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Abstract—For several reasons, the Fourier phase domain is
less favoured than the magnitude domain in signal process-
ing and modelling of speech. To correctly analyse the phase,
several factors must be considered and compensated, includ-
ing the effect of the step size, windowing function and other
processing parameters. Building on a review of these factors,
this paper investigates a spectral representation based on the
Instantaneous Frequency Deviation, but in which the step size
between processing frames is used in calculating phase changes,
rather than the traditional single sample interval. Reflecting
these longer intervals, the term Delta-Phase Spectrum is used
to distinguish this from instantaneous derivatives. Experiments
show that mel-frequency cepstral coefficients features derived
from the Delta-Phase Spectrum (termed Mel-Frequency Delta-
Phase features) can produce broadly similar performance to
equivalent magnitude domain features for both voice activity
detection and speaker recognition tasks. Further, it is shown
that the fusion of the magnitude and phase representations yields
performance benefits over either in isolation.

Index Terms—phase, instantaneous frequency, speech analysis,
voice activity detection, speaker recognition.

I. INTRODUCTION

Most speech analysis focuses on features derived from the

signal’s magnitude spectrum, with the phase spectrum dis-

carded. This is due both to mathematical difficulties analysing

phase as a function, as well as psychoacoustic and signal

processing experimental results that have rarely shown the

phase to provide any empirical benefit over magnitude-only

features. While well motivated, however, this still effectively

discards half of the information present in the original signal.

While this discarded information may mostly be redundant

in low noise conditions, when the noise energy becomes

comparable to the signal energy, sources of discriminative

information that may prove complementary to the magnitude

spectrum are desirable.

Many efforts to improve the robustness and discriminative

ability of speech features have focussed on the importance

of encoding temporal information in the feature extraction

process, such as RASTA filtering of spectral trajectories [1],

temporal pattern (TRAPS) classifiers [2], and the modulation
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spectrum [3], [4], [5]. Given the Fourier phase domain en-

codes relative timing information between different spectral

components, interest in its use has increased in recent years.

Different approaches have included estimating phase changes

from an interference model [6], using the phase of the signal

autocorrelation at different lags [7], measuring relative phase

difference between frequencies [8], and deriving features based

on the group delay [9] and instantaneous frequency [10], [11].

A recent review of the use of phase information in speech

processing, however, indicates that broadly effective phase-

domain features remain elusive [12].

The main difficulty associated with extracting speech fea-

tures from the phase spectrum is the ambiguity that exists

between angles separated by multiples of 2π radians. While

the principal phase spectrum can be obtained by choosing the

phase angle to lie between ±π, this choice is arbitrary and

results in regular discontinuities from circular wrapping of

values considered over time or frequency. Phase unwrapping

may be performed to restore a continuous phase spectrum

for analysis, but consistent unwrapping is difficult, relying on

different heuristics in practice [12], [13], [14], [15]. This dif-

ficulty in obtaining the phase as a continuous function causes

both analytical problems as well as modeling difficulties due

to inconsistencies in the representation across frames.

This paper commences with a discussion of practical issues

that must be considered in analysing phase domain information

from the short-time Fourier transform (STFT). While works

can be found in the speech signal processing literature that

discuss individual issues to varying degrees, the literature on

these details is sparse. A first contribution of this paper is

therefore to provide a tutorial introduction and brief literature

review of practicalities in dealing with short-time Fourier

phase in discrete-time frame-based processing algorithms. In

particular, compensation must be made for the inter-frame

time step and the effect of the windowing function before the

phase spectrum can be meaningfully analysed. Another issue

concerns the lack of a common temporal origin when making

comparisons of the phase spectrum over different sequences,

such as when developing statistical models of speech. Finally,

there is a need to select processing parameters, such as frame

size and window function, that are appropriate for analysing

phase information, rather than naively applying parameters

that work well for the magnitude domain.

Following this review, this paper investigates the use of

phase changes between analysis frames as a representation that

can be consistently analysed both within and across sequences.

As a temporal difference in phase values, this representation
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is equivalent to the Instantaneous Frequency Deviation (IFD)

spectrum [11], [16]; however rather than estimating the instan-

taneous derivative using successive samples, the phase delta is

analysed over a larger time delta corresponding to the inter-

frame step size. As there is no intention to measure the formal

derivative (that is, the limit as the time interval approaches

zero or equivalently single sample difference in its digital

approximation), in order to distinguish from the Instantaneous

Frequency Deviation as commonly computed and used, the

term Delta-Phase Spectrum is used to describe the quantity

used in this article.

The desire to analyse phase differences over frame step

intervals is motivated by the success of approaches to model

the speech signal as the birth and death of individual sinusoidal

components, each lasting several short-term frames [17], [18],

[19], [20]. Measuring the simple difference in phase in narrow

frequency bins across step-sized intervals may effectively

capture information about timing and transitions across the

spectrum and between speech units, such as phonemes, syl-

lables and words, potentially leading to useful features for

detecting voice activity in noise, or distinguishing voices. In

order to demonstrate use of the Delta-Phase Spectrum in prac-

tice, therefore, these two applications are investigated. First,

a simple Gaussian Mixture Model (GMM) based Voice Ac-

tivity Detection (VAD) system is evaluated in different noise

conditions in Section V. Mel-frequency cepstral coefficient

features derived from the Delta-Phase Spectrum, termed Mel-

Frequency Delta-Phase (MFDP) features, are compared to and

combined with standard Mel-Frequency Cepstral Coefficient

(MFCC) features derived from the magnitude spectrum [21].

Similarly, the effectiveness of MFDP features is evaluated for

application to speaker recognition in Section VI.

II. A REVIEW OF IMPLEMENTATION PRACTICALITIES FOR

THE PHASE DOMAIN

A. Short-Time Fourier Analysis of Speech Signals

While short-time Fourier analysis of speech is a well-known

technique, in established use for over 30 years [22], [23], [24],

a brief review is provided here as the basis for the subsequent

discussion.

The short-time Discrete Fourier Transform (DFT) is defined

as:

Xm(k) =

∞
∑

n=−∞

w(n − mD)x(n)e−jωkn (1)

where m is the frame index, w(n) is a causal window of length

T (i.e., zero-valued outside the range 0 ≤ n ≤ T − 1), D is

the number of samples between successive analysis frames

(the step size, with D ≤ T ), and ωk = 2πk
L

, where L is the

number of analysis frequencies being considered in the DFT

(with L ≥ T ).

B. Selection of Processing Parameters

The above equation can be interpreted as shifting a short-

time window function w(n) through progressive D-sized de-

lays over the signal x(n), to obtain successive T -length frames

for analysis. Implementation therefore depends on appropriate

choice of the window function, the step size (that is, the frame

rate) and the frame length.

The window function w(n) is necessary to impose a finite

extent on the signal being analysed. Important considerations

include minimising spectral leakage through effective tapering

(enforcing periodicity in the window length) and the ability to

resolve frequency components (effective window bandwidth

and sidelobe level). Different windowing functions are anal-

ysed in [25]. While windows with smooth tapering, such as

the Hamming window, are commonly used in analysing the

magnitude spectrum over short-time segments, some studies

have shown that the rectangular window is more appropriate

when analysing the phase domain [26], [27], [12].

Speech is generally considered to be approximately

piecewise-stationary over a period of approximately 20 mil-

liseconds; however it is noted that some sounds are stationary

over longer or shorter durations, or may be non-stationary.

The choice of analysis frame (that is, window) length T is a

trade-off between desired frequency resolution and temporal

resolution - a longer frame gives better frequency resolution,

however possibly at the expense of blurring out more rapid

speech events. A window duration of between 16-32 ms is

often used in analysis of the speech magnitude spectrum as

an effective balance between these practical considerations.

Most studies on the relevance of phase domain information

in the speech processing literature have however concluded

that longer analysis frames are required than typically used

in magnitude domain analysis. For instance, perception tests

have repeatedly shown that intelligibility of phase-only stimuli

improves over magnitude-only stimuli as the window duration

extends from 100-1000 ms, while the converse is true for

shorter frames [28], [12], [29]. According to a range of studies

on English speech, phonemes typically vary from 50 to 200

milliseconds, syllables from 50 to 500 milliseconds, and words

from 80 to 850 milliseconds [30], [3]. Further, it has been

shown that inter-word pauses during conversational speech can

vary from 100 to 1000 milliseconds [30]. Work modelling the

speech signal as the birth and death of individual sinusoidal

components, each lasting several short-term frames, suggests

that significant phase variations over time and frequency may

be produced by these underlying speech units [17], [18].

In selecting the step-size D, consideration must first be

given to the bandwidth of the window function and the analysis

frame length. For instance, for a Hamming window of length

T , the step-size should be less than or equal to T/4 to avoid

aliasing [23]. This places an upper bound on the step-size,

or equivalently a lower bound on the frame rate (although

it is common practice to implement a step size of T/2). It

is of course necessary that the frame rate be high enough

to capture the temporal dynamics in the signal. Following

the Nyquist sampling principle, the assumption that speech is

quasi-stationary over 20 ms segments motivates new frames

being taken at 10 ms intervals, that is at 100 frames per

second. This frame rate is commonly used in speech analysis

applications. While the preceding paragraph motivated longer

analysis frames for the phase domain, a similar 100 Hz frame

rate (step size) is still motivated in order to effectively sample

these variations in the speech signal.
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(a) Uncompensated Phase Spectrum

Fig. 1. Plot of the Phase Spectrum for successive input audio frames for (a)
uncompensated case, (b) when compensation has been made for the analysis
window, and (c) when both window and frame-shift compensation using
Equation (3) have been applied to the DFT. The solid blue line shows the
current frame, the dashed black line shows the previous frame, and the dot-
dashed red line shows the phase difference between these (calculated using
the phase of the quotient, to avoid wrapping effects). A window and FFT
length of T = L = 128 and a step size of D = 8 were used on a signal at
Fs = 16 kHz.

C. Compensation for the Analysis Window

It is first necessary to understand the effect of the windowing

function on the phase. A description of this effect and a

compensation method can be found in [18, Section 9.3.3],

summarised here for convenience.

Because the window function is commonly symmetric about

its mid-point, and this is aligned with the mid-point of the

current frame in practical implementation of the analysis

procedure, it has a linear Fourier transform phase of ωkT/2.

A simple way to compensate for its effect is to implement

a circular shift of the windowed signal in the time-domain

prior to the Fourier transform. Specifically: take the mth input

frame xm(n) of length T , apply the window function w(n),
zero-pad as necessary to the FFT length L, then circularly

shift the frame by T/2 samples such that the latter half of the

frame occupies the range 0 ≤ n ≤ (T/2) and the earlier half

occupies the range L−(T/2) ≤ n ≤ L−1. Following this, the

Fourier transform can be taken and the inter-frame time step

compensated as above. An alternative implementation may

instead compensate the phase modulation in the frequency

domain.

The effect of this window compensation on a single analysis

frame is shown in Figure 1(a)-(b).

D. Compensation for Inter-frame Time Step

To implement the short-time DFT in practice, typical speech

signal analysis multiplies the window function by T samples

from the signal to obtain an analysis frame. A length L DFT

is then taken to obtain the spectrum for analysis. Subsequent

analysis frames are obtained by shifting the input signal by

D samples - that is, discarding the first D samples from the

T -length buffer, and appending D new samples at the end.

This procedure in effect implements:

X̃m(k) =

∞
∑

n=−∞

w(n)x(n + mD)e−jωkn, (2)

sometimes referred to as the Running Short-time Fourier

Transform (RSTFT) [31]. That is, it is the signal that is

effectively being shifted (through progressive advancements)

past the fixed window, rather than the window being shifted

over the signal. This distinction is important when considering

the absolute time origin for each analysis frame. In (1), the

temporal origin of each signal frame remains the origin of the

original signal x(n). In (2), however, the absolute position

of the frame within the original sequence is discarded, by

redefining the temporal origin of the frame as mD.

This has no implications for applications that only consider

the magnitude spectrum. Further, when the short-term Fourier

analysis is being done prior to re-synthesis of the signal,

such as when using the overlap-add method to implement

frequency-domain filtering, this difference is eventually com-

pensated for by time-shifting the synthesised frame to its

correct position in the output.

In applications that seek to analyse the phase spectrum

across multiple frames, however, the above distinction has

important consequences. Direct inter-frame comparisons of

phase values calculated in this way are invalid, due to the

changing reference. By accounting for the effect of the step

size, however, it is possible to restore a common reference

point to the phase values for every frame, allowing meaningful

analysis and modelling of the phase information over time.

If we therefore wish to compare the phase spectrum between

frames, it is straightforward to see that (1) is related to (2) by

Xm(k) = X̃m(k)e−jωkmD (3)

Returning to the typical procedure for obtaining the spectrum

of successive analysis frames, applying (3) following the

DFT compensates the phase spectrum to restore a common

reference. The effect of correctly compensating for both the

window function and the frame time step is shown in Fig-

ure 1(c).

III. THE DELTA-PHASE SPECTRUM

Two problems still remain with the phase spectrum follow-

ing the above compensation: the lack of common temporal

reference between different sequences, and possible ambigui-

ties arising from phase wrapping. Absolute values of the phase

spectrum have little meaning without a common reference

point: phase values are by nature relative. While phase values

within a single sequence can be compared once they have been

compensated back to a virtual zero reference time, comparison

of phase values across sequences is problematic due to the

arbitrary start-point for the windowing. When developing

statistical models of the behaviour of the phase spectrum,

therefore, it is necessary to somehow restore some common

reference to the values.
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A. Review of Spectral Representations based on Instantaneous

Frequency

One means of achieving a consistent phase-domain quantity

for analysis and modelling is to calculate the temporal deriva-

tive, commonly referred to as the Instantaneous Frequency

(IF). A number of works in the literature have investigated

spectrographic representations which plot the magnitude spec-

trum with the bin location on the time and frequency axes

reassigned according to the instantaneous frequency and group

delay [32], [31], [33]. A technical and historical review relat-

ing these different approaches is presented in [32], including

algorithms for practical digital estimation of the IF using the

STFT. One common method for computing the IF without

explicit differentiation is to first calculate the IF Deviation

as the imaginary part of the ratio between two STFT’s, one

calculated using the standard window and one calculated by

replacing the window with its derivative [31], [34], [33]. The

IF can then calculated by compensating this for the centre

frequency of each component. Following [35], this is referred

to as the Auger and Flandrin method in [32].

Recently a spectrographic representation that is instead

based directly on the Instantaneous Frequency Deviation was

proposed in [11]. In that work, the IF was first calculated as

the phase difference between two successive STFT’s calculated

with a single sample increment, following [36] and referred

to as the finite difference approximation for IF in [32].

Adapting [11], [31] to the notation from the preceding section,

let us redefine the short-term Fourier transform in terms of the

starting sample q of the frame m (ie q = mD), rather than

implying this from the frame index m:

X̃(k, q) =

∞
∑

n=−∞

w(n)x(n + q)e−jωkn, (4)

The Instantaneous Frequency can then be calculated as [11],

[32]:

v(k, q) = arg
[

X̃(k, q)X̃∗(k, q − 1)
]

, (5)

where (·)∗ indicates the complex conjugate. The Instantaneous

Frequency Deviation can be calculated as [16], [31], [11]:

ψ(k, q) = v(k, q) − ωk (6)

= arg
[

X̃(k, q)X̃∗(k, q − 1)e−jωk

]

, (7)

Having observed that the IF tracks its harmonic frequency

more accurately as the corresponding spectral magnitude in-

creases (ie, IF deviation is inversely proportional to magni-

tude), the Instantaneous Frequency Deviation Spectrum α was

then defined as [11]:

α(k, q) = |ψ(k, q)|
−1

(8)

B. Delta-Phase Spectrum

Instead of analysing the instantaneous phase derivatives over

single sample intervals, this paper proposes a related represen-

tation based on the phase difference between successive frames

separated by a step-size time interval. In a similar manner to

the Instantaneous Frequency Deviation above, it can be simply

calculated as the phase of the ratio of successive complex

spectral values:

∆φm(k) = arg

(

Xm(k)

Xm−1(k)

)

(9)

where the use of X from Equation 1 rather than X̃ reflects

the fact that the spectrum has been compensated for the

inter-frame time step and analysis window to implement the

Fourier Transform with a fixed time basis (as described in

Section II). Because the phase modulation introduced by the

analysis window will be the same for all frames, and will thus

be cancelled out during the division, it can be seen that the

Delta-Phase Spectrum may simply be implemented as:

∆φm(k) = arg

[

X̃m(k)e−jωkmD

X̃m−1(k)e−jωk(m−1)D

]

= arg
[

X̃m(k)X̃∗

m−1(k)e−jωkD
]

(10)

where X̃ is the uncompensated short-time Fourier spectrum.

To facilitate direct comparison, the Instantaneous Frequency

Deviation from the preceding section may be restated with the

frame index m explicit as:

ψm(k) = arg
[

X̃(k, mD)X̃∗(k, mD − 1)e−jωk

]

, (11)

while the Delta-Phase Spectrum implements:

∆φm(k) = arg
[

X̃(k,mD)X̃∗(k, mD − D)e−jωkD
]

, (12)

These expressions are equivalent in the limiting case of D =
1 (i.e., a single sample step), however the latter is more general

by using the processing parameter D for the time change

interval. While the mathematical difference is minor, different

information is being captured: rather than estimating the phase

derivative at the start time of each individual frame, the simple

change in phase between frames is measured. Because the

“instantaneous” derivative is not measured, to avoid confusion

with the Instantaneous Frequency as commonly calculated

and used, the less constrained term Delta Phase is adopted

in this article. By adopting a distinct term, it is intended to

encourage new interpretation and insights by moving away

from the constraint of single sample intervals. The term Delta-

Phase draws a clear analogy with delta coefficents commonly

used in speech feature vectors derived from the magnitude

spectrum [37]. A further computational difference is that two

STFTs per frame must be calculated to obtain a spectrogram

or derive features from the IF Deviation Spectrum [11] in

a standard sliding window procedure, while by reusing the

previous frame’s FFT in calculating the phase change the Delta

Phase Spectrum requires only one.

Rather than calculating phase differences over time, as

above, a similar approach in [8] effectively enforced a common

reference using a particular frequency bin in the Fourier trans-

form. Such a method however requires an arbitrary frequency

bin to be selected (chosen to be π/4 in [8]), which may or

may not provide a robust reference depending on the vocal

characteristics of the speaker and the spectral characteristics

of the noise.
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Finally, it is noted that as well as providing a consistent

basis for comparison over different times and sequences, a

representation based on the change in phase over a given

time allows the issue of phase wrapping to be controlled, as

discussed in Section IV.

C. Mel-Frequency Delta-Phase (MFDP) Features

In order to model the speech signal, it is often necessary

to extract a pertinent set of features from the raw spectral

representation. This section presents one such feature set that

may be derived from the Delta Phase Spectrum. The intention

is to be illustrative rather than optimal in any sense: clearly

other feature representations are possible.

The Mel-Frequency Cepstral Coefficients (MFCC) have

proven to be an effective choice of speech features derived

from the magnitude spectrum [21]. The MFCC features are

formed by first extracting filter bank energies using a bank

of band-pass filters on the absolute magnitude spectrum. The

filter bank design is inspired by the critical band filtering

of the human auditory system [38]. Cepstral coefficients are

then derived from these by taking the logarithm of filter

bank energies and performing a Discrete Cosine Transform

(DCT). The cepstral processing implements a homomorphic

transformation, effectively mapping convolutive effects in the

original time domain into additive effects in the cepstral

domain [39], [40].

This paper proposes extracting Mel-Frequency Delta-Phase

Cepstral Coefficients (MFDP) by performing the same opera-

tions on the absolute delta-phase spectrum |∆φm(k)| from (9),

rather than the magnitude spectrum. For these features, the

absolute operator is used to measure the amount of change

in the phase within each frequency bin without concern for

the polarity of this change. It can be seen that the logarithm

following filter bank analysis is not strictly motivated for the

same reason in the phase domain as in the magnitude domain,

as the phase angle is effectively already in the log domain.

The logarithm on the filter bank output does however have a

second effect in practice: being akin to the application of a soft

maximum operation, it effectively emphasises the peak values

within each frequency band. In order to avoid smoothing out

peaks from the delta-phase spectrum following the filter bank

analysis, the logarithm is therefore maintained in the proposed

MFDP feature extraction.

An important practical consideration in developing phase

domain features is selection of the parameters for the short-

time Fourier analysis. Following the rationale presented in

Section II-B, in extracting the MFDP features in this paper,

a rectangular window function is used on frames of 256

ms duration at a rate of 100 frames per second (i.e., a 10

ms step size). Note that such a frame length corresponds to

the analysis interval typically used in other works modelling

temporal dynamics of the speech signal [1], [2], [3], [4], [5].

Further motivation for a longer analysis window is the desire

to detect phase changes in individual harmonic components in

the signal, and thus measure FFT bins that are as narrow as

is practical.

IV. EFFECT OF TIME INTERVAL ON OBSERVED PHASE

CHANGE

As shown in the previous section, the Delta-Phase extends

on the Instantaneous Frequency Deviation by removing the

constraint of being a strict instantaneous phase derivative and

instead capturing coarser phase changes over longer step-sized

intervals. The main impact of increasing the time interval is to

broaden the distribution of phase change that may be observed.

Two conflicting effects of this are to improve the ability to

detect sudden changes in the phase while also introducing

the possibility of phase wrapping. This section considers the

influence of the step size and FFT length parameters in this

context, and presents histograms and spectrograms produced

on a sample speech sequence using different parameters. As

the closest work from the literature, particular comparison is

made between the settings used for the IF Deviation Spec-

trum [11] and those used for the experiments in the current

article.

A. Ability to Detect Sudden Phase Changes

As the phase measurement from the FFT is in some sense

an average measure over the frame duration T (here and in

the following, assume an FFT length of L = T is used), it

becomes increasingly difficult to detect material event-based

changes in the phase as D decreases. Consider the case when

a substantial change in the signal has occurred in the new D
samples from one frame to the next due to some underlying

physical event, such as a new speech unit being produced.

Following a sinusoidal analysis model for speech [17], [19],

[20], this may give rise to the birth or death of a sinusoidal

component, causing a rapid shift in the phase of a particular

frequency component, rather than a slowly varying modulation

in its IF.

The ability of such a rapid phase shift to influence the phase

change as measured using two FFT frames depends on the

ratio of D to T , as well as the windowing function. For the

IF Deviation Spectrum [11], only one of these T samples

changes between the two FFTs used to calculate the phase

derivative for each frame, and then a D sized step is taken

before measuring this again. For example, with T = 512, this

means that 99.8% of the two frames being compared in each

IFD measurement are the same samples, and so any sudden

phase change that occurs over a small range of samples in

the physical signal will undergo a significant averaging effect,

hampering the ability to detect such phase discontinuities. Any

sudden phase change will be further smoothed according to the

tapering of the window function in the time domain.

The ability to measure sudden phase transitions in the

physical signal using phase differences between two FFT’s

may therefore be expected to improve as the proportion of

new samples between the two FFT’s (that is, the ratio of D to

T ) increases, motivating the use of the more general D-sample

time delta used in calculating the Delta-Phase Spectrum in the

current article.
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B. Phase Wrapping Considerations

Contrasting with the above motivation for increasing the

interval for calculating phase change is the possibility of intro-

ducing phase wrapping. To understand this, let us commence

by considering the IF Deviation. IF Deviation measures how

the phase-derivative changes relative to the centre frequency

of a given FFT bin. Following the filter-bank analogy of the

FFT, and neglecting for the moment leakage across bins due

to the non-ideal window response, the possible change in the

IF relative to the bin centre frequency (ωk rad/s) is necessarily

limited by the bin width. For a frame of length T and taking

an FFT length of T , the frequency bandwidth of an ideal

individual FFT bin is ∆ω = 2πFs

T
rad/s. If the instantaneous

frequency lies outside the range ωk ± πFs

T
, the component

would instead occur predominantly in a neighbouring FFT bin.

Over a given time interval, say D samples, the phase change

that may be observed in a given frequency bin at the end

of the interval is therefore limited to ±πD
T

with respect to the

phase observed at the start of the interval. For the IF Deviation

Spectrum in [11], Fs = 16000, D = 1 and T = 512 were

used. In this case, the limiting phase change is ≈ ±0.002π
radians for the IF to be within ± 15.6 Hz of the FFT bin

centre frequency, and thus still fall within that bin. Phase

wrapping therefore will not occur for the IF Deviation, and

this will continue to be the case for the Delta-Phase as long

as the interval D < T . Considering the parameters used in

experiments in the current article, Fs = 16000, D = 160 and

T = 4096, the limiting phase change within a bin is ≈ ±0.04π
radians.

In practice, due to windowing, the above simplified analysis

will not strictly hold: the windowing main lobe width and side-

lobes mean that a given component will have some influence

over a range of frequency bins. Extending the above analysis,

it may be seen that some phase wrapping can theoretically

occur for a given frequency component in distant frequency

bins that are more than B = T/D bins away from the local bin

for that component. The potential influence of such wrapping

will depend therefore on the windowing sidelobe level at this

frequency bin shift, as well as the strength of the the local

frequency component in those bins. For a given frequency

component, as long as D < T phase wrapping will only occur

as noise in distant FFT bins, progressively affecting less bins

and attenuated by the sidelobe level of the windowing as D/T
decreases. IF Deviation represents the limiting case of D = 1,

in which phase wrapping will not occur within the T FFT bins,

although general sidelobe leakage may still introduce noise to

the measured phase change in each bin.

C. Empirical Analysis

From the above analysis it is apparent that the ratio of

the step size to frame length provides a design parameter

controlling the observed distribution of delta phase values,

playing off the ability to detect sudden phase shifts with the

possibility of introducing noise from phase wrapping in distant

FFT bins.

1) Phase Change Histograms: To corroborate this analysis,

Figure 2 plots the histogram of delta phase values obtained
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Fig. 2. Histogram of Delta-Phase values (normalised by π radians) for a
sample speech sequence (Fs=16 kHz) corrupted by 10dB noise for varying
values of D/T, with L=512 in each case. The speech segment consists of a
male utterance of “The decking is quarter-inch mahogany marine plywood”

from the TIMIT database [41]

from a sample speech sequence for six different values of D/T
with T fixed at 512 samples. The delta phase is approximately

uniformly distributed over ±π at D/T = 1, and as this ratio

decreases the values become more normally distributed with

decreasing variance. Case (a) shows the distribution for D=1,

as used to calculate the IF Deviation Spectrum in [11]. The

settings used in the experiments in this paper (D/T = 0.039
using a longer frame of T = 4096 samples) corresponds to a

setting between cases (b) and (c). This setting was chosen

to improve the ability to detect sudden phase shifts while

minimising the ability of phase wrapping to significantly affect

the measurements.

2) Spectrographic Comparison with IF Deviation: Fig-

ures 3-5 demonstrate the effect of different processing param-

eters on the Delta-Phase Spectrum. In each case the original

signal, standard magnitude spectrum and the IF Deviation

spectrum [11] are shown for comparison. To facilitate inter-

pretation in terms of phase change, a minor difference is that

the absolute IF Deviation is used directly here, rather than its

reciprocal as proposed in [11].

For a direct comparison with the IF Deviation spectrum

presented in the literature, Figure 3 uses processing parameters

taken from the example in [11]. In this case, a Chebyshev 50dB

window of length T = 512 (32 ms) and a D = 64 step size

(4 ms) is used. These setting are well suited for calculating

the magnitude spectrum, as shown in Figure 3(b). For the IF

Deviation spectrum in Figure 3(c), a single sample interval

is used to calculate the deviation, while for the Delta-Phase

spectrum in Figure 3(d) the step size D = 64 is used. It

is apparent that the magnitude and phase representations are

correlated, with regions of high magnitude often corresponding

to regions where there is little change in phase, and vice-versa.

As might be expected following the histogram analysis in the

preceding section (in effect, D/T = 0.1250 is used here), the

spectrogram for the Delta-Phase shows a distribution of values

with greater variance than the IF Deviation. This appears as a

more noisy spectrographic representation that makes the finer

structures of the speech less evident for the Delta-Phase than
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(a) Time−domain Signal

(b) Magnitude Spectrum

(c) Instantaneous Frequency Deviation Spectrum

(d) Delta−Phase Spectrum

Fig. 3. Sample audio sequence in the (a) Time-domain and spectrographic
representations of the (b) Magnitude spectrum, (c) Instantaneous Frequency
Deviation spectrum and (d) the Delta-Phase spectrum, using parameters
following [11] to facilitate comparison (Fs=16000, T=512, D=64, Chebyshev
50 dB window). For (b)-(d) the y-axis shows increasing FFT bin index
(i.e., increasing frequency) and the x-axis shows increasing frame index. The
speech segment consists of a male utterance of “The decking is quarter-inch

mahogany marine plywood” from the TIMIT database [41]

(a) Time−domain Signal

(b) Filter−Bank Magnitude Spectrum

(c) Filter−Bank Instantaneous Frequency Deviation Spectrum

(d) Filter−Bank Delta−Phase Spectrum

Fig. 4. Sample audio sequence in the (a) Time-domain and Mel-scaled
Filter-bank spectrographic representations of the (b) Magnitude spectrum,
(c) Instantaneous Frequency Deviation spectrum and (d) the Delta-Phase
spectrum, using parameters following [11] to facilitate comparison (Fs=16000,
T=512, D=64, Chebyshev 50 dB window). For (b)-(d) the y-axis shows
increasing filter-bank index (i.e., increasing frequency) and the x-axis shows
increasing frame index.

the IF Deviation.

Figure 4 shows the same sequence using the same pro-

cessing parameters as Figure 3, however the output of 24

Mel-scaled filter-banks are shown in place of the raw FFT

bins. This figure serves simply to illustrate that despite the

finer differences between the IF Deviation and Delta-Phase

spectrum in Figure 3, when considering Mel-scaled filter-bank

outputs as used in extracting features, these differences are less

evident.

The processing parameters used in Figures 3-4 are how-

ever not appropriate for the motivations of the Delta-Phase

proposed in the present article, which is to detect significant

event-based shifts in the phase of sinusoidal components.

The short frame length leads to wider FFT bins than those

desired to focus on individual harmonic components, and the

(a) Time−domain Signal

(b) Filter−Bank Magnitude Spectrum

(c) Filter−Bank Instantaneous Frequency Deviation Spectrum

(d) Filter−Bank Delta−Phase Spectrum

Fig. 5. Sample audio sequence in the (a) Time-domain and Mel-scaled
Filter-bank spectrographic representations of the (b) Magnitude spectrum,
(c) Instantaneous Frequency Deviation spectrum and (d) the Delta-Phase
spectrum, using parameters as used in subsequent experiments in the current
article (Fs=16000, T=4096, D=160, Rectangular window). For (b)-(d) the y-
axis shows increasing filter-bank index (i.e., increasing frequency) and the
x-axis shows increasing frame index.

use of a Chebyshev window sacrifices some ability to detect

discontinuous event-based transitions in the signal (albeit,

while offering lower sidelobe levels). Figure 5 shows the

same sequence using the processing parameters used in the

experiments in the current article; that is, a rectangular window

of length T = 4096 (256 ms) and a D = 160 step size (10 ms).

As in Figure 4, the output of 24 Mel-scaled filter-banks are

shown. It is apparent from Figure 5(b) that the longer analysis

window is not an appropriate choice for the magnitude domain.

The IF Deviation in Figure 5(c) also shows little information

with these processing parameters, as might be expected given

that only 1 sample of 4096 has changed in the two FFTs

being used to calculate the deviation (that is, 0.024% of the

frame). The larger frame size examined here means that in

practice averaging affects will hinder the ability to detect any

phase change over a single sample interval, particularly at low

frequencies.

In contrast, Figure 5(d) confirms that by using a longer

frame and increasing the ratio of D to T , the Delta-Phase

Spectrum is capturing regions of both high and low phase

change in the signal over both time and frequency. These

patterns reveal interesting structure in the underlying signal

that appear complementary to the information traditionally

extracted from the magnitude spectrum, as shown in Fig-

ure 4(b). For the Delta-Phase Spectrum in Figure 5(d), 160

of the samples are changing from frame to frame (that is,

3.9% of the frame). This step size (10ms) also has the benefit

of matching that commonly used in magnitude domain feature

extraction, facilitating fusion of magnitude (MFCC) and phase

(MFDP) domain systems in the following VAD and speaker

recognition experiments.

V. APPLICATION TO VOICE ACTIVITY DETECTION (VAD)

In order to validate the proposed Delta-Phase Spectrum and

Mel-Frequency Delta Phase features derived from it, a first

set of experiments was conducted applying the features for
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TABLE I
DATABASE NOISE TYPES AND SCENARIOS. THESE FORMAL PARTITIONS OF

THE DATABASE ARE REFERRED TO IN THE TEXT USING ITALICISED

LABELS, SUCH AS Street-City

Type Scenario 1 Scenario 2

Street City Suburb
Car Windows Up Windows Down

a simple voice activity, or speech/non-speech, detection task.

Note that the goal of these experiments is simply to validate

the proposed phase representation, rather than to achieve state-

of-the-art VAD performance.

A. Database

In order to evaluate the proposed MFDP speech features

for the purposes of voice activity detection, a database of

240 hours of noisy speech over 9600 individual files was

constructed through a combination of clean speech and real-

world noise recordings. A comprehensive description of the

database is available in [42], with relevant details summarised

here.

In order to construct the voice activity detection database,

two real-world recordings of at least 30 minutes of typical

background noise were made in each of 4 scenarios, covering

two broad noise types, Car and Street, as shown in Table I.

The two recordings for each scenario were captured at similar

times on separate days to ensure adequate temporal difference

in the environments. In addition to the noise recording itself,

6 swept-sine sweeps were recorded in the Car scenarios in

order to allow the reverberant response to be estimated, such

that speech may be inserted as if it were captured in that

scenario.

For each of the two recordings in each scenario, 200 noisy

speech sequences, equally split between lengths of 60 and 120

seconds, were constucted for each of 6 signal-to-noise ratios

(SNRs), being -10 dB, -5 dB, 0 dB, 5 dB, 10 dB and 15 dB.

These noisy speech sequences were constructed by extracting

a random section of the noise recording of the appropriate

length and adding clean speech sequences chosen randomly

from the TIMIT speech database [41] at the desired SNR.

For the Car scenarios, the clean speech sequences were first

transformed to match the estimated reverberant response of

the noise recording. In order to ensure that speech energy is

consistent between files, the SNR mixing was performed by

adding the inserted speech sequences with an active speech

level of -26 dBov (dB overload, following [43]), after first

scaling the background noise to match the desired SNR. As the

database sequences were constructed, the ground-truth timing

for speech events is known precisely for evaluation of VAD

algorithms.

B. System Description

A Gaussian Mixture Model (GMM) based speech detection

system was used to evaluate the MFDP speech features in

comparison to standard MFCC speech features. GMM-based

systems using MFCC features have been shown to provide a

robust baseline solution across a range of speech classification

problems, including speech/non-speech detection [44], [45].

By extracting features from sub-band energies and learning

statistical models over training examples, a GMM-MFCC

system provides a higher performance baseline than more

traditional VAD systems based on thresholding features such

as broadband frame energy.

The MFCC and MFDP features used in the experi-

ments were 13-dimensional cepstral coefficients, including the

zero’th coefficient, and with first-order regression coefficients

appended (i.e., traditional “delta” features such as in [37]),

making a 26-dimension feature vector in each case. The MFCC

features were calculated using a standard 25 ms Hamming

window, with a 10 ms step size (that is, a rate of 100 fps),

while the MFDP features used a 256 ms rectangular window,

also using a 10 ms step size, following the rationale presented

in previous sections. While larger step sizes could be examined

for the MFDP papers, to facilitate comparison and fusion with

MFCCs, the 10 ms step size was maintained in all experiments.

These speech detection experiments were operated under

the assumption that the broad SNR of the target environment

is known, but the specific scenario, or type of noise, is not

known. To this end the six noise levels were divided into three

groups covering two SNRs each, designated as the high (-10

dB, -5 dB), medium (0 dB and 5 dB), and low (10 dB and 15

dB) broad noise levels.

To train speech detection modules under the operating

assumption provided, speech and non-speech GMMs were

trained based on the known ground truth on one set of

scenarios across both noise types, and for each of the three

broad noise levels. The other set of scenarios for each of the

three broad noise levels was then used to calculate speech

scores by taking the difference between the log-likelihoods

given for each feature vector by the speech and non-speech

GMMs. To give an example for sake of clarity, the low noise

Street-City data was tested on models trained using low noise

data from Street-Suburb and Car-Windows Down.

The speech scores obtained in this way were then smoothed

by a 1-second median filter centred on each feature vector to

attenuate short-term variation in favour of the longer term.

The MFCC+MFDP results indicate multi-stream fusion of the

MFCC and MFDP, in which the log-likelihoods of each stream

were combined using addition (equally weighted) prior to the

smoothing median filter.

Speech and non-speech segmentation decisions were made

by comparing the smoothed speech scores to a threshold. This

threshold was estimated by minimising the half total error rate,

calculated as the average of the miss and false-alarm rates, on

a held-out tuning data set. These tuning scores were calculated

similarly to the test scores, but were calculated on the same set

as the GMM parameter estimation, to ensure the final testing

set is unseen to both the GMM training and threshold tuning.

To produce unbiased results for each noise type, the complete

results were generated using 2-fold training and testing, split

according to the scenario numbers indicated in Table I.

C. Results

Results from the voice activity detection experiments are

presented in Tables II and III for the Car and Street noise
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TABLE II
VAD RESULTS FOR CAR NOISE CONDITION

SNR Features FAR MR HTER

10 to 15 dB MFCC 2.3% 1.3% 1.8%
MFDP 3.4% 1.3% 2.3%
MFCC+MFDP 2.6% 1.0% 1.8%

0 to 5 dB MFCC 2.6% 2.7% 2.6%
MFDP 4.6% 1.6% 3.1%
MFCC+MFDP 3.5% 1.1% 2.3%

-10 to -5 dB MFCC 3.8% 8.9% 6.4%
MFDP 7% 8.7% 7.8%
MFCC+MFDP 7.4% 2.1% 4.7%

TABLE III
VAD RESULTS FOR STREET NOISE CONDITION

SNR Features FAR MR HTER

10 to 15 dB MFCC 2.4% 1.7% 2.0%
MFDP 3.4% 1.5% 2.5%
MFCC+MFDP 2.5% 1.3% 1.9%

0 to 5 dB MFCC 3.0% 6.6% 4.8%
MFDP 4.2% 4.1% 4.2%
MFCC+MFDP 3.4% 2.7% 3%

-10 to -5 dB MFCC 6.6% 23% 14.8%
MFDP 5.1% 17.8% 11.5%
MFCC+MFDP 8.6% 8.9% 8.8%

types, respectively. Results are presented in terms of per-

centage False Alarm Rate (FAR), Miss Rate (MR, equivalent

to False Rejection Rate) and Half-Total Error Rate (HTER).

These demonstrate performance at a particular operating point,

selected to optimise HTER on the training data as explained

above. To show performance across a range of operating

points, the Detection Error Trade-off (DET) plot is shown in

Figure 6 [46].

These results show similar performance is achieved using

the MFCC or MFDP features. In Car noise, the MFCC’s

show a marginal improvement over MFDP’s, and this trend is
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Fig. 6. DET plot of GMM-based VAD results over all noise conditions and
levels, using MFCC and MFDP features and their multi-stream fusion.

reversed for the Street noise. Without seeking to over-interpret

these results, it may be that the MFDP’s show benefits in

less stationary noise environments due to the longer analysis

window of 256 ms. Further, the DET plot in Figure 6 shows

that the MFCC features perform better in the high Miss Rate

region (high False Rejection), while MFDP features exhibit

better performance in the high False Alarm region.

The two important points to garner from these results are:

first, that results using only phase information are comparable

to those using magnitude only; second, that in both noise

types, and at all noise levels, the multi-stream fusion of the

magnitude-domain MFCC’s and phase-domain MFDP’s yields

significant performance benefits over either in isolation, as

measured by the HTER. Note that while the FAR increases

marginally over MFCC in the fused system, the MR is

significantly improved in each case, simply reflecting the fact

that the operating point is chosen based on HTER.

VI. APPLICATION TO SPEAKER RECOGNITION

The effectiveness of the proposed MFDP features for voice

activity detection was demonstrated in the preceding section,

with the fusion results highlighting the complementary infor-

mation they offer to MFCC features. This section seeks to

further validate the proposed phase representation by investi-

gating whether MFDP features are also able to capture speaker

discriminative information from the phase domain through

their application to the task of speaker recognition. As in the

preceding section, the goal of these experiments is to validate

the proposed phase representation, rather than to demonstrate

state-of-the-art performance.

Speaker recognition is commonly performed using cepstral-

based features derived from the magnitude domain. Partic-

ularly successful in this research domain are MFCC fea-

tures. MFCCs provide state-of-the-art speaker recognition

performance when used in conjunction with GMMs adapted

from a Universal Background Model (UBM) and suitable

session variability compensation techniques [47], [48]. Limited

research has focussed on the application of phase-related

features to speaker recognition due to the belief that the phase

component of speech offers little information relative to the

magnitude domain [49], [50], [51].

A. Experimental Configuration

The comparison of MFDP and MFCC features will be con-

ducted following the well-known NIST Speaker Recognition

Evaluation (SRE) series [52] protocols. Since 1996, NIST

have conducted regular evaluations of speaker recognition

technology by specifying an evaluation protocol and corre-

sponding corpus predominantly consisting of conversational

telephony speech from several hundreds of speakers. The NIST

SRE series has driven state-of-the-art in the area of speaker

recognition research. For these experiments, the 2006 and

2008 NIST SRE data and protocols were used, specifically

the evaluation conditions consisting of 5-minute English-only

telephone conversations. This subset of evaluation conditions

was selected to allow for a clear analysis of the proposed

features without the need to consider additional variability
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introduced from microphone, interview or cross-channel trials

available in the corpora.

The two feature sets will be examined in the context of a

GMM Supervector SVM system. MFCC variants of this sys-

tem have demonstrated state-of-the-art performance in recent

SRE’s. The GMM Supervector SVM system [53] combines

robust yet straightforward acoustic modelling in the form of

mean-adapted high-order Gaussian mixture models (GMM)

with more recent discriminative machine learning approaches

through Support Vector Machine (SVM) classification.

In this approach, each utterance, in both training and test-

ing, is first used to estimate a mean-adapted GMM through

maximum a posteriori (MAP) adaptation from a universal

background model (UBM). In this work, gender-dependent,

512-component UBM’s are used for this purpose. This form

of MAP adaptation has been a well-established approach in

speaker recognition for over a decade [47]. The component

mean vectors of the adapted GMM are then concatenated

together to form a single large vector, known as a supervector;

the supervector thus provides a convenient, fixed dimension

representation of each utterance for use within an SVM

classifier.

Speaker SVM training and classification was performed

using the GMM mean supervector kernel [53]. This kernel

performs a weighted dot-product between the GMM mean

supervectors. Support vector machines are discriminative clas-

sifiers and thus are trained on both positive and negative

examples of a speaker. In the context of NIST evaluations,

there is typically only a single (positive) training example of

a speaker while a substantial number of impostor (negative)

examples are drawn from previous NIST evaluation corpora.

Zero and Test-norm score normalisation was applied to

all scores to reduce the statistical variation observed in

scores [54]. Both normalisation techniques utilise a large set of

impostor speech segments to calculate a set of normalisation

statistics. Zero-norm is a speaker-centric technique in which

a speaker’s scores are scaled by the mean µi and standard

deviation σi, obtained when scoring the impostor cohort

against the speaker model, such that,

score =
score − µi

σi

(13)

Similarly, test-norm calculates µi and σi by trialling a given

test segment against a set of speaker models trained using the

impostor cohort. In this work, the impostor speech segments

were extracted from the NIST 2004 dataset.

The MFDP and MFCC features for these experiments were

formed from 12 cepstral coefficients with appended deltas. In

contrast to features used in previous sections, the 0th cepstrum

was removed from the MFDP features to match the existing

MFCC configuration. This was empirically found to provide

marginal improvements to MFDP-based speaker recognition.

The reader is referred to [55] for more details of the config-

uration and implementation of the GMM Supervector SVM

system used in these experiments.

Two well-established techniques for robust speaker ver-

ification were progressively incorporated into the baseline

configuration described above in order to observe whether they

  0.1   0.2  0.5    1     2     5     10    20    40  

  0.1 

  0.2 

 0.5  

  1   

  2   

  5   

  10  

  20  

  40  

False Alarm probability (in %)

M
is

s
 p

ro
b

a
b

ili
ty

 (
in

 %
)

 

 

MFDP

MFCC

MFCC+MFDP

Fig. 7. DET plot of 1-sided, English-only trials from the NIST 2006 speaker
recognition evaluation using MFDP and MFCC features.

could offer similar benefits to proposed MFDP’s as they do to

the magnitude-based features on which they were developed.

The first technique, feature-warping [56], applies short-time

Gaussianisation to the feature vector stream extracted from an

utterance using a sliding window to counteract the adverse

effects of channel mismatch and additive noise. A window

of 5 seconds is utilised in this work. The second technique,

Nuisance Attribute Projection (NAP) [57], aims to reduce the

adverse effects of inter-session variation in the SVM kernel

space. Inter-session variation, such as differences in channel

and background noise, is well known as a major source

of error in speaker recognition. NAP addresses this issue

by removing the directions of greatest inter-session variation

from the supervector space. Based on empirical results, forty

directions were removed from the MFCC supervector space

and twenty dimensions in the case of the MFDP configuration.

Evaluation of the feature sets was performed using the

English-only trials from the 1-sided training condition of the

NIST 2006 and 2008 speaker recognition evaluation (SRE).

Classification performance was measured in terms of mini-

mum decision cost function (DCF) and equal error rate (EER),

as defined in the NIST SRE protocol [52]. Score-level fusion

was implemented using the FoCal toolkit [58] to optimise

linear log regression. The fusion weights for the NIST 2006

SRE trials were learned using scores from the 2008 SRE,

and similarly, 2008 SRE fusion weights were learned from

the 2006 SRE scores. This approach to fusion ensured that

the fused weights were not optimistically biased for a given

corpus.

B. Results

Figure 7 depicts the DET curves from the English-only

trials on the NIST 2006 SRE involving MFDP and MFCC

features and their score-level fusion without incorporating

feature-warping or NAP. The performance of the proposed
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MFDP features demonstrates their effectiveness in capturing

speaker discriminative information from the phase domain. It

is also clear from the DET plot that the fusion of the features

is highly complementary.

Table IV details specific operating performance statistics

from trials on the NIST 2006 and 2008 SRE. Several con-

figurations are presented for a thorough analysis of the pro-

posed MFDP features; a Baseline, Feature-Warping, NAP

and Feature-Warping+NAP configuration, the last of which

amounts to a state-of-the-art configuration developed for

MFCC features. The objective of these experiments was to

observe whether techniques developed for magnitude-based

features were also suited to the proposed MFDP feature set.

The baseline results in Table IV indicate that both MFDP

and MFCC features provided broadly comparable performance

on the NIST 2006 SRE (These results correspond to the DET

curve in Figure 7). On the more challenging NIST 2008 SRE,

MFCCs offered a relative gain of 13% and 15% in minimum

DCF and EER, respectively, over the proposed MFDP results.

Score-level fusion of the baseline MFDP and MFCC configu-

rations resulted in a relative improvement of 22% and 11% in

the EER of the 2006 and 2008 corpora, respectively, indicating

that the MFDP features offer considerable complimentary

information to MFCC’s in the baseline configuration.

The introduction of feature-warping to the baseline system

provided a relative improvement of 7-17% in MFDP perfor-

mance statistics across the NIST corpora and a significant

relative gain of 50% in the MFCC-based results. Interestingly,

MFDP features provided little complimentary information to

the feature-warped MFCC’s. The large discrepancy in the

gains offered by feature-warping may be explained by the

relatively large window used during MFDP feature extraction.

In using a 256ms window of analysis for MFDP extraction

compared to 32ms for the MFCC feature stream, a rela-

tively large correlation between sequential features is expected

thereby potentially reducing the effectiveness or necessity of

feature-warping. An alternative explanation can be derived

from the objective of the feature-warping process. Specifically,

MFDP features may be inherently more robust to channel

distortions and additive noise than the MFCC feature set. This

hypothesis is explored through the application of inter-session

variability compensation via NAP.

The application of NAP to the baseline configurations

provided significant improvements in excess of 32% (relative)

to performance statistics across the NIST corpora. Similarly,

the MFCC configuration obtained a 50% relative improvement

over baseline results from the application of NAP. As with the

baseline results, the fusion of the NAP systems provided a fur-

ther gain of 23% and 13% EER over the MFCC configuration

alone in the NIST 2006 and 2008 SRE, respectively.

The final configuration employing feature-warping and NAP

represents a state-of-the-art SVM configuration developed on

MFCC features. MFCC-based results in Table IV indicate

that NAP provided an average relative gain of 34% in min-

imum DCF and 27% in EER across the evaluated corpora

over the use of feature-warping alone. Comparably, MFDP

results obtained an average relative improvement of 26%

and 21% in minimum DCF and EER, respectively, from the

TABLE IV
MINIMUM DCF AND EER OBTAINED FROM 1-SIDED, ENGLISH-ONLY

NIST 2006 AND 2008 SPEAKER RECOGNITION EVALUATIONS WHEN

USING MFCC AND MFDP FEATURE SETS FOR SVM TRAINING AND

CLASSIFICATION.

NIST 2006 NIST 2008

Features Min. DCF EER Min. DCF EER

Baseline

MFDP .0429 11.10% .0573 15.24%
MFCC .0400 10.89% .0498 12.92%
MFCC+MFDP .0346 8.45% .0465 11.45%

Feature-Warping

MFDP .0398 9.37% .0508 12.69%
MFCC .0188 4.55% .0259 6.34%
MFCC+MFDP .0179 4.54% .0258 6.18%

NAP

MFDP .0273 6.46% .0387 9.81%
MFCC .0184 4.17% .0245 6.02%
MFCC+MFDP .0180 3.20% .0232 5.19%

Feature-Warping + NAP

MFDP .0292 6.28% .0398 9.29%
MFCC .0130 2.87% .0190 4.61%
MFCC+MFDP .0125 2.72% .0185 4.37%

application of NAP. Interestingly, the optimised number of

nuisance directions removed via NAP was only twenty in

the case of MFDP features and forty for the MFCC system.

Comparable performance gains from NAP suggest that MFDP

features exhibit less inter-session variation than MFCCs and

allow such variation to be robustly estimated using fewer

directions. Such a trait is highly desired of features for speaker

verification as inter-session variability continues to be a major

cause of classification error. The phase-based MFDP features

provided reasonable classification performance on the SRE

task with the magnitude-based MFCC features offering relative

improvements of more than 50% in the evaluation of both

corpora. Score-level fusion of both configurations provided

the best performance statistics with relative improvements of

up to 5% being obtained over the MFCC configuration in

the 2006 SRE. Similar improvements were observed in the

2008 SRE trials through fusion. This demonstrates that the

MFDP features extract some speaker specific information from

the phase domain that is complementary to magnitude-based

features.

In operating at a comparable level to the MFCC feature

set in the baseline configuration, offering robustness to inter-

session variation and by providing complementary information

to commonly employed MFCC features, the proposed MFDP

feature set shows high potential for further application in

the field of speaker recognition research. Building on these

preliminary experimental results, investigations into SVM ker-

nels tailored to the MFDP feature set and their application

to GMM-based classification are likely to better exploit the

speaker discriminative information found in MFDP features.

VII. CONCLUSION

This paper has revisited the use of the phase domain in

short-time Fourier analysis of the speech signal, highlighting

the factors that must be considered and compensated before

the phase can be meaningfully analysed. The Delta-Phase

Spectrum computed at a frame advance rate of D samples was
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proposed as a simple phase domain representation similar that

allows consistent comparison over multiple frames and across

sequences, while also minimising practical issues associated

with phase wrapping. The Delta-Phase extends the Instanta-

neous Frequency Deviation, removing the constraint of being

a strict instantaneous phase derivative and instead capturing

coarser changes in the phase structure of the signal from one

frame to the next.

Building upon this representation, it was shown that Mel-

Frequency Delta Phase features extracted purely from the

phase domain could be used to achieve broadly similar per-

formance to the common magnitude-domain Mel-Frequency

Cepstral Coefficients for distinguishing speech from noise,

and also for distinguishing between voices of different people.

Further, it was shown that principled fusion of the magnitude

and phase domain information could achieve performance

improvements over either in isolation.

There remains much scope for research building upon this

work, both in optimising phase domain feature representations

and models, and in understanding whether these findings can

be applied to automatic speech recognition, which needs to

capture shorter-term units than the voice activity and speaker

recognition applications considered here.
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