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Progress in speech synthesis has been  hampered by the lack of 
rule-writing tools of sufficient flexibility and  power. This paper 
presents a new system, Delta, that gives linguists and programmers 
a versatile rule language and friendly debugging environment. 
Delta‘s  central  data structure is well-suited for representing a broad 
class of  multi-level utterance structures. The Delta language has 
flexible  pattern-matching expressions, control structures, and  utter- 
ance  manipulation statements. I ts dictionary facilities provide 
elegant  exception handling. The interactive symbolic debugger 
speeds rule  development  and  tuning.  Delta can not only accom- 
modate existing synthesis models, but can also be used to develop 
new ones. 

I. INTRODUCTION 

With  the continued  trend  toward  friendlier man - 
machine interfaces, the use of synthetic  speech is increas- 
ing rapidly. Limited-vocabulary  devices,  such as talking toys, 
cars, and clocks,  have long been on the  marketplace. With 
recent advances in computer technology,  however, un- 
limited-vocabulary systems,  capable of saying  almost  any- 
thing, are becoming more  and  more  prevalent.  They are 
being used in telephone message  services and  order sys- 
tems,  remote-access  database  services,  automated  factories, 
computerized  dispatching systems, reading  machines for 
the blind, speaking machines  for the speech-impaired,  and 
other  practical applications. Unlimited vocabulary systems 
are  also being used as research tools to increase  our under- 
standing  about speech. 

Because the  number  of possible  utterances is so large,  an 
unlimited-vocabulary system  cannot  store  an encoded  form 
of each  utterance to be  produced, as can a limited-vocabu- 
lary  system.  Rather, it must employ  a set of rules that  can 
be  applied to any input text to produce  the corresponding 
speech. 
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A. Previous Rule Models 

Almost  all previous  text-to-speech systems  have grouped 
their rules into  two main sets.  The first set converts the 
input text into a linear  string of phonetic units (for example, 
phonemes). The  second set  uses the  information in the 
phonetic  string to produce  values  for a speech  synthesizer. 

Although  existing text-to-speech systems all share  these 
two basic rule components, the strategies  used within the 
two components  differ  widely. They differ in the kinds of 
units  on  which the synthesis is based, in the balance main- 
tained  between rules  and  dictionary  lookups, in the way 
the vocal tract i s  modeled (e.g., in articulatory  or  acoustic 
terms), in the  kinds of information they predict (e.g.,  syn- 
tactic, morphological, or  purely phonological), and  more 
generally, in the  linguistic premises on  which they are 
based. 

In the first rule component, systems for  English differ in 
whether  they  predict a word’s pronunciation  on  the basis of 
the  entire word or on the basis of the word’s component 
pieces (morphs). For example, both the  MlTalk System zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[I], 
[2] and the SRS synthesis  rules  for  English zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[3], [4] break a 
word  into morphs (e.g., liking into  “like” + “ing”). The 
NRL rules zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[SI, in contrast, perform  no  morphological analy- 
sis at all, attempting  to convert  text to phonemes  by  simple 
rewrite rules that generate  phonemes  for  particular  letters 
in particular contexts. 

Within systems  that  analyze  words into morphs, one 
again finds  different strategies. For example, the  MlTalk 
system  breaks  words into morphs  via  an  extensive morph 
dictionary with about 12ooO entries,  and it generates pro- 
nunciations  primarily  on  the basis of  morph pronunciations 
extracted  from  the  dictionary. The SRS rules  for  English, on 
the other hand, predict morphs with a set of about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA200 
context-dependent rules  that  insert morphological markers 
into the  input text,  and they generate pronunciations pri- 
marily  by  a second set of rules  that  apply to the annotated 
text  string  produced  by  the first set.  Furthermore, the  MlTalk 
system  respects etymological origins, distinguishing briber 
(“bribe” + “er”) from fiber (“fiber”),  while the SRS rules 
for English do not,  generating  such “spelling morphs” as 
“fibe” + “er”  for fiber. 

In the second rule  component as well, synthesis al- 
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gorithms vary widely, ranging from those  that  produce 
synthesizer  parameter  values  by  concatenating  pre-stored 
acoustic information to those  that  produce  the  values  en- 
tirely by rule. The  demisytlable  scheme,  for  example,  con- 
catenates the acoustic information pre-stored  for  the vari- 
ous  demisyllables  (“half  syllables”),  using  rules only for 
smoothing  between demisyllables  and  for  adjusting  the 
duration  and  pitch patterns [6] - [8].  Most phoneme- 
based  schemes, on the  other  hand,  generate  the  synthesizer 
values entirely by  rule,  by interpolating each  synthesizer 
parameter between target  values  set for  each phoneme 
segment [ I ] ,   [9]-   [ I l l .  The diphone scheme is an inter- 
mediate approach between these two extremes  that uses 
pre-stored transitions between adjacent  phoneme-sized 
segments  [12], [13]. 

A  primary factor in determining the  choice of synthesis 
strategy i s  the  rule-writer’s  linguistic convictions. For exam- 
ple, the  proponents  of an approach  based on demisyllables 
claim that  many of the  influences of adjacent  sounds on 
each other are automatically  present in the demisyllables 
and cannot  easily be captured with rules  that  operate on 
smaller  units.  The  opponents of this  approach  counter  that 
the degree to which sounds influence each  other  depends 
on the overall  context  (e.g.,  stressed  versus  unstressed),  and 
therefore, a particular  demisyllable in one  context is not 
necessarily  appropriate  for  another  context. 

Practical  considerations,  such as memory size, flexibility, 
and ease of implementation also  play a role in choosing the 
synthesis  strategy.  Concatenative  approaches  based on 
pre-stored  units generally  take  more space than  approaches 
based strictly on rules.  Furthermore,  such  concatenative 
schemes  are  less flexible  than rule-based ones,  because the 
acoustic information in the concatenative  units is originally 
extracted (in a tedious  process) from a single  speaker, 
making it  difficult  to change  voice  qualities  and to notice 
generalizations  that may apply from language to language. 
A concatenative  approach, on  the other  hand,  frees the 
rule-writer  from having to predict  the spectral information 
that is already  present in the  pre-stored  units. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPrevious  Rule Development Systems 

Although there are many  synthesis  models to choose 
from, the lack of appropriate rule-writing tools has  made 
developing  good rule sets difficult. Most  text-to-speech 
programs are written in general-purpose  programming  lan- 
guages, burying the  rules in the form  of tables  and  code 
and thereby making  the rules difficult to test  and modify 

Two systems, the one  by  Carlson  and  Granstrom  [14],  and 
the  one by Hertz (SRS) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[15], have attempted to overcome 
this inflexibility by  using explicit rules,  expressed in an 
easy-to-read  and  easy-to-modify linguistic  rule  notation. 
SRS has the added  advantage of  being  highly interactive, 
making  rule entry,  testing,  comparison,  and modification 
especially easy. A major  advantage of these  systems is the 
speed with  which rules  can  be  developed with them.  The 
high-quality SRS synthesis  rules  for  Japanese [16], [17],  for 
example, are the result  of only six months of  work. 

Despite  their considerable flexibility compared to other 
synthesis  systems,  these two rule  development systems  are 
still much too restrictive to warrant  their reputation as 
universal rule-writing tools, Although neither  dictates  what 
the actual  rules  should  do, each  does dictate a particular 

[I], [81 - ~ 3 1 .  

rule  framework that may not be  equally  appropriate for 
describing  all languages  or  even for describing all phenom- 
ena in a  particular language. 

For example, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASRS forces rule-writers to work with four 
kinds of rules - text-modification, conversion,  feature- 
modification, and  parameter  rules - that  must  always  apply 
in that order. Within each  rule level, the  kinds of state- 
ments that  can be made  and the order of  rule  application i s  
also predetermined. For example,  at the parameter rule 
level, rule-writers are forced to adopt a target-and-transition 
model  (in  which target  positions,  associated  values,  and 
intervening  transition shapes  are defined for the various 
synthesizer  parameters). The  parameter  rules  are  always 
tested top  to  bottom through the  rule set and from  left to 
right across the utterance. 

Perhaps the most  serious  weakness of the two rule- 
development systems,  however, is that  they are restricted to 
operating on linear  utterance  representations.  The systems 
cannot-manipulate larger units  like phrases  or  syllables as 
single units in parallel with smaller units  like phonemes. 
Likewise, they cannot  manipulate as independent  units 
pieces that are  smaller  than  phonemes,  such as the aspira- 
tion  portion of  a stop. 

C. The Delta System 

The Delta System  (so-named  because its central  data 
structure consists  of  connected streams much  like  the 
streams at the  mouth of a river) is a synthesis rule-writing 
tool that overcomes  many  of the  limitations of previous 
synthesis  systems. It builds on nine years of  experience 
synthesizing a variety of languages with SRS [18], providing 
the facilities  that have  been  deemed  necessary on the basis 
of  that experience. 

The Delta System  provides a  powerful, high-level pro- 
gramming language called Delta for  expressing  synthesis 
rules. With Delta, rule-writers can  easily define and 
manipulate  a  broad class of utterance  representations,  rang- 
ing  from linear  strings to  multi-level structures.  They  can 
supplement  their rules  wherever necessary with pre-stored 
information  of any kind (for example - morphological, 
phonetic, symbolic,  acoustic,  phoneme-based,  and  demisyl- 
lable-based).  They  can combine  the most  favorable aspects 
of different synthesis  strategies, not  being forced into  the 
“all-or-none” frameworks of other systems. Finally,  they  can 
concentrate on linguistic issues without being bogged down 
in the details of general-purpose  programming  languages. 

The Delta System  can  produce  compact, efficient, and 
portable  rule sets, by compiling  Delta programs  (rules) into 
instructions  for a special  pseudo-machine  called a Delta 
Machine. (In contrast, SRS rules  are  interpreted,  and  Carlson 
and Granstrom’s  rules are compiled  into instructions  for a 
particular  computer.) 

Fig. 1 shows a  block diagram of  the  Delta System compo- 
nents, all  of which are written in C.’  The compiler operates 
on the  Delta source  code, producing assembly  language 

’Computational linguists often develop systems in programming 
languages built  on  top of languages like LISP and PROLOG. For 
example, the relatively new synthesis rule development system 
SYNTHEX [19], is implemented in LISLOG. (We do not yet know 
enough about this system to evaluate it  in this paper.) We chose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC 
for speed, portability, and compactness. 
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Delta pFogram zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i? Delta compiler 

Delta Machine instructions 
I 

dictionary  entries 
I 

assembler/linker dictionary builder 

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
l oad  module loadable dictionary 

text - Delta Machine  interpreter  -sound 

symbolic debugger 

Fig. 1. Overview of the Delta System. 

instructions  for  the  Delta  Machine and a separate  set of 
dictionary entries. 

The  assembler/linker  takes the assembly  language in- 
structions as input and  produces a load  module (an  execu- 
table  program). In addition to performing  the usual linking 
functions, the linker can "patch"  new  or  modified rules 
into existing  load modules, so that rule changes  can  be 
tested quickly and  easily. 

The dictionary  builder takes the  dictionary entries  and 
produces  a  loadable  dictionary (one  that  can  be  searched at 
execution  time  by  the  dictionary instructions in the  load 
module). 

The  interpreter/debugger  executes  the load  module. The 
debugger is an  interactive facility  for testing  and controlling 
Delta programs. Among other  things, the debugger  allows 
rule-writers to display  selected portions  of  the utterance 
data  structure, to trace  the execution  of selected  rules, to 
display selected  variables,  and to temporarily stop  execu- 
tion  of a  program at almost any point. 

In general, the  Delta System  has been  designed to 
accommodate a broad  range of synthesis  schemes, to be 
equally  suitable  for synthesizing  any human language, to 
provide  for easy rule development  and  testing,  and to 
produce compact, fast,  and portable rules. 

The  remainder of this  paper  presents the current  version 
of  the  Delta System from  the user's point  of view,  focusing 
on  the flexible source  language  and the  powerful debugger. 
A  final  section describes briefly the  numeric  capabilities 
being designed  for  the  next  version of the  system. 

11 .  THE DELTA LANGUAGE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe Delta Data  Structure 

The Delta language has been  designed to create, test, and 
manipulate  a data  structure  called a delta. A delta  consists 
of  one or  more user-defined streams that are synchronized 

with each other at  strategic  points. For example, a Delta 
program  might build  up a delta  for  the word bathed that 
has the  structure  shown in Fig. 2. 

borph : root suffix 
% l e t t e r :  I b I a 1 t I h I e I I 
%phoneme: b GAP  dh  GAP 

Fig. 2. Delta fragment for bathed. 

This delta has three streams named %morph, %text, and 
%phoneme. (To simplify parsing,  stream  names  always begin 
with a  percent sign.) Each  stream contains a sequence of 
tokens. For example,  the morph stream has two tokens 
named root and suffix, and  the  text  stream has six tokens 
named b, a, t, h, e, and d. The GAP tokens in the  phoneme 
stream function as placeholders  for  phonemes to be as- 
signed by later  rules. 

The  vertical bars that  separate the tokens in each  stream 
are called sync  marks, and are used to synchronize  tokens 
across  streams. In the delta  for bathed, for  example, the 
sync  marks  synchronize  the  letters b,a,t,h,e in the  text 
stream with a root token in the morph stream,  and the  final 
letter d with a suffix token. Rules  can  test a single  stream  or 
look for a particular  cross-stream  synchronization  equally 
easily (see Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11-B). 

Each token  in a stream is a collection of  fields with 
particular values. All tokens  have  at  least a name field, and 
can be  defined to have  other fields. All tokens in a particu- 
lar stream  have the same fields. For example,  each token in 
the text stream might have a field called character-type with 
possible values (letter), (digit), (punct) ("punctuation"), or 
(space). Fields  and their possible  values  are defined in a 
stream definition. 

The  text  stream definition  in Fig. 3, for  example, first 
defines  the name field, with letters, punctuation marks, 

stream %text ;  
n a m e : a , b , c , d . e , f , g , h , i , j , k , l . . ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n. 0 ,  p. q. r ,  8 .  t .  u. v .  w ,  x. y .  z. 
I I , I D?., ,!,, D ,, s i , ,  * 2 , *  B 3 8 ,  

' 4 ' .  IS', ' e ' ,  ' 7 ' .   ' 8 ' .  'Q', 'OB; 
. I  * .  

character-type:  letter,  punct,  space. digit; 
let ter- type : vowel ; 

end %text ;  
Fig. 3. Sample text stream definition. 

spaces, and digits as possible  values.  Then it defines the 
field character-type, with possible  values (letter), (punct), 
(space), and (digit). Finally, it defines the field letter-type. 
Since only  one value, (vowel), is given, the opposite  value, 
('vowel), is defined  implicitly. 

The  text  stream definition illustrates the three  kinds of 
fields  that tokens  can  have: name-valued, multi-valued, and 
binary. A name-valued field, such as the field name, takes 
token names in some  stream as values; a  multi-valued field, 
such as character-type, is a non-name-valued field  with 
more  than two possible values; and a binary field, such as 
letter-type, is a non-name-valued field  with exactly two 
possible  values. 
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A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfield together with one of i ts possible  values is called 
an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAattribute. A stream definition can  associate a set of 
initial  attributes with a particular token name.  The initial 
attributes are the field-values  that are automatically set 
whenever a  token  with that name is inserted into the delta. 
The phoneme stream definition in Fig. 4 shows two ways in 
which  initial attributes can be defined. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

stream  %phoneme; 
name : 

b.  p. d, t. g. k, dh, th. f ,  V ,  8 .  z ,  sh. 
zh, ch, jh, 1,  r, y ,  1,  i, I. ae, ... . u h ;  

voicing: 
voiced; 

phoneme-class: 
conaonant(b-r),  vorel(i-uh),  glide(y , w )  ; 

manner-of-articulation: 
stop,  fricative,  affricate, ... ; 

labial,  interdental, alveolar. palatal, ... ; 

place-of-articulation: 

th has  manner-of-articulation:  fricative, 

dh like th except voicing:  voiced; 
ch has affricate,  palatal; 
jh  like  ch except voiced; 

place-of-articulation: intordental; 

end %phoneme; 

Fig. 4. Sample phoneme ltream  definition. 

For the  field phoneme-class,  each field-value is followed 
by a parenthesized list of  token names that  have that value. 
For other fields, the  initial attributes are  assigned to each 
token name by a sequence of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhas- and  like-statements that 
follow the  definitions  of the  fields  themselves.  The first 
has-statement, for example, assigns the  initial attributes  for 
th. The first like-statement then gives dh the same initial 
attributes as th, except  that the  field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvoicing gets the value 
(voiced). (The token name th receives the  attribute 
("voiced) by default.) The token names jh and ch are 
treated similarly,  except  that the  field names for the attri- 
butes are not given.  An attribute can  always be used without 
the  field name when  the field-value  alone is unambiguous. 

The selection of stream  types  and  attributes is left  en- 
tirely to the  rule-writer. For  example, rule-writers could use 
a  demisyllable stream, a phoneme  stream,  or both. Similarly, 
they  could use  streams  representing  articulatory  parameters 
such as the  tongue tip movement  and  degree of labial 
constriction,  or  they  could use  streams representing  acous- 
tic parameters  such as formants. 

Multi-Leveled Deltas versus  Linear Structures: Multi- 
leveled deltas  have several  advantages  over the linear  repre- 

%morph : 

d ~ i ~ s ~ c ~  d I s k uh o r ~ ' ~ e ~ r l  v E r z s %phoneme: X t  ext  : 

PWfiX S u f i  

syl syl SY 1 %syllable: 

sentations central to previous  synthesis  systems.  The first 
and most obvious advantage is clarity. Consider the  delta 
for  the  word discovers shown in Fig. 5.* This  representation 
not  only makes the utterance  structure  clear (for example, 
the  different prefix and  first-syllable  boundaries), but  allows 
the relevant units to be tested  and manipulated straightfor- 
wardly. For  example, a Delta program  can  easily find the 
irregular  pronunciation for the  root cover, by looking  up in 
the  dictionary  the letters  synchronized with the  root  token. 
Similarly, a  Delta pattern  can  easily determine that the 
phoneme  [k]  of the  root cover does not  begin  a syllable 
and  should  therefore  not  be aspirated [20]. (Compare the 
[k] of discomfort, which for most  speakers begins a syllable 
and i s  aspirated. See Section 11-C for a discussion of how 
the  different syllable  boundaries in words like discover and 
discomfort can be determined.) 

The clarity of the  Delta  notation is especially  evident 
when contrasted with the cluttered way in which  the same 
information  would be represented in other systems.  For 
example,  after SRS text modification  (the first stage of SRS 

text-to-phoneme conversion), the  word discovers would be 
written as follows: 

+ + d I . s -  + c o v e r +  - s + +  

(Only unpredictable syllable  boundaries - in this case, the 
first one-are marked at the text-modification level.) In 
other kinds of words,  stress-related information would be 
interspersed as well, and in sentences,  phrasal information 
would be  included. The  abundance of special  markers not 
only obscures the utterance  structure, but complicates the 
rules,  since they cannot  test  and  manipulate the higher 
level  units  directly. 

A second  advantage  of multi-leveled deltas  over  linear 
representations i s  that  they  can  synchronize noncontiguous 
tokens at one level with a single token at another level. 
Consider  Semitic  languages,  where the consonants without 
the  intervening vowels  comprise the  root. For example, the 
Hebrew  word kotev is the present-tense  (masculine) form 
of "write,"  whereas katuv i s  the passive participle  "written." 
The word kotev can  be  represented in delta  form as shown 
in Fig. 6. The word is represented from  right to left in 
accordance with Hebrew writing  convention. (Rules  can 
scan the  delta  equally  well in either direction.) 

The  consonant  stream has two adjacent sync  marks that 
have no intervening token;  such  sync  marks  act like a single 
sync  mark.  The  tokens between  them in other streams - in 
this case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo and e in the  vowel stream - can be thought  of 
as being "invisible" in the stream with the  adjacent sync 

CAP c GAP o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGAP :%vowel 1 'V I I t I I k 1 :%consonant 
root :%morph 

Fig. 6. Delta fragment for Hebrew kotev ("write") 

'This delta represents  an intermediate stage of rule application. It 
i s  assumed that  the phonemes I and E would be reduced to the 
appropriate unstressed vowels by later rules. 

Many  linguists  would argue that the v of discover actually be- 
longs to  two syllables. Ambisyllabicity can be represented with the 
delta data structure, but is not  illustrated in this paper,  since the 
additional  complexity of the resulting structure would  only obscure 

Fig. 5. Delta fragment for discovers. the  points  being made. 
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marks.  This representation permits straightforward manipu- 
lation of the three consonants as a unit. For  example, to 
look  them  up  in the dictionary, the program would simply 
look  up the consonant  sequence synchronized with the 
root  token  in the morph stream. 

A third advantage of  multi-level deltas  over  linear  struc- 
tures i s  that  the  derivational  history of all units is available 
to the rules. Having earlier stages available eliminates the 
need to carry  special  markers  or attributes  through a deriva- 
tion when reference must  be  made  back to those stages. 
For example, in some  English  dialects, the stop [t] is in- 
serted between a tautosyllabic [n] and [SI. The words zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsense 
and prince would be pronounced with the same  sequence 
of segments as the words cents and prints. However, 
according to a recent study  [21], the inserted stop of a word 
like sense is not  phonetically  identical  to the inherent stop 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa word  like cents; its  closure duration is shorter. 

With deltas in which letters are synchronized with 
phonemes, the  conditioning factors  for  the  closure dura- 
tions of inserted versus inherent stops  can  be  stated di- 
rectly, as shown by the deltas in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 for sense and cents.3 

sense: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Xtext : 
%phoneme: l ~ l ~ l ~ l t l ~ l e l  

Xtext : 
%phoneme: 1 : 1 ~ 1 ~ 1 ~ 1 : 1  

cents: 

Fig. 7. Delta fragments  for sense and cents. 

In  the delta  for sense, the inserted stop is not synchronized 
with a letter, and can therefore be easily differentiated  from 
the  inherent  stop of cents, which i s  synchronized with a 
letter.  (Note  that  the inserted stop is invisible - that is, hot 
synchronized with a gap - in the text stream, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that a test 
for  the  letter sequence ns would succeed despite the intru- 
sion  of  the  stop in the phoneme  stream.) 

A fourth advantage of multi-level deltas  over  linear  struc- 
tures is that  the basic  synthesis units (say, phonemes) can 
be easily subdivided  into smaller  pieces.  Such  sub-pieces 
simplify  the  description  of complex segments,  such as 
pre-nasalized and post-nasalized stops ([mb] and [bm]) 
[22], diphthongs ([ay] in chide), and  affricates ([ch] in 
chide), which behave as single units  for some purposes  and 
as two units  for others. 

Consider the  delta shown in Fig. 8 for the word chide. 
The phoneme-sized units ch, ay, and d might be  used to 

%phoneme: I ch I ay 1 d I 
%sub-phon: t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI sh a I y d 

Fig. 8. Delta fragment  for chide. 

3The term “phoneme” is used  loosely in this  and other examples 
to mean “phoneme-sized segment.”  An epenthetic (inserted) stop 
is not a phoneme  in strict  linguistic  usage  of  the term. A more 
complicated, but linguistically  more appealing way to handle the 
epenthetic stop would zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe to insert it at a level (stream) below the 
phoneme stream. The duration rules could then distinguish the 
inserted stop from an inherent one by  testing whether it is synchro- 
nized  with  (i.e., is derived from) a phoneme. 
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predict  durations. Their  subparts, on the other hand, might 
be used to  predict formant transitions,  since the formant 
transitions from the preceding segment into [ay] will be 
much  like those into the monophthong [a], but those from 
[ay] into the following sound, will be more like those from 

Multi-level deltas  can  also  represent low-level acoustic 
phenomena  that do not  belong to any single higher level 
segment. For example, there has been debate  over whether 
aspiration is best treated for  synthesis  purposes as part of 
the  stop or as part of the following vowel. Linear  represen- 
tations  force  it  to be treated as one or the other.  Delta 
allows a third (perhaps phonetically more  accurate) alterna- 
tive - namely, to associate it exclusively with neither, as 
shown  in  the delta in Fig. 9 for  the word pie. 

[ Y k 4  

% l e t t e r :  
%phoneme : 
Xamplitude-type: 

Fig. 9. Delta fragment  for pie. 

B. Rules 

Synthesis rules (and linguistic rules in general)  usually 
test for  the occurrence of a pattern and perform an action if 
it occurs. For example, a phoneme-predicting  rule for En- 
glish might test for a letter a preceding a consonant  and a 
root-final  letter e (as in shave and wade), and  generate the 
phoneme [e] for  it. The Delta language is specifically de- 
signed to test patterns against a delta and perform actions 
on the  delta when the patterns match. 

The  syntax of Delta’s  rules borrows as heavily from exist- 
ing computer programming languages as it does from  the 
notations  of  linguists.  Although  multi-level utterance repre- 
sentations are central to current research in phonological 
theory [23], linguists have not yet developed a formalism 
for  testing and manipulating these  structures that can be 
implemented easily on a computer. 

Patterns: Delta patterns  can  test  for the occurrence of 
particular sync  marks  and particular  tokens in relation to 
those sync  marks.  Sync  marks  are referred to  in the rules by 
means of pointer variables. 

Assume, for example,  that a pointer named -1 has been 
set  at the sync  mark before the letter a in the  sample delta 
for bathed, as shown  in Fig. IO. The  sync  mark  can then be 

%morph : root suffix 
%le t te r :  1 b I a I t I h I e 1 1 
%phoneme: b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGAP dh GAP 

-1 

Fig. 10. Delta fragment  for bathed with pointer. 

4Even segments not thought of by most  linguists as complex 
segments often have  asymmetrical  properties  that could be handled 
straightforwardly by subdividing the segments.  For  example, the 
[k]s of words like pokey and okay could be divided into a velar 
portion and a palatal portion in order to generate the velar-like 
formant transitions into the [k]s  and the palatal-like transitions out 
of them. 
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referred to in patterns  such as the following: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[%text -*I a] 

The  square  brackets  enclose a stream identification (here, 
the text  stream)  and a  pattern to be tested in that  stream. 
The  underscore followed  by a pointer name is the  pattern's zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
anchor, and  specifies  the sync  mark at which  testing  of  the 
pattern begins.  The  simple  pattern  above  starts at the sync 
mark zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA*1 and  tests  whether  the following  token in the text 
stream i s  named zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. 

Rather then  testing for the letter a alone, a pattern  could 
test for an occurrence'of one of  the letters a, e, i, 0, or u, as 
shown in the  following pattern: 

[%text -*I {a I e 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo I u}] 

Alternatively, if the letters in question all have the  attri- 
bute (vowel), this test could be  expressed in the  following, 
simpler form  (which can  also be tested  more quickly): 

[%text -*l (vowel)] 

Patterns  are not restricted to testing the text  stream.  The 
following pattern tests the phoneme  stream  for  the pho- 
neme dh after the sync  mark pointed to  by* l :  

[%phoneme -*1 dh] 

Patterns  can  also switch freely from one  stream to another, 
wherever there is a sync  mark that is in  both streams.  For 
example, the  pattern 

[%text -*1 a  [%phoneme  (consonant)]  e] 

matches i f  after2 there is the letter a, a sync  mark spanning 
the text  and phoneme streams (implicitly  indicated by the 
square  bracket), a phoneme with the attribute (consonant), 
another sync  mark  spanning  the  text  and  phoneme  streams, 
and the  letter e. It  would match,  for  example, the sample 
delta  shown in Fig. 10. 

Because it  would be tedious in writing synthesis  rules to 
have to keep  repeating  stream  identifications,  such as %text 
or %phoneme, Delta allows  the rule-writer to specify two 
default streams for  pattern  matching-a primary default 
stream for  portions  of patterns  outside  square  brackets  and 
a secondary default stream for portions in square  brackets 
that have no explicit stream  specification.  The  rest of this 
paper assumes that the  rule-writer has made the text  stream 
the primary  default stream,  and  the  phoneme  stream the 
secondary default stream. With these  defaults, the above 
pattern can be  simplified to 

{ a [(consonant)] e } 

Curly braces, rather  than  square  brackets,  surround the 
pattern,  since  square  brackets would test  the  phoneme 
stream,  rather than the  text  stream.  Curly  braces  can  sur- 
round patterns and most  subpatterns, without changing the 
meaning of what they  enclose. 

In order to test pointer variables,  such a s 2  in the  pattern 
just shown, it is necessary first to set them. initially, two 
built-in pointers are  set: *left, which  points to the  leftmost 
sync  mark of the delta,  and *right, which  points to the 
rightmost sync  mark. Other pointers are  set as side-effects 
of  pattern matches,  by  preceding their names with an 
exclamation point. For example, the following pattern i s  the 

same as the previous  one  except  that i f  the  entire  pattern 
matches, "2 will  point  to the sync  mark after the  letter a: 

{ -*1 a ! *2 [(consonant)]  e } 

Any side-effects of  testing  a  pattern are undone if the 
pattern fails to  match, so that failed tests will  not affect the 
delta  or any  variables. i f  the above pattern  failed to match 
after "2 had  been set (because the  delta  contained two 
consonants  at that  point, for  example) the  setting  of "2 
would be  undone. 

Patterns  can be  quite complex. For example, the  follow- 
ing, more realistic pattern  for English,  adds a test to the 
above pattern to determine  whether  the  letter e is root- 
final (in order to predict  the  pronunciation of the  vowel 
phoneme  corresponding to the  letter a in words like make, 
date, dating ("date"+  'ling"),  and so forth): 

{ { -^1 a ! -2 [ (consonant)]  e ! *end} 

& [%morph  root  -*endl } 

The & operator  connects two independent tests  that  must 
both succeed for  the  pattern to match.  The left  conjunct i s  
always  tested  before the  right,  which ensures, in this case, 
that *end is set by  the first half of  the expression  before it is 
checked  by the second half. 

Not only can  patterns  test whether two tokens in differ- 
ent streams  (such as e and root above)  are bounded by the 
same  sync mark, but they  can  also  test whether  a  token in 
one stream i s  "contained  in"  a  token in another  stream 
(regardless of whether  the tokens are bounded by the same 
sync mark). For  example,  given a delta with syllable  tokens 
and associated stress attributes, the  rule in English that 
reduces vowels in most  unstressed  syllables could easily 
test whether each token  with the  attribute (vowel) is in an 
unstressed  syllable. 

Assume that  a  vowel-reduction  rule is being  applied to 
the  word discover and tha t2  is pointing after the phoneme 
E, as shown in Fig. 11. (Ignore the \\Al in the  figure  for  the 

moment.) The following pattern, which tests whether  the 
vowel preceding -1 is in an  unstressed  syllable, would 
match  the  phoneme E: 

{ [(vowel) -^1 ] & [%syllable- \\*l (-stress)] } 

This pattern uses the left context  operator \\ to specify 
the closest  sync  mark in the syllable  stream to the  left  of "l 
as the anchor for  the second  test, as shown in Fig. 11. Since 
a syllable token  with attribute (-stress) follows  this sync 
mark, the  pattern succeeds.  The  same pattern would match 
the  phoneme I of the first syllable if 1 were positioned at 
the sync  mark following the 1. 

Actions: A  pattern i s  usually coupled with an action to 
be  performed if the pattern matches. For example, the 

1594 PROCEEDINGS OF THE IEEE, VOL. 7 3 ,  NO. 11, NOVEMBER 1% 



pattern  for  words  like zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbathe would be  coupled with an 
action  that inserts  the  phoneme zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe (the  pronunciation  for 
the  letter a) into the phoneme  stream between  pointers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-1 
and -2 (replacing  the gap  synchronized with the  letter a in 
Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIO), as shown  below: 

{ { -^1 a ! ̂2  [ (consonant)] e  !^end} 

& [%morph root - ̂ end] } 

- > insert [e] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1 . . . ^ 2 ;  

This rule applies not  only to the root bathe, but  to any root 
containing  the letter a followed by a consonantal phoneme 
and  a  root-final letter e- for  example, bake, fate, and 
Iathe. Fig. 12 shows the sample delta  for bathe after  apply- 
ing  the rule. 

borph :  root suffix 
% l e t t e r :  a t ( h  

%phoneme: 1 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc I dh I &P I 1 
-1 -2  

Fig. 12. Delta fragment for bathe after e-insertion. 

The rule  just  developed can be expanded to handle  any 
vowel,  not  just a, in the same context: 

{ {--l (vowel) ! ̂ 2 [ (consonant)] e ! ̂end} 

& [%morph root -^end] } 

- > strong -vowel ( -1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2); 

The only change to the pattern is a test for a letter with 
the  attribute (vowel), rather than  for  the  letter a alone. 
The action  of  the rule invokes a procedure  named 
strong-vowel, which assigns the  appropriate phoneme for 
the particular  vowel matched. 

A definition for the strong-vowel procedure is shown in 
Fig. 13. The body  of  the procedure is an if-statement. In an 

proc  strong-vowel(-bef ore, -a f ter )  ; 
i f  

{--before  a) -> insert  [e] ' be fo re . . . -a f te r ;  
<--before e> -> insert  [i] 'before . . . '  a f te r ;  
{--before i) -> insert  [ay] -before . . . '  a f te r ;  
{--before 0 )  -> insert  101 -before. . . 'af ter ;  
{-^before u) -> insert  [u] 'before. . . ^a f te r ;  

f i ;  
end strong-vowel ; 

Fig. 13. Strong vowel procedure. 

if-statement,  the patterns to the left  of  the arrows  are  tested 
in succession until one of them succeeds,  and the  action 
specified to the  right  of  the  arrow  for that pattern i s  
executed. 

Delta's  procedures are much  like those of  conventional 
programming languages.  Parameters  can  be  passed by  value 
or  by  value-return. Passing by  value means that a copy of 
the argument i s  given to the procedure, so that  any  changes 
made to the  copy will not affect the variable in the  calling 
program. An argument passed by  value-return, in contrast, 

is copied  for  the procedure,  and then  copied back to  the 
calling program if the procedure  succeeds. 

Delta is unusual in that  the  procedure call, rather than 
the  definition of  the procedure,  specifies which parameter 
passing  mechanism to use.  The strong-vowel procedure call 
above has two arguments, both  of  which are passed by 
value.  Preceding  either  argument with an exclamation point 
would indicate  that  the argument may be  modified  when 
the  procedure  return^.^ 

The  next  example shows how  to insert  the  appropriate 
strong  vowel without calling a procedure,  by  using a 
name-valued  field. Assume that  the definition for  the  text 
stream shown in Fig. 3 is expanded as shown in Fig. 14 
to include  the name-valued  fields strong-pronunc and 
default-pronunc, whose  possible  values  are  the  names of 
tokens in the  phoneme stream. Following the field  defini- 

stream %text ;  

strong-pronunc : names in %phoneme ; 
default-pronunc: names in Xphonene; 
a  has  strong-pronunc: e .  default-pronunc: 
e has  strong-pronunc: i ,  default-pronunc: 
i has  strong-pronunc:  ay.  default-pronunc: 
o has  strong-pronunc: 0 .  default-pronunc: 
u  has  strong-pronunc:  u.  default-pronunc: 

end %text ;  

Fig. 14. Expanded text stream definition. 

tions i s  a list of letters  and  their  values  for  these fields. For 
example, a i s  defined  to have  the  phoneme  name e as the 
value of  the strong-pronunc field and the phoneme name 
ae for default-pronunc. 

Given these definitions, the root-final e rule  can now be 
written  without a procedure as follows: 

{ { - -1 (vowel) !$v ! ̂ 2 [ (consonant)] e ! ̂ end} 

& [%morph root -*end] } 

- > insert [(name: $v.strong-pronunc)] 2 . .  . 2; 

The pattern is the same as before,  except  for  the addition  of 
the expression !$v, which saves a copy of  the matched 
vowel  (in  the sample  delta  for bathed, the  letter a) in the 
token variable $v. The action i s  a single  insertion,  rather 
than a call to a more  complex  procedure. It inserts the 
phoneme whose  name is the  value of the strong-pronunc 
field of the  token in $v-in the case of a, the  phoneme 
named e. 

Our sample  rules so far  have shown alternative ways to 
synchronize one  token (a phoneme) with another token (a 
letter).  Delta also  provides a way to insert a token  between 
two others (for example, to insert the vowels in the  Hebrew 
example in Fig. 6 between the  consonants).  Rule-writers 

'The  conventional choices for parameter  passing (pass-by-value 
and pass-by-reference) are incompatible with each other, so a 
choice must be made for each  parameter when the procedure is 
defined. Pass-by-value and pass-by-value-return, however, are com- 
patible, so the  choice can be made independently for each invoca- 
tion  of the  procedure. 
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can specify whether new  tokens should be  visible or invisi- 
ble  in other streams (that is, whether a gap should be 
inserted in each other stream  or not). 

Insertion i s  not the only possible action for a rule. Rules 
can  also delete tokens  or set the values of fields. The 
following  rule deletes the first of two identical phonemes 
not separated by a morph boundary (for example,  the  first zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 

in  ditto): 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-“1 ( ) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA!Sph !^2 [’ [%morph] ‘I Sph I 
- > delete  %phoneme zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.2;  

The empty angle brackets () match any  single token  in the 
phoneme stream. A copy of that token is stored in the 
token variable $ph, and 2 is set  at the  sync  mark following 
the  token. The  next  part of the pattern checks that  this sync 
mark does not extend into the morph stream - that is, that 
there is no  intervening  morph boundary. The outer nega- 
tion brackets [‘ . . . ‘1 indicate that the enclosed  change to 
the  morph stream  must fail  for the pattern as a whole  to 
succeed.  The pattern  then checks whether the next 
phoneme is  the same as the phoneme stored in Sph. If so, 

the  action deletes the first phoneme. 
This deletion  rule uses the special Delta  negation brack- 

ets. Negation brackets are not restricted to surrounding 
stream  changes. For example, the simple pattern 

{ - ̂ 1 [ ’ (vowel) ‘1 } 

tests for  the absence of a letter  token with the attribute 
(vowel) after the anchor. The pattern { -^1 ( -vowel) }, on 
the  other hand, would test for the presence of a token that 
does not have the  attribute (vowel), and unlike  the  pattern 
with negation brackets, would  not match when 2 points to 
the  rightmost sync  mark in the delta. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Loops: All of  the sample  rules so far  have been applied 
once to a particular place in the delta. Delta provides for 
repetitive  rule  application  with its loop construct. For exam- 
ple, the forall loop  in Fig. 15 breaks  each word of an 
utterance into morphs. 

loop f oral1 {,’begin * le t ter>++ !-end> from - l e f t  ; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
break_int6_morphs(’begin, -end) ; 
continue from -end; 

pool ; 
fig. 15. Ford loop for  breaking words into morphs. 

The from-option “from ’left” initializes the anchor 
%e& to left. The forall pattern matches  words (uninter- 
rupted sequences of letters terminated by a punctuation 
mark or white space).  The ++ after (letter) indicates that 
the longest sequence of one or more letters  should be 
matched. If the anchor ^ b e g i n  is not  before a letter, it is 
advanced one sync  mark in the text stream,  and the  pattern 
is tried again.  This  advancing is repeated until the forall 
pattern matches (in which case the body of the loop is 
executed), or until ^begin reaches the right end of  the  delta 
and  cannot be  advanced (in  which case the  loop  ter- 
minates). 

For  each word found, the body of the loop calls a 
procedure named break-into-morphs to insert prefix,  suffix, 

and root tokens into the morph stream.  The continue state- 
ment advances ^beg in  to the  sync  mark pointed  to by 

*end (the sync  mark immediately following the matched 
word) and continues the scan for  words. 

This loop uses one of the forall options, the from- 
option.  Other forall options can  be  used to specify in  which 
direction to scan, in which stream,  and which  pointer to 
advance. 

C. Dictionary Facilities 

Writing rules for words that behave regularly is only a 
small part of  the  problem of text-to-speech conversion. 
Even more challenging is handling phenomena that cannot 
easily be captured in rules. Traditional exception  diction- 
aries containing words and their  pronunciations work well 
for very  irregular spellings like lasagna and  solder. Delta’s 
more  flexible  dictionary can  store a much broader class of 
information. 

Delta’s dictionary has two parts: the action  dictionaryand 
sets.  The action  dictionary contains token sequences (for 
example, text or phoneme sequences)  and  associated ac- 
tions  (for example, insertions into the phoneme stream). 
Sets contain  token sequences, but  no actions. 

Delta’s find-statement looks up token sequences in the 
dictionary. The  expression 

find {^beg ... ̂ end} 

looks in the  action  dictionary  for the  sequence of text 
tokens between “ b e g  and  “end, returning success if it is 
found and failure i f  not. On success, the  action  specified 
for  the  entry in the  dictionary is automatically performed. 
The  expression 

find { ̂ beg.. . “end} in  prepositions 

looks  for  the text  sequence between ^beg and “end in the 
set named prepositions and simply returns  success  or failure. 

Sets:  Sets provide the rule-writer  with a succinct way to 
group words that behave similarly. For example, the follow- 
ing statement adds the words humbly, crumbly, nimbly, 
and assembly to the small  set of words in which the final ly  
does not  function as a suffix. (If ly were stripped as a suffix, 
later rules would make the b silent, as in  dumbly and 
numbly, where ly is a true suffix.) 

set  no-ly-strip contains {humbly},  {crumbly}, 

{nimbly 1, {assembly 1 ; 
The lrstripping rule can now be  expressed straightfor- 

wardly, as a simple pattern with an explicit set of excep- 
tions: 

{ ! ̂suff ly -^end} 

- > ‘find {“beg. . . ̂ end} in no-ly-strip 

- > iosert [%morph suffix] ^suff .. . ̂ end; 

First, the  pattern checks that the word ends with ly.6 If SO, 

the  word is  looked up in the set no-ly-strip. The “’” in 
front  of find is a negation operator. If the word is not 
found, the suffix token is inserted into the  morph stream. 

The set no-ly-strip in this example  prevents  an action 
from occurring. Sets  are  also useful for  invoking actions. 
The  example in Fig. 16 uses a set named prefix-not-syl to 

‘It is assumed that  the  rule would  not be tested against one-sylla- 
ble words such as sly and fly. 
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set  pref ix-not-syl  contains 
<discover),  idiscuss),  <disease),  <mistake); 

f ind  <-be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgw...- endr) in  prefix-not-syl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-> {!-ends <> -'endp) 

-> insert   [%syl lable  syl ]   -begw.. . -ends; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 16. Syllable  insertion  in  words like discover. 

insert  the first syllable token in words like discover, where 
the  prefix  boundary (marked by  ̂ endp)  does not  coincide 
with the  syllable boundary (see  Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5) .  First, the set i s  
defined,  then  the  word surrounded by  -begw (begin  word) 
and-endw  (end  word) is looked up  in the set.' If it is found, 
-ends (end  syllable) is placed one letter  before the end of 
the  prefix, and a syi token is inserted into the syllable 
stream. For example, in discover, the token syl would be 
synchronized with the letters d and i. 

Using sets for exceptions is often clearer than using the 
action  dictionary, and  produces  faster,  more  compact  rules. 

Insertions: The exception  dictionaries of previous  systems 
have been used mainly  to store  irregular pronunciations  for 
text strings.  The identical  effect can  be achieved in Delta by 
storing sequences of letters in the action  dictionary with 
associated  insert actions that  put the pronunciations in the 
phoneme stream. 

To  insert tokens into the delta, the dictionary must know 
the sync  marks between  which  the  insertion is to occur. 
Pointer variables are therefore passed to the dictionary, in 
much the same  way as they are  passed to a procedure. In 
fact, a dictionary  definition  block  (in  which all action  dic- 
tionary  entries must  be enclosed) looks much like an 
ordinary  procedure  definition: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

dictionary (-beg, ^end, -1, -2); 

end dictionary; 

The dictionary's header  specifies the names of the pointers 
delimiting  the sequence being looked  up (here, -beg and 
*end), and the names of two auxiliary pointers (*1 and  *2) 
that can  be  used within the dictionary entries, as illustrated 
below. 

Since simple insert  actions are  very common, Delta 
provides a shorthand  notation for them. Instead of putting 
the general form 

{of} - > insert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[uh V] b̂eg.. . *end; 

inside  the  dictionary  definition  block, the rule-writer can 
use the  shortened  form 

{of} => [uh v]; 

Just as the source  language provides a special encoding  for 
simple  insert actions, the Delta  Machine uses a special 
compact representation  for them. 

In many cases, items are placed in the dictionary because 
one  letter  (or a sequence of letters corresponding to one 
phoneme) has  an irregular pronunciation. A dictionary  entry 
can  use the  auxiliary  pointers to insert a pronunciation  for 
the  irregular grapheme alone. The following  dictionary  en- 

'The set prefix-not-syl contains  many  more  words than are 
shown in  the example. 

try, for example,  surrounds the irregular letter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo of glove, 

shove, and love with the pointers-1  andA2, and  inserts the 
phoheme uh into the  phoneme stream between these 
pointers: 

{g I  !*I o !^2 vel, 

{sh !^1 o !^2 ve}, 

Whenever one of these roots is looked  up  in the dictionary, 
the  phoneme uh is inserted. The  rest of the pronunciation 
can be determined by the rules. 

Other Actions: An  especially powerful feature of the 
Delta  dictionary is its ability  to associate  an arbitrary action 
(not  just an insertion)  with an entry, as illustrated in Fig. 17. 

dict ionary(-beg, 'end, -1, - 2 ) ;  

<have) -> 
if < --end * ' t o  !-end I' <let ter> '1 > 

-> insert [h ae f t uh1 -beg. . .-end; 
e l s e  -> inser t  [h ae VI 'beg . . .-  end; 
f i ;  

end dict ionary; 
Fig. 17. Dictionary actions  for  have to and  have. 

This example recognizes have  to as a single phonetic 
word  pronounced  [h ae f t uh], and have in other contexts 
as [h ae v]8  When the word have is looked up,*end is set  at 
the sync mark  after  the e. If the orthographic word to 
follows,  the  dictionary  action moves  ̂ end to the sync  mark 
following the to, and  inserts  the corresponding pronuncia- 
tion  [h ae f t  uh]  into the  phoneme  stream. On the other 
hand, i f  have is not  followed by to, *end is not moved,  and 
the  pronunciation  [h ae v] is inserted. 

The dictionary's  ability to move pointers keeps the gen- 
eral flow  of  control of the rule program simple, as il- 
lustrated by the ford loop in Fig. 18. 

loop  foral l  {--beg <letter>++  !-end) from - l e f t ;  
f ind  <'beg.. . !-end); 
continue from 'end; 

pool ; 

Fig. 18. Forall loop for looking up words in the dictionary. 

The exclamation  point before *end in the find-statement 
indicates  that  the pointer's value  may be changed  by the 
dictionary (see the discussion of value-return parameters in 
Section 11-6). If the loop is applied to the sentence I have  to 

go, it  would first look up I, then have. Recognizing that the 
following to is phonetically part of have, the dictionary 
would assign a pronunciation for the entire  phonetic word, 

'The syntactic context determines whether have  to  functions as a 
single phonetic word. For example, in the sentence I have to drink 
a lot of milk it does,  whereas in the sentence Mary has more to eat 
than I have to drink, it does not. The  example in this  paper is  thus 
somewhat oversimplified, showing how have  to  might  be handled 
in the absence  of a proper  syntactic  analysis. 
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and would set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA^end after the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto, causing the fo rd  loop to 
continue  by  looking  up go. 

Dictionary actions  can do more  than  insert  pronuncia- 
tions. Any  statements (including procedure  calls)  that are 
valid in the  Delta program are valid in a  dictionary action. 
The action in Fig. 19, for  example,  marks the final syllable of 
police as stressed  and  inserts  the  phoneme zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi for  the  letter i. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

{pol zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA!- i  i !-2 ce) -> 
do 

mark [%syllable <stressed>] 

insert [il ’1. . . -2;  

( \ \ - l  in %syllable) . . .  (//‘2 in %syllable); 

od ; 

Fig. 19. Dictionary action  for police. 

The do and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAod keywords  group  the  statements  that com- 
prise the  action. The  mark-statement  marks  the  syllable 
token that “contains”  the  letter i as (stressed), using  Delta’s 
context operators \\ and // to delimit  the syllable token. 
The  insert-statement  inserts  the  phoneme i. 

Dictionary  Definition: All dictionary  entries  other than 
the “set contains” declaration  must  be contained in a 
dictionary  definition block. The block in Fig. 20 illustrates 
the various  forms of dictionary  entries. 

dictionary(’beg, -end. ‘1, -2 ) ;  

set prepositions  contains 
{at),  {in),  {under),  (by); 

{coup) => [k  u]; 
{gl !‘i 0 ! -2 VI) => [uhl; 

{have) -> 
if { -’end ’ ’ to !-end [- <letter> -1 ) 

-> insert [h ae f t uh]  ’beg. . .-end; 
else -> insert [h ae VI  -beg . . . -  end; 

fi; 
(1 !‘I o !‘2 vel like {glove) ; 

{near) (in prepositions) ; 

{of)  (in prepositions) => [uh V I ;  

end dictionary; 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20. Sample  dictionary definition block. 

The only expressions not yet  described are the l ike- 
shorthand and the “(in set-name)” clause.  The l i ke -  
shorthand is used  for  the action of love to indicate  that the 
action is identical to that of glove. Alternatively, love and 
glove could  be  listed together with a single  action, as 
illustrated earlier. The like-shorthand i s  useful when  the 
rule-writer wishes to keep  the  dictionary  entries in al- 
phabetical order, as in this  example. 

The “(in set-name)” clause is used  for  the preposition 
near as an alternative way to add it to the set prepositions. 
This  clause i s  most  useful when an entry both belongs to a 
set and has an  associated action  (for example, of). 

Because it is tedious to type  braces  or  square  brackets 
around each dictionary entry, Delta provides  an  alternate 
syntax, illustrated in Fig. 21. 

dictionary(’beg.  ‘end. -1, ‘2) ; 

set prepositions  contains %text: 

%t ext : 
at,  in, under, by; 

coup => [k ul; 
gl !-I o !‘2 ve => [uh]; 

end dictionary; 

Fig. 2 l .  Alternate syntax  for dictionary  entries. 

Ill. THE DELTA DEBUGGING ENVIRONMENT 

The Delta language is compiled into instructions  that are 
executed by  the  Delta  Machine interpreter. The interpreter 
includes an  interactive  symbolic  debugger  for  tracing  and 
controlling program  execution.  The  debugger is comple- 
mented  by  the  Delta linker, which can “patch” changed 
procedures into existing load modules, so that compilation 
and linking delays  are minimized. 

Debugging aids like these are important for developing 
any complex program,  and are especially important  for 
developing synthesis  rules,  where  the output  (the syn- 
thesizer  parameter  values) i s  generally not well-specified, 
but is determined  through extensive  experimentation. A 

synthesis rule set undergoes  constant  revision as applica- 
tions change or new knowledge is gained.  Synthesis rule 
development is generally an iterative,  trial-and-error  process 
that involves  several  rounds of examining  data  such as word 
lists and spectrograms, formulating hypotheses, embodying 
the hypotheses in the rule program,  and  testing  the pro- 
gram. Often an  incorrect pronunciation is not revealed until 
many  utterances  have  been  tested,  and it can  stem from 
almost  any portion of the rules-for example, from  incor- 
rect text-to-phoneme conversion  or from incorrect  syn- 
thesizer  parameter  value  assignment. 

A. The Delta Debugger 

The Delta debugger  provides a set of commands with 
which rule-writers can tailor their  debugging to their  par- 
ticular programs.  The  debugger  command  language i s  flexi- 
ble enough to accommodate  any Delta program,  yet 
powerful enough that rule-writers can produce complicated 
rule traces with only  a  handful  of commands.  (Since  the 
Delta debugger  cannot predict the  organization of  the 
program to be debugged, it cannot have the kind of  built-in, 
predetermined  rule-tracing facilities of a more  restricted 
system like SRS.) 

The  debugger’s power stems from its detailed  knowledge 
of  the  Delta source  language. It can  display  and modify  the 
delta data  structure,  and it uses  source  language notation 
for  procedure names,  stream  names,  variable  names, token 
names, field names,  and so forth. Breakpoints  can be set at 
arbitrary  source  locations to suspend  execution at those 
points. Programs  can  be  stepped through source line by 
source line, with execution stopping after  each line. 
Whenever execution is suspended,  commands  can be is- 
sued to examine  and  alter  the  program  variables  and the 
delta,  or to display  selected  source lines. 

programs  can  be  debugged at the machine  level as well. 
Breakpoints  can be set  at specific addresses, the  program 
‘can  be stepped instruction by  instruction,  and  the  machine 
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instructions can be displayed in assembly-language format. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAutomatic Commands: Rather than  wait for  commands 
Machine-level debugging,  although  more complicated  than to be  entered by the rule-writer, the debugger  can  execute 
source-level  debugging,  can  be  useful on occasions. For pre-specified commands  automatically when a breakpoint 
example, at the machine  level, the  rule-writer can  trace the occurs. For example, the command 
execution of  the instructions in a complicated pattern, 
regardless of  how many  source  lines the  pattern consumes, 
to determine  what parts of the delta match what parts of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA%text %morph zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"begw . . ."endw; go) 

break  after  delta zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin strip-prefix  (print delta \ 

the pattern.' 
Conditional Breakpoints: Conditional breakpoints are 

the heart of  the debugger. With them, the  rule-writer can 
tell  the debugger to suspend  execution  and  accept  de- 
bugging commands when certain conditions arise. Depend- 
ing  on the  rule-writer's specifications,  execution may stop 
in any of several  circumstances:  just  before or just  after a 
change is made to the  delta  or to specified streams in the 
delta; at a particular  procedure  or return  from a procedure; 
at a  particular source line number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor machine address; upon 
failure or  success of particular pattern-matching instruc- 
tions; upon failure or success of  entire patterns;  at the 
beginning  or  end  of a rule's  action; at a particular kind of 
instruction  (for example, at  an insert instruction); or at 
arbitrary points in the program  marked with specially  named 
tags. 

For example, the command 

break on delta 

instructs  the pseudo-machine to halt whenever it is about 
to change the delta. The  debugger then prints the change 
that i s  about to occur,  and the line of  the source  program 
that is being executed.  Whenever  the  machine  stops, the 
rule-writer can  issue debugging  commands. Debugging 
commands  can be issued to display  the  delta  and  various 
parts of  the source  program to determine  whether a change 
is correct. Execution  can then be restarted  anywhere in the 
program - for example,  at  the instruction that was in- 
terrupted, or  at the next  instruction,  or not at all. 

Conditions can  also be associated with ranges that limit 
the  halting to particular  parts of  the program. For example, 
the  command 

break on delta zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin strip-prefix 

would cause the machine to stop only before the  delta i s  
changed by procedure strip-prefix. Similarly,  the command 

break  after  delta in strip-prefix 

would cause the machine to stop immediately after the 
delta i s  changed by strip-prefix. 

Ranges may be smaller  than entire procedures. For  exam- 
ple,  the  command 

break  after  delta  strip-prefix: 3-20 

restricts the  condition  to lines 3 through zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 of procedure 
strip-prefix. 

The  debugger  supports multiple ranges for  each condi- 
tion, and the ranges  for  any condition are independent of 
those  for  other  conditions. 

90ne problem  with the SRS trace facility has been the inability  to 
isolate which parts of  complicated rule contexts succeed  or fail in 
particular cases.  This inability has been particularly troublesome in 
the case of negated expressions. 

instructs the debugger to print  the text  and morph streams 
of  the delta  between "begw and ̂ endw after  any  change to 
the  delta in procedure strip-prefix, and then to continue 
execution (go) at the  point where  execution was inter- 
rupted. Thus with a single  command the  rule-writer can 
obtain a list of words  that are modified by strip-prefix. 

If  the  command list associated with a condition does not 
include  a  command  like go to continue execution, the 
rule-writer is  prompted for  further  debugging  commands. 

Debugging Variables: The Delta debugger  includes 
built-in variables that  rule-writers can  use to mark  positions 
in the  delta  or to  hold tokens.  The following command, 
which invokes  the procedure strip-prefix, uses the built-in 
pointer variables "^1 and ""2 as value-return  arguments to 
the procedure  call: 

Call strip-prefix(! "-1, ! **2) 

It is assumed that these pointers were set to specific  sync 
marks in  the delta by  earlier  debugging  commands.  The 
extra "* " marks the pointers as built-in debugging variables 
rather than  ordinary program  variables. 

Since rule-writers can  surround  any token sequences in 
the  delta  with  built-in pointer variables, then pass them as 
arguments to a procedure, any procedure  can be tested 
independently  of others.  Since  debugging  commands  can 
also initialize  the delta,  such  independent  testing is a realis- 
tic way to test a procedure before  the  supporting and call- 
ing routines are written. 

The  debugger  includes additional built-in variables to 
which  it assigns  values  whenever a breakpoint  occurs. These 
variables  keep  track of  the  position  in the  delta  where a 
pattern is being matched, the stream in which the  pattern is 
being (or was)  matched, the  left  end  of where a change in 
the  delta will take  (or took) place,  the right  end  of such a 
change, the stream in which  the change will take  (or took) 
place, the  number  of the  source line  being executed,  and 
the address of  the instruction  being executed. 

B. The Delta "Patcher" 

Once an error has been  isolated with the debugger, the 
relevant code can be corrected  and  retested quickly by 
recompiling it and patching it  into the existing load  module 
with the  linker. In this  way, the frustrating compilation and 
linking delays with  which most  programmers  are all too 
familiar are minimized. 

For example, the command 

patch  strip-prefix  rules 

instructs the  linker to add the procedure strip-prefix to the 
existing  load  module named rules, overwriting any  previous 
strip-prefix procedure. 

In a similar  way,  dictionary  entries  can  be  added or 
altered and be  quickly patched into an existing  dictionary. 
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Iv. DELTA IN THE FUTURE 

This  paper has focused on the  present  version of the 
Delta System.  To  increase  the power  of  Delta further,  several 
extensions  have  been  planned  or  considered. Most im- 
portant,  numeric capabilities will be  added to give rule- 
writers  the same flexibility in producing synthesizer  values 
as the current version  gives them in converting text to 
non-numeric  phonetic units.1° 

The  second  version  of Delta will include a built-in data 
structure,  separate from  the delta,  that will be  designed for 
efficient  numeric operations,  such as interpolations.  This 
data  structure will be “synchronizable” with  the delta at 
selected points  along  the  time  continuum, and  rules will b e  
able to test  easily for particular  synchronizations of  the two 
data  structures. Delta  will also include numeric  attributes, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
so that tokens in the delta itself can contain numeric in- 
formation  (for example,  default  target  values for particular 
synthesizer  parameters). 

Other data  structures are being considered. For example, 
pointer  attributes may be added, so that  tokens  can point to 
other tokens in any  stream. With such pointer attributes, 
arbitrary  graphs (for example,  recursive  tree  structures) could 
be  built and  manipulated. 

The  second  version of Delta, with full-fledged numeric 
capabilities, will give  rule-writers a much wider choice of 
strategies for  producing synthesizer  values than have previ- 
ous  systems. 

First, it will not force rule-writers to maintain  the  tradi- 
tional  division between  rule components (purely symbolic 
manipulations followed by  purely  numeric  ones).  Instead, it 
will  allow  them  to intermingle both kinds of manipulations. 

Second, it  will  not force rule-writers to select between  a 
concatenative approach, in which synthesizer  values  are 
extracted from a  library  of pre-stored  units,  and a rule-based 
approach, in which all synthesizer  values  are  generated  by 
rules.  Instead, it will allow  them to extract  some  values 
from  the dictionary, and to generate  other  values  by rule. 

Third, it will not force rule-writers to generate  synthesizer 
values on the basis of one particular kind of  unit. Instead, it 
will  allow  them  to generate  values on the basis of whatever 
unit works  best  for  the  synthesizer  parameter  and the 
phenomenon in question  (for example,  demisyllables or 
diphones in some cases, phonemes in others). 

Fourth, it will not force  rule-writers to synthesize in terms 
of a particular type of  synthesizer  parameter.  Instead, it  will 
allow them. to synthesize in terms of articulatory  parame- 
ters,  acoustic  parameters,  or both (provided, of course,  that 
they have written or have been  supplied with a program to 
drive  the synthesizer to be  used). 

Fifth, it will not force  rule-writers to assign  synthesizer 
parameter  patterns on a unit-by-unit basis. Instead, it will 
allow  them  to generate  patterns  that  extend  across  domains 
of arbitrary  size. For  example, the system will be able to 
accommodate a variety of models of  intonation,  including 
those that generate  contours on  the basis of  phonological 
targets linked by low-level transitions [24] - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[27] and  those 
that treat contours as the  result of  two or  more interacting 
mathematical  functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[28]. 

‘OUsers can synthesize with the current version of  Delta  by 
interfacing  their own procedures to generate  synthesizer  values on 
the basis of  the  information present in the Delta. 

In general, the  full-fledged numeric  version of Delta will 
let  rule-writers  combine  the favorable  aspects of different 
synthesis  techniques,  selecting the technique  that  works 
best for  the language  and phenomenon  being  modeled. 

V. CONCLUSION 

The Delta System provides a  powerful framework for 
expressing knowledge about  speech  synthesis.  Rule  devel- 
opment within this framework should enhance productivity 
and speed  progress,  since the pace of developments in 
speech  synthesis  depends  largely on  the ease of creating, 
testing,  and  discarding  rules,  and on the ease of transferring 
the  knowledge gained to  new practitioners. 

Delta’s flexibility  should satisfy  almost all synthesis rule 
developers, whether  linguistic researchers or  the developers 
of  talking products.  The  practicality of  the  resulting  rule sets 
will make i t  more  than just a research tool. 
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