
The Delayed D* Algorithm for Efficient Path Replanning

Dave Ferguson and Anthony Stentz

Robotics Institute

Carnegie Mellon University

Pittsburgh, PA, USA

{dif, tony}@cmu.edu

Abstract— Mobile robots are often required to navigate
environments for which prior maps are incomplete or in-
accurate. In such cases, initial paths generated for the robots
may need to be amended as new information is received that
is in conflict with the original maps. The most widely used
algorithm for performing this path replanning is Focussed
Dynamic A* (D*), which is a generalization of A* for
dynamic environments. D* has been shown to be up to
two orders of magnitude faster than planning from scratch.
In this paper, we present a new replanning algorithm that
generates equivalent paths to D* while requiring about half
its computation time. Like D*, our algorithm incrementally
repairs previous paths and focusses these repairs towards the
current robot position. However, it performs these repairs in
a novel way that leads to improved efficiency.

I. INTRODUCTION

Path planning for mobile robots consists of finding a

sequence of state transitions that leads a robot from its

initial state to some desired goal state. Typically, the states

are robot locations and the transitions represent actions the

robot can take, each of which has an associated cost. A path

is said to be optimal if the sum of its transition costs (arc

costs) is minimal across all possible paths leading from the

initial position (start state) to the goal position (goal state).

Such paths can be efficiently generated from a map of the

environment using focussed algorithms such as A* [1].

However, when operating in real environments, a mobile

robot usually does not have complete map information. As

a result, any path generated using its initial map may turn

out to be invalid or suboptimal as it receives updated map

information through, for example, an onboard sensor. It is

thus important that the robot is able to update its map and

replan optimal paths when new information arrives.

A number of algorithms exist for performing this replan-

ning [2], [3], [4], [5], [6], [7], [8]. Focussed Dynamic A*

(D*) [2] and D* Lite [8] are currently the most widely used

of these algorithms, due to their efficient use of heuristics

and incremental updates. D* has been shown to be one

to two orders of magnitude more efficient than planning

from scratch with A*, and it has been incorporated into a

plethora of real robotic systems [9], [10], [11], [12], [13].

D* Lite is a simplified version of D* that has been found

to be slightly more efficient by some measures [8]. It has

been used to guide Segbots and ATRV vehicles in urban

terrain [14]. Both algorithms guarantee optimal paths over

grid-based representations of a robot’s environment.

In this paper, we present a new algorithm that solves the

same problems as D* and D* Lite yet can be significantly

more efficient. We begin by describing the D* and D* Lite

algorithms. Next, we introduce our algorithm Delayed D*

along with some of the intuition behind it. We then present

comparative results on three common navigation scenarios.

We conclude with discussion and future work.

II. FOCUSSED REPLANNING: D* AND D* LITE

Both D* and D* Lite maintain least-cost paths between

a start state and a goal state as the costs of arcs between

states change. Both algorithms can handle increasing or

decreasing arc costs and dynamic start states. They are

both thus capable of handling the goal-directed mobile

robot navigation problem, which entails a robot moving

from some initial state to a goal state while updating its

map information through an onboard sensor. Because the

two algorithms are fundamentally very similar, we restrict

our attention here to D* Lite, which has been found to be

slightly more efficient for navigation tasks [8]. For more

details on each algorithm, see [2] and [8].

D* Lite maintains a least-cost path from a start state

sstart ∈ S to a goal state sgoal ∈ S, where S is the set

of states in some finite state space. To do this, it stores

an estimate g(s) of the cost from each state s to the goal.

It also stores a one-step lookahead cost rhs(s) which

satisfies:

rhs(s) =

{

0 if s = sgoal

mins′∈Succ(s)(c(s, s
′) + g(s′)) otherwise,

where Succ(s) ∈ S denotes the set of successors of s

and c(s, s′) denotes the cost of moving from s to s′

(the arc cost). A state is called consistent iff its g-value

equals its rhs-value, otherwise it is either overconsistent

(if g(s) > rhs(s)) or underconsistent (if g(s) < rhs(s)).
Like A*, D* Lite uses a heuristic and a priority queue

to focus its search and to order its cost updates efficiently.

The heuristic h(s, s′) estimates the cost of moving from

state s to s′, and needs to satisfy h(s, s′) ≤ c∗(s, s′) and

h(s, s′′) ≤ h(s, s′) + h(s′, s′′) for all states s, s′, s′′ ∈ S,

where c∗(s, s′) is the cost associated with a least-cost path

from s to s′. The priority queue always holds exactly the

inconsistent states; these are the states that need to be

updated and made consistent.

The priority k(s) of a state s in the queue is:

k(s) = [k1(s), k2(s)]
= [min(g(s), rhs(s)) + h(sstart, s),min(g(s), rhs(s))].

A lexicographic ordering is used on the priorities, so that

priority k(s) is less than or equal to priority k(s′), denoted



k(s) ≤̇ k(s′), iff k1(s) < k1(s
′) or both k1(s) = k1(s

′)
and k2(s) ≤ k2(s

′). D* Lite expands states from the

queue in increasing priority, updating their g-values and

their predecessors’ rhs-values, until there is no state in the

queue with a priority less than that of the start state. It

thus performs similarly to a backwards A* search during

its generation of an initial solution path.

When arc costs change, D* Lite updates the rhs-values of

each state immediately affected by the changed arc costs

and places those states that have been made inconsistent

onto the queue. As before, it then expands the states on

the queue in order of increasing priority until there is no

state in the queue with a priority less than that of the start

state. This termination condition guarantees that an optimal

path will have been found from the start state to the goal

state when processing is finished.

D* Lite is efficient because it uses a heuristic to restrict

attention to only those states that could possibly be relevant

to repairing the current solution path from a given start state

to the goal state. When arc costs decrease, the heuristic

ensures that only those newly-overconsistent states that

could potentially decrease the cost of the start state are

processed. When arc costs increase, it ensures that only

those newly-underconsistent states that could potentially

invalidate the current cost of the start state are processed.

However, perhaps we can do better by being even more

restrictive. It is possible that by using the above approach,

we may expand many more states than is necessary. This

is because, even if an inconsistent state has a priority less

than the start state, its inconsistency may not affect the

optimality of the current solution path. Figure 1 illustrates

such a scenario. It would be ideal if we could tell whether

the inconsistency of a particular state is of consequence

to the validity of the current solution without actually

propagating this inconsistency.

When we encounter a series of cost decreases that affect

states with lower priorities than the start state, there is no

simple check that will provide us with this information.

When we encounter a similar series of cost increases, how-

ever, there is such a check: we can guarantee the optimality

of our current solution if none of these increases takes place

along the solution path. This qualitative difference suggests

different treatment for states made underconsistent (due to

arc cost increases) and states made overconsistent (due to

arc cost decreases).

Motivated by this finding, we have created the algorithm

Delayed D*, which processes underconsistent states much

more selectively than overconsistent states.

III. DELAYED D*

Delayed D* is a modified version of D* Lite that delays

the propagation of cost increases as long as possible. When

cost changes occur, the rhs-values of all affected states

are updated and the overconsistent states are processed

immediately, as in D* Lite. The underconsistent states

are ignored. Then, when new values of the overconsis-

tent states have been adequately propagated through the

state space, the returned solution path is checked for any

Fig. 1. An eight-connected grid replanning scenario in which a couple of
inconsistent states cause D* Lite to make significant repairs. A least-cost
path is maintained between state sstart and state sgoal, the two dark-
gray cells on the left and right sides of each grid, respectively. The top-
right grid shows the cells expanded by D* Lite (shaded light-gray) during
initial planning. The bottom-left grid shows the cells along the initial
solution path (dark-gray arrows). The bottom-right grid shows the states
re-expanded by D* Lite (shaded light-gray) after information reveals that
the gap in the right wall is blocked. Since none of these underconsistent
states resided upon the path from sstart to sgoal, they could have been
ignored without jeopardizing optimality.

underconsistent states. All underconsistent states on the

path are added to the priority queue and their updated

values are propagated through the state space. Because the

current propagation phase may alter the solution path, the

new solution path needs to be checked for underconsistent

states. The entire process repeats until a solution path that

contains only consistent states is returned.

By delaying the processing of underconsistent states,

Delayed D* holds two advantages over D* Lite. Firstly, we

will be able to ignore some underconsistent states entirely,

reducing our overall computation. Secondly, even when we

have to process underconsistent states, if we have delayed

processing them long enough then perhaps the effects

of various underconsistent states can be incorporated at

the same time, in a single propagation. So, rather than

propagating cost increases through the state space every

time a new underconsistent state turns up, we wait until

some underconsistent state jeopardizes the optimality of

the current solution, then do a single propagation of values

that may deal with several underconsistent states at once.

A. The Algorithm

We have provided two versions of the Delayed D*

algorithm. The first version, given in Figure 2, maintains

a least-cost path from a fixed initial state to the goal state.

We have presented the algorithm in the same framework

as that used by D* Lite [8] to highlight its similarities. In

our pseudocode, we have used notation defined earlier as



CalculateKey(s)
01. return [min(g(s), rhs(s)) + h(sstart, s); min(g(s), rhs(s)))];

Initialize()
02. U = ∅;

03. for all s ∈ S

04. rhs(s) = g(s) = ∞;

05. rhs(sgoal) = 0;

06. Insert(U, sgoal, [h(sstart, sgoal), 0]);

UpdateVertex(s)
07. if (g(s) 6= rhs(s))
08. Insert(U, s, CalculateKey(s));

09. else if (g(s) = rhs(s)) and (s ∈ U)
10. Remove(U, s);

UpdateVertexLower(s)
11. if (g(s) > rhs(s))
12. Insert(U, s, CalculateKey(s));

13. else if (g(s) = rhs(s)) and (s ∈ U)
14. Remove(U, s);

ComputeShortestPathDelayed()
15. while (U .MinKey() <̇ CalculateKey(sstart) OR g(sstart) 6= rhs(sstart))

16. s = U .Top();

17. if (g(s) > rhs(s))
18. g(s) = rhs(s)
19. Remove(U, s);

20. for all x ∈ P red(s)
21. rhs(x) = min(rhs(x), c(x, s) + g(s));

22. UpdateVertexLower(x);

23. else

24. gold = g(s);

25. g(s) = ∞;

26. for all x ∈ P red(s) ∪ s

27. if (rhs(x) = c(x, s) + gold OR x = s)
28. if (x 6= sgoal)

29. rhs(x) = min
x′∈Succ(x)

(c(x, x′) + g(x′));

30. UpdateVertex(x);

FindRaiseStatesOnPath()
31. s = sstart, raise = false, loop = false, ctr = 0;

32. while (s 6= sgoal AND loop = false AND ctr < maxsteps)

33. x = argmin
s′∈succ(s)

(c(s, s′) + g(s′));

34. rhs(s) = c(s, x) + g(x);

35. if (g(s) 6= rhs(s))

36. UpdateVertex(s);

37. raise = true;

38. if (x = s)

39. loop = true;

40. else

41. s = x;

42. ctr = ctr + 1;

43. return raise;

Main()
44. Initialize();

45. ComputeShortestPathDelayed();

46. forever

47. Wait for changes in edge costs;

48. for all directed edges (u, v) with changed edge costs

49. cold = c(u, v);

50. Update the edge cost c(u, v);

51. if (cold > c(u, v))
52. rhs(u) = min(rhs(u), c(u, v) + g(v));

53. else if (rhs(u) = cold + g(v))
54. if (u 6= sgoal)

55. rhs(u) = min
u′∈Succ(u)

(c(u, u′) + g(u′));

56. UpdateVertexLower(u);

57. ComputeShortestPathDelayed();

58. raise = FindRaiseStatesOnPath();

59. while (raise)

60. ComputeShortestPathDelayed();

61. raise = FindRaiseStatesOnPath();

Fig. 2. The Delayed D* Algorithm: Fixed Initial State.

well as some extra: U is the priority queue, h(s, s′) is the

heuristic cost from state s to state s′, argmins′∈succ(s)f()
returns the successor of s for which function f is mini-

mized, and all variables not already mentioned are local to

the respective functions (raise, loop, ctr, cold, u, etc).

This first version of Delayed D* begins by initializing

the g and rhs-values of each state to infinity, and then places

the goal state sgoal onto the queue (lines 03 - 06). Next,

ComputeShortestPathDelayed() (CSPD) is called, which

computes a least-cost path from sstart to sgoal. This initial

path is computed in exactly the same way as it would be

in D* Lite.

Once the initial least-cost path has been found, Delayed

D* waits for arc costs to change. When they do, it updates

the rhs-value of all immediately affected states and adds

only the newly overconsistent states to the queue (line 55).

CalculateKey(s)
01. return [min(g(s), rhs(s)) + h(sstart, s)+km; min(g(s), rhs(s)))];

Initialize()
02. U = ∅; km = 0;

03. for all s ∈ S

04. rhs(s) = g(s) = ∞;

05. rhs(sgoal) = 0;

06. Insert(U, sgoal, [h(sstart, sgoal), 0]);

ComputeShortestPathDelayed()
07. while (U .MinKey() <̇ CalculateKey(sstart) OR g(sstart) 6= rhs(sstart))

08. s = U .Top();

09. kold = U.TopKey();
10. knew = CalculateKey(s);
11. if (kold<̇knew)
12. Insert(U, s, knew);

13. else if (g(s) > rhs(s))
14. g(s) = rhs(s)
15. Remove(U, s);

16. for all x ∈ P red(s)
17. rhs(x) = min(rhs(x), c(x, s) + g(s));

18. UpdateVertexLower(x);

19. else

20. gold = g(s);

21. gs = ∞;

22. for all x ∈ P red(s) ∪ s

23. if (rhs(x) = c(x, s) + gold OR x = s)
24. if (x 6= sgoal)

25. rhs(x) = min
x′∈Succ(x)

(c(x, x′) + g(x′));

26. UpdateVertex(x);

Main()
27. slast = sstart ;

28. Initialize();

29. ComputeShortestPathDelayed();

30. while (sstart 6= sgoal)

31. sstart = argmins∈Succ(sstart)
(c(sstart, s) + g(s));

32. Move to sstart and check for changed edge costs

33. if any edge costs changed

34. km = km + h(slast, sstart);

35. slast = sstart ;

36. for all directed edges (u, v) with changed edge costs

37. cold = c(u, v);

38. Update the edge cost c(u, v);

39. if (cold > c(u, v))
40. rhs(u) = min(rhs(u), c(u, v) + g(v));

41. else if (rhs(u) = cold + g(v))
42. if (u 6= sgoal)

43. rhs(u) = min
u′∈Succ(u)

(c(u, u′) + g(u′));

44. UpdateVertexLower(u);

45. ComputeShortestPathDelayed();

46. raise = FindRaiseStatesOnPath();

47. while (raise)

48. ComputeShortestPathDelayed();

49. raise = FindRaiseStatesOnPath();

Fig. 3. The Delayed D* Algorithm: Dynamic Initial State.

It then calls CSPD again to propagate the new values of

these overconsistent states through the state space. When

it has finished, the solution path is checked, in FindRais-

eStatesOnPath() (FRSOP), for any underconsistent states.

If any exist, they are placed on the queue and their new

values are propagated through the state space by another

call to CSPD.

When a state is expanded in CSPD (line 16), it is treated

differently depending on whether it is overconsistent or

underconsistent. If it is overconsistent, it updates its g-value

to equal its rhs-value, then uses its new g-value to lower the

rhs-values of its predecessors. If this causes some predeces-

sor to become overconsistent, the predecessor is added to

the queue. Any predecessor states that are underconsistent

are ignored.

If the state to be processed is underconsistent, it sets

its g-value to infinity, then updates the rhs-values of all

predecessors that use the g-value of the current state for

their rhs-values. Any predecessors that are inconsistent are

added to the queue.

Since all underconsistent predecessor states are ignored

whenever an overconsistent state is expanded, the g-values

of states along the solution path returned by CSPD are

lower bounds of the optimal costs of the states. Thus, each

time CSPD terminates, FRSOP must be called to check



−5 0 5 10 15 20 25
1

2

3

4

5

6

7

8
x 10

5

S
ta

te
 E

x
p
an

si
o
n
s

Obstacle Density of Initial Map

D* Lite 

Delayed D* 

−5 0 5 10 15 20 25
1

2

3

4

5

6

7
x 10

6

Obstacle Density of Initial Map

H
ea

p
 P

er
co

la
ti

o
n
s

D* Lite 

Delayed D* 

−5 0 5 10 15 20 25
0.5

1

1.5

2

2.5

3

3.5

T
im

e
 T

a
k
e
n
 (

s)

Obstacle Density of Initial Map

D* Lite 

Delayed D* 

Fig. 4. Results from our first experiment. A least-cost path was maintained between a fixed initial state and a goal state as cells in the environment
had their traversability changed. Shown here are the number of states expanded, the number of heap percolations, and the total CPU time taken.

that the g-values of states along the solution path equal

their rhs-values (lines 60 - 61). When they do, we can

prove that the solution path is optimal (see below).

The second version of Delayed D* allows for a changing

initial state. Presented in Figure 3, this algorithm is very

similar to both D* and D* Lite in its use of a bias function

(km) to avoid reordering the queue each time the initial

state changes. We have left out of Figure 3 all the functions

used by the algorithm that are exactly the same as those

in Figure 2 and have highlighted in bold the differences

between this more general version of Delayed D* and the

version presented above.

This version updates the initial state sstart every time

the robot moves along the solution path. Because this alters

the heuristic value h(sstart, s) of each state s on the queue,

the stored key values of states on the queue are no longer

correct. Updating these key values results in a reordering

of the priority queue. However, we avoid reordering the

queue every time the robot moves by adopting a technique

originally presented in [2]. We compute a lower bound for

the new h(sstart, s) value by assuming that the robot’s

movement is directly towards s. So, if the robot moves

from slast to sstart, we can update the heuristic cost of s

to be h(slast, s) − h(slast, sstart). When s is popped, we

then correct its heuristic value to be the true h(sstart, s)
value and reinsert it onto the queue with an updated key

value (lines 09 - 12).

The advantage of this approach is that all states al-

ready on the queue have their keys updated by the same

−h(slast, sstart) value, so the order of states on the queue

is preserved. Further, we can avoid these updates altogether

if we instead add the value h(slast, sstart) to the key of all

states to be inserted onto the queue. The remaining com-

putation is simply the reinsertion of popped states whose

key values are out of date. In our algorithm description,

we maintain the current cumulative adjustment value as

km (line 34).

Note that, for both versions of Delayed D*, when

choosing best successor states in FRSOP and in the Main()

function, ties can be broken by any method so desired, but

the method must be consistent. If a particular successor

state is chosen from a state s in FRSOP, then this same

successor state should be chosen from s in the Main()

function. This is important for ensuring that the agent

traverses the least-cost path shown to be valid in FRSOP.

Processing the successors of each state in a fixed order is

one simple way to guarantee this.

We proved the termination and optimality of Delayed

D* in an earlier technical report [15].

Theorem 1. The Delayed D* algorithm always terminates

and an optimal solution path can then be followed from

sstart to sgoal by always moving from the current state

s, starting at sstart, to any successor s′ that minimizes

c(s, s′) + g(s′).

IV. RESULTS

We implemented both versions of Delayed D* and

compared them to the optimized version of D* Lite [8]

on three common path planning tasks.

The first task was to maintain a least-cost path from the

left side of an environment to the right side, as the terrain

associated with areas of the environment changed. We

generated 1050 random environments of size 500 × 500:

50 environments with no obstacles (but with varied terrain

costs), 50 with 1% obstacle cells, 50 with 2% obstacle cells,

and so on, up to 50 with 20% obstacle cells. The terrain

cost associated with traversing non-obstacle cells was also

randomly generated (with the minimum possible cost being

1.0). We used Euclidean distance for our heuristic h.

For each environment, we first generated an initial

optimal path using D* Lite. We then randomly selected

100 cells and flipped their terrain values: traversable

cells became untraversable and untraversable cells became

traversable. We then used D* Lite and Delayed D* to replan

an optimal path given these changes. We repeated the above

steps 50 times (for a total of 5000 altered terrain costs) and

recorded the performance of each algorithm in replanning.

Figure 4 shows the results of this experiment. We have

included three performance measures: the number of states

expanded, the number of heap percolations (i.e., the number

of times a parent and a child are swapped in our heap

priority queue), and the CPU time taken by a P3 1.4 GHz

processor. In all our graphs, we have included error bars

representing the standard error of the mean. According to

all three measures, Delayed D* outperformed D* Lite by

roughly a factor of 2.



Note that in this experiment the agent was not moving

through the environment; we were maintaining an optimal

path from a fixed start state to the goal. Such a situation

arises when we have a number of agents traversing from

the same initial position to the goal, or in domains such

as network routing, where we are interested in maintaining

an optimal path between two fixed states in our system.

The second and third tasks we looked at concerned an

agent moving through a state space in which arc costs

are changing or for which the agent had imperfect initial

information. In these scenarios, the agent began with some

prior information about the costs of arcs between states

and could update its information as it traversed through

the state space.

As we are most concerned with robot navigation, we

simulated an agent equipped with a sensor that would allow

it to detect the terrain value of areas of the environment

within some sensor radius of the agent. For our testing, we

again used the same series of 500 × 500 environments but

made the common simplification that all traversable cells

had the same terrain cost, resulting in a binary map. For

each traverse, the agent started at the left side and worked

its way to the right.

We first looked at an agent that began with no informa-

tion about its environment, so that its initial map was com-

pletely empty and assumed to be everywhere traversable.

As the agent moved through the environment, it updated

its map to reflect the true nature of the environment, using

an omnidirectional sensor with a 30-cell field of view. The

results of this experiment are shown in Figure 5.

In these completely unknown environments, Delayed D*

showed a slight performance improvement; this improve-

ment increased with the difficulty of the environment. Be-

cause unknown environments are assumed to be completely

free of obstacles, the number of states expanded when

producing the initial solution path in these domains is very

small. Thus, in such situations D* Lite performs in a similar

manner to Delayed D*: the only states that are processed as

a result of observed cost changes are those underconsistent

states that reside on or are very close to the solution path.

Our final simulation concerned an agent that began with

a complete but inaccurate map of its environment. Here, we

used the same series of 500 × 500 environments, but we

randomly flipped the terrain values of 25% of the cells, so

that traversable cells became untraversable, and vice versa.

The agent then moved through the environment, updating

its map information to reflect the observed environment.

The results of this experiment are shown in Figure 6.

In these partially known environments, where the num-

ber of states with key values less than the start state can

be large and costs both increase and decrease, Delayed D*

showed a significant improvement in efficiency.

V. DISCUSSION

The results presented above demonstrate that Delayed

D* is a valuable extension to the D* Lite algorithm.

We believe that the method Delayed D* uses to process

underconsistent states is highly beneficial to replanning.

−5 0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

S
ta

te
 E

x
p

an
si

o
n

s

True Obstacle Density of Environment

D* Lite 

Delayed D* 

−5 0 5 10 15 20 25
0

0.5

1

1.5

2

2.5
x 10

5

H
ea

p
 P

er
co

la
ti

o
n

s

True Obstacle Density of Environment

D* Lite 

Delayed D*

Fig. 5. Results from our first navigation experiment. The agent began
with an empty map and updated its map as it traversed the environment.
Shown here are the number of states expanded and heap percolations.

It is worth making two points about the version of

Delayed D* used for our experiments. Firstly, in our

simulations we dealt with random environments. However,

real environments navigated by mobile robots may ex-

hibit structure. In such cases, we may want to alter the

FindRaiseStatesOnPath() function to add to the queue

not just the underconsistent states found on the current

solution path, but all states adjacent to these states that are

also underconsistent. If the agent were to observe a large

obstacle in its path, this would prevent it from potentially

processing only a small “wedge” of the obstacle each time

CSPD is called. Instead, if the entire obstacle was added

at once, it could be processed more efficiently.

Secondly, when a cell becomes untraversable (i.e., an

obstacle) during our simulations, it is never again placed

on the queue, even if its least-cost successor is popped as

an underconsistent state. Once a cell becomes an obstacle,

any dependent predecessors are updated and the cell itself

is afterwards ignored. This means that the propagation

of underconsistent states can terminate early if obstacles

are encountered. This early termination further delays the

processing of underconsistent states and contributes to the

overall efficiency gain of our Delayed D* implementation.

Looking critically at the Delayed D* algorithm, two

possible sources of inefficiency can be found. Firstly, it

is possible to construct worst-case scenarios where the

processing of underconsistent states changes the solution

path several times, each time producing a new path con-

taining underconsistent states. This results in a number



of propagation phases, each starting from a new set of

underconsistent states, where each propagation phase may

process roughly the same area of the state space. This will

be less efficient than dealing with all the relevant under-

consistent states at once. However, in realistic navigation

tasks, worst-case scenarios occur very infrequently. As our

results have suggested, Delayed D* is far more efficient

on average than D* Lite. In fact, over all our test cases

(1050 environments, 3150 total test runs), there was not

a single run during which D* Lite expanded fewer states

than Delayed D*.

The second possible source of inefficiency concerns

the FindRaiseStatesOnPath() function. Since Delayed

D* ignores underconsistent states when they first appear,

the consistency of the current solution path needs to be

checked after each propagation phase. This adds a source

of computation to the planning task not associated with

competing algorithms such as D* Lite. However, the extra

processing required to perform this check is only influential

in the most trivial of state spaces. Because the solution

path always represents a one dimensional slice through

the space, in higher dimensional state spaces (where the

underconsistent states processed unnecessarily by D* Lite

become a real burden) this check requires a relatively

insignificant amount of computation. In fact, in light of

this, we are currently extending Delayed D* to an anytime

algorithm for operating in very large state spaces, where

we believe it will be even more effective at reducing the

overall computation required to generate solutions.

VI. CONCLUSION

In this paper we have presented Delayed D*, a new

replanning algorithm for maintaining optimal paths through

dynamic graphs. We have compared our algorithm to the

leading replanning algorithm in several domains and found

ours to be significantly more efficient on average. We

are currently looking at applying the techniques behind

Delayed D* to high-dimensional path planning problems.

VII. ACKNOWLEDGEMENTS

This work was partially sponsored by the U.S. Army

Research Laboratory, under contract “Robotics Collabo-

rative Technology Alliance”. The views contained in this

document are those of the authors and do not represent

the official policies or endorsements of the U.S. Govern-

ment. Dave Ferguson is supported by a National Science

Foundation Graduate Research Fellowship.

REFERENCES

[1] N. Nilsson, Principles of Artificial Intelligence. Tioga Publishing
Company, 1980.

[2] A. Stentz, “The Focussed D* Algorithm for Real-Time Replanning,”
in Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI), 1995.

[3] M. Barbehenn and S. Hutchinson, “Efficient search and hierarchical
motion planning by dynamically maintaining single-source shortest
path trees,” IEEE Transactions on Robotics and Automation, vol. 11,
no. 2, pp. 198–214, 1995.

−5 0 5 10 15 20 25
3.5

4

4.5

5

5.5

6

6.5

7

7.5
x 10

4

Obstacle Density of Initial Map

S
ta

te
 E

x
p

an
si

o
n

s

D* Lite 

Delayed D* 

−5 0 5 10 15 20 25
4

5

6

7

8

9

10
x 10

5

Obstacle Density of Initial Map

H
ea

p
 P

er
co

la
ti

o
n
s

D* Lite 

Delayed D*

Fig. 6. Results from our second navigation experiment. The agent began
with a map that contained incorrect values for 25% of the cells. Shown
here are the number of states expanded and heap percolations.

[4] G. Ramalingam and T. Reps, “An incremental algorithm for a
generalization of the shortest-path problem,” Journal of Algorithms,
vol. 21, pp. 267–305, 1996.

[5] T. Ersson and X. Hu, “Path planning and navigation of mobile robots
in unknown environments,” in Proceedings of the IEEE International

Conference on Intelligent Robots and Systems (IROS), 2001.
[6] Y. Huiming, C. Chia-Jung, S. Tong, and B. Qiang, “Hybrid evo-

lutionary motion planning using follow boundary repair for mobile
robots,” Journal of Systems Architecture, vol. 47, pp. 635–647, 2001.

[7] L. Podsedkowski, J. Nowakowski, M. Idzikowski, and I. Vizvary,
“A new solution for path planning in partially known or unknown
environments for nonholonomic mobile robots,” Robotics and Au-

tonomous Systems, vol. 34, pp. 145–152, 2001.
[8] S. Koenig and M. Likhachev, “Improved fast replanning for robot

navigation in unknown terrain,” in Proceedings of the IEEE Inter-

national Conference on Robotics and Automation (ICRA), 2002.
[9] A. Stentz and M. Hebert, “A complete navigation system for goal

acquisition in unknown environments,” Autonomous Robots, vol. 2,
no. 2, pp. 127–145, 1995.

[10] M. Hebert, R. McLachlan, and P. Chang, “Experiments with driving
modes for urban robots,” in Proceedings of SPIE Mobile Robots,
1999.

[11] L. Matthies, Y. Xiong, R. Hogg, D. Zhu, A. Rankin, B. Kennedy,
M. Hebert, R. Maclachlan, C. Won, T. Frost, G. Sukhatme,
M. McHenry, and S. Goldberg, “A portable, autonomous, urban re-
connaissance robot,” in Proceedings of the International Conference

on Intelligent Autonomous Systems (IAS), 2000.
[12] S. Thayer, B. Digney, M. Diaz, A. Stentz, B. Nabbe, and M. Hebert,

“Distributed robotic mapping of extreme environments,” in Proceed-

ings of SPIE Mobile Robots, 2000.
[13] R. Zlot, A. Stentz, M. Dias, and S. Thayer, “Multi-robot exploration

controlled by a market economy,” in Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA), 2002.
[14] M. Likhachev, “Search techniques for planning in large dynamic

deterministic and stochastic environments,” School of Computer
Science, Carnegie Mellon University, 2003, thesis proposal.

[15] D. Ferguson and A. Stentz, “Delayed D*: The Proofs,” Carnegie
Mellon Robotics Institute, Tech. Rep. CMU-RI-TR-04-51, Septem-
ber 2004.


