
The Delta Rule Development System for
Speech Synthesis from Text zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SUSAN R. HERTZ, JAMES KADIN, AND KEVIN J . KARPLUS, MEMBER, IEEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
lnvited paper

Progress in speech synthesis has been hampered by the lack of
rule-writing tools of sufficient flexibility and power. This paper
presents a new system, Delta, that gives linguists and programmers
a versatile rule language and friendly debugging environment.
Delta‘s central data structure is well-suited for representing a broad
class of multi-level utterance structures. The Delta language has
flexible pattern-matching expressions, control structures, and utter-
ance manipulation statements. I ts dictionary facilities provide
elegant exception handling. The interactive symbolic debugger
speeds rule development and tuning. Delta can not only accom-
modate existing synthesis models, but can also be used to develop
new ones.

I. INTRODUCTION

With the continued trend toward friendlier man -
machine interfaces, the use of synthetic speech is increas-
ing rapidly. Limited-vocabulary devices, such as talking toys,
cars, and clocks, have long been on the marketplace. With
recent advances in computer technology, however, un-
limited-vocabulary systems, capable of saying almost any-
thing, are becoming more and more prevalent. They are
being used in telephone message services and order sys-
tems, remote-access database services, automated factories,
computerized dispatching systems, reading machines for
the blind, speaking machines for the speech-impaired, and
other practical applications. Unlimited vocabulary systems
are also being used as research tools to increase our under-
standing about speech.

Because the number of possible utterances is so large, an
unlimited-vocabulary system cannot store an encoded form
of each utterance to be produced, as can a limited-vocabu-
lary system. Rather, it must employ a set of rules that can
be applied to any input text to produce the corresponding
speech.

Manuscript received December 6, 1984; revised July 2, 1985.
S . R. Hertz i s with Eloquent Technology, Ithaca, NY 14850, and

with the Phonetics Laboratory, Cornell University, Ithaca, NY 14853,
USA.

J. Kadin i s with the Computer Science Department, Cornell
University, Ithaca, NY 14853, and with Eloquent Technology, Ithaca,
NY 14850, USA.

K . J. Karplus i s with the Computer Science and Electrical En-
gineering Departments, Cornell University, Ithaca, NY 14853, and
with Eloquent Technology, Ithaca, NY 14850, USA.

A. Previous Rule Models

Almost all previous text-to-speech systems have grouped
their rules into two main sets. The first set converts the
input text into a linear string of phonetic units (for example,
phonemes). The second set uses the information in the
phonetic string to produce values for a speech synthesizer.

Although existing text-to-speech systems all share these
two basic rule components, the strategies used within the
two components differ widely. They differ in the kinds of
units on which the synthesis is based, in the balance main-
tained between rules and dictionary lookups, in the way
the vocal tract i s modeled (e.g., in articulatory or acoustic
terms), in the kinds of information they predict (e.g., syn-
tactic, morphological, or purely phonological), and more
generally, in the linguistic premises on which they are
based.

In the first rule component, systems for English differ in
whether they predict a word’s pronunciation on the basis of
the entire word or on the basis of the word’s component
pieces (morphs). For example, both the MlTalk System zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[I],
[2] and the SRS synthesis rules for English zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[3], [4] break a
word into morphs (e.g., liking into “like” + “ing”). The
NRL rules zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[SI, in contrast, perform no morphological analy-
sis at all, attempting to convert text to phonemes by simple
rewrite rules that generate phonemes for particular letters
in particular contexts.

Within systems that analyze words into morphs, one
again finds different strategies. For example, the MlTalk
system breaks words into morphs via an extensive morph
dictionary with about 12ooO entries, and it generates pro-
nunciations primarily on the basis of morph pronunciations
extracted from the dictionary. The SRS rules for English, on
the other hand, predict morphs with a set of about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA200
context-dependent rules that insert morphological markers
into the input text, and they generate pronunciations pri-
marily by a second set of rules that apply to the annotated
text string produced by the first set. Furthermore, the MlTalk
system respects etymological origins, distinguishing briber
(“bribe” + “er”) from fiber (“fiber”), while the SRS rules
for English do not, generating such “spelling morphs” as
“fibe” + “er” for fiber.

In the second rule component as well, synthesis al-

0018~9219/85/1100-1589%01.00 01985 l €€€

PROCEEDINGS O F THE I E E E , VOL. 73, N O . 11, NOVEMBER 1985 1589

gorithms vary widely, ranging from those that produce
synthesizer parameter values by concatenating pre-stored
acoustic information to those that produce the values en-
tirely by rule. The demisytlable scheme, for example, con-
catenates the acoustic information pre-stored for the vari-
ous demisyllables (“half syllables”), using rules only for
smoothing between demisyllables and for adjusting the
duration and pitch patterns [6] - [8]. Most phoneme-
based schemes, on the other hand, generate the synthesizer
values entirely by rule, by interpolating each synthesizer
parameter between target values set for each phoneme
segment [I] , [9]- [I l l . The diphone scheme is an inter-
mediate approach between these two extremes that uses
pre-stored transitions between adjacent phoneme-sized
segments [12], [13].

A primary factor in determining the choice of synthesis
strategy i s the rule-writer’s linguistic convictions. For exam-
ple, the proponents of an approach based on demisyllables
claim that many of the influences of adjacent sounds on
each other are automatically present in the demisyllables
and cannot easily be captured with rules that operate on
smaller units. The opponents of this approach counter that
the degree to which sounds influence each other depends
on the overall context (e.g., stressed versus unstressed), and
therefore, a particular demisyllable in one context is not
necessarily appropriate for another context.

Practical considerations, such as memory size, flexibility,
and ease of implementation also play a role in choosing the
synthesis strategy. Concatenative approaches based on
pre-stored units generally take more space than approaches
based strictly on rules. Furthermore, such concatenative
schemes are less flexible than rule-based ones, because the
acoustic information in the concatenative units is originally
extracted (in a tedious process) from a single speaker,
making it difficult to change voice qualities and to notice
generalizations that may apply from language to language.
A concatenative approach, on the other hand, frees the
rule-writer from having to predict the spectral information
that is already present in the pre-stored units. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPrevious Rule Development Systems

Although there are many synthesis models to choose
from, the lack of appropriate rule-writing tools has made
developing good rule sets difficult. Most text-to-speech
programs are written in general-purpose programming lan-
guages, burying the rules in the form of tables and code
and thereby making the rules difficult to test and modify

Two systems, the one by Carlson and Granstrom [14], and
the one by Hertz (SRS) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[15], have attempted to overcome
this inflexibility by using explicit rules, expressed in an
easy-to-read and easy-to-modify linguistic rule notation.
SRS has the added advantage of being highly interactive,
making rule entry, testing, comparison, and modification
especially easy. A major advantage of these systems is the
speed with which rules can be developed with them. The
high-quality SRS synthesis rules for Japanese [16], [17], for
example, are the result of only six months of work.

Despite their considerable flexibility compared to other
synthesis systems, these two rule development systems are
still much too restrictive to warrant their reputation as
universal rule-writing tools, Although neither dictates what
the actual rules should do, each does dictate a particular

[I], [81 - ~ 3 1 .

rule framework that may not be equally appropriate for
describing all languages or even for describing all phenom-
ena in a particular language.

For example, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASRS forces rule-writers to work with four
kinds of rules - text-modification, conversion, feature-
modification, and parameter rules - that must always apply
in that order. Within each rule level, the kinds of state-
ments that can be made and the order of rule application i s
also predetermined. For example, at the parameter rule
level, rule-writers are forced to adopt a target-and-transition
model (in which target positions, associated values, and
intervening transition shapes are defined for the various
synthesizer parameters). The parameter rules are always
tested top to bottom through the rule set and from left to
right across the utterance.

Perhaps the most serious weakness of the two rule-
development systems, however, is that they are restricted to
operating on linear utterance representations. The systems
cannot-manipulate larger units like phrases or syllables as
single units in parallel with smaller units like phonemes.
Likewise, they cannot manipulate as independent units
pieces that are smaller than phonemes, such as the aspira-
tion portion of a stop.

C. The Delta System

The Delta System (so-named because its central data
structure consists of connected streams much like the
streams at the mouth of a river) is a synthesis rule-writing
tool that overcomes many of the limitations of previous
synthesis systems. It builds on nine years of experience
synthesizing a variety of languages with SRS [18], providing
the facilities that have been deemed necessary on the basis
of that experience.

The Delta System provides a powerful, high-level pro-
gramming language called Delta for expressing synthesis
rules. With Delta, rule-writers can easily define and
manipulate a broad class of utterance representations, rang-
ing from linear strings to multi-level structures. They can
supplement their rules wherever necessary with pre-stored
information of any kind (for example - morphological,
phonetic, symbolic, acoustic, phoneme-based, and demisyl-
lable-based). They can combine the most favorable aspects
of different synthesis strategies, not being forced into the
“all-or-none” frameworks of other systems. Finally, they can
concentrate on linguistic issues without being bogged down
in the details of general-purpose programming languages.

The Delta System can produce compact, efficient, and
portable rule sets, by compiling Delta programs (rules) into
instructions for a special pseudo-machine called a Delta
Machine. (In contrast, SRS rules are interpreted, and Carlson
and Granstrom’s rules are compiled into instructions for a
particular computer.)

Fig. 1 shows a block diagram of the Delta System compo-
nents, all of which are written in C.’ The compiler operates
on the Delta source code, producing assembly language

’Computational linguists often develop systems in programming
languages built on top of languages like LISP and PROLOG. For
example, the relatively new synthesis rule development system
SYNTHEX [19], is implemented in LISLOG. (We do not yet know
enough about this system to evaluate it in this paper.) We chose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC
for speed, portability, and compactness.

1590 PROCEEDINGS OF THE IEEE. VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA73, NO. 11, NOVEMBER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1985

Delta pFogram zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i? Delta compiler

Delta Machine instructions
I

dictionary entries
I

assembler/linker dictionary builder

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
l oad module loadable dictionary

text - Delta Machine interpreter -sound

symbolic debugger

Fig. 1. Overview of the Delta System.

instructions for the Delta Machine and a separate set of
dictionary entries.

The assembler/linker takes the assembly language in-
structions as input and produces a load module (an execu-
table program). In addition to performing the usual linking
functions, the linker can "patch" new or modified rules
into existing load modules, so that rule changes can be
tested quickly and easily.

The dictionary builder takes the dictionary entries and
produces a loadable dictionary (one that can be searched at
execution time by the dictionary instructions in the load
module).

The interpreter/debugger executes the load module. The
debugger is an interactive facility for testing and controlling
Delta programs. Among other things, the debugger allows
rule-writers to display selected portions of the utterance
data structure, to trace the execution of selected rules, to
display selected variables, and to temporarily stop execu-
tion of a program at almost any point.

In general, the Delta System has been designed to
accommodate a broad range of synthesis schemes, to be
equally suitable for synthesizing any human language, to
provide for easy rule development and testing, and to
produce compact, fast, and portable rules.

The remainder of this paper presents the current version
of the Delta System from the user's point of view, focusing
on the flexible source language and the powerful debugger.
A final section describes briefly the numeric capabilities
being designed for the next version of the system.

11 . THE DELTA LANGUAGE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe Delta Data Structure

The Delta language has been designed to create, test, and
manipulate a data structure called a delta. A delta consists
of one or more user-defined streams that are synchronized

with each other at strategic points. For example, a Delta
program might build up a delta for the word bathed that
has the structure shown in Fig. 2.

borph : root suffix
% l e t t e r : I b I a 1 t I h I e I I
%phoneme: b GAP dh GAP

Fig. 2. Delta fragment for bathed.

This delta has three streams named %morph, %text, and
%phoneme. (To simplify parsing, stream names always begin
with a percent sign.) Each stream contains a sequence of
tokens. For example, the morph stream has two tokens
named root and suffix, and the text stream has six tokens
named b, a, t, h, e, and d. The GAP tokens in the phoneme
stream function as placeholders for phonemes to be as-
signed by later rules.

The vertical bars that separate the tokens in each stream
are called sync marks, and are used to synchronize tokens
across streams. In the delta for bathed, for example, the
sync marks synchronize the letters b,a,t,h,e in the text
stream with a root token in the morph stream, and the final
letter d with a suffix token. Rules can test a single stream or
look for a particular cross-stream synchronization equally
easily (see Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11-B).

Each token in a stream is a collection of fields with
particular values. All tokens have at least a name field, and
can be defined to have other fields. All tokens in a particu-
lar stream have the same fields. For example, each token in
the text stream might have a field called character-type with
possible values (letter), (digit), (punct) ("punctuation"), or
(space). Fields and their possible values are defined in a
stream definition.

The text stream definition in Fig. 3, for example, first
defines the name field, with letters, punctuation marks,

stream %text ;
n a m e : a , b , c , d . e , f , g , h , i , j , k , l . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n. 0 , p. q. r , 8 . t . u. v . w , x. y . z.
I I , I D?., ,!,, D ,, s i , , * 2 , * B 3 8 ,

' 4 ' . IS', ' e ' , ' 7 ' . ' 8 ' . 'Q', 'OB;
. I * .

character-type: letter, punct, space. digit;
let ter- type : vowel ;

end %text ;
Fig. 3. Sample text stream definition.

spaces, and digits as possible values. Then it defines the
field character-type, with possible values (letter), (punct),
(space), and (digit). Finally, it defines the field letter-type.
Since only one value, (vowel), is given, the opposite value,
('vowel), is defined implicitly.

The text stream definition illustrates the three kinds of
fields that tokens can have: name-valued, multi-valued, and
binary. A name-valued field, such as the field name, takes
token names in some stream as values; a multi-valued field,
such as character-type, is a non-name-valued field with
more than two possible values; and a binary field, such as
letter-type, is a non-name-valued field with exactly two
possible values.

H E R T Z et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd l . : DELTA RULE FOR SPEECH SYNTHESIS 159l

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfield together with one of i ts possible values is called
an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAattribute. A stream definition can associate a set of
initial attributes with a particular token name. The initial
attributes are the field-values that are automatically set
whenever a token with that name is inserted into the delta.
The phoneme stream definition in Fig. 4 shows two ways in
which initial attributes can be defined. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

stream %phoneme;
name :

b. p. d, t. g. k, dh, th. f , V , 8 . z , sh.
zh, ch, jh, 1, r, y , 1, i, I. ae, u h ;

voicing:
voiced;

phoneme-class:
conaonant(b-r), vorel(i-uh), glide(y , w) ;

manner-of-articulation:
stop, fricative, affricate, ... ;

labial, interdental, alveolar. palatal, ... ;

place-of-articulation:

th has manner-of-articulation: fricative,

dh like th except voicing: voiced;
ch has affricate, palatal;
jh like ch except voiced;

place-of-articulation: intordental;

end %phoneme;

Fig. 4. Sample phoneme ltream definition.

For the field phoneme-class, each field-value is followed
by a parenthesized list of token names that have that value.
For other fields, the initial attributes are assigned to each
token name by a sequence of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhas- and like-statements that
follow the definitions of the fields themselves. The first
has-statement, for example, assigns the initial attributes for
th. The first like-statement then gives dh the same initial
attributes as th, except that the field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvoicing gets the value
(voiced). (The token name th receives the attribute
("voiced) by default.) The token names jh and ch are
treated similarly, except that the field names for the attri-
butes are not given. An attribute can always be used without
the field name when the field-value alone is unambiguous.

The selection of stream types and attributes is left en-
tirely to the rule-writer. For example, rule-writers could use
a demisyllable stream, a phoneme stream, or both. Similarly,
they could use streams representing articulatory parameters
such as the tongue tip movement and degree of labial
constriction, or they could use streams representing acous-
tic parameters such as formants.

Multi-Leveled Deltas versus Linear Structures: Multi-
leveled deltas have several advantages over the linear repre-

%morph :

d ~ i ~ s ~ c ~ d I s k uh o r ~ ' ~ e ~ r l v E r z s %phoneme: X t ext :

PWfiX S u f i

syl syl SY 1 %syllable:

sentations central to previous synthesis systems. The first
and most obvious advantage is clarity. Consider the delta
for the word discovers shown in Fig. 5.* This representation
not only makes the utterance structure clear (for example,
the different prefix and first-syllable boundaries), but allows
the relevant units to be tested and manipulated straightfor-
wardly. For example, a Delta program can easily find the
irregular pronunciation for the root cover, by looking up in
the dictionary the letters synchronized with the root token.
Similarly, a Delta pattern can easily determine that the
phoneme [k] of the root cover does not begin a syllable
and should therefore not be aspirated [20]. (Compare the
[k] of discomfort, which for most speakers begins a syllable
and i s aspirated. See Section 11-C for a discussion of how
the different syllable boundaries in words like discover and
discomfort can be determined.)

The clarity of the Delta notation is especially evident
when contrasted with the cluttered way in which the same
information would be represented in other systems. For
example, after SRS text modification (the first stage of SRS

text-to-phoneme conversion), the word discovers would be
written as follows:

+ + d I . s - + c o v e r + - s + +

(Only unpredictable syllable boundaries - in this case, the
first one-are marked at the text-modification level.) In
other kinds of words, stress-related information would be
interspersed as well, and in sentences, phrasal information
would be included. The abundance of special markers not
only obscures the utterance structure, but complicates the
rules, since they cannot test and manipulate the higher
level units directly.

A second advantage of multi-leveled deltas over linear
representations i s that they can synchronize noncontiguous
tokens at one level with a single token at another level.
Consider Semitic languages, where the consonants without
the intervening vowels comprise the root. For example, the
Hebrew word kotev is the present-tense (masculine) form
of "write," whereas katuv i s the passive participle "written."
The word kotev can be represented in delta form as shown
in Fig. 6. The word is represented from right to left in
accordance with Hebrew writing convention. (Rules can
scan the delta equally well in either direction.)

The consonant stream has two adjacent sync marks that
have no intervening token; such sync marks act like a single
sync mark. The tokens between them in other streams - in
this case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo and e in the vowel stream - can be thought of
as being "invisible" in the stream with the adjacent sync

CAP c GAP o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGAP :%vowel 1 'V I I t I I k 1 :%consonant
root :%morph

Fig. 6. Delta fragment for Hebrew kotev ("write")

'This delta represents an intermediate stage of rule application. It
i s assumed that the phonemes I and E would be reduced to the
appropriate unstressed vowels by later rules.

Many linguists would argue that the v of discover actually be-
longs to two syllables. Ambisyllabicity can be represented with the
delta data structure, but is not illustrated in this paper, since the
additional complexity of the resulting structure would only obscure

Fig. 5. Delta fragment for discovers. the points being made.

1592 P R O C E E D I N G S O F T H E IEEE, VOL. 73, NO. 11, N O V E M B E R 1965

marks. This representation permits straightforward manipu-
lation of the three consonants as a unit. For example, to
look them up in the dictionary, the program would simply
look up the consonant sequence synchronized with the
root token in the morph stream.

A third advantage of multi-level deltas over linear struc-
tures i s that the derivational history of all units is available
to the rules. Having earlier stages available eliminates the
need to carry special markers or attributes through a deriva-
tion when reference must be made back to those stages.
For example, in some English dialects, the stop [t] is in-
serted between a tautosyllabic [n] and [SI. The words zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsense
and prince would be pronounced with the same sequence
of segments as the words cents and prints. However,
according to a recent study [21], the inserted stop of a word
like sense is not phonetically identical to the inherent stop
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa word like cents; its closure duration is shorter.

With deltas in which letters are synchronized with
phonemes, the conditioning factors for the closure dura-
tions of inserted versus inherent stops can be stated di-
rectly, as shown by the deltas in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 for sense and cents.3

sense: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Xtext :
%phoneme: l ~ l ~ l ~ l t l ~ l e l

Xtext :
%phoneme: 1 : 1 ~ 1 ~ 1 ~ 1 : 1

cents:

Fig. 7. Delta fragments for sense and cents.

In the delta for sense, the inserted stop is not synchronized
with a letter, and can therefore be easily differentiated from
the inherent stop of cents, which i s synchronized with a
letter. (Note that the inserted stop is invisible - that is, hot
synchronized with a gap - in the text stream, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that a test
for the letter sequence ns would succeed despite the intru-
sion of the stop in the phoneme stream.)

A fourth advantage of multi-level deltas over linear struc-
tures is that the basic synthesis units (say, phonemes) can
be easily subdivided into smaller pieces. Such sub-pieces
simplify the description of complex segments, such as
pre-nasalized and post-nasalized stops ([mb] and [bm])
[22], diphthongs ([ay] in chide), and affricates ([ch] in
chide), which behave as single units for some purposes and
as two units for others.

Consider the delta shown in Fig. 8 for the word chide.
The phoneme-sized units ch, ay, and d might be used to

%phoneme: I ch I ay 1 d I
%sub-phon: t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI sh a I y d

Fig. 8. Delta fragment for chide.

3The term “phoneme” is used loosely in this and other examples
to mean “phoneme-sized segment.” An epenthetic (inserted) stop
is not a phoneme in strict linguistic usage of the term. A more
complicated, but linguistically more appealing way to handle the
epenthetic stop would zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe to insert it at a level (stream) below the
phoneme stream. The duration rules could then distinguish the
inserted stop from an inherent one by testing whether it is synchro-
nized with (i.e., is derived from) a phoneme.

H E R T Z el dl . : DELTA RULE F O R SPEECH SYNTHESIS

predict durations. Their subparts, on the other hand, might
be used to predict formant transitions, since the formant
transitions from the preceding segment into [ay] will be
much like those into the monophthong [a], but those from
[ay] into the following sound, will be more like those from

Multi-level deltas can also represent low-level acoustic
phenomena that do not belong to any single higher level
segment. For example, there has been debate over whether
aspiration is best treated for synthesis purposes as part of
the stop or as part of the following vowel. Linear represen-
tations force it to be treated as one or the other. Delta
allows a third (perhaps phonetically more accurate) alterna-
tive - namely, to associate it exclusively with neither, as
shown in the delta in Fig. 9 for the word pie.

[Y k 4

% l e t t e r :
%phoneme :
Xamplitude-type:

Fig. 9. Delta fragment for pie.

B. Rules

Synthesis rules (and linguistic rules in general) usually
test for the occurrence of a pattern and perform an action if
it occurs. For example, a phoneme-predicting rule for En-
glish might test for a letter a preceding a consonant and a
root-final letter e (as in shave and wade), and generate the
phoneme [e] for it. The Delta language is specifically de-
signed to test patterns against a delta and perform actions
on the delta when the patterns match.

The syntax of Delta’s rules borrows as heavily from exist-
ing computer programming languages as it does from the
notations of linguists. Although multi-level utterance repre-
sentations are central to current research in phonological
theory [23], linguists have not yet developed a formalism
for testing and manipulating these structures that can be
implemented easily on a computer.

Patterns: Delta patterns can test for the occurrence of
particular sync marks and particular tokens in relation to
those sync marks. Sync marks are referred to in the rules by
means of pointer variables.

Assume, for example, that a pointer named -1 has been
set at the sync mark before the letter a in the sample delta
for bathed, as shown in Fig. IO. The sync mark can then be

%morph : root suffix
%le t te r : 1 b I a I t I h I e 1 1
%phoneme: b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGAP dh GAP

-1

Fig. 10. Delta fragment for bathed with pointer.

4Even segments not thought of by most linguists as complex
segments often have asymmetrical properties that could be handled
straightforwardly by subdividing the segments. For example, the
[k]s of words like pokey and okay could be divided into a velar
portion and a palatal portion in order to generate the velar-like
formant transitions into the [k]s and the palatal-like transitions out
of them.

1593

referred to in patterns such as the following: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[%text -*I a]

The square brackets enclose a stream identification (here,
the text stream) and a pattern to be tested in that stream.
The underscore followed by a pointer name is the pattern's zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
anchor, and specifies the sync mark at which testing of the
pattern begins. The simple pattern above starts at the sync
mark zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA*1 and tests whether the following token in the text
stream i s named zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa.

Rather then testing for the letter a alone, a pattern could
test for an occurrence'of one of the letters a, e, i, 0, or u, as
shown in the following pattern:

[%text -*I {a I e 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo I u}]

Alternatively, if the letters in question all have the attri-
bute (vowel), this test could be expressed in the following,
simpler form (which can also be tested more quickly):

[%text -*l (vowel)]

Patterns are not restricted to testing the text stream. The
following pattern tests the phoneme stream for the pho-
neme dh after the sync mark pointed to by* l :

[%phoneme -*1 dh]

Patterns can also switch freely from one stream to another,
wherever there is a sync mark that is in both streams. For
example, the pattern

[%text -*1 a [%phoneme (consonant)] e]

matches i f after2 there is the letter a, a sync mark spanning
the text and phoneme streams (implicitly indicated by the
square bracket), a phoneme with the attribute (consonant),
another sync mark spanning the text and phoneme streams,
and the letter e. It would match, for example, the sample
delta shown in Fig. 10.

Because it would be tedious in writing synthesis rules to
have to keep repeating stream identifications, such as %text
or %phoneme, Delta allows the rule-writer to specify two
default streams for pattern matching-a primary default
stream for portions of patterns outside square brackets and
a secondary default stream for portions in square brackets
that have no explicit stream specification. The rest of this
paper assumes that the rule-writer has made the text stream
the primary default stream, and the phoneme stream the
secondary default stream. With these defaults, the above
pattern can be simplified to

{ a [(consonant)] e }

Curly braces, rather than square brackets, surround the
pattern, since square brackets would test the phoneme
stream, rather than the text stream. Curly braces can sur-
round patterns and most subpatterns, without changing the
meaning of what they enclose.

In order to test pointer variables, such a s 2 in the pattern
just shown, it is necessary first to set them. initially, two
built-in pointers are set: *left, which points to the leftmost
sync mark of the delta, and *right, which points to the
rightmost sync mark. Other pointers are set as side-effects
of pattern matches, by preceding their names with an
exclamation point. For example, the following pattern i s the

same as the previous one except that i f the entire pattern
matches, "2 will point to the sync mark after the letter a:

{ -*1 a ! *2 [(consonant)] e }

Any side-effects of testing a pattern are undone if the
pattern fails to match, so that failed tests will not affect the
delta or any variables. i f the above pattern failed to match
after "2 had been set (because the delta contained two
consonants at that point, for example) the setting of "2
would be undone.

Patterns can be quite complex. For example, the follow-
ing, more realistic pattern for English, adds a test to the
above pattern to determine whether the letter e is root-
final (in order to predict the pronunciation of the vowel
phoneme corresponding to the letter a in words like make,
date, dating ("date"+ 'ling"), and so forth):

{ { -^1 a ! -2 [(consonant)] e ! *end}

& [%morph root -*endl }

The & operator connects two independent tests that must
both succeed for the pattern to match. The left conjunct i s
always tested before the right, which ensures, in this case,
that *end is set by the first half of the expression before it is
checked by the second half.

Not only can patterns test whether two tokens in differ-
ent streams (such as e and root above) are bounded by the
same sync mark, but they can also test whether a token in
one stream i s "contained in" a token in another stream
(regardless of whether the tokens are bounded by the same
sync mark). For example, given a delta with syllable tokens
and associated stress attributes, the rule in English that
reduces vowels in most unstressed syllables could easily
test whether each token with the attribute (vowel) is in an
unstressed syllable.

Assume that a vowel-reduction rule is being applied to
the word discover and tha t2 is pointing after the phoneme
E, as shown in Fig. 11. (Ignore the \\Al in the figure for the

moment.) The following pattern, which tests whether the
vowel preceding -1 is in an unstressed syllable, would
match the phoneme E:

{ [(vowel) -^1] & [%syllable- *l (-stress)] }

This pattern uses the left context operator \\ to specify
the closest sync mark in the syllable stream to the left of "l
as the anchor for the second test, as shown in Fig. 11. Since
a syllable token with attribute (-stress) follows this sync
mark, the pattern succeeds. The same pattern would match
the phoneme I of the first syllable if 1 were positioned at
the sync mark following the 1.

Actions: A pattern i s usually coupled with an action to
be performed if the pattern matches. For example, the

1594 PROCEEDINGS OF THE IEEE, VOL. 7 3 , NO. 11, NOVEMBER 1%

pattern for words like zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbathe would be coupled with an
action that inserts the phoneme zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe (the pronunciation for
the letter a) into the phoneme stream between pointers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-1
and -2 (replacing the gap synchronized with the letter a in
Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIO), as shown below:

{ { -^1 a ! ̂2 [(consonant)] e !^end}

& [%morph root - ̂ end] }

- > insert [e] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1 . . . ^ 2 ;

This rule applies not only to the root bathe, but to any root
containing the letter a followed by a consonantal phoneme
and a root-final letter e- for example, bake, fate, and
Iathe. Fig. 12 shows the sample delta for bathe after apply-
ing the rule.

borph : root suffix
% l e t t e r : a t (h

%phoneme: 1 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc I dh I &P I 1
-1 -2

Fig. 12. Delta fragment for bathe after e-insertion.

The rule just developed can be expanded to handle any
vowel, not just a, in the same context:

{ {--l (vowel) ! ̂ 2 [(consonant)] e ! ̂end}

& [%morph root -^end] }

- > strong -vowel (-1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2);

The only change to the pattern is a test for a letter with
the attribute (vowel), rather than for the letter a alone.
The action of the rule invokes a procedure named
strong-vowel, which assigns the appropriate phoneme for
the particular vowel matched.

A definition for the strong-vowel procedure is shown in
Fig. 13. The body of the procedure is an if-statement. In an

proc strong-vowel(-bef ore, -a f ter) ;
i f

{--before a) -> insert [e] ' be fo re . . . -a f te r ;
<--before e> -> insert [i] 'before . . . ' a f te r ;
{--before i) -> insert [ay] -before . . . ' a f te r ;
{--before 0) -> insert 101 -before. . . 'af ter ;
{-^before u) -> insert [u] 'before. . . ^a f te r ;

f i ;
end strong-vowel ;

Fig. 13. Strong vowel procedure.

if-statement, the patterns to the left of the arrows are tested
in succession until one of them succeeds, and the action
specified to the right of the arrow for that pattern i s
executed.

Delta's procedures are much like those of conventional
programming languages. Parameters can be passed by value
or by value-return. Passing by value means that a copy of
the argument i s given to the procedure, so that any changes
made to the copy will not affect the variable in the calling
program. An argument passed by value-return, in contrast,

is copied for the procedure, and then copied back to the
calling program if the procedure succeeds.

Delta is unusual in that the procedure call, rather than
the definition of the procedure, specifies which parameter
passing mechanism to use. The strong-vowel procedure call
above has two arguments, both of which are passed by
value. Preceding either argument with an exclamation point
would indicate that the argument may be modified when
the procedure return^.^

The next example shows how to insert the appropriate
strong vowel without calling a procedure, by using a
name-valued field. Assume that the definition for the text
stream shown in Fig. 3 is expanded as shown in Fig. 14
to include the name-valued fields strong-pronunc and
default-pronunc, whose possible values are the names of
tokens in the phoneme stream. Following the field defini-

stream %text ;

strong-pronunc : names in %phoneme ;
default-pronunc: names in Xphonene;
a has strong-pronunc: e . default-pronunc:
e has strong-pronunc: i , default-pronunc:
i has strong-pronunc: ay. default-pronunc:
o has strong-pronunc: 0 . default-pronunc:
u has strong-pronunc: u. default-pronunc:

end %text ;

Fig. 14. Expanded text stream definition.

tions i s a list of letters and their values for these fields. For
example, a i s defined to have the phoneme name e as the
value of the strong-pronunc field and the phoneme name
ae for default-pronunc.

Given these definitions, the root-final e rule can now be
written without a procedure as follows:

{ { - -1 (vowel) !$v ! ̂ 2 [(consonant)] e ! ̂ end}

& [%morph root -*end] }

- > insert [(name: $v.strong-pronunc)] 2 . . . 2;

The pattern is the same as before, except for the addition of
the expression !$v, which saves a copy of the matched
vowel (in the sample delta for bathed, the letter a) in the
token variable $v. The action i s a single insertion, rather
than a call to a more complex procedure. It inserts the
phoneme whose name is the value of the strong-pronunc
field of the token in $v-in the case of a, the phoneme
named e.

Our sample rules so far have shown alternative ways to
synchronize one token (a phoneme) with another token (a
letter). Delta also provides a way to insert a token between
two others (for example, to insert the vowels in the Hebrew
example in Fig. 6 between the consonants). Rule-writers

'The conventional choices for parameter passing (pass-by-value
and pass-by-reference) are incompatible with each other, so a
choice must be made for each parameter when the procedure is
defined. Pass-by-value and pass-by-value-return, however, are com-
patible, so the choice can be made independently for each invoca-
tion of the procedure.

HERTZ et d l : DELTA RULE FOR SPEECH SYNTHESIS 1595

can specify whether new tokens should be visible or invisi-
ble in other streams (that is, whether a gap should be
inserted in each other stream or not).

Insertion i s not the only possible action for a rule. Rules
can also delete tokens or set the values of fields. The
following rule deletes the first of two identical phonemes
not separated by a morph boundary (for example, the first zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt

in ditto):

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-“1 () zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA!Sph !^2 [’ [%morph] ‘I Sph I
- > delete %phoneme zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.2;

The empty angle brackets () match any single token in the
phoneme stream. A copy of that token is stored in the
token variable $ph, and 2 is set at the sync mark following
the token. The next part of the pattern checks that this sync
mark does not extend into the morph stream - that is, that
there is no intervening morph boundary. The outer nega-
tion brackets [‘ . . . ‘1 indicate that the enclosed change to
the morph stream must fail for the pattern as a whole to
succeed. The pattern then checks whether the next
phoneme is the same as the phoneme stored in Sph. If so,

the action deletes the first phoneme.
This deletion rule uses the special Delta negation brack-

ets. Negation brackets are not restricted to surrounding
stream changes. For example, the simple pattern

{ - ̂ 1 [’ (vowel) ‘1 }

tests for the absence of a letter token with the attribute
(vowel) after the anchor. The pattern { -^1 (-vowel) }, on
the other hand, would test for the presence of a token that
does not have the attribute (vowel), and unlike the pattern
with negation brackets, would not match when 2 points to
the rightmost sync mark in the delta. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Loops: All of the sample rules so far have been applied
once to a particular place in the delta. Delta provides for
repetitive rule application with its loop construct. For exam-
ple, the forall loop in Fig. 15 breaks each word of an
utterance into morphs.

loop f oral1 {,’begin * le t ter>++ !-end> from - l e f t ; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
break_int6_morphs(’begin, -end) ;
continue from -end;

pool ;
fig. 15. Ford loop for breaking words into morphs.

The from-option “from ’left” initializes the anchor
%e& to left. The forall pattern matches words (uninter-
rupted sequences of letters terminated by a punctuation
mark or white space). The ++ after (letter) indicates that
the longest sequence of one or more letters should be
matched. If the anchor ^ b e g i n is not before a letter, it is
advanced one sync mark in the text stream, and the pattern
is tried again. This advancing is repeated until the forall
pattern matches (in which case the body of the loop is
executed), or until ^begin reaches the right end of the delta
and cannot be advanced (in which case the loop ter-
minates).

For each word found, the body of the loop calls a
procedure named break-into-morphs to insert prefix, suffix,

and root tokens into the morph stream. The continue state-
ment advances ^beg in to the sync mark pointed to by

*end (the sync mark immediately following the matched
word) and continues the scan for words.

This loop uses one of the forall options, the from-
option. Other forall options can be used to specify in which
direction to scan, in which stream, and which pointer to
advance.

C. Dictionary Facilities

Writing rules for words that behave regularly is only a
small part of the problem of text-to-speech conversion.
Even more challenging is handling phenomena that cannot
easily be captured in rules. Traditional exception diction-
aries containing words and their pronunciations work well
for very irregular spellings like lasagna and solder. Delta’s
more flexible dictionary can store a much broader class of
information.

Delta’s dictionary has two parts: the action dictionaryand
sets. The action dictionary contains token sequences (for
example, text or phoneme sequences) and associated ac-
tions (for example, insertions into the phoneme stream).
Sets contain token sequences, but no actions.

Delta’s find-statement looks up token sequences in the
dictionary. The expression

find {^beg ... ̂ end}

looks in the action dictionary for the sequence of text
tokens between “ b e g and “end, returning success if it is
found and failure i f not. On success, the action specified
for the entry in the dictionary is automatically performed.
The expression

find { ̂ beg.. . “end} in prepositions

looks for the text sequence between ^beg and “end in the
set named prepositions and simply returns success or failure.

Sets: Sets provide the rule-writer with a succinct way to
group words that behave similarly. For example, the follow-
ing statement adds the words humbly, crumbly, nimbly,
and assembly to the small set of words in which the final ly
does not function as a suffix. (If ly were stripped as a suffix,
later rules would make the b silent, as in dumbly and
numbly, where ly is a true suffix.)

set no-ly-strip contains {humbly}, {crumbly},

{nimbly 1, {assembly 1 ;
The lrstripping rule can now be expressed straightfor-

wardly, as a simple pattern with an explicit set of excep-
tions:

{ ! ̂suff ly -^end}

- > ‘find {“beg. . . ̂ end} in no-ly-strip

- > iosert [%morph suffix] ^suff .. . ̂ end;

First, the pattern checks that the word ends with ly.6 If SO,

the word is looked up in the set no-ly-strip. The “’” in
front of find is a negation operator. If the word is not
found, the suffix token is inserted into the morph stream.

The set no-ly-strip in this example prevents an action
from occurring. Sets are also useful for invoking actions.
The example in Fig. 16 uses a set named prefix-not-syl to

‘It is assumed that the rule would not be tested against one-sylla-
ble words such as sly and fly.

15% PROCEEDINGS OF THE IEEE. VOL. 7 3 , NO. 11, NOVEMBER 1985

set pref ix-not-syl contains
<discover), idiscuss), <disease), <mistake);

f ind <-be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgw...- endr) in prefix-not-syl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-> {!-ends <> -'endp)

-> insert [%syl lable syl] -begw.. . -ends; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 16. Syllable insertion in words like discover.

insert the first syllable token in words like discover, where
the prefix boundary (marked by ̂ endp) does not coincide
with the syllable boundary (see Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5) . First, the set i s
defined, then the word surrounded by -begw (begin word)
and-endw (end word) is looked up in the set.' If it is found,
-ends (end syllable) is placed one letter before the end of
the prefix, and a syi token is inserted into the syllable
stream. For example, in discover, the token syl would be
synchronized with the letters d and i.

Using sets for exceptions is often clearer than using the
action dictionary, and produces faster, more compact rules.

Insertions: The exception dictionaries of previous systems
have been used mainly to store irregular pronunciations for
text strings. The identical effect can be achieved in Delta by
storing sequences of letters in the action dictionary with
associated insert actions that put the pronunciations in the
phoneme stream.

To insert tokens into the delta, the dictionary must know
the sync marks between which the insertion is to occur.
Pointer variables are therefore passed to the dictionary, in
much the same way as they are passed to a procedure. In
fact, a dictionary definition block (in which all action dic-
tionary entries must be enclosed) looks much like an
ordinary procedure definition: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

dictionary (-beg, ^end, -1, -2);

end dictionary;

The dictionary's header specifies the names of the pointers
delimiting the sequence being looked up (here, -beg and
*end), and the names of two auxiliary pointers (*1 and *2)
that can be used within the dictionary entries, as illustrated
below.

Since simple insert actions are very common, Delta
provides a shorthand notation for them. Instead of putting
the general form

{of} - > insert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[uh V] b̂eg.. . *end;

inside the dictionary definition block, the rule-writer can
use the shortened form

{of} => [uh v];

Just as the source language provides a special encoding for
simple insert actions, the Delta Machine uses a special
compact representation for them.

In many cases, items are placed in the dictionary because
one letter (or a sequence of letters corresponding to one
phoneme) has an irregular pronunciation. A dictionary entry
can use the auxiliary pointers to insert a pronunciation for
the irregular grapheme alone. The following dictionary en-

'The set prefix-not-syl contains many more words than are
shown in the example.

try, for example, surrounds the irregular letter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo of glove,

shove, and love with the pointers-1 andA2, and inserts the
phoheme uh into the phoneme stream between these
pointers:

{g I !*I o !^2 vel,

{sh !^1 o !^2 ve},

Whenever one of these roots is looked up in the dictionary,
the phoneme uh is inserted. The rest of the pronunciation
can be determined by the rules.

Other Actions: An especially powerful feature of the
Delta dictionary is its ability to associate an arbitrary action
(not just an insertion) with an entry, as illustrated in Fig. 17.

dict ionary(-beg, 'end, -1, - 2) ;

<have) ->
if < --end * ' t o !-end I' <let ter> '1 >

-> insert [h ae f t uh1 -beg. . .-end;
e l s e -> inser t [h ae VI 'beg . . .- end;
f i ;

end dict ionary;
Fig. 17. Dictionary actions for have to and have.

This example recognizes have to as a single phonetic
word pronounced [h ae f t uh], and have in other contexts
as [h ae v]8 When the word have is looked up,*end is set at
the sync mark after the e. If the orthographic word to
follows, the dictionary action moves ̂ end to the sync mark
following the to, and inserts the corresponding pronuncia-
tion [h ae f t uh] into the phoneme stream. On the other
hand, i f have is not followed by to, *end is not moved, and
the pronunciation [h ae v] is inserted.

The dictionary's ability to move pointers keeps the gen-
eral flow of control of the rule program simple, as il-
lustrated by the ford loop in Fig. 18.

loop foral l {--beg <letter>++ !-end) from - l e f t ;
f ind <'beg.. . !-end);
continue from 'end;

pool ;

Fig. 18. Forall loop for looking up words in the dictionary.

The exclamation point before *end in the find-statement
indicates that the pointer's value may be changed by the
dictionary (see the discussion of value-return parameters in
Section 11-6). If the loop is applied to the sentence I have to

go, it would first look up I, then have. Recognizing that the
following to is phonetically part of have, the dictionary
would assign a pronunciation for the entire phonetic word,

'The syntactic context determines whether have to functions as a
single phonetic word. For example, in the sentence I have to drink
a lot of milk it does, whereas in the sentence Mary has more to eat
than I have to drink, it does not. The example in this paper is thus
somewhat oversimplified, showing how have to might be handled
in the absence of a proper syntactic analysis.

H E R T Z et a/ . : DELTA R U L E FOR SPEECH SYNTHESIS 1597

and would set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA^end after the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto, causing the fo rd loop to
continue by looking up go.

Dictionary actions can do more than insert pronuncia-
tions. Any statements (including procedure calls) that are
valid in the Delta program are valid in a dictionary action.
The action in Fig. 19, for example, marks the final syllable of
police as stressed and inserts the phoneme zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi for the letter i. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

{pol zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA!- i i !-2 ce) ->
do

mark [%syllable <stressed>]

insert [il ’1. . . -2;

(\ \ - l in %syllable) . . . (//‘2 in %syllable);

od ;

Fig. 19. Dictionary action for police.

The do and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAod keywords group the statements that com-
prise the action. The mark-statement marks the syllable
token that “contains” the letter i as (stressed), using Delta’s
context operators \\ and // to delimit the syllable token.
The insert-statement inserts the phoneme i.

Dictionary Definition: All dictionary entries other than
the “set contains” declaration must be contained in a
dictionary definition block. The block in Fig. 20 illustrates
the various forms of dictionary entries.

dictionary(’beg, -end. ‘1, -2) ;

set prepositions contains
{at), {in), {under), (by);

{coup) => [k u];
{gl !‘i 0 ! -2 VI) => [uhl;

{have) ->
if { -’end ’ ’ to !-end [- <letter> -1)

-> insert [h ae f t uh] ’beg. . .-end;
else -> insert [h ae VI -beg . . . - end;

fi;
(1 !‘I o !‘2 vel like {glove) ;

{near) (in prepositions) ;

{of) (in prepositions) => [uh V I ;

end dictionary;

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20. Sample dictionary definition block.

The only expressions not yet described are the l ike-
shorthand and the “(in set-name)” clause. The l i ke -
shorthand is used for the action of love to indicate that the
action is identical to that of glove. Alternatively, love and
glove could be listed together with a single action, as
illustrated earlier. The like-shorthand i s useful when the
rule-writer wishes to keep the dictionary entries in al-
phabetical order, as in this example.

The “(in set-name)” clause is used for the preposition
near as an alternative way to add it to the set prepositions.
This clause i s most useful when an entry both belongs to a
set and has an associated action (for example, of).

Because it is tedious to type braces or square brackets
around each dictionary entry, Delta provides an alternate
syntax, illustrated in Fig. 21.

dictionary(’beg. ‘end. -1, ‘2) ;

set prepositions contains %text:

%t ext :
at, in, under, by;

coup => [k ul;
gl !-I o !‘2 ve => [uh];

end dictionary;

Fig. 2 l . Alternate syntax for dictionary entries.

Ill. THE DELTA DEBUGGING ENVIRONMENT

The Delta language is compiled into instructions that are
executed by the Delta Machine interpreter. The interpreter
includes an interactive symbolic debugger for tracing and
controlling program execution. The debugger is comple-
mented by the Delta linker, which can “patch” changed
procedures into existing load modules, so that compilation
and linking delays are minimized.

Debugging aids like these are important for developing
any complex program, and are especially important for
developing synthesis rules, where the output (the syn-
thesizer parameter values) i s generally not well-specified,
but is determined through extensive experimentation. A

synthesis rule set undergoes constant revision as applica-
tions change or new knowledge is gained. Synthesis rule
development is generally an iterative, trial-and-error process
that involves several rounds of examining data such as word
lists and spectrograms, formulating hypotheses, embodying
the hypotheses in the rule program, and testing the pro-
gram. Often an incorrect pronunciation is not revealed until
many utterances have been tested, and it can stem from
almost any portion of the rules-for example, from incor-
rect text-to-phoneme conversion or from incorrect syn-
thesizer parameter value assignment.

A. The Delta Debugger

The Delta debugger provides a set of commands with
which rule-writers can tailor their debugging to their par-
ticular programs. The debugger command language i s flexi-
ble enough to accommodate any Delta program, yet
powerful enough that rule-writers can produce complicated
rule traces with only a handful of commands. (Since the
Delta debugger cannot predict the organization of the
program to be debugged, it cannot have the kind of built-in,
predetermined rule-tracing facilities of a more restricted
system like SRS.)

The debugger’s power stems from its detailed knowledge
of the Delta source language. It can display and modify the
delta data structure, and it uses source language notation
for procedure names, stream names, variable names, token
names, field names, and so forth. Breakpoints can be set at
arbitrary source locations to suspend execution at those
points. Programs can be stepped through source line by
source line, with execution stopping after each line.
Whenever execution is suspended, commands can be is-
sued to examine and alter the program variables and the
delta, or to display selected source lines.

programs can be debugged at the machine level as well.
Breakpoints can be set at specific addresses, the program
‘can be stepped instruction by instruction, and the machine

1598 P R O C E E D I N G S OF T H E IEEE. V O L 73, NO. 11, N O V E M B E R 1985

instructions can be displayed in assembly-language format. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAutomatic Commands: Rather than wait for commands
Machine-level debugging, although more complicated than to be entered by the rule-writer, the debugger can execute
source-level debugging, can be useful on occasions. For pre-specified commands automatically when a breakpoint
example, at the machine level, the rule-writer can trace the occurs. For example, the command
execution of the instructions in a complicated pattern,
regardless of how many source lines the pattern consumes,
to determine what parts of the delta match what parts of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA%text %morph zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"begw . . ."endw; go)

break after delta zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin strip-prefix (print delta \

the pattern.'
Conditional Breakpoints: Conditional breakpoints are

the heart of the debugger. With them, the rule-writer can
tell the debugger to suspend execution and accept de-
bugging commands when certain conditions arise. Depend-
ing on the rule-writer's specifications, execution may stop
in any of several circumstances: just before or just after a
change is made to the delta or to specified streams in the
delta; at a particular procedure or return from a procedure;
at a particular source line number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor machine address; upon
failure or success of particular pattern-matching instruc-
tions; upon failure or success of entire patterns; at the
beginning or end of a rule's action; at a particular kind of
instruction (for example, at an insert instruction); or at
arbitrary points in the program marked with specially named
tags.

For example, the command

break on delta

instructs the pseudo-machine to halt whenever it is about
to change the delta. The debugger then prints the change
that i s about to occur, and the line of the source program
that is being executed. Whenever the machine stops, the
rule-writer can issue debugging commands. Debugging
commands can be issued to display the delta and various
parts of the source program to determine whether a change
is correct. Execution can then be restarted anywhere in the
program - for example, at the instruction that was in-
terrupted, or at the next instruction, or not at all.

Conditions can also be associated with ranges that limit
the halting to particular parts of the program. For example,
the command

break on delta zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin strip-prefix

would cause the machine to stop only before the delta i s
changed by procedure strip-prefix. Similarly, the command

break after delta in strip-prefix

would cause the machine to stop immediately after the
delta i s changed by strip-prefix.

Ranges may be smaller than entire procedures. For exam-
ple, the command

break after delta strip-prefix: 3-20

restricts the condition to lines 3 through zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 of procedure
strip-prefix.

The debugger supports multiple ranges for each condi-
tion, and the ranges for any condition are independent of
those for other conditions.

90ne problem with the SRS trace facility has been the inability to
isolate which parts of complicated rule contexts succeed or fail in
particular cases. This inability has been particularly troublesome in
the case of negated expressions.

instructs the debugger to print the text and morph streams
of the delta between "begw and ̂ endw after any change to
the delta in procedure strip-prefix, and then to continue
execution (go) at the point where execution was inter-
rupted. Thus with a single command the rule-writer can
obtain a list of words that are modified by strip-prefix.

If the command list associated with a condition does not
include a command like go to continue execution, the
rule-writer is prompted for further debugging commands.

Debugging Variables: The Delta debugger includes
built-in variables that rule-writers can use to mark positions
in the delta or to hold tokens. The following command,
which invokes the procedure strip-prefix, uses the built-in
pointer variables "^1 and ""2 as value-return arguments to
the procedure call:

Call strip-prefix(! "-1, ! **2)

It is assumed that these pointers were set to specific sync
marks in the delta by earlier debugging commands. The
extra "* " marks the pointers as built-in debugging variables
rather than ordinary program variables.

Since rule-writers can surround any token sequences in
the delta with built-in pointer variables, then pass them as
arguments to a procedure, any procedure can be tested
independently of others. Since debugging commands can
also initialize the delta, such independent testing is a realis-
tic way to test a procedure before the supporting and call-
ing routines are written.

The debugger includes additional built-in variables to
which it assigns values whenever a breakpoint occurs. These
variables keep track of the position in the delta where a
pattern is being matched, the stream in which the pattern is
being (or was) matched, the left end of where a change in
the delta will take (or took) place, the right end of such a
change, the stream in which the change will take (or took)
place, the number of the source line being executed, and
the address of the instruction being executed.

B. The Delta "Patcher"

Once an error has been isolated with the debugger, the
relevant code can be corrected and retested quickly by
recompiling it and patching it into the existing load module
with the linker. In this way, the frustrating compilation and
linking delays with which most programmers are all too
familiar are minimized.

For example, the command

patch strip-prefix rules

instructs the linker to add the procedure strip-prefix to the
existing load module named rules, overwriting any previous
strip-prefix procedure.

In a similar way, dictionary entries can be added or
altered and be quickly patched into an existing dictionary.

HERTZ et d l . : DELTA RULE FOR SPEECH SYNTHESIS 1599

Iv. DELTA IN THE FUTURE

This paper has focused on the present version of the
Delta System. To increase the power of Delta further, several
extensions have been planned or considered. Most im-
portant, numeric capabilities will be added to give rule-
writers the same flexibility in producing synthesizer values
as the current version gives them in converting text to
non-numeric phonetic units.1°

The second version of Delta will include a built-in data
structure, separate from the delta, that will be designed for
efficient numeric operations, such as interpolations. This
data structure will be “synchronizable” with the delta at
selected points along the time continuum, and rules will b e
able to test easily for particular synchronizations of the two
data structures. Delta will also include numeric attributes, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
so that tokens in the delta itself can contain numeric in-
formation (for example, default target values for particular
synthesizer parameters).

Other data structures are being considered. For example,
pointer attributes may be added, so that tokens can point to
other tokens in any stream. With such pointer attributes,
arbitrary graphs (for example, recursive tree structures) could
be built and manipulated.

The second version of Delta, with full-fledged numeric
capabilities, will give rule-writers a much wider choice of
strategies for producing synthesizer values than have previ-
ous systems.

First, it will not force rule-writers to maintain the tradi-
tional division between rule components (purely symbolic
manipulations followed by purely numeric ones). Instead, it
will allow them to intermingle both kinds of manipulations.

Second, it will not force rule-writers to select between a
concatenative approach, in which synthesizer values are
extracted from a library of pre-stored units, and a rule-based
approach, in which all synthesizer values are generated by
rules. Instead, it will allow them to extract some values
from the dictionary, and to generate other values by rule.

Third, it will not force rule-writers to generate synthesizer
values on the basis of one particular kind of unit. Instead, it
will allow them to generate values on the basis of whatever
unit works best for the synthesizer parameter and the
phenomenon in question (for example, demisyllables or
diphones in some cases, phonemes in others).

Fourth, it will not force rule-writers to synthesize in terms
of a particular type of synthesizer parameter. Instead, it will
allow them. to synthesize in terms of articulatory parame-
ters, acoustic parameters, or both (provided, of course, that
they have written or have been supplied with a program to
drive the synthesizer to be used).

Fifth, it will not force rule-writers to assign synthesizer
parameter patterns on a unit-by-unit basis. Instead, it will
allow them to generate patterns that extend across domains
of arbitrary size. For example, the system will be able to
accommodate a variety of models of intonation, including
those that generate contours on the basis of phonological
targets linked by low-level transitions [24] - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[27] and those
that treat contours as the result of two or more interacting
mathematical functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[28].

‘OUsers can synthesize with the current version of Delta by
interfacing their own procedures to generate synthesizer values on
the basis of the information present in the Delta.

In general, the full-fledged numeric version of Delta will
let rule-writers combine the favorable aspects of different
synthesis techniques, selecting the technique that works
best for the language and phenomenon being modeled.

V. CONCLUSION

The Delta System provides a powerful framework for
expressing knowledge about speech synthesis. Rule devel-
opment within this framework should enhance productivity
and speed progress, since the pace of developments in
speech synthesis depends largely on the ease of creating,
testing, and discarding rules, and on the ease of transferring
the knowledge gained to new practitioners.

Delta’s flexibility should satisfy almost all synthesis rule
developers, whether linguistic researchers or the developers
of talking products. The practicality of the resulting rule sets
will make i t more than just a research tool.

ACKNOWLEDGMENT

The authors thank R. D. Ladd and G. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN. Clements for
their helpful comments on an earlier draft of this paper, and
M. Beckman and 0. Fujimura for their many helpful sugges-
tions at various stages of the paper. They also acknowledge
T. Rauchle, who programmed the dictionary builder, J.
Lynn, who programmed the assembler/linker and portions
of the compiler, and J. Dill, who programmed portions of
the compiler.

REFERENCES

[51

[71

J. Allen, “Synthesis of speech from unrestricted text,” Proc.

J. Allen, S. Hunnicutt, R. Carlson, and B. GranstrSm,
“MITalk-79: The 1979 MIT text-to-speech system,” in ASA-50
Speech Communication Papers, 1. J. Wolf and D. H. Klatt,
Eds., New York: Acoust. Soc. Amer., 1979, pp. 507-510.
S. R. Hertz, “SRS text-to-phoneme rules: A three-level rule
strategy,“ in Proc. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI f f € Int. Conf Acoust., Speech, Signal
Processing, pp. 102 - 105,1981.
-, ”The ‘morphology’ of English spelling: A look at the
SRS text-modification rules for English,” in Working Papers o f
the Cornel1 Phonetics Laboratory, no. 1 , pp. 17- 28, Dec.
1933.
H. S. Elovitz, R. Johnson, A. McHugh, and J.. E. Shore,
“LetterIto-sound rules for automatic translation of English
text to phonetics,” /E€€ Trans. Acoust., Speech, Signal
Processing, vol. ASSP-24, no. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, pp. 446 - 473, Dec. 1976.
0. Fujimura, M. J. Macchi, and J. B. Lovins, “Demisyllables
and affixes for speech synthesis” (Abstract), in Contributed
Papers, vol. 7, 9th Int. Congr. on Acoustics (Madrid, Spain,
July 4-9) . Madrid: Spanish Acoust. SOC., 1977, p. 515.
C. P. Browman, “Rules for demisyllable synthesis using Lin-
gua, a language interpreter,” in Proc. I€€€ Int. Conf. Acoust.,
Speech, Signal Processing, pp. 561 - 564, 1980.
H. Dettweiler, “An approach to demisyllable speech synthe-
sis of German words,” in Proc. IEEEInt. Conf. Acoust., Speech,
Signal Processing, pp. 110-113,1981.
J. Holmes, I. Mattingly, and j. Shearme, “Speech synthesis by
rule,” Language and Speech, vol. 7, pp. 127-143, 1%.
D. H. Klatt, “The KLATTalk text-to-speech conversion system,”
in Proc. /€E€ Int. Conf Acoust., Speech, Signal Processing, pp.

C. H. Coker, “A Model of articulatory dynamics and control,”
Proc. /€€E (Special Issue on Man-Machine Communication
by Voice), vol. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 4 , pp. 452-459, Apr. 1976.
J. P. Olive, “Speech synthesis by rule,” in Speech Communi-

/.FEE, VOI. 6 4 , pp. 422 - 433,1976.

1589- 7592, 1982.

1600 PROCEEDINGS O F THE IEEE, VOL. 73, NO. 11, NOVEMBER 1985

cation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvol. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. Fant, Ed. New York: Halsted, 1974, pp.

[I31 H. E. Wolf, ”Control of prosodic parameters for a formant
synthesizer based on diphone concatenation,” in Proc. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ € E €
Int. Conf. Acoust., Speech, Signal Processing, pp. 106-109,
1981.

[14] R. Carlson, and B. Granstrom, “A text-to-speech system based
entirely on rules,” in Proc. /€€E Int. Conf. Acoust., Speech,
Signal Processing, pp. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA686 - 6 8 8 , 1976.

[15] S. R. Hertz, ”From text to speech with SRS,” J. Acoust. SOC.
Amer., vol. 72, no. 4, pp. 1155-1170, 1982.

[16] M. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE. Beckman, 5. R. Hertz, and 0. Fujimura, “SRS pitch rules
for Japanese,” Working Papers of the Cornel1 Phonetics
laboratory, no. 1, pp. 1-16, 1983.

[17] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. R. Hertz, and M. Beckman, “A look at the SRS synthesis
rules for Japanese,” in Proc. /E€€ Int. Conf Acoust., Speech,
Signal Processing, pp. 1336 - 1339, 1983.

[18] S. R. Hertz, “Multi-language speech synthesis: A search for
synthesis universals” (abstract), J. Acoust. SOC. Amer., vol. 67,

[19] A. Aggoun, C. Sorin, F. Emerard, M. Stella, “Prosodic knowl-
edge in the rule-based Synthex expert system for speech
synthesis,” in New Systems and Architectures for Automatic
Speech Recognition and Synthesis (Proc. of the NATO Ad-
vanced Study Institute held at Bonas, France, July 2-14,

255 - 260.

suppl. 1,1980.

1984).

1241

1251

N. Davidsen-Nielsen, “Syllabification in English words with
medial sp, st, sk,”J. Phonetics, vol. 2, pp. 15 - 45, 1974.
D. A. Dinnsen, “A Re-examination of phonological neutral-
ization,” in Research in Phonetics,” Rep. 4, Dept. of Lin-
guistics, Indiana University, pp. 59-92, June 1984.
S. R. Anderson, “Nasal consonants and the internal structure
of segments,” Language, vol. 52, pp. 326-344, 1976.
H. van der. Hulst and N. Smith, “Autosegmental and metrical
phonology,” in The Structure of Phonological Representa-

Publ., 1982.
tions, pt. I . Dordrecht, Holland dcinnaminson, NJ: Foris

J. Pierrehumbert, “Synthesizing intonation,” J. Acoust. SOC.
Amer., vol. 70, pp.. 985 - 995, 1981.
M. D. Anderson, J. B. Pierrehumbert, and M. Y. Liberman,
“Synthesis by rule of English intonation patterns,” in Proc.
/ €E€ Int. Conf on Acoustics, Speech, and Signal Processing,

C. Bruce, Swedish Word Accents in Sentence Perspective.
Lund, Sweden: Cleerup, 1977.
D. R. Ladd, “Phonological features of intonational peaks,”
Language, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvol. 59, pp. 721- 759, 1983.
H. Fujisaki and K. Hirose, “Modeling and dynamic character-
istics of voice fundamental frequency with applications to
analysis and synthesis of intonation,” in Preprints of Papers,
Working Croup on Intonation, Xlllth Int. Congr. of Linguists,
Tokyo, Japan, 1982.

pp. 2.8.1.-2.8.4, 1984.

H E R T Z et a/ . : DELTA RULE FOR SPEECH SYNTHESIS

