is fired the pointer is increased by ei ·2i·k less than if the corresponding rule (A.14) was fired; this ensures
that the pointer is moved to a time point where the i-th counter has value zero.

– If R = S ∪ T , then ΠR extends φ(ΠS ) ∪ ψ(ΠT ) with the rules

F(t)→ Fφ(t) (A.16)

F(t)→ Fψ(t) (A.17)

Gφ(t)→ G(t) (A.18)

Gψ(t)→ G(t). (A.19)

– If R = S ◦ T , then ΠR extends φ(ΠS ) ∪ ψ(ΠT ) with the rules

F(t)→ Fφ(t) (A.20)

Gφ(t)→ Fψ(t) (A.21)

Gψ(t)→ G(t). (A.22)

– If R = S +, then ΠR extends φ(ΠS ) with the rules

F(t)→ Fφ(t) (A.23)

Gφ(t)→ Fφ(t) (A.24)

Gφ(t)→ G(t). (A.25)

– If R = S ei with ei ≥ 1, then ΠR is constructed from ΠS as follows. First, we rename each predicate P in ΠS to a fresh
predicate Pei , unless P is of the form A′σ, Zeroi, or Onei. Then, we extend the resulting program with the following
rules:5

F(t)→ Fei (t + 2i·k) (A.26)(∨((i+1)·k)−1

`=i·k
One`(t)

)
∧Gei (t)→ Fei (t + 2i·k) (A.27)(∧((i+1)·k)−1

`=i·k
Zero`(t)

)
∧Gei (t)→ G(t). (A.28)

Intuitively, rules (A.26) and (A.27) increase the i-th counter to keep track of the number of times the subexpression
S has been matched, and rule (A.28) fires when the i-th counter has just been reset by rules (A.12)–(A.15) because it
had reached value ei.

• Program Πflood consists of the following rules, where Flood and FloodAux are fresh unary predicates.

Start(t)→ FloodAux(t + 1) (A.29)
FloodAux(t) ∧ Start(t)→ Flood(t) (A.30)

Flood(t)→ Flood(t + 1) (A.31)
Flood(t)→ G(t). (A.32)

The construction of Πflood ensures that, for each EDB stream S and each time point τ, Πflood ∪ S |= G(τ) if there are two
time points τ1 and τ2 such that τ1 < τ2 ≤ τ and {Start(τ1), Start(τ2)} ⊆ S .
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Then, Π1 and Π2 are defined as follows, where program Π′R2
is obtained from ΠR2 by renaming each IDB predicate P to a

fresh predicate P′ (in particular, G is renamed to G′), and G∗ is a fresh unary predicate:

• Π1 = ΠR1 ∪ Π′R2
∪ Πcount ∪ Πinput ∪ Πinitial ∪ Πflood ∪ {G(t)→ G∗(t)},

• Π2 = ΠR1 ∪ Π′R2
∪ Πcount ∪ Πinput ∪ Πinitial ∪ Πflood ∪ {G′(t)→ G∗(t)}.

We next argue correctness of the reduction. For this, we first show that our construction captures the language of the relevant
SREs in the sense of the following two claims.

Claim 8. Let s = σ1 . . . σn be a word in L(R), let D be a finite set of EDB facts, let τ be a time point. If Start(τ) ∈ D, and
Aσi (τ + (i − 1) · 2c·k) ∈ D for each i ∈ [1, n], then ΠR ∪ Πcount ∪ Πinput ∪ Πinitial ∪ D |= G(τ + n · 2c·k).

We prove a more general claim: if Start(τ) ∈ D, Aσi (τ+ (i−1) ·2c·k) ∈ D for each i ∈ [1, n], and m0, . . . ,mc−1 are integers with
mi = 0 if ei occurs in R and mi ∈ [0, ei] otherwise, then ΠR∪Πcount∪Πinput∪D∪{F(τ+

∑
` m` ·2`·k)} |= G(τ+n·2c·k+

∑
`:m`<e` m` ·2`·k).

To see that the new claim implies the original one, it suffices to take m0 = · · · = mc−1 = 0 and to note that Πinitial ∪ {Start(τ)} |=
F(τ). Next we show the claim by induction on R. To be concise, let Π = ΠR ∪Πcount ∪Πinput ∪D∪ {F(τ+

∑
` m` · 2`·k)}. Consider

the base cases. Clearly, R , ∅ as s ∈ L(R). If R = ε, then s = ε (and hence n = 0); but then, ΠR ∪ D |= G(τ) by rule (A.11).
Consider now the case R = σ. We have s = σ. Then, {Start(τ), Aσ(τ)} ⊆ D implies Πcount ∪ Πinput ∪ D |= A′σ(τ +

∑
` m` · 2`·k),

and hence Π |= G(τ + (
∑
` m` · 2`·k) + 2c·k − (

∑
`:m`=e` m` · 2`·k)) by rules (A.12)–(A.15), noting that 1 +

∑c−1
i=0 (2k − 1) · 2i·k = 2c·k.

The former entailment can be simplified into the claimed one. Next we consider the inductive case for R = S ei . The other
inductive cases are analogous to the ones of Claim 1, and hence we omit them. When R = S ei , we have s = s1s2 . . . sei with
s j = σ

j
1 . . . σ

j
n j ∈ L(S ) for each j ∈ [1, ei]. We first show by induction on j ∈ [1, ei−1] that Π |= Gei (τ+ j ·2i·k +(

∑ j
u=1 nu ·2c·k)+ p),

where p is an abbreviation for
∑
`:m`<e` m` · 2`·k. In the base case, j = 1, we have Π |= Fei (τ + 2i·k +

∑
` m` · 2`·k) by rule (A.26),

and hence Π |= Gei (τ + 2i·k + n1 · 2c·k + p) by the construction of ΠR, and because Π |= G(τ + n1 · 2c·k + p) by the outer inductive
hypothesis for S . For j > 2, the inner inductive hypothesis yields Π |= Gei (τ + ( j − 1) · 2i·k + (

∑ j−1
u=1 nu · 2c·k) + p). Hence,

Π |= Fei (τ+ j · 2i·k + (
∑ j−1

u=1 nu · 2c·k) + p) by rule (A.27), since the binary encoding of ( j− 1) · 2i·k + (
∑ j−1

u=1 nu · 2c·k) + p) contains a
one in some of the positions [i · k, (i + 1) · k) − 1]. But then, Π |= Gei (τ + j · 2i·k + (

∑ j
u=1 nu · 2c·k) + p) follows by the construction

of ΠR from ΠS ∪Πcount ∪Πinput ∪ D ∪ {F(τ + j · 2i·k + (
∑ j−1

u=1 nu · 2c·k) + p)} |= G(τ + j · 2i·k + (
∑ j

u=1 nu · 2c·k) + p), which holds by
the outer inductive hypothesis for S . Then, the case j = ei = 1 follows similarly to the base case above, and the case j = ei > 1
follows similarly to the inductive case above, using the claim above in place of the inductive hypothesis; the difference with the
case above is that the term j · 2i·k does not appear in the offset of the entailed fact. Thus, Π |= Gei (τ + (

∑ j
u=1 nu · 2c·k) + p), which

implies Π |= G(τ + (
∑ j

u=1 nu · 2c·k) + p) by rule (A.28), since the binary encoding of (
∑ j

u=1 nu · 2c·k) + p has all zeroes in positions
[i · k, (i + 1) · k − 1]. The former entailment can be easily rewritten into the claimed one.

Claim 9. Let D be a finite set of EDB facts and let τ be a time point. If ΠR ∪ Πcount ∪ Πinput ∪ Πinitial ∪ D |= G(τ), and there is at
most one time point τ′ ≤ τ such that Start(τ′) ∈ D, then there exists a word s = σ1 . . . σn ∈ L(R) such that Start(τ − n · 2c·k) ∈ D
and Aσi (τ − (n − i + 1) · 2c·k) ∈ D for each i ∈ [1, n].

We prove a more general claim: for each time point τF , if ΠR ∪ Πcount ∪ Πinput ∪ D ∪ {F(τF)} |= G(τ), D does not mention
F, and there is at most one time point τ′ ≤ τ such that Start(τ′) ∈ D, then there exist a word s = σ1 . . . σn ∈ L(R), an integer
m ≥ n · 2c·k, and integers m0, . . . ,mc−1 such that:

• Start(τ − m) ∈ D,

• Aσi (τ − (n − i + 1) · 2c·k − (m mod 2c·k)) ∈ D for each i ∈ [1, n],

• τF = τ − n · 2c·k + (
∑
` m` · 2`·k) where m` = 0 if e` occurs in R or the binary encoding of m has a one in some position

[` · k, (` + 1) · k − 1], and m` ∈ {0, e`} otherwise.

To see that the new claim implies the original one, it suffices to observe that necessarily m = n · 2c·k and m0 = · · · = mc−1 = 0,
since F is IDB with respect to Πinitial and F(τF) is entailed only if Start(τF) ∈ D. Next we show the claim by induction on R.
For the base cases, note first that ΠR ∪ Πcount ∪ Πinput ∪ D ∪ {F(τF)} |= G(τ) implies that R , ∅. If R = ε we take s = ε since
Start(τ − m) ∈ D for some m ≥ 0 by the construction of ΠR ∪ Πcount, and τF = τ taking each m` = 0. If R = σ1 we take s = σ
since {Start(τ − m), Aσ(τ − 2c·k − (m mod 2c·k))} ⊆ D for some m ≥ 2c·k by the construction of ΠR ∪ Πcount ∪ Πinput, and each
integer m` ∈ {0, e`} exists because the necessary F`+1-fact is entailed either by rule (A.13) or by rule (A.14). Next we consider
the inductive case for R = S ei . The other inductive cases are analogous to the ones of Claim 2, and hence we omit them. When
R = S ei , by the construction of ΠR and the inductive hypothesis, the assertion ΠR∪Πcount∪Πinput∪D∪{Fei (τ

′
F)} |= Gei (τ

′) implies
the existence of a word s = σ1 . . . σn ∈ L(S ) and integers m and m0, . . . ,mc−1 with the properties stated in the claim. Furthermore,
if ΠR ∪ Πcount ∪ Πinput ∪ D ∪ {F(τF)} |= Fei (τ

′), then ΠR ∪ Πcount ∪Πinput ∪ D ∪ {F(τF)} |= Gei (τ
′ − 2i·k) due to rule (A.27), if the

binary encoding of m has a one in some position [i · k, (i + 1) · k− 1]. Considering that ΠR ∪Πcount ∪Πinput ∪D∪ {F(τF)} |= Gei (τ)
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and m has all zeroes in positions [i · k, (i + 1) · k − 1] due to rule (A.28), the two properties above imply (as it can be shown by a
straightforward induction on j from ei to 1) the existence of words s1, . . . , sei and a partition L1, . . . , Lei of the indices [0, c−1]\{i}
such that, for each j ∈ [1, ei]:

• s j = σ
j
1 . . . σ

j
n j ∈ L(S );

• ΠR ∪ Πcount ∪ Πinput ∪ D ∪ {F(τF)} |= Fei (τ − (
∑ei
`= j n`) · 2c·k + (

∑
`∈L j

m` · 2`·k) + j · 2i·k);

• Aσ
j
`
(τ − (

∑ei
u= j nu − ` + 1) · 2c·k − (m mod 2c·k)) ∈ D for each ` ∈ [1, n j].

Furthermore, ΠR∪Πcount∪Πinput∪D∪{F(τF)} |= Fei (τ− (
∑ei
`=1 n`) ·2c·k + (

∑
`∈L1

m` ·2`·k) + 2i·k) implies τF = τ− (
∑ei
`=1 n`) ·2c·k +

(
∑
`∈L1

m` · 2`·k) due to rule (A.26). Then, the word s = s1 · · · sei , and integers m and m0, . . . ,mc−1 are as required. This concludes
the proof of the claim.

Given the claims above, the correctness proof proceeds as the one of Theorem 8.1, once we observe that the two programs
trivially entail the same facts for each time point τ such that there are two time points τ1, τ2 ≤ τ for which a Start-fact holds, by
the properties of Πflood.
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